logo
blue band <-
  JOURNAL "NP" ISSUES

"Nauchnoe Priborostroenie", 2017, Vol. 27, no. 3. ISSN 2312-2951

"NP" 2017 year Vol. 27 no. 3.,   ABSTRACTS

ABSTRACTS, REFERENCES

S. A. Kazakov, V. V. Kaminsky, N. V. Sharenkova, S. M. Soloviev, M. A. Grevtsev

SEMICONDUCTOR METHANE SENSORS BASED
ON POLYCRYSTALLINE FILMS SM1-X EUXS IN EXPLOSION-PROOF DESIGN

"Nauchnoe priborostroenie", 2017, vol. 27, no. 3, pp. 3—7.
doi: 10.18358/np-27-3-i37
 

Semiconductor sensors of methane concentrations and volatile hydrocarbons in atmospheric air based on polycrystalline films of solid solutions of europium and samarium sulphides with Sm1-xEuxS compositions, where 0.75 < x ≤ 1, are developed and manufactured. The design features of methane sensors manufactured in an explosion-proof housing are briefly described. The advantages of this type of methane detectors are shown in comparison with known analogues.
 

Keywords: samarium sulfide, europium sulfide, methane sensor, explosion-proof design

Author affiliations:

Ioffe Institute, Saint-Petersburg, Russia

 
Contacts: Kaminsky Vladimir Vasil'evich, Vladimir.Kaminski@mail.ioffe.ru
Article received in edition: 4.07.2017
Full text (In Russ.) >>

REFERENCES

  1. Kupriyanov L.Yu. (Ed.) Handbook of sensors and actuators. Vol. 4. Semiconductor sensors in physico-chemical studies. Elsevier Science, 1996. 412 p.
  2. Kazakov S.A., Kaminski V.V., Soloviev S.M., Sharenkova N.V. [Semiconductor gas oxygen sensors based on polycrystalline films of samarium sulfide]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2015, vol. 25, no. 3, pp. 116—123. Doi: 10.18358/np-25-3-i116123. (In Russ.).
  3. Kaminskiy V.V., Kazakov S.A. Patent RF no. 2546849. Byul. izobr. [Bulletin of inventions], 2015, no. 10. (In Russ.).
  4. Quaranta F., Rella R., Siciliano P., Capone S., Epifani M., Vasanelli L., Licciulli A., Zocco A. A novel gas sensor based on SnO2/Os thin film for the detection of methane at low temperature. Sens. Actuators B: Chem., 1999, vol. 58, pp. 350—355. Doi: 10.1016/S0925-4005(99)00095-7.
 

A. N. Arseniev1, A. G. Monakov1, N. V. Krasnov1, M. N. Krasnov2

ADJUSTABLE BIPOLAR HIGHLY STABLE POWER SUPPLIES

"Nauchnoe Priborostroenie", 2017, vol. 27, no. 3, pp. 8—17.
doi: 10.18358/np-27-3-i817
 

A line of highly stable adjustable bipolar base power supplies of two series: low-voltage ± 10 V, ± 100 V, ± 300 V, ± 600 V and high-voltage ± 1000 V, ± 1500 V, ± 3000 V, ± 5000 V. The necessary parameters of power supplies are determined on the basis of modern requirements for power supplies that are part of various analytical instruments and complexes. These parameters include: bipolarity, high stability no worse than 5·10–6, isolated electrical output, absence of mechanical adjustments – control from a personal computer, calibration of blocks not more than 2 times a month. To control power supply units, switching devices for 24 and 48 channels for power supply systems have been designed, and for a single power supply unit, a single-channel interface unit. Complete with switching devices, the software implements: setting the operating voltage independently for each power supply unit, displaying the set and measured voltage in the power supply, simultaneous activation of the required power supplies, calibration and adjustment of the units.
 

Keywords: highly stable adjustable bipolar power supply, low-voltage power supply, high-voltage power supply, switching device

Author affiliations:

1Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia
2Ltd "Device Consulting", Saint-Petersburg, Russia

 
Contacts: Krasnov Nikolay Vasil'evich, krasnov@alpha-ms.com
Article received in edition: 24.05.2017
Full text (In Russ.) >>

REFERENCES

  1. Ultravolt. URL: http://www.advanced-energy.com/en/UltraVolt_Power.html.
  2. Matsusada. URL: http://www.matsusada.com.
  3. Spellman. URL: http://www.spellmanhv.com.
  4. Applied Kilovolts. URL: http://www.exelis-ps.com.
  5. Stahl-electronics, Germany.
  6. Iseg Spezialelektronif GmbH, Germany. URL: http://iseg-hv.com/en/products/detail/DPS
  7. ETPS Limited, UK. URL:
  8. Wiener GmbH, Germany. URL: http://www.wiener-d.com/sc/power-supplies/mpod--lvhv/.
  9. Hemmers O., Whitfield S.B., Glans P., Wang H., Lindle D.W., Wehlitz R., Sellin I.A. High-resolution electron time-of-flight apparatus for the soft X-ray region. Rev. Sci. Instrum., 1998, vol. 69, no. 11, pp. 3809—3817. Doi: 10.1063/1.1149183.
  10. Samarin S.N., Artamonov O.M., Waterhouse D.K., Kirschner J., Morozov A., Williams J.F. Highly efficient time-of-flight spectrometer for studying low-energy secondary emission from dielectrics: Secondary-electron emission from LiF film. Rev. Sci. Instrum,. 2003, vol. 74, no. 3, pp. 1274—1278. Doi: 10.1063/1.1537044.
  11. Lebedev G., Jozwiak C., Andresen N., Lanzara A., Hussain Z. TOF electron energy analyzer for spin and angular resolved photoemission spectroscopy. Physical Procedia, 2008, vol. 1, no. 1, pp. 413—423.
  12. Jozwiak C., Graf J., Lebedev G., Andresen N., Schmid A.K., Fedorov A.V., El Gabaly F., Wan W., Lanzara A., Hussain Z. A high-efficiency spin-resolved photoemission spectrometer combining time-of-flight spectroscopy with exchange-scattering polarimetry. Rev. Sci. Instrum., 2010, vol. 81, no. 5, 053904. Doi: 10.1063/1.3427223.
  13. Pierce D.T. Perspective on probing metallic ferromagnetism with electrons. J. Appl. Phys ., 2011, vol. 109, no. 7, 07E106. Doi: 10.1063/1.3537960.
  14. Scapellati C. [High Voltage Power Supplies for Analytical Instrumentation]. Analitika [Analytics], 2013, no. 4, pp. 48—54. (In Russ.).
 

V. G. Gurevich1, A. V. Pavlov1, V. M. Konstantinov2

REFERENCE THERMOGRAVIMETRIC COMPLEX (TGC) FOR CALIBRATION OF GAS MICROSTREAM SOURCES AND DYNAMIC PREPARATION OF GAS MIXTURES WITH TRACEABLE PARAMETERS. THE DEFINING OF THE REASON OF LONG-TERM CHANGE IN PRODUCTIVITY OF GAS (VAPOR) MICROSTREAM SOURCES

"Nauchnoe Priborostroenie", 2017, vol. 27, no. 3, pp. 18—27.
doi: 10.18358/np-27-3-i1827
 

The preparation method of dynamic gas mixtures using micro stream sources (MS) of aggressive substances is the most perspective, from the point of view of long-term reproduceability of the preset concentration. The main advantage of MS, made of fluorinecontaining polymers, is the possibility to use in them a wide range of compounds nomenclature, including condensed gases, liquids, sublimated solids and many semi-volatile organic compounds. Using of MS for dynamic gas mixtures preparation on the Thermogravimetric complexes allows to calculate concentration on base of the direct mass measurements of traceable components – substance microg / nitrogen mg (taking in account the analyte purity).
In this paper we consider the Thermogravimetric complex developed in "DINAGAS" company for dynamic gas mixtures preparation based on the electronic balance SARTORIUS, with high-precision vertical thermostat for MS and mass calibrator of the dilution gas flow-rate , in which liquefied nitrogen is used.
The developed complex allowed to carry out the research of fluoroplastic (PTFE) tubes used for the production of gas-permeable housing , as a result- this research confirmed the presence of water vapor in pores of permeable walls. This presence has a significant impact both on the magnitude of their produce ability, as well on their long-term stability.
 

Keywords: thermogravimetric complex, concentration traceability of dynamic gas mixtures, long-term stability of gas micro stream sources

Author affiliations:

1DINAGAS Co., Saint-Petersburg, Russia
2Scientific Instruments Co., Saint-Petersburg, Russia

 
Contacts: Gurevich Vladimir Gerzevich, dinagas@rambler.ru
Article received in edition: 2.05.2017
Full text (In Russ.) >>

REFERENCES

  1. Drugov Yu.S., Konopel'ko L.A. Gazochromatogra­ficheskiy analiz gazov [Gas chromatography analysis of gases]. Moscow, MOIMPEKS Publ., 1995. 464 p. (In Russ.).
  2. McKinley J., Majors R.E. The Preparation of calibration standards for volatile organic compounds ― a question of traceability. LC•GC Europe, 2000, pp. 892—901.
  3. Magnetic Suspension Balance. Corporate advertizing of Rubotherm GMBH. 2007.
  4. Mitchel G.D., Dorco W.D., Johnson P.A. Long-term stability of sulfut dioxide permeation tube standart reference materials. Fresenius' Journal of Analytical Chemistry, 1992, vol. 344, no. 6, pp. 229—233.
  5. Panshin Yu.A., Malkevich S.G., Dunaevskaya Z.S. Ftoroplasty [Ftoroplastics]. Leningrad, Chimiya Publ., 1978. 101 c. (In Russ.).
 

V. V. Shugailo1, S. A. Kostenko1, Yu. S. Mednikova2

DEVICE TO PROVIDE STABLE TEMPERATURE IN A DISH CONTAINING LIVING CELLS

"Nauchnoe Priborostroenie", 2017, vol. 27, no. 3, pp. 28—32.
doi: 10.18358/np-27-3-i2832
 

The wide use of cellular technologies in modern biological research and applied studies requires a device enabling operations with living cells under optimal conditions for the last. The Institute for Biological Instrumentation with Manufacturing Facilities of the Russian Academy of Sciences (IBI RAS) has developed and built a "Device to provide stable temperature in a dish containing living cells" enabling provision of optimal temperatures in a dish containing cells and embryos of warm-blooded animals. The construction of the dish enables insertion of electrodes into the cells for measuring their electrical parameters. The device comprises two elements: a controller and a thermostage with a dish. The thermostage can be mounted onto a microscopic stage or onto a table with the use of a magnifier. Illumination is provided from the dish bottom. The dish temperature can be assigned from 10 to 50 ºC. Accuracy of temperature maintaining is ± 0.1 ºC.
 

Keywords: dish, temperature stabilization, cell, embryo, device, Peltier element

Author affiliations:

1Institute for Biological Instrumentation with Manufacturing Facilities of the RAS,
Pushchino, Moscow region, Russia

2Institute for Higher Nervous Activity of the RAS, Moscow, Russia

 
Contacts: Shugailo Vladislav Vladimirovich, lab12ibp@bk.ru
Article received in edition: 7.07.2017
Full text (In Russ.) >>

REFERENCES

  1. Shugaylo V.V., Nikitin V.A. Metody i pribory dlya kletochnych issledovaniy v biologii [Methods and devices for cell-like researches in biology]. Germany, LAP LAMBERT Academic Publishing, 2012. 92 p. (In Russ.).
  2. Shugaylo V.V., Kostenko S.A. [The device for a thermostatting of cells and embryos]. Materialy 6 Mezhdunarodnoy konferenzii "Aktual'nye problemy biologii v zhivotnovodstve" [Proc. 6th International conferences "Current Problems of Biology in Livestock Production"]. Borovsk, 2015, pp. 202—203. (In Russ.).
  3. Goduchin O.V., Malachova V.I., Kalemenev S.V. [Dynamics of the functional condition of the worrying cut of a brain and the factors causing its violation]. Uspechi fiziologicheskich nauk [Achievements of physiological sciences], 1992, vol. 23, no. 1, pp. 40—57. (In Russ.).
 

V. V. Manoylov1,2, Yu. A. Titov1, A. G. Kuzmin1, I. V. Zarutskiy1

DISCRIMINANT ANALYSIS ALGORITHMS FOR CLASSIFICATION MASS SPECTRA OF EXHALED GASES

"Nauchnoe Priborostroenie", 2017, vol. 27, no. 3, pp. 33—42.
doi: 10.18358/np-27-3-i3342
 

In this paper the algorithms of discriminant analysis for the classification of mass spectra of exhaled gases are considered. It is shown that three algorithms can be used to calculate the coefficients of discriminant functions: 1) an algorithm based on the QR decomposition; 2) an algorithm based on the calculation of the generalized correlation function; and 3) an algorithm based on the solution of an overdetermined system of linear equations by the method of least squares. Tables are given for calculating the probabilities of deciding whether a processed mass spectrum belongs to one of two groups: mass spectra belonging to healthy and unhealthy people. It is shown in the paper that the amplitudes of the mass-spectral peaks of the masses of the exhaled gas as well as the variables resulting from the reduction in the dimension of the data processed by the principal component method can be used as variables for carrying out the classification. It is shown that for an estimation of belonging to one of these groups, it is sufficient to use variables corresponding to the first two principal components. Examples of approbation of the proposed methods are given.
 

Keywords: the mass spectrometer for the analysis of exhaled gases, linear discriminant analysis, classification of mass spectra

Author affiliations:

1Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia
2ITMO University, Saint-Petersburg, Russia

 
Contacts: Manoylov Vladimir Vladimirovich, manoilov_vv@mail.ru
Article received in edition: 21.07.2017
Full text (In Russ.) >>

REFERENCES

  1. Manoylov V.V., Titov Yu.A., Kuz'min A.G., Zaruzkiy I.V. [Methods for data processing and classification for mass spectra of exhaled gases using discriminant analysis]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2016, vol. 26, no. 3, pp. 50—57. (In Russ.). Doi: 10.18358/np-26-3-i5056.
  2. Ajvazyan S.A., Buhshtaber V.M., Enyukov I.S., Meshalkin L.D. Prikladnaya statistika. Klassifikaciya i snizhenie razmernosti. Spravochnoe izdanie [Applied statistics. Classification and decrease in dimension. Reference book]. Ed. S.A. Ajvazyan. Moscow, Finansy i statistika Publ., 1989. 608 p. (In Russ.).
  3. Dubrov A.M., Mhitaryan B.C., Troshin L.I. Mnogomernye statisticheskie metody. Uchebnik [Many-dimensional statistical methods. Textbook]. Moscow, Finansy i statistika Publ., 1998. 352 p. (In Russ.).
  4. Enyukov I.S., ed. Faktornyj, diskriminantnyj i klasternyj analiz [Factor, discriminant and cluster analysis]. Moscow, Finansy i statistika Publ., 1989. 215 p. (In Russ.).
  5. Statsoft (electronic textbook statistically). URL: http://www.statsoft.ru/home/textbook/modules/stdiscan.html.
  6. Kuzmin A.G. Kvadrupol'nyj mass-spektrometr. Patent RF no. 94763. [Patent for the quadrupole mass spectrometer]. Prioritet 27.05.2010. (In Russ.).
  7. Kuzmin A.G., Titov U.A. [Small-size mass spectrometers for dynamic researches of composition of the exhaled air]. Trudy I Mezhdunarodnoj nauchno-prakticheskoj konferencii "Vysokie tekhnologii, fundamental'nye i prikladnye issledovaniya v fiziologii i medicine". Ch. 3 [Proc. I of the Int. scientific and practical conference "High Technologies, Basic and Applied Researches in Physiology and Medicine", Part. 3], Saint Petersburg, 23−26 November, 2010. SPbGPU Publ., 2010, pp. 266−270. (In Russ.).
  8. Kuzmin A.G., Tkachenko E.I., Oreshko L.S., Titov U.A. [Prospects of a method of a mass and spectrometer aromadiagnostika for composition of the exhaled air]. Tezisy dokladov X Evrazijskoj nauchnoj konferencii "DONOZOLOGIYA−2014" [Theses of reports of the X Euroasian scientific DONOZOLOGIYA−2014 conference]. Saint-Petersburg, 18−19 December, 2014, pp. 229−231. (In Russ.).
  9. Kuzmin A.G., Tkachenko E.I., Oreshko L.S., Titov U.A. [Diagnostic opportunities of a mass spectrometry of the exhaled air]. Sbornik tezisov I Vserossijskoj konferencii s mezhdunarodnym uchastiem "Himicheskij analiz i medicina" [The collection of theses of the I All-Russian conference with the international participation "A chemical analysis and medicine"], Moscow, 09—12.11.2015. P. 35. (In Russ.).
  10. Kir'yanov D.V., Kir'yanova E.N. QR- i SVD-razlozheniya: "plohie" SLAU [QR-and SVD decomposition: "poor" SLOUGH]. (In Russ.).
  11. Shitikov V.K., Rozenberg G.S., Zinchenko T.D. Diskriminantnye funkcii dlya klassifikacii mnogomernyh objektov [Discriminant functions for classification of many-dimensional objects]. (In Russ.). URL:
  12. Bernar M. Sovremennaya mass-spektrometriya [The modern mass spectrometry]. Moscow, IIL Publ., 1963. (In Russ.).
  13. Manoylov V.V., Zaruzkiy I.V. [Algebraic estimation of amplitudes of "superimposed" mass spectrum peaks with known half-widths and positions on the mass axis]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2007, vol. 17, no. 1, pp. 98—102. (In Russ.).
  14. Manoilov V.V., Kuzmin A.G., Titov U.A. Extraction of information attributes from the mass spectrometric signals air. Journal of Analytical Chemistry, 2016, vol. 71, no. 14, pp. 1301—1308. Doi: 10.1134/S1061934816140094.
 

A. G. Varekhov

BOUNDARY POTENTIAL OF BIOCOLLOIDS PARTICLES: QUANTITATIVE ANALYSES

"Nauchnoe Priborostroenie", 2017, vol. 27, no. 3, pp. 43—54.
doi: 10.18358/np-27-3-i4354
 

There the structure of peripheral area of the colloid particle and, in particular, the particles of a biological origin is analyzedin the article. The expression for the potential function of a particle, which is not identical to the Boltzmann force function, describing potential at a surface in interaction betweena charged particle and an electrolyte, is offered. The expression is based on the analysis of charge-charge (Coulomb) and a charge-dipole interactions of an electrolyte with the charged surface. It is offered to use the Landau parameter (length) characterizing a thermodynamic equilibrium on a particle surface for an assessment of the double electric layer thickness. Two ways of calculation of electrokinetic radius of the colloid particles are offered. Ratios on the basis of a Debye screening distance and, respectively, the concentration of the electrolyte, showing the connection between the surface and the electrokinetic potentials of particles are offered. The calculations showing the relative precision of the various approaches wereperformed.
 

Keywords: surface potential, zeta-potential, a double electric layer, Landau's length

Author affiliations:

St. Petersburg State University of Aerospace Instrumentation, Russia

 
Contacts: Varechov Aleksey Grigor'evich, varekhov@mail.ru
Article received in edition: 25.04.2017
Full text (In Russ.) >>

REFERENCES

  1. Ostroumova O.S., Kaulin Y.A., Gurnev P.A., Schagina L.V. Effect of agents modifying the membrane dipole potential on properties of Syringomycin E channels. Langmuir, 2007, vol. 23, no. 13, pp. 6889—6892. Doi: 10.1021/la7005452.
  2. Brockman H. Dipole potential of lipid membranes. Chemistry and Physics of Lipids, 1994, vol. 73, no.1-2, pp. 57—79. Doi: 10.1016/0009-3084(94)90174-0.
  3. Diaz S., Amalfa F., Biondi de Lopez A.C., Disalvo E.A. Effect of water polarized at the carbonyl groups of phosphatidylcholines on the dipole potential of lipid bilayers. Langmuir, 1999, vol. 15, no. 15, pp. 5179—5182. Doi: 10.1021/la981235f.
  4. Ermakov Yu.A., Sokolov V.S. Ch. 3: Boundary potentials of bilayer lipid membranes: methods and interpretations. Advances in planar lipid bilayers and liposomes, H.T. Tien and A. Ottova (eds), Amsterdam, Elsevier, 2003, pp. 109—141.
  5. Lobaskin V.A. Modelirovanie mezhchastichnyh vzaimodejstvij v kolloidnyh dispersiyah. Diss. doct. techn. nauk [Modeling of interpartial interactions in colloidal dispersions. Dr. techn. sci. diss.]. Chelyabinsk, South Ural State University, 2004. 283 p.
  6. Varekhov A.G. Potentiometric measurements of transmembrane potential of cells with use of the penetrating ions. Nauchnoe Priborostroenie [Scientific Instru­mentation], 2015, vol. 25, no. 1, pp. 27—35. URL: http://213.170.69.26/en/mag/2015/abst1.php#abst3. (In Russ.)
  7. Frenkel' Ya.I. Teoriya yavlenij atmosfernogo ehlektrichestva [Theory of the phenomena of atmospheric electricity]. Moscow-Leningrad, GIITL Publ., 1949. 155 p. (In Russ.).
  8. Kittel Ch. Vvedenie v fiziku tverdogo tela. Izd. vtoroe [Introduction to solid state physics. Second edition]. Moscow, Fiz.-mat. lit. Publ., 1962. 696 p. (In Russ.).
  9. Weiss L. The cell periphery. International review of cytology, 1969, vol. 26, pp. 63—105. Doi: 10.1016/S0074-7696(08)61634-4.
  10. Duhin S.S. Ehlektroprovodnost' i ehlektrokineticheskie svojstva dispersnyh system [Conductivity and electrokinetic properties of disperse systems]. Kiev, Naukova Dumka Publ., 1975. 248 p. (In Russ.).
  11. Stern O. Zur theorie der elektrolytischen doppelschicht. Z. für Elektrochemie, 1924, bd. 30, pp. 508—516. Doi: 10.1002/bbpc.192400182.
  12. Son E.E. Lekcii po fizicheskoj mekhanike [Lectures on physical mechanics]. Moscow, Fiz.-mat. lit. Publ., 2010, 244 p. (In Russ.).
  13. Fröhlich H. Teoriya diehlektrikov. Diehlektricheskaya pronicaemost' i diehlektricheskie poteri [Theory of dielectrics: dielectric constant and dielectric loss]. Moscow, IIL Publ., 1960. 249 p. (In Russ.).
  14. Overbeek J.Th.G. Thermodynamic and kinetic aspects of the electrochemical double layer. Pure and Applied Chemistry, 1965, vol. 10, no. 4, pp. 359—374. Doi: 10.1351/pac196510040359.
  15. Prieve D.C., Ruckenstein E. The surface potential and double-layer interaction force between surfaces characterized by multiple ionizable groups. J. Theor. Biol., 1976, vol. 56, pp. 205—228. Doi: 10.1016/S0022-5193(76)80053-7.
 

A. Yu. Shmykov1, A. N. Krasovskii1, N. A. Bubis1, S. V. Mjakin2, L. Sh. Boridko1,2, L. M. Kuznetzov3, V. E. Kurochkin1

STUDY OF ELECTROKINETIC PROPERTIES OF SEGMENTED CAPILLARY COLUMNS WITH NEUTRAL AND NEGATIVELY CHARGED POLYMER SORBENTS

"Nauchnoe Priborostroenie", 2017, vol. 27, no. 3, pp. 55—64.
doi: 10.18358/np-27-3-i5564
 

Structure and trends of surface energy changes in model polymer coatings on fused silica are studied and electrokinetic properties are characterized for hollow segmented fused silica columns (SFSC) coated with atactic polystyrene and poly(styrenesulfonic acid) as non-polar and negatively charged segments with the ratios of their lengths 2:1 and 1:2. SFSC are shown to provide a high electroosmotic flow (EOF) almost independent on pH value of electrolyte solutions. Electrokinetic mobility of EOF marker (dimethylsulfoxide) in the studied columns is determined by the ratio of lengths between electricallyt neutral and negatively charged polymer sorbents.
 

Keywords: fused silica, segmented polystyrene and poly(styrenesulfonic acid) columns

Author affiliations:

1Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia
2St. Petersburg State Institute of Technology (Technical University), Russia
3St. Petersburg State University of Economics, Russia

 
Contacts: Shmykov Aleksey Yur'evich, shmykov.alexey@gmail.com
Article received in edition: 23.06.2017
Full text (In Russ.) >>

REFERENCES

  1. Belen'kij B.G. Vysokoehffektivnyj kapillyarnyj ehlektroforez [High performance capillary electrophoresis]. Saint Petersburg, Nauka Publ., 2009. 320 p. (In Russ.).
  2. Delgado A.V., Arroyo F.J. Interfacial Electrokinetics and Electrophoresis. Ed by A.V. Delgado. NY, Marcel Dekker, 2002. 580 p.
  3. Liapis A.I., Grimes B.A. Modeling the velocity field of the electroosmotic flow in charged capillaries and in capillary columns packed with charged particles: interstitial and intraparticle velocities in capillary electrochromatography systems. J. Chromatogr. A, 2000, vol. 877, no. 1-2, pp. 181—215. Doi: 10.1016/S0021-9673(00)00185-0.
  4. Rarenga S., El Rassi Z. Controlling retention, selectivity and magnitude of EOF by segmented monolithic columns consisting of octadecyl and naphthyl monolithic segments-applications to RP-CEC of both neutral and charged solutes. Electrophoresis, 2011, vol. 32, pp. 1033—1043. Doi: 10.1002/elps.201000563.
  5. Nashabeh W., El Rassi Z. Coupled fused silica capillaries for rapid capillary zone electrophoresis of proteins. J. High Resolut. Chromatogr., 1992, vol. 15, pp. 289—292. Doi: 10.1002/jhrc.1240150503.
  6. Nashabeh, W., El Rassi Z. Fundamental and practical aspects of coupled capillaries for the control of electroosmotic flow in capillary zone electrophoresis of proteins. J. Chromatogr., 1993, vol. 632, pp. 157—164. Doi: 10.1016/0021-9673(93)80039-B.
  7. Krasovsky A.N., Shmykov A.Ju., Filippov V.N., Vasiljeva I.V., Mjakin S.V., Osmolovskaya N.A., Borisova S.V., Kurochkin V.E. [Study of the surface properties of coatings comprising a mixture of polystyrene and poly (styrenesulfonic acid) on the fused silica glass]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2009, vol. 19, no. 4, pp. 51—58. (In Russ.). URL:
  8. Shmykov A.Yu., Krasovskii A.N., Bubis N.A., Bulyanitsa A.L., Esikova N.A., Kuznetsov L.M., Kurochkin V.E. Electromigration properties of capillary columns with polystyrene coating as a stationary phase. Russian Journal of Applied Chemistry, 2016, vol. 89, no. 12, pp. 1978—1984. Doi: 10.1134/S1070427216120089.
  9. Zolotarev V.M., Morozov V.N., Smirnova E.V. Opticheskie postoyannye prirodnyh i tekhnicheskih sred [Optical constants of natural and technical environments]. Leningrad, Chemistry Publ., 1984. 216 p. (In Russ.).
  10. Krasovskii A.N., Shmykov A.Yu., Osmolovskaya N.A, Mjakin S.V., Kurochkin V.E. [IR spectra and surface structure of polystyrene and polystyrene sulfonic acid coatings on fused silica glass]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2014, vol. 24, no. 2, pp. 5—15. (In Russ.). URL: http://213.170.69.26/en/mag/2014/abst2.php#abst1
  11. Pugachevich P.P., Beglyarov E.M., Lavygin I.A. Poverhnostnye yavleniya v polimerah [The surface phenomena in polymers]. Moscow, Chemistry Publ., 1982. 200 p. (In Russ.).
  12. Bordwell F.G. Equilibrium acidities in dimethyl sulfoxide solution. Acc. Chem. Res., 1988, vol. 21, pp. 456—463. Doi: 10.1021/ar00156a004.
  13. Iler R. The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica. Wiley, 1979. 896 p. (Russ ed.: Ajler R. Himiya kremnezema. Vol. 2. Moscow, Mir Publ., 1982. 919 p.).
  14. Itoh N., Stoneham A.M., Tanimura K. Transient defects and electronicexitation. Structure Imperfections Amorphous and Crystaline Silicon Dioxide. Wiley, 2000, pp. 329—347.
  15. Zundel G. Hydration and Intermolecular Interaction. NY and London: Academic Press, 1969. 382 p. (Russ ed.: Cundel' G. Gidrataciya i mezhmolekulyarnoe vzaimo­dejstvie. Moscow, Mir Publ., 1972. 404 p.).
  16. Krasovskii A.N., Novikov D.V., Osmolovskaya N.A., Borisova S.V. ATR IR spectra and structure of boundary layers of atactic polystyrene. Polymer Sci. Ser. A., 2012, vol. 54, no. 6, pp. 451—458.
  17. Krasovskii A.N., Lavrent ̛ev V.K., Novikov D.V., Osmolovskaya N.A. The coil → blob transition in atacticpoly(styrene) films. Phys. Solid State, 2010, vol. 52, no. 4, pp. 862—867. Doi:
 

A. I. Zhernovoy, U. V. Ulashkevich, S. V. Dyachenko

THE STUDY OF DEPENDENCE THE INFRARED SPECTRUM OF MAGNETIC FLUID FROM MAGNETIC FIELD

"Nauchnoe Priborostroenie", 2017, vol. 27, no. 3, pp. 65—69.
doi: 10.18358/np-27-3-i6569
 

Colloidal solution of ferromagnetic magnetite nanoparticles in magnetic field has vibrational-rotational IR spectrum. The energy of the vibrational levels does not depend on the induction of the external magnetic field, and the energy of the rotational levels depends linearly on it. The effect can be explained by the reorientation under the action of photons of the magnetic moments of nanoparticles in magnetic field.
 

Keywords: magnetic fluid, magnetic field, vibrational-rotational IR spectrum, single-domain ferromagnetic nanoparticles

Author affiliations:

Saint-Petersburg State Institute of Technology (Technical University), Russia

 
Contacts: Zhernovoy Aleksandr Ivanovich, azhspb@rambler.ru
Article received in edition: 4.07.2017
Full text (In Russ.) >>

REFERENCES

  1. Zhernovoy A.I., Ulashkevich Yu.V., Diyachenko S.V. [Magnetic fluid in magnetic field infrared absorbtion spectra investigation]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2016, vol. 26, no. 2, pp. 60—63. Doi: 10.18358/np-26-2-i6063. (In Russ.).
  2. Zhernovoy A.I., Ulashkevich Yu.V., Diachenko S.V. [The discreteness of magnetic moments of single-domain ferromagnetic nanoparticles]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2017, vol. 27, no. 1, pp. 72—76. Doi: 10.18358/np-27-1-i7276. (In Russ.).
  3. Zhernovoy A.I., Ulashkevich Yu.V., Diachenko S.V. [The study of the infrared spectrum of a magnetic nanoparticles in a magnetic field structure]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2017, vol. 27, no. 2. pp. 61—65. Doi: 10.18358/np-27-2-i6165. (In Russ.).
  4. Mikhaylovskiy R.V., Hendry E., Secchi A., Mentink J.H., Eckstein M., Wu A., Pisarev R.V., Kruglyak V.V., Katsnelson M.I., Rasing Th., Kimel A.V. Ultrafast optical modification of exchange interactions in iron oxides. Nat. Commun., 2015, vol. 6, art. number 8190. Doi: 10.1038/ncomms9190.
 

A. V. Borodin, M. V. Yudin, D. N. Franzev

THE VIRTUAL THERMAL UNIT FOR NUMERICAL STUDY OF THE GROWING PROCESS OF SHAPED SAPPHIRE CRYSTALS

"Nauchnoe Priborostroenie", 2017, vol. 27, no. 3, pp. 70—80.
doi: 10.18358/np-27-3-i7080
 

A virtual model of the thermal unit with induction heating has been designed and numerical simulation of the growing process was carried out, including the solution of problems of induction heating, heat transfer in solids, liquid, and gas, heat transfer by radiation, melt and gas dynamics, and thermoelasticity. The influence of argon pressure in the chamber, the design of radiation shields on the distribution of temperature and thermal stresses in the sapphire tube and hemisphere were investigated. The axisymmetric two-dimensional and three-dimensional models were coupled and calculation of temperature in the crystallization zone for simultaneous growing of sapphire plates was performed. The obtained results are consistent with practically accumulated information and are applicable for the development of shaped sapphire growing technologies.
 

Keywords: crystal growth, sapphire, numerical simulation

Author affiliations:

Institute of Solid State Physics RAS, Chernogolovka, Moscow District, Russia

 
Contacts: Borodin Aleksey Vladimirovich, borodin@ezan.ac.ru
Article received in edition: 4.05.2017
Full text (In Russ.) >>

REFERENCES

  1. Modest M.F. Radiative Heat Transfer. 2nd ed., Academic Press, San Diego, California, 2003. 822 p.
  2. Sieger R., Howell J. Thermal Radiation Heat Transfer. 4th ed., Taylor & Francis, N.Y., 2002. 868 p.
  3. Rubzov N.A. Teploobmen izlucheniem v sploshnych sredach [Heat exchange by radiation in continuous mediums]. Novosibirsk, Nauka Publ., 1984. 278 p. (In Russ.).
  4. Borodin A.V., Borodin V.A., Zhdanov A.V. Simulation of the pressure distribution in the melt for sapphire ribbon growth by the Stepanov (EFG) technique. J. of Crystal Growth, 1999, vol. 198-199, part. 1, pp. 220—224. Doi: 10.1016/S0022-0248(98)01057-4.
  5. Bunoiu O., Duffar T., Theodore F., Santailler J.L., Nicoara I. Numerical simulation of the flow field and solute segregation in edge-defined film-fed growth. Crystal Research and Technology, 2001, vol. 36, no. 7, pp. 707—717. Doi: 10.1002/1521-4079(200108)36:7<707::AID-CRAT707>3.0.CO;2-J.
 

S. I. Shevchenko

ABOUT THE PROPERTIES OF CYLINDRICAL MIRRORS FOR THE ACCOUNTING OF ELECTRONS WITH THE AZIMUTHAL COMPONENT OF VELOCITY. THE FOCUSING AND FOCUS LINE

"Nauchnoe Priborostroenie", 2017, vol. 27, no. 3, pp. 81—89.
doi: 10.18358/np-27-3-i8189
 

The work of a cylindrical mirror with allowance for electrons having an azimuthal velocity component was studied. Possible implementations of the ring-ring scheme are considered. The classical definition of focusing to the case of the presence of azimuthal electrons is extended. The relationships between the main parameters of a cylindrical mirror (generalized second-order focal line), such as the source-detector distance, the radius of the emission ring, the position (radius) of the output diaphragm, the focusing energy, the starting angle of the central trajectory for all received ring-ring realizations are found.
 

Keywords: energy analyzer, cylindrical mirror, emission ring, output aperture

Author affiliations:

Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia

 
Contacts: Shevchenko Sergey Ivanovich, nyro2@yandex.ru
Article received in edition: 29.05.2017
Full text (In Russ.) >>

REFERENCES

  1. Shevchenko S.I. [About the properties of cylindrical mirrors for the accounting of electrons with the azimuthal component of velocity. The distribution of electrons near the output aperture]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2017, vol. 27, no. 1, pp. 90—101. Doi: 10.18358/np-27-1-i90101. (In Russ.).
  2. Zashkvara V.V., Korsunskij M.I., Lavrov V.P., Red'kin V.S. [About influence of the final size of a source on focusing of a bunch of charged particles in an electrostatic spectrometer with the cylindrical field]. ZhTF [Technical Physics], 1971, vol. 41, no. 1, pp. 187—192. (In Russ.).
  3. Sar‐El H.Z. Cylindrical mirror analyzer with surface entrance and exit slots. I. Nonrelativistic Part. Review of Scientific Instruments, 1971, vol. 42, no. 11, pp. 43—48. Doi: 10.1063/1.1684948 [Russ. ed.: Sar‐El H.Z. Pribory dlya nauchnyh issledovanij, 1971, vol. 42, no. 11, pp. 43—48].
  4. Aksela S. Instrument function of a cylindrical electron energy analyzer. Review of Scientific Instruments, 1972, vol. 43, no. 9, pp. 122—128. Doi: 10.1063/1.1685923 [Russ. ed.: Aksela S. Pribory dlya nauchnyh issledovanij, 1972, vol. 43, no. 9, pp. 122—128].
  5. Draper J.E., Lee Ch.-yi. Response functions of ring‐to‐axis, axis‐to‐axis, and n=1.5 cylindrical mirror analyzers with finite source and slit and central angle 30°—65°. Review of Scientific Instruments, 1977, vol. 48, no. 7, pp. 138—154. Doi: 10.1063/1.1135162 [Russ. ed.: Draper J.E., Lee Ch.-yi. Pribory dlya nauchnyh issledovanij, 1977, vol. 48, no. 7, pp. 138—154].
  6. Zashkvara V.V., Korsunskij M.I., Kosmachev O.S. [The focusing properties of an electrostatic mirror with the cylindrical field]. ZhTF [Technical Physics], 1966, vol. 36, no. 1, pp. 132—137. (In Russ.).
  7. Zashkvara V.V., Red'kin V.S. [To a question of focusing of a bunch of the charged particles an electrostatic mirror with the cylindrical field]. ZhTF [Technical Physics], 1969, vol. 39, no. 8, pp. 1452—1456. (In Russ.).
  8. Zashkvara V.V. [Some ion-optical characteristics of an electrostatic energy analyzer like a cylindrical mirror]. ZhTF [Technical Physics], 1971, vol. 41, no. 4, pp. 829—830. (In Russ.).
  9. Shevchenko S.I. [The method of instrument function calculation of axially energy electrostatic analyzers]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2010, vol. 20, no. 2, pp. 73—81. (In Russ.). URL:
  10. Shevchenko S.I. [Some aspects of the energy analyzer work of a cylindrical mirror type. Part I]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2011, vol. 21, no. 1, pp. 76—86. . (In Russ.). URL:
  11. Shevchenko S.I. [About the lower and upper input of electrons in cylindrical mirror analyzer. Part 1]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2015, vol. 25, no. 3, pp. 19—28. Doi: 10.18358/np-25-3-i1928. (In Russ.).
  12. Shevchenko S.I. [Some aspects of the energy analyzer work of a cylindrical mirror type. Part III]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2013, vol. 23, no. 3, pp. 56—68. (In Russ.). URL: http://213.170.69.26/en/mag/2013/abst3.php#abst8
 

I. V. Kurnin

INFLUENCE OF ION-MOLECULAR REACTIONS ON A RESOLVING POWER OF ION MOBILITY SPECTROMETER WITH BRADBURY–NIELSEN GATE

"Nauchnoe Priborostroenie", 2017, vol. 27, no. 3, pp.90—98.
doi: 10.18358/np-27-3-i9098
 

In order to reveal factors that could significantly affect the resolving power of the ion mobility spectrometer with Bradbury–Nielsen gate, the influence of ion-molecular reactions on the shape of ion peaks and their position is considered. Simulations of the formation of ion pulses by the Bradbury–Nielsen gate and their drift were performed taking into account the ion formation and dissociation reactions. It was shown that transmission properties of the gate being selective, the ions newly formed in the course of the reactions and having lower values of the ion mobility give a significantly wider pulse of small amplitude at the gate exit. Depending on the reaction rates the peaks of the interacting ions coincide at the high rates and at the much slower rates there is an intermediate signal that appear between the ion peaks to be separated. In the case of the water clusters formation and dissociation reactions, the ion peak consist of the several ion components and, depending on the water concentration, its position is shifted toward the position of the cluster of the prevailed size.
 

Keywords: ion mobility spectrometer, Bradbury–Nielsen gate, ion-molecular reactions, resolving power

Author affiliations:

Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia

 
Contacts: Kurnin Igor' Vasil'evich, igor.kurnin@gmail.com
Article received in edition: 18.07.2017
Full text (In Russ.) >>

REFERENCES

  1. Eiceman G.A, Karpas Z, Hill H.H.Jr. Ion mobility spectrometry. 3rd edn., CRC Press, Boca Raton, 2013, 428 p.
  2. Appelhans A.D., Dahl D.A. SIMION ion optics simulations at atmospheric pressure. International Journal of Mass Spectrometry, 2005, vol. 244, no. 1, pp. 1—14. Doi: 10.1016/j.ijms.2005.03.010.
  3. Manura D., Dahl D.A. SIMION 8.0 User’s Manual. Sci. Instrument Services, Inc. Idaho Nat. Lab, 2006.
  4. Kurnin I.V., Yavor M.I. [Model of motion in a viscous media with a statistic diffusion for calculation of ion dynamics in a dense gas and strong electric fields]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2015, vol. 25, no. 3, pp. 29—34. URL: http://213.170.69.26/en/mag/2015/abst3.php#abst4.
  5. Wissdorf W. Reaction Simulation (RS). Extension for SIMION. URL: http://rs.ipams.uni-wuppertal.de/sites/default/files/simion_rs_Documentation_0.4.4.pdf.
  6. Kebarle P., Searles S.K., Zolla A., Scarborough J., Arshadi M. Solvation of the hydrogen ion by water molecules in the gas phase. Heats and entropies of solvation of individual reactions H+(H2O)n-1 +H2O → H+(H2O)n. J. Am. Chem. Soc., 1967, vol. 89, no. 25, pp. 6393—6399. Doi: 10.1021/ja01001a001.
  7. Lau Y.K., Ikuta S., Kebarle P. Thermodynamics and kinetics of the gas-phase reactions H3O+(H2O)n-1 + H2O = H3O+(H2O)n. J. Am. Chem. Soc. 1982, vol. 104, no. 6, pp. 1462—1469. Doi: 10.1021/ja00370a002.
  8. Sunner J., Nicol G., Kebarle P. Factors determining relative sensitivity of analytes in positive mode atmospheric pressure ionization mass spectrometry. Anal. Chem., 1988, vol. 60, no. 13, pp. 1300—1307. Doi:
  9. Kurnin I.V., Samokish V.A., Krasnov N.V. [Simulation of the operational mode of ion mobility spectrometer with Bradbury–Nielsen ion gate]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2010, vol. 20, no. 3, pp. 14—21. (In Russ.). URL: http://213.170.69.26/en/mag/2010/abst3.php#abst3.
  10. Krasnov N.V., Pauls Y.I., Samokish A.V., Samokish V.A., Khasin Yu.I. [The resolving power of ion mobility spectrometer with double consecutive ion separation at corona discharge ionization]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2007, vol. 17, no. 1, pp. 40—48. (In Russ.). URL: http://213.170.69.26/en/mag/2007/abst1.php#abst5.
  11. Kurnin I.V., Krasnov N.V., Semenov S.Y., Smirnov V.N. Bradbury–Nielsen gate electrode potential switching modes optimizing the ion packet time width in an ion mobility spectrometer. Int. J. Ion Mobil. Spec., 2014, vol. 17, no. 2, pp. 79—85. Doi: 10.1007/s12127-014-0152-x.
  12. Ewing R.G., Eiceman G.A., Harden C.S.,. Stone J.A. The kinetics of the decompositions of the proton bound dimers of 1,4-dimethylpyridine and dimethyl methylphosphonate from atmospheric pressure ion mobility spectra. Int. J. of Mass Spectrometry, 2006, vol. 255-256, pp. 76—85. Doi: 10.1016/j.ijms.2006.04.003.
 

L. V. Novikov1, V. V. Kurkina2

THE METHOD FOR ESTIMATION OF SPECTRAL PEAK PARAMETERS

"Nauchnoe Priborostroenie", 2017, vol. 27, no. 3, pp. 99—106.
doi: 10.18358/np-27-3-i99106
 

A new economical algorithm for estimating the parameters of signals in mass spectrometry, chromatography, and other applications, representing a sequence of peaks against a noise background, is proposed. A traditional approach for the peak top detection by the intersection the zero line by the first derivative is developing. In order to increase the reliability of detection of the beginning, end, vertex and saddle between peaks, it is proposed to compare the values of the derivatives at three points of the sliding data window.
 

Keywords: signal processing, analytical spectra, estimation of parameters, identification of peaks

Author affiliations:

1Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia
2St. Petersburg State Technological Institute (Technical University), Russia

 
Contacts: Novikov Lev Vasil'evich, novik38@mail.ru
Article received in edition: 20.06.2017
Full text (In Russ.) >>

REFERENCES

  1. Ewing B., Green Ph. Base-calling of automated sequencer traces using Phred. II. Error probabilities. Genome Res., 1998, vol. 8, no. 3, pp. 186—194. Doi: 10.1101/gr.8.3.186.
  2. Cook D.W., Rutan S.C. Chemometrics for the analysis of chromatographic data in metabolomics investigations. J. Chemometrics, 2014, vol. 28, no. 9, pp. 681—687.
  3. Smith C.A., Want E.J., O’Maille G., Abagyan R., Siuzdak G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem., 2006, vol. 78, no. 3, pp.779—787. Doi: 10.1021/ac051437y.
  4. Wei X., Shi X., Kim S., Zhang L., Patrick J.S., Binkley J., McClain C., Zhang X. Data preprocessing method for liquid chromatography-mass spectrometry based metabolomics. Anal. Chem., 2012, vol. 84, no. 18, pp. 7963—7971. Doi: 10.1021/ac3016856.
  5. Lommen A. MetAlign: interface-driven, versatile metabolomics tool for hyphenated full-scan mass spectrometry data preprocessing. Anal. Chem., 2009, vol. 81, no. 8, pp. 3079—3086. Doi: 10.1021/ac900036d.
  6. Katajamaa M, Oresic M. Processing methods for differential analysis of LC/MS profile data. BMC Bioinformatics, 2005, vol. 6. pp. 179—190. Doi: 10.1186/1471-2105-6-179.
  7. Vivό-Truyols G., Torres-Lapasiό J.R., van Nederkassel A.M., Heyden Y.V., Massart D.L. Automatic program for peak detection and deconvolution of multi-overlapped chromatographic signals. Part I: Peak detection. Journal of Chromatography A, 2005. vol. 1096, no. 1-2, pp. 133—145. Doi: 10.1016/j.chroma.2005.03.092.
  8. Fredriksson M.J., Petersson P., Axelsson B.-O., Bylund D. An automatic peak finding method for LC-MS data using Gaussian second derivative filtering. J. Sep. Sci., 2009, vol. 32, no. 22, pp. 3906—3918.
  9. Gregoire J.M., Dale D., van Dover B. A wavelet transform algorithm for peak detection and application to powder x-ray diffraction data. Review of Scientific Instruments, 2011, vol. 82, no. 1, 015105. Doi: 10.1063/1.3505103.
  10. Du P., Kibbe W.A., Lin S.M. Improved peak detection in mass spectrum by incorporating continuous wavelet transform-based pattern matching. Bioinformatics, 2006, vol. 22, no. 17, pp. 2059—2065.
  11. Slodzinski R., Hildebrand L., Vautz W. Peak detection algorithm based on second derivative properties for two dimensional ion mobility spectrometry signals. Integration of Practice-Oriented Knowledge Technology: Trends and Prospectives, Madjid Fathi (Ed.), Springer-Verlag Berlin Heidelberg, 2013, pp. 341—354.
  12. O'Haver T. Interactive Signal Processing Tools. Peak Finding and Measurement. URL: http://terpconnect.umd.edu/~toh/spectrum/SignalProcessingTools.html.
 

A. S. Berdnikov1, N. K. Krasnova2, K. V. Solovyev2

THEOREM ON INTEGRATION AND DIFFERENTIATION OF 3D ELECTRIC AND MAGNETIC POTENTIALS WHICH ARE HOMOGENEOUS IN EULER TERMS

"Nauchnoe Priborostroenie", 2017, vol. 27, no. 3, pp. 107—119.
doi: 10.18358/np-27-3-i107119
 

Electric and magnetic fields which are homogeneous in Euler terms are used to design the systems of charge particle optics with special properties. General theory of the harmonic functions which are homogeneous in
Euler terms is an important instrument in this process. This paper considers new proof of a fundamental theorem on representation of any harmonic and homogeneous in Euler terms scalar potential as a derivative of harmonic and homogeneous in Euler terms scalar potential of higher order. The said proof uses more weak assumptions about analytical properties of the scalar potential under consideration when usually. It is applicable to harmonic scalar potentials which are homogeneous in Euler terms and contains points with the violation of analytical properties of the function under consideration (in particular, singular points; in particular, at the origin of the coordinate system, which is typical for electric and magnetic fields).
 

Keywords: electric fields, magnetic fields, homogeneous in Euler’ terms functions, similarity principle for charged particle trajectories, analytical solutions of Laplace equation

Author affiliations:

1Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia
2Peter The Great St. Petersburg Polytechnic University, Russia

 
Contacts: Berdnikov Alexander Sergeevich, asberd@yandex.ru
Article received in edition: 19.05.2017
Full text (In Russ.) >>

REFERENCES

  1. Averin I.A. [Electrostatic and magnetostatic electron spectrographs based on Euler’ homogeneous potentials with non-integer orders]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2015, vol. 25, no. 3. pp. 35—44. Doi: 10.18358/np-25-3-i3544. (In Russ.).
  2. Berdnikov A.S., Averin I.A., Krasnova N.K., Solovyev K.V. [The elementary analytical electric and magnetic potentials, the uniform in Euler]. Vestnik Aktyubinskogo regional'nogo gosudarstvennogo universiteta im. K. Zhubanova. Fiziko-matematicheskie nauki [Bulletin of the Aktyubinsk regional state university of K. Zhubanov. Physical and mathematical sciences], 2016, vol. 44, no. 2, pp. 17—32. (In Russ.).
  3. Berdnikov A.S., Averin I.A., Krasnova N.K., Solovyev K.V. [Three-dimensional electric and magnetic potentials, the uniform in Euler]. Vestnik Aktyubinskogo regional'nogo gosudarstvennogo universiteta im. K. Zhubanova. Fiziko-matematicheskie nauki [Bulletin of the Aktyubinsk regional state university of K. Zhubanov. Physical and mathematical sciences], 2016, vol. 44, no. 2, pp. 147—165. (In Russ.).
  4. Averin I.A., Berdnikov A.S. [Regional fields the without net of electronic spectrographs with electrostatic fields, uniform in Euler]. Uspekhi prikladnoj fiziki [Achievements of applied physics], 2016, vol. 4, no. 1,
    pp. 5—8. (In Russ.).
  5. Berdnikov A.S., Averin I.A. [New approach to development of ion-optical schemes of static mass spectrographs on the basis of the non-uniform magnetic fields uniform in Euler]. Uspekhi prikladnoj fiziki [Achievements of applied physics], 2016, vol. 4, no. 1, pp. 89—95. (In Russ.).
  6. Berdnikov A.S., Averin I.A., Golikov Yu.K. [The static mass spectrographs of new type using the electric and magnetic fields uniform in Euler. I]. Mass-spektrometriya [Mass-spectrometry], 2015, vol. 12, no. 4, pp. 272—281. (In Russ.).
  7. Berdnikov A.S., Averin I.A., Golikov Yu.K. [The static mass spectrographs of new type using the electric and magnetic fields uniform in Euler. II]. Mass-spektrometriya [Mass-spectrometry], 2016, vol. 13, no. 1, pp. 11—20. (In Russ.).
  8. Berdnikov A.S., Averin I.A. [About impossibility of double focusing in the combined electric and magnetic fields uniform in Euler]. Mass-spektrometriya [Mass-spectrometry], 2016, vol. 13, no. 1, pp. 62—65. (In Russ.).
  9. Berdnikov A.S., Averin I.A., Krasnova N.K., Solovyev K.V. [Universal expressions for 3D electric and magnetic potentials which are uniform in Euler terms]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2016, vol. 26, no. 4, pp. 13—30. Doi: 10.18358/np-26-4-i1330. (In Russ.).
  10. Berdnikov A.S., Averin I.A., Krasnova N.K., Solovyev K.V. [Integrated formulas for the three-dimensional electric and magnetic potentials uniform in Euler with nonintegral orders of uniformity]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2016, vol. 26, no. 4, pp. 31—42. Doi: 10.18358/np-26-4-i3142. (In Russ.).
  11. Averin I.A., Berdnikov A.S., Gall N.R. [The principle of similarity of trajectories at the movement of charged particles with a different masses in electric and magnetic fields, uniform in Euler]. Pis'ma v ZhTF [Letters in ZhTF], 2017, vol. 43, no. 3, pp. 39—43. (In Russ.).
  12. Berdnikov A.S., Averin I.A., Krasnova N.K., Solovyev K.V. [Quasi-polynomial three-dimensional electric and magnetic potentials uniform in Euler]. Nauchno-tekhnicheskie vedomosti SPbGPU. Fiziko-matematicheskie nauki [Scientific and technical sheets SPbGPU. Physical and mathematical sciences], 2017, vol. 10, no. 1, pp. 71—80. (In Russ.).
  13. Krasnova N.K., Berdnikov A.S., Solovyev K.V., Averin I.A. [About quasipolynomial three-dimensional potentials of electric and magnetic fields]. Nauchno-tekhnicheskie vedomosti SPbGPU. Fiziko-matematicheskie nauki [Scientific and technical sheets SPbGPU. Physical and mathematical sciences], 2017, vol. 10, no. 1, pp. 81—92. (In Russ.).
  14. Berdnikov A.S., Averin I.A., Krasnova N.K., Solovyev K.V. [Theorems on the homogeneity of scalar and vector potentials for 3D electric and magnetic fields which are homogeneous in Euler terms]. Uspekhi prikladnoj fiziki [Achievements of applied physics], 2017, vol. 5, no. 1, pp. 10—27. (In Russ.).
  15. Fihtengolc G.M. Kurs differencial'nogo i integral'nogo ischisleniya. T. 1 [Course of differential and integral calculus. Vol. 1]. Moscow, Fizmatlit Publ., 2001. 616 p. (In Russ.).
  16. Smirnov V.I. Kurs vysshey matematiki. T. 1 [Course of the higher mathematics. Vol. 1.]. Moscow, Nauka Publ., 1974. 480 p.
  17. Gobson E.W. Teoriya sfericheskih i ehllipsoidal'nyh funkcij [Theory of spherical and ellipsoidal functions]. Moscow, Izdatel'stvo inostrannoj literatury, 1952. 476 p. (In Russ.).
  18. Whittaker E.T., Watson G. Kurs sovremennogo analiza. Ch. 2: Transcendentnye funkcii [Course of the modern analysis. Part 2: Transcendental functions]. Moscow, GIFML Publ., 1963. 516 p. (In Russ.).
  19. Donkin W.F. On the Equation of Laplace‘s Functions &c. Philosophical Transactions of the Royal Society of London, 1857, vol. 147, pp. 43—57. Doi: 10.1098/rstl.1857.0005.
  20. Donkin W.F. On the Equation of Laplace‘s Functions &c. Proceedings of the Royal Society of London, 1856-1857, vol. 8, pp. 307—310. Doi: 10.1098/rspl.1856.0075.
  21. Gabdullin P.G., Golikov Yu.K., Krasnova N.K., Davydov S.N. [The use of Donkin’s formula in the theory of energy analyzers. I]. Zhurnal tekhnicheskoj fiziki, 2000, vol. 70, no. 2, pp. 91—94. (In Russ.). (In Eng: Technical Physics, 2000, vol. 45, no. 2, pp. 232—235. Doi: 10.1134/1.1259603).
  22. Gabdullin P.G., Golikov Yu.K., Krasnova N.K., Davydov S.N. [Application of Donkin’s formula in the theory of energy analyzers: Part II]. Zhurnal tekhnicheskoj fiziki, 2000, vol. 70, no. 3, pp. 44—47. (In Russ.). (In Eng: Technical Physics, 2000, vol. 45, no. 3, pp. 330—333. Doi: 10.1134/1.1259626).
  23. Thomson W. Extraits de deux Lettres adressées à M. Liouville. Journal de mathématiques pures et appliquées, 1847, vol. XII, pp. 256—264.
  24. Thomson W. (Lord Kelvin), Tait P.G. Traktat po natural'noj filosofii. Ch. I [Treatise on Natural Philosophy. Part I]. Moscow, Izhevsk, NIC "Regulyarnaya i haoticheskaya dinamika" Publ., 2010. 572 p. (In Russ.).
  25. Thomson W. (Lord Kelvin), Tait P.G. Traktat po natural'noj filosofii. Ch. II [Treatise on Natural Philosophy. Part II]. Moscow, Izhevsk, NIC "Regulyarnaya i haoticheskaya dinamika" Publ., 2011. 560 p. (In Russ.).
  26. Sretenskij L.N. Teoriya n'yutonovskogo potenciala [Theory of the Newtonian potential]. Leningrad, Moscow, OGIZ-GITTL Publ., 1946. 318 p. (In Russ.).
  27. Vladimirov V.S. Uravneniya matematicheskoj fiziki [Equations of mathematical physics]. Moscow, Nauka Publ., 1981. 512 p. (In Russ.).
  28. Dzhrbashyan M.M. Integral'nye preobrazovaniya i predstavleniya funkcij v kompleksnoj oblasti [Integral transformations and representations of functions in complex area]. Moscow, Nauka Publ., 1966. 672 p. (In Russ.).
  29. Samko S.G., Kilbas A.A., Marichev O.I. Integraly i proizvodnye drobnogo poryadka i nekotorye ih prilozheniya. Minsk, Nauka i tekhnika Publ., 1987. 688 p. (In Russ.). (Eng. ed.: Fractional Integrals and Derivatives Theory and Applications. N.Y., Gordon and Breach, 1993).
  30. Nakhushev A.M. Drobnoe ischislenie i ego primenenie [Fractional calculation and its application]. Moscow, Fizmatlit Publ., 2003. 272 p. (In Russ.).
  31. Uchaikin V.V. Metod drobnyh proizvodnyh. Ul'yanovsk, Artishok Publ., 2008. 512 p. (In Russ.). (Eng. ed.: Fractional Derivatives for Physicists and Engineers. Springer, Higher Education Press, 2012. 385 p.).
  32. Aleroev T.S., Zveryayev E.M., Larionov E.A. [Fractional Calculus and its Applications]. Preprinty IPM im. M.V. Keldysha [KIAM Preprint], 2013, no. 37. URL: http://library.keldysh.ru/preprint.asp?id=2013-37. (In Russ.).
  33. Gorenflo R., Mainardi F. Fractional calculus, integral and differential equations of fractional order. Fractals and Fractional Calculus in Continuum Mechanics. A. Carpinteri, F. Mainardi (Eds). N.Y., Springer Verlag, Wien, 1997. 223—276 pp.
  34. Gorenflo R., Mainardi F. Fractional Calculus: Integral and Differential Equations of Fractional Order. CISM Lecture Notes, Italy, Udine, Piazza Garibaldi, International Centre for Mechanical Sciences Palazzo del Torso, 2000.
  35. Ince E.L. Obyknovennye differencial'nye uravneniya [Ordinary differential equations]. Kharkiv, ONTI Publ., 1939. 719 p. (In Russ.).
  36. Trikomi F. Differencial'nye uravneniya [Differential equations]. Moscow, IL Publ., 1962. 351 p. (In Russ.).
  37. Hartman F. Obyknovennye differencial'nye uravneniya [Ordinary differential equations]. Moscow, Mir Publ., 1970. 720 p. (In Russ.).
  38. Arnold V.I. Obyknovennye differencial'nye uravneniya [Ordinary differential equations]. Izhevsk, UdSU Publ., 2000. 368 p. (In Russ.).
  39. Zaitsev V.F., Polyanin A.D. Spravochnik po obyknovennym differencial'nym uravneniyam. Moscow, Fizmatlit Publ., 2001. 576 p. (In Russ.). (Eng. ed.: Handbook of Exact Solutions for Ordinary Differential Equations. Boca Raton, N.Y., CRC Press, 2003).
  40. Evgrafov M.A. Analiticheskie funkcii [Analytical functions]. Third edition processed and added. Moscow, Nauka Publ., 1991. 447 p. (In Russ.).
  41. Markushevich A.I. Teoriya analiticheskih funkcij. T. 1, 2 [Theory of analytical functions. V. 1, 2]. Moscow, Nauka Publ. Vol. 1, 1967. 491 c. Vol. 2, 1968. 624 c.
  42. Bogolyubov A.N., Levashova N.T., Mogilevskij I.E., Muhartova Yu.V., Shapkina N.E. Funkciya Grina operatora Laplasa [Green function of the operator of Laplace]. Moscow, Faculty of Physics Moscow State University, 2012. 130 p. (In Russ.).
  43. Pikulin V.P., Pohozhaev S.I. Prakticheskij kurs po uravneniyam matematicheskoj fiziki [Practical course on the equations of mathematical physics]. Moscow, MCNMO Publ., 2004. 208 p. (In Russ.).
  44. Bogolyubov A.N., Kravcov V.V. Zadachi po matematicheskoj fizike [Tasks in mathematical physics]. Moscow, Moscow State University, 1998. 350 p. (In Russ.).
  45. Golikov Yu.K. [Analytical ways of the description of harmonious functions]. Vestnik Aktyubinskogo regional'nogo gosudarstvennogo universiteta im. K. Zhubanova. Fiziko-matematicheskie nauki [Bulletin of the Aktyubinsk regional state university of K. Zhubanov. Physical and mathematical sciences], 2016, vol. 44, no. 2, pp. 165—181. (In Russ.).
  46. Kel'man V.M., Kareckaya S.P., Fedulina L.V., Yakushev E.M. Elektronno-opticheskie ehlementy prizmennyh spektrometrov zaryazhennyh chastic [Electron-optical elements of prismatic spectrometers of the charged particles]. Alma-Ata, Nauka Publ., 1979. 232 p. (In Russ.).
  47. Kel'man V.M., Rodnikova I.V., Sekunova L.M. Staticheskie mass-spektrometry [Static mass spectrometers]. Alma-Ata, Nauka Publ., 1985. 264 p. (In Russ.).
  48. Lukashevich V.V. [Mass separators. Computational methods and analysis of ions-but-optical systems]. Fizika elementarnyh chastic i atomnogo yadra [Physics of Elementary Particles and Atomic Nuclei], 2003, vol. 34, no. 6, pp. 1520—1562. (In Russ.).
 

A. S. Berdnikov1, N. K. Krasnova2, K. V. Solovyev2

HARMONIC INTEGRATION OF QUASI POLYNOMIAL POTENTIALS WHICH ARE HOMOGENEOUS IN EULER TERMS

"Nauchnoe Priborostroenie", 2017, vol. 27, no. 3, pp. 120—127.
doi: 10.18358/np-27-3-i120127
 

Electric and magnetic fields which are homogeneous in Euler terms are used to design the systems of charge particle optics with special properties. General theory of the harmonic functions which are homogeneous in Euler terms is an important instrument in this process. Quasi polynomial homogeneous potentials satisfying the Laplace equation and given in analytical form provide a sufficiently representative, but not complete, subset of 3D harmonic potentials which are homogeneous in Euler terms. The paper shows how, using harmonic integration, it is possible to extend the class of potentials that are given in analytical form, satisfy the Laplace equation and are homogeneous in Euler terms.
 

Keywords: electric fields, magnetic fields, homogeneous in Euler’ terms functions, similarity principle for charged particle trajectories, analytical solutions of Laplace equation

Author affiliations:

1Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia
2Peter The Great St. Petersburg Polytechnic University, Russia

 
Contacts: Berdnikov Alexander Sergeevich, asberd@yandex.ru
Article received in edition: 19.05.2017
Full text (In Russ.) >>

REFERENCES

  1. Averin I.A. [Electrostatic and magnetostatic electron spectrographs based on Euler’ homogeneous potentials with non-integer orders]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2015, vol. 25, no. 3. pp. 35—44. Doi: 10.18358/np-25-3-i3544. (In Russ.).
  2. Berdnikov A.S., Averin I.A., Krasnova N.K., Solovyev K.V. [The elementary analytical electric and magnetic potentials, the uniform in Euler]. Vestnik Aktyubinskogo regional'nogo gosudarstvennogo universiteta im. K. Zhubanova. Fiziko-matematicheskie nauki [Bulletin of the Aktyubinsk regional state university of K. Zhubanov. Physical and mathematical sciences], 2016, vol. 44, no. 2, pp. 17—32. (In Russ.).
  3. Berdnikov A.S., Averin I.A., Krasnova N.K., Solovyev K.V. [Three-dimensional electric and magnetic potentials, the uniform in Euler]. Vestnik Aktyubinskogo regional'nogo gosudarstvennogo universiteta im. K. Zhubanova. Fiziko-matematicheskie nauki [Bulletin of the Aktyubinsk regional state university of K. Zhubanov. Physical and mathematical sciences], 2016, vol. 44, no. 2, pp. 147—165. (In Russ.).
  4. Averin I.A., Berdnikov A.S. [Regional fields the without net of electronic spectrographs with electrostatic fields, uniform in Euler]. Uspekhi prikladnoj fiziki [Achievements of applied physics], 2016, vol. 4, no. 1,
    pp. 5—8. (In Russ.).
  5. Berdnikov A.S., Averin I.A. [New approach to development of ion-optical schemes of static mass spectrographs on the basis of the non-uniform magnetic fields uniform in Euler]. Uspekhi prikladnoj fiziki [Achievements of applied physics], 2016, vol. 4, no. 1, pp. 89—95. (In Russ.).
  6. Berdnikov A.S., Averin I.A., Golikov Yu.K. [The static mass spectrographs of new type using the electric and magnetic fields uniform in Euler. I]. Mass-spektrometriya [Mass-spectrometry], 2015, vol. 12, no. 4, pp. 272—281. (In Russ.).
  7. Berdnikov A.S., Averin I.A., Golikov Yu.K. [The static mass spectrographs of new type using the electric and magnetic fields uniform in Euler. II]. Mass-spektrometriya [Mass-spectrometry], 2016, vol. 13, no. 1, pp. 11—20. (In Russ.).
  8. Berdnikov A.S., Averin I.A. [About impossibility of double focusing in the combined electric and magnetic fields uniform in Euler]. Mass-spektrometriya [Mass-spectrometry], 2016, vol. 13, no. 1, pp. 62—65. (In Russ.).
  9. Berdnikov A.S., Averin I.A., Krasnova N.K., Solovyev K.V. [Universal expressions for 3D electric and magnetic potentials which are uniform in Euler terms]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2016, vol. 26, no. 4, pp. 13—30. Doi: 10.18358/np-26-4-i1330. (In Russ.).
  10. Berdnikov A.S., Averin I.A., Krasnova N.K., Solovyev K.V. [Integrated formulas for the three-dimensional electric and magnetic potentials uniform in Euler with nonintegral orders of uniformity]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2016, vol. 26, no. 4, pp. 31—42. Doi: 10.18358/np-26-4-i3142. (In Russ.).
  11. Averin I.A., Berdnikov A.S., Gall N.R. [The principle of similarity of trajectories at the movement of charged particles with a different masses in electric and magnetic fields, uniform in Euler]. Pis'ma v ZhTF [Letters in ZhTF], 2017, vol. 43, no. 3, pp. 39—43. (In Russ.).
  12. Berdnikov A.S., Averin I.A., Krasnova N.K., Solovyev K.V. [Quasi-polynomial three-dimensional electric and magnetic potentials uniform in Euler]. Nauchno-tekhnicheskie vedomosti SPbGPU. Fiziko-matematicheskie nauki [Scientific and technical sheets SPbGPU. Physical and mathematical sciences], 2017, vol. 10, no. 1, pp. 71—80. (In Russ.).
  13. Krasnova N.K., Berdnikov A.S., Solovyev K.V., Averin I.A. [About quasipolynomial three-dimensional potentials of electric and magnetic fields]. Nauchno-tekhnicheskie vedomosti SPbGPU. Fiziko-matematicheskie nauki [Scientific and technical sheets SPbGPU. Physical and mathematical sciences], 2017, vol. 10, no. 1, pp. 81—92. (In Russ.).
  14. Berdnikov A.S., Averin I.A., Krasnova N.K., Solovyev K.V. [Theorems on the homogeneity of scalar and vector potentials for 3D electric and magnetic fields which are homogeneous in Euler terms]. Uspekhi prikladnoj fiziki [Achievements of applied physics], 2017, vol. 5, no. 1, pp. 10—27. (In Russ.).
  15. Berdnikov A.S., Krasnova N.K., Solov'ev K.V. [Theorem on integration and differentiation of 3D electric and magnetic potentials which are homogeneous in Euler terms]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2017, vol. 27, no. 3, pp. 107—119. (In Russ.).
  16. Gobson E.W. Teoriya sfericheskih i ehllipsoidal'nyh funkcij [Theory of spherical and ellipsoidal functions]. Moscow, Izdatel'stvo inostrannoj literatury, 1952. 476 p. (In Russ.).
  17. Fihtengolc G.M. Kurs differencial'nogo i integral'nogo ischisleniya. T. 1 [Course of differential and integral calculus. Vol. 1]. Moscow, Fizmatlit Publ., 2001. 616 p. (In Russ.).
  18. Smirnov V.I. Kurs vysshey matematiki. T. 1 [Course of the higher mathematics. Vol. 1.]. Moscow, Nauka Publ., 1974. 480 p. (In Russ.).
 

B. P. Sharfarets

ON THE RELATIONS CONNECTING THE SCATTERING FIELD WITH THE SCATTERING AMPLITUDE

"Nauchnoe Priborostroenie", 2017, vol. 27, no. 3, pp. 128—136.
doi: 10.18358/np-27-3-i128136
 

Various functional relationships between the main parameters of the scattering process are considered in this paper: the scattering field and the scattering amplitude. These relations are either geometrically-optic type (decomposition in the form of the Atkinson–Wilcox series), or a connection through the representation of both functions in series in spherical functions(multipole representations), or as an integral representation (Devaney–Wolf representation). Such a variety of representations is also possible due to the analytic properties of both functions: the scattering field is an radiation solution of the Helmholtz equation, any two differentiable solutions of which are analytic functions of their arguments, and also because the scattering amplitude is an entire analytic function of its arguments. An analog of an Atkinson–Wilcox representation for the generalized scattering amplitude is also given, which is possible only in the case when the primary incident complex field is a radiating solution of the Helmholtz equation. The resulting scattering amplitude in this case also obeys the Helmholtz equation. It is shown that the Herglotz wave function coincides, up to a constant factor, with the Whittaker representation. The above results are very useful for applications, and in particular, in the problems of scientific instrument making.
 

Keywords: scattering amplitude, Atkinson–Wilcox decomposition, Whittaker's representation, Devaney–Wolf representation, incident plane wave, the canonical scattering amplitude, resulting scattering amplitude, Herglotz wave function

Author affiliations:

Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia

 
Contacts: Sharfarets Boris Pinkusovich, sharb@mail.ru
Article received in edition: 24.04.2017
Full text (In Russ.) >>

REFERENCES

  1. Sharfarets B.P. [The Possibility of Efficient Calculation of the Scattering Amplitude Caused by an Inclusion in a Complicated Incident Field]. Akusticheskij Zhurnal [Acoustic journal], 2010, vol. 56, no. 2, pp. 166—171. (In Russ.).
  2. Atkinson F.V. On Sommerfeld’s "Radiation conditions". Philos. Mag., 1949, vol. 40, pp. 645—651.
  3. Wilcox C.H. Ageneralization of the orems of Rellichand Atkinson. Proc. Amer. Math. Soc., 1956, vol. 7, pp. 271—276.
  4. Wilcox C.H. An expansion theorem for electromagnetic fields. Comm. Pure Appl. Math., 1956, vol. 9, pp. 115—134.
  5. Colton D., Kress R. Metody integral'nyh uravnenij v teorii rasseyaniya [Methods of the integrated equations in the theory of dispersion]. Moscow, Mir Publ., 1987. 311 p. (In Russ.).
  6. Sharfarets B.P. [Radiation pressure in the case of the scattering of an arbitrary field by a complex-shaped inclusion]. Akusticheskij Zhurnal [Acoustic journal], 2010, vol. 56, no. 6, pp. 767—772. (In Russ.).
  7. Sharfarets B.P. [Approximate method of solution of problems of multiple scattering]. Pyataya Vserossijskaya nauchno-tekhnicheskaya konferenciya "Tekhnicheskie problemy osvoeniya mirovogo okeana" [Fifth All-Russian scientific and technical conference "Technical Problems of Development of the World Ocean"]. Vladivostok, 30 September —4 October 2013, pp. 461—465. (In Russ.).
  8. Sharfarets B.P. [Approximate method of solution of problems of multiple scattering in stratified wave guides]. XXVII sessiya Rossijskogo akusticheskogo obshchestva [XXVII session of the Russian acoustic society], Saint-Petersburg, 16—18 April 2014, pp. 1309—1319. (In Russ.). URL:
  9. Sharfarets B.P. [Approximate method of the solution of tasks multiple dispersion in the half-space]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2014, vol. 24, no. 3, pp. 75—79.
  10. Sharfarets B.P. [To the question of the approximate method of the decision problems of multiple dispersion. The decision on the example of the ideal wave-guide]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2014, vol. 24, no. 3, pp. 80—86. URL: http://213.170.69.26/mag/2014/abst3.php#abst10. (In Russ.).
  11. Hansen T.B., Yaghjian A.D. Plane-wave theory of time-domain fields. N.Y., IEEE Press, 1999. 367 p. (In Russ.).
  12. Sharfarets B.P. [Specification of the concept "directional diagram"]. Akusticheskie issledovaniya zhidkosti s fazovymi vklyucheniyami [Acoustic researches of liquid with phase inclusions]. Vladivostok, TOI DVNTS OF ACADEMY OF SCIENCES OF THE USSR, 1984, pp. 64—72. (In Russ.).
  13. Colton D., Kress R. Inverse Acoustic and Electromagnetic Scattering Theory. N.Y., Springer, 1998. 331 p.
  14. Alekseev G.V., Burshtein A.B., Sharfarets B.P. [About some properties of chart functions of directional radiators]. Elektromagnitnye i akusticheskie processy v okeane [Electromagnetic and acoustic processes in the ocean].Vladivostok, FEFU Publ., 1987, pp. 130—141. (In Russ.).
  15. Sharfarets B.P. [On some properties of the scattering amplitude]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2007, vol. 17, no. 4, pp. 55—60.
  16. Whittaker E.T. Math. Ann,. 1903. vol. 57, no. 3, pp. 333—355. Doi: 10.1007/BF01444290.
  17. Whittaker, E.T.,  Watson, G.N. A course of modern analysis; an introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions. Cambridge, University Press, 1920, 632 p. (Russ. ed.: Whittaker E.T., Vatson Dzh.N. Kurs sovremennogo analiza. T. II. Transcendentnye funkcii. Translate G.M. Goluzin. Moscow, GIFML Publ., 1963. 516 p.).
  18. Devaney A.J., Wolf E. Multipole expansions and plane wave representations of the electromagnetic field. J. Math. Phys., 1974, vol. 15, no. 2, pp. 235—244. Doi: 10.1063/1.1666629.
  19. Zatserkovnyi A.V., Sergeev V.A., Sharfarets B.P. [Employment of the Scattering Amplitude in Solving the Diffraction Problems for Waves in a Halfspace]. Akusticheskij Zhurnal [Acoustic journal], 2001, vol. 47, no. 5, pp. 650—656. (In Russ.).
  20. Colton D., Kress R. On the denseness of Herglotz wave functions and electromagnetic Herglotz pairs in Sobolev spaces. Math. Meth. Appl. Sci., 2001, vol. 24, pp. 1289—1303. Doi: 10.1002/mma.277.
  21. Colton D., Päivärinta L., Sylvester J. The interior transmission problem. Inverse Problems and Imaging, 2007, vol. 1, no. 1, pp. 13—28. Doi: 10.3934/ipi.2007.1.13.
  22. Morse P.M., Feshbach H. Methods of Theoretical Physics. Part 2. McGraw-Hill Science/Engineering/Math, 1953. 1000 p. (Russ. ed.: Mors F.M., Feshbah G. Metody teoreticheskoj fiziki. T. II. Moscow, IIL Publ., 1960. 886 p.).
  23. Morse P.M., Feshbach H. Methods of Theoretical Physics. Part 1. McGraw-Hill Science/Engineering/Math, 1953. 1997 p. (Russ. ed.: Mors F.M., Feshbah G. Metody teoreticheskoj fiziki. T. I. Moscow, IIL Publ., 1958. 930 p.).
  24. Vladimirov V.S. Uravneniya matematicheskoj fiziki [Equations of mathematical physics]. Moscow, Nauka Publ., 1981. 512 p. (In Russ.).
 

Ulitsa Ivana Chernykh, 31-33, lit. A, St. Petersburg, Russia, 198095, P.O.B. 140
tel: (812) 3630719, fax: (812) 3630720, mail: iap@ianin.spb.su

content: Valery D. Belenkov design: Banu S. Kuspanova layout: Anton V. Manoilov