logo
blue band <-
  JOURNAL "NP" ISSUES

"Nauchnoe Priborostroenie",2015, Vol. 25, no. 3 ISSN 2312-2951, DOI: 10.18358/np-25-3-1026

"NP" 2015 year Vol. 25 no. 3,   ABSTRACTS

ABSTRACTS, REFERENCES

O. V. Pashkov1, M. Z. Muradymov1, N. V. Krasnov1, M. N. Krasnov2

FEATURES ELECTROSPRAY TORCH WITH DYNAMIC LIQUID FLOW SPLITTER
AT ATMOSPHERIC PRESSURE

"Nauchnoe Priborostroenie", 2015, vol. 25, no. 3, pp. 3—9.
doi: 10.18358/ doi: 10.18358/np-25-3-i39
 

The paper presents experimental data on the characteristics of an electrospray plume fluid dynamic division of the flow in the spray under normal conditions. The dependence of the current density of charged atomized particles in the transverse direction of spraying. Registered electrospray mode liquid with corona above the surface of the meniscus, a comparison of the characteristics of the current electrospray and corona without corona discharge. The possibility to control the amount of current sputtered particles are not electrical parameters.
From the experimental data that the node is examined electrospray may be promising as a source of ions from the solution for ion mobility — spectrometers and mass spectrometers. For mass spectrometers with electrospray ion source at atmospheric pressure is a decisive long-term stability non droplets electrospray For the ion mobility — spectrometers essential but long-term stable electrospray, may affect the space charge of sputtered particles on the quality of the ion packets generated electric pulse grid Bradbury—Nielsen gate located at the entrance of a drift tube of the spectrometer.
The existence of a regime of spraying corona on a conical meniscus fluid requires careful study of mass spectrometry, as it may be methodologically useful for the study of complex bio-organic objects.
 

Keywords: electrospray, dynamic liquid flow splitter, corona discharge

Author affiliations:

1Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia
2St. Petersburg Ltd. "Grant Instrument", Russia

 
Contacts: Krasnov Nikolay Vasil'evich, krasnov@alpha-ms.com
Article received in edition: 16.06.2015
Full text (In Russ.) >>

REFERENCES

  1. Samokish V.A., Muradymov M.Z., Krasnov N.V. [Electrospray ion source with a dynamic division of fluid flow]. Nauchnoe Priborostroenie [Science Instrumen­tation], 2012, vol. 22, no. 3, pp. 5—12. (In Russ.).
  2. Samokish V.A., Muradymov M.Z., Krasnov N.V. Electrospray ion sourse with a dynamic liquid flow splitter. Rapid Commun. mass spectrometry, 2013, vol. 27, no. 8, pp. 904—908. doi: 10.1002/rcm.6524.
  3. Arsenyev A.N., Krasnov N.V., Muradymov M.Z. [Researches of stability of electrodispersion at dynamic division of a stream of liquid]. Mass-spektrometriya [Mass spectrometry], 2014, vol. 11, no. 1, pp. 36—38. (In Russ.).
  4. Arsenyev A.N., Muradymov M.Z., Krasnov N.V. [Field desorption of ions from the tip to the meniscus of the liquid at the EHD-spraying]. Nauchnoe Priborostroenie [Science Instrumentation], 2014, vol. 24, no 3, pp. 3—8. (In Russ.).
  5. Arseniev A.N., Muradymov M.Z., Krasnov N.V. Investigation of electrospray stability with dynamic liquid flow splitter. J. Analytical Chemistry, 2014, vol. 69, no. 14, pp. 30—32. doi: 10.1134/S1061934814140020.
  6. Arsenyev A.N., Alekseev D.N., Belchenko G.V. et al. [Spectroscopy of peptides, proteins and oligonukleotides from solutions by ion mobility]. Nauchnoe Priborostroenie [Science Instrumentation], 2015, vol. 25, no. 1, pp. 17—26. (In Russ.).
  7. Koriakin P.S., Krasnov I.A., Muradymov M.Z., Krasnov M.N. [Ion mobility spectrometer with an electrospray ion source as detector liquid chromatography]. Nauchnoe Priborostroenie [Science Instrumentation], 2015, vol. 25, no. 2, pp. 34—39. (In Russ.).
  8. Aleksandrov M.L., Gall L.N., Verenchikov A.N., Krasnov N.V., Shkurov V.A. [Research of the mechanism of formation of cations in mass spectrometry of ERIAD]. Nauchnoe Priborostroenie [Science Instrumentation], 1991, vol. 1, no. 2. pp. 3—36. (In Russ.).
  9. Bychkov V.A., Bychkov D.V., Vakulin D.N. et al. [Researches of pulse and crown categories over a surface of dielectric liquids]. Tezisy dokladov XXXVIII Mezhdunarodnoy (Zvenigorodskaya) konferenzii po fizike plazmy i UGS [Theses of reports of the XXXVIII International conferences on physics of plasma and UGS], Zvenigorod, 14—18 February 2011. (In Russ.).
  10. Aristova N.A., Piskarev I.M. [Kinetics of oxidation of phenol under the influence of a flare crown electric discharge]. Zhurnal prikladnoy chimii [Journal of applied chemistry], 2002, vol. 75, no. 1, pp. 86—89. (In Russ.).
 

T. V. Pomozov, A. N. Verentchikov, M. I. Yavor

QUASI-PLANAR GRIDLESS ION MIRRORS IN MULTI-REFLECTION TIME-OF-FLIGHT MASS ANALYZERS

"Nauchnoe Priborostroenie", 2015, vol. 25, no. 3, pp. 10—18.
doi: 10.18358/np-25-3-i1018
 

In the paper a method of periodic focusing of ions in the drift direction in a multi-reflection time-of-flight analyzer with zig-zag ion trajectories is considered. The method is based on a periodic modulation of spatial electrostatic field distribution in gridless ion mirrors in this direction. The considered way is alternative to conventionally used periodic lenses in planar multi-reflection time-of-flight analyzers. It allows confining ion packet sizes in the drift direction along the whole ion path. Besides, in combination with periodic lenses the described method enables forming spatial isochronosity of ion packets in the drift direction in the second aberration order and thus increasing the mass resolving power of the analyzer up to 1 000 000.
 

Keywords: multi-reflecting time-of-flight mass analyzer, gridless ion mirror, focusing, spatial isochronosity

Author affiliations:

Institute for Analytical Instrumentation of RAS, Saint- Petersburg, RF

 
Contacts: Yavor Michail Igorevich, mikhail.yavor@gmail.com
Article received in edition: 22.07.2015
Full text (In Russ.) >>

REFERENCES

  1. Toyoda M., Okumura D., Ishihara M., Katakuse I. Multi-turn time-of-flight mass spectrometers with electrostatic sectors. J. Mass Spectrometry, 2003, vol. 38, no. 11, pp. 1125—1142. doi: 10.1002/jms.546.
  2. Satoh T., Tsuno H., Iwanaga M., Kammei Y. The design and characteristic features of a new time-of-flight mass spectrometer with a spiral ion trajectory. J. Am. Soc. Mass Spectrom., 2005, vol. 16, pp. 1969—1975.
  3. Wolnik, H. History of mass measurements in time-of-flight mass analyzers. Int. J. Mass Spectrom., 2013, vol. 349-350, pp. 38—46. doi: 10.1016/j.ijms.2013.04.023.
  4. Wollnik, H., Przewloka M. Time-of-flight mass spectrometers with multiply reflected ion trajectories. Int. J. Mass Spectrom. Ion Processes, 1990, vol. 96, pp. 267—274. doi: 10.1016/0168-1176(90)85127-N.
  5. Yavor M.I., Verenchikov A.N. [Comparative analysis of multipass time-of-flight mass analyzers based on mirrors and sector fields]. Nauchnoe Priborostroenie [Science Instrumentation], 2006, vol. 16, no. 3. pp. 21—29. (In Russ.).
  6. Wollnik H., Casares A. An energy-isochronous multi-pass time-of-flight mass spectrometer consisting of two coaxial electrostatic mirrors. Int. J. Mass Spectrom., 2003, vol. 227, no. 2, pp. 217—222.
  7. Yavor M.I., Plaß W.R., Dickel T. et al. Ion-optical design of a high-performance multiple-reflection time-of-flight mass spectrometer and isobar separator. Int. J. Mass Spectrom., 2015, vol. 381-382, pp. 1—9.
  8. Wolf R.N., Wienholtz F., Atanasov D. et al. ISOLTRAP’s multi-reflection time-of-flight mass separator / spectrometer. Int. J. Mass Spectrom., 2013, vol. 349—350, pp. 123—133. doi: 10.1016/j.ijms.2013.03.020.
  9. Schury P., Wada M., Ito Y. et al. A high-resolution multi-reflection time-of-flight mass spectrograph for precision mass measurements at RIKEN /  SLOWRI. Nucl. Instrum. Methods Phys. Res. B., 2014, vol. 335, pp. 39—53.
  10. 1016/j.nimb.2014.05.016" target="_blank"> doi: 10.1016/j.nimb.2014.05.016.
  11. Verenchikov A.N., Yavor M.I. [Planar multireflection time-of-flight mass analyzer with unlimited mass range]. Nauchnoe Priborostroenie [Science Instru­mentation], 2004, vol. 14, no. 2, pp. 38—45. (In Russ.).
  12. Verenchikov A.N., Yavor M.I., Hasin. Yu.I. et al. [Multireflective planar mass analyzer. I. The analyzer for a parallel tandem spectrometer]. Zhurnal technicheskoy fiziki [Journal of technical physics], 2005, vol. 75, no. 1, pp.  4—83. (In Russ.).
  13. Yavor M., Verentchikov A., Hasin Yu., et al. Planar multi-reflecting time-of-flight mass analyzer with a jigsaw ion path. Physics Procedia, 2008, vol. 1, no. 1, pp. 391—400. doi: 10.1016/j.phpro.2008.07.120.
  14. Pomozov T.V., Yavor M.I. [Possibility of performance improvement of planar gridless ion mirrors]. Nauchnoe Priborostroenie [Science Instrumentation], 2011, vol. 21, no. 2, pp. 90—97. (In Russ.).
  15. Verentchikov A., Yavor M. Quasi-planar multi-reflecting time-of-flight mass spectrometer. US Patent 2011/0186729, 2011.
  16. Verentchikov A., Berdnikov A., Yavor M. Stable ion beam transport through periodic electrostatic structures: linear and non-linear effects. Physics procedia, 2008, vol. 1, no. 1, pp. 87—97. doi: 10.1016/j.phpro.2008.07.082.
  17. Ristroph T., Flory C.A. Time-of-flight mass spectrometer with curved ion mirrors. US Patent 2011//0168880 A1.
  18. Manura D.J., Dahl D.A. SIMION TM 8.0 User Manual. Sci. Instrument Services. Inc. Idaho, Nat. Lab., 2006.
 

S. I. Shevchenko

ABOUT THE LOWER AND UPPER INPUT OF ELECTRONS
IN CYLINDRICAL MIRROR ANALYZER. Part 1

"Nauchnoe Priborostroenie", 2015, vol. 25, no. 3, pp. 19—28.
doi: 10.18358/np-25-3-i1928
 

Conditions the second order focusing in cylindrical mirror analyzer with the upper input of electrons are investigated. Generalized focus line, instrument function, transmission and resolution ability are considered. Comparison of a cylindrical mirror schemes with a lower and upper input of electrons is done.
 

Keywords: axially energy analyzer, apparatus function, resolution ability, transmission

Author affiliations:

Institute for Analytical Instrumentation of RAS, Saint- Petersburg, Russia

 
Contacts: Shevchenko Sergey Ivanovich, nyro2@yandex.ru
Article received in edition: 13.04.2015
Full text (In Russ.) >>

REFERENCES

  1. Afanas'ev V.P., Yavor S.Ya. Elektrostaticheskie energoanalizatory dlya puchkov zaryazhennych chastiz [Electrostatic power analyzers for bunches of charged particles]. Moscow, Nauka Publ., 1978. 224 p. (In Russ.).
  2. Kozlov I.G. Sovremennye problemy elektronnoy spektroskopii [Modern problems of electronic spectroscopy]. Moscow, Atomizdat Publ., 1978. 248 p. (In Russ.).
  3. Yavor M. Optics of charged particle analyzers. Advances in Imaging and Electron Physics, Elsevier, 2009, vol. 157, pp. 381—388.
  4. Zashkvara V.V., Korsunskiy M.I., Kosmachev O.S. [The focusing properties of an electrostatic mirror with a cylindrical field]. ZhTF [Journal of technical physics], 1966, vol. 36, no. 1. pp. 132—137. (In Russ.).
  5. Serebryanik A.N., Kolker V.E. [About the focusing and dispersive properties of a field of the cylindrical condenser]. ZhTF [Journal of technical physics], 1967, vol. 37, no. 5, pp. 922—926. (In Russ.).
  6. Zashkvara V.V., Ashimbaeva B.U., Bylinkin A.F. [The spectrograph mode in the power analyzer from two cylindrical mirrors]. ZhTF [Journal of technical physics], 1988, vol. 58, no. 10, pp. 2 021—2 025. (In Russ.).
  7. Men'shikov K.A. [The electrostatic analyzer of charged particles with three coaxial cylindrical electrodes. III.
    A design with three cascades and focusing of a general view a ring—ring]. ZhTF [Journal of technical physics], 1982, vol. 52, no. 11. pp. 2 243—2 252. (In Russ.).
  8. Gorelik V.A., Mashinskiy Yu.P., Pikovskaya T.M., Protopopov O.D. [The three-cascade cylindrical mirror power analyzer with focusing of the fourth order]. ZhTF [Journal of technical physics], 1985, vol. 55, no. 2. pp. 412—414. (In Russ.).
  9. Kel'man V.M., Yavor S.Ya. Elektronnaya optika [Electron optics]. Leningrad, Nauka Publ., 1968. 372 p. (In Russ.).
  10. Abramoviz V.A., Stigan I. Spravochnik po spezial'nym funkziyam [Reference book on special functions]. Moscow, Nauka Publ., 1979. 830 p. (In Russ.).
  11. Aksela S., Karras M., Pessa M., Suoninen E. Study of the electron optical properties of an electron spectrograph with coaxial cylindrical electrodes. Rev. Sci. Instrum., 1970, vol. 41, no. 3, pp. 41—45. doi: 10.1063/1.1684515.
  12. >Sar‐El H.Z. Cylindrical mirror analyzer with surface entrance and exit slots. I. Nonrelativistic part>. Rev. Sci. Instrum., 1971, vol. 42, no. 11, pp. 43—48. doi: 10.1063/1.1684948.
  13. Zashkvara V.V., Red'kin V.S. [To a question of focusing of a bunch of charged particles in an elektorostatichesky mirror with a cylindrical field]. ZhTF [Journal of technical physics], 1969, vol. 39, no. 8, pp. 1 452—1 456. (In Russ.).
  14. Shevchenko S.I. [Some aspects of the energy analyzer work of a cylindrical mirror type. Part III]. Nauchnoe Priborostroenie [Science Instrumentation], 2013, vol. 23, no. 3, pp. 56—68. (In Russ.).
  15. Shevchenko S.I. [The method of instrument function calculation of axially energy electrostatic analyzers]. Nauchnoe Priborostroenie [Science Instrumentation], 2010, vol. 20, no. 2, pp. 73—81. (In Russ.).
  16. Shevchenko S.I. [Some aspects of the energy analyzer work of a cylindrical mirror type. P. I]. Nauchnoe Priborostroenie [Science Instrumentation], 2011, vol. 21, no. 1, pp. 76—86. (In Russ.).
 

I. V. Kurnin, M. I. Yavor

MODEL OF MOTION IN A VISCOUS MEDIA WITH A STATISTIC DIFFUSION
FOR CALCULATION OF ION DYNAMICS IN A DENSE GAS AND STRONG ELECTRIC FIELDS

"Nauchnoe Priborostroenie", 2015, vol. 25, no. 3, pp. 29–34.
doi: 10.18358/np-25-3-i2934
 

Ion motion in a buffer gas is typically calculated either based on taking into account individual ion-molecular collisions, or using the concept of ion mobility sometimes accomplished with adding statistic diffusion. The former way is inefficient in a dense gas (for example, at atmospheric pressure), while the latter one is adequate only in weak electric fields. In the paper a new method of modeling ion motion in a dense gas is developed based on a combination of statistic diffusion with a directed motion in a quasi-viscous matter, in which the viscosity coefficient is calculated based on the frequency of ion-molecular collisions at different ion velocities. An optimal way of calculation of this frequency is proposed. Comparison of test simulations based on the proposed method and on taking into account individual ion-molecular collisions demonstrates good accuracy of the method in a wide range of gas pressures and electric field strengths.
 

Keywords: ion mobility, ion-molecular collisions, viscous matter, hard sphere method

Author affiliations:

Institute for Analytical Instrumentation of RAS, Saint- Petersburg, RF

 
Contacts: Yavor Michail Igorevich, mikhail.yavor@gmail.com
Article received in edition: 22.07.2015
Full text (In Russ.) >>

REFERENCES

  1. Eiceman G.A., Karpas Z. Ion mobility spectrometry, second edition. CRC Press, London, N.Y., Singapore, 2005. 355 p. doi: 10.1201/9781420038972.
  2. Cech N.B., Enke C.G. Practical implications of some recent studies in electrospray ionization fundamentals. Mass Spectrometry Reviews, 2001, vol. 20, pp. 362—387. doi: 10.1002/mas.10008.
  3. Appelhans A.D., Dahl D.A. Measurement of external ion injection and trapping efficiency in the ion trap mass spectrometer and comparison with a predictive model. Int. J. Mass Spec., 2002, vol. 216, pp. 269—284.
  4. Wells J.M., Plass W.R., Patterson G.E., Ouyang Z. et al. Chemical mass shifts in ion trap mass spectrometry: experiments and simulations. Anal. Chem., 1999, vol. 71, pp. 3 405—3 415.
  5. Ding L., Sudakov M., Kumashiro S. A simulation study of the digital ion trap mass spectrometer. Int. J. Mass Spectrom., 2002, vol. 221, no. 2, pp. 117—138. doi: 10.1016/S1387-3806(02)00921-1.
  6. Tolmachev A.V., Udseth H.R., Smith R.D. Modeling the ion density distribution in collisional cooling RF multipole ion guides. Int. J. Mass. Spectrom., 2003, vol. 222, pp. 155—174. doi: 10.1016/S1387-3806(02)00960-0.
  7. MakDaniel' I., Mason E. Podvizhnost' i diffuziya ionov v gazach [Mobility and diffusion of ions in gases]. Moscow, MIR Publ., 1976. 422 p. (In Russ.).
  8. Appelhans A.D., Dahl D.A. SIMION ion optics simulations at atmospheric pressure. International Journal of Mass Spectrometry, 2005, vol. 244, pp. 1—14. doi: 10.1016/j.ijms.2005.03.010.
  9. Manura D., Dahl D.A. SIMION 8.0 User’s Manual. Sci. Instrument Services. Inc. Idaho Nat. Lab, 2006.
  10. Yavor M. Optics of charged article analyzers. Amsterdam, Elsevier, 2009. 381 p.
  11. Rayzer Yu.P. Fizika gazovogo razryada [Physics of a gas spark]. Moscow, Nauka Publ., 1992. 536 p. (In Russ.).
  12. Smirnov B.M. [Diffusion and mobility of ions in gas]. Uspechi fizicheskich nauk [Achievements of physical sciences], 1967, vol. 92, no. 1, pp. 75—103. (In Russ.).
  13. Yavor M.I., Nikitina D.V., Verenchikov A.N. et al. [Parameter calculations for the ion beam emitted from a gas-filled radio-frequency quadrupole]. Nauchnoe Priborostroenie [Science Instrumentation], 2005, vol. 15, no. 3, pp. 40—53. (In Russ.).
  14. Kurnin I.V., Yavor M.I. [Features of transportation of ionic bunches in gas-filled radio-frequency the kvadrupolyakh on intermediate pressure]. Zhurnal technicheskoy fiziki [Journal of technical physics], 2009, vol. 79, no. 9, pp. 112—119. (In Russ.).
 

I. A. Averin

ELECTROSTATIC AND MAGNETOSTATIC ELECTRON SPECTROGRAPHS BASED ON EULER’ HOMOGENEOUS POTENTIALS WITH NON-INTEGER ORDERS

"Nauchnoe Priborostroenie", 2015, vol. 25, no. 3, pp. 35—44.
doi: 10.18358/np-25-3-i3544
 

Electron energy analyzers which are capable of simultaneous spectral acquisition over a wide energy range are of great interest and of great importance. From optical point of view the systems with good spectrographic properties are strongly different from the systems with good spectrometric properties. The task to create such a system results to quite different optical problems and quite different methods of its solution. A useful instrument here is the usage of the fields which are homogeneous in Euler’ terminology, i.e., electrostatic fields which satisfy the condition E(λx, λy, λz) = λn E(x, y, z) and magnetostatic fields which satisfy the contition B(λx, λy, λz) = λn B(x, y, z) for some fixed order n and an arbitrary value λ. While the fields with the integer orders n are well investigated the possibilities of the fields with non-integer orders are not considered to necessary extend yet. The paper outlines briefly the spectrographic properties of two-dimensional electrostatic and magnetostatic fields which are homogeneous in Euler’s terminology and have non-integer orders of homogeneity and demonstrates that the usage of non-integer orders enlarges greatly the flexibility of the designing of spectrographic energy analyzing systems.
 

Keywords: electron spectroscopy, spectrograph, Euler’ homogeneous potentials, similarity principle for the trajectories

Author affiliations:

Institute for Analytical Instrumentation RAS, Saint-Petersburg, Russian Federation
Saint-Petersburg State Polytechnic University, Russian Federation

 
Contacts: Contacts: Averin Igor' Andreevich, agreer@bk.ru
Article received in edition: 3.07.2015
Full text (In Russ.) >>

REFERENCES

  1. Siegbahn K., Nordling C., et. al. ESCA – Atomic, Molecular and Solid State Structure Studies by Means of Electron Spectroscopy. Almquist and Wiksells, Uppsala, 1967.
  2. Siegbahn K., Nordling C., Johansson G. ESCA applied to free molecules. North-Holland, Amsterdam, 1969.
  3. Khursheed A. Scanning Electron Microscope Optics and Spectrometers. World Scientific, Singapore, 2010.
  4. Yavor M.I. Optics of Charged Particle Analyzers. Elsevier, 2009. 373 p.
  5. Read F.H., Cubric D., Kumashiro S., Walker A. The parallel cylindrical mirror analyzer: axis-to-axis configuration. Nucl. Instr. Meth. A, 2004, vol. 519, no. 1-2, pp. 338—344. doi: 10.1016/j.nima.2003.11.171.
  6. Cubric D., De Fanis A., Konishi I., Kumashiro S. Parallel acquisition electrostatic electron energy analyzers for high throughput nano-analysis. Nucl. Instr. Meth. A, 2011, vol. 645, no. 1, pp. 227—233. doi: 10.1016/j.nima.2010.12.055.
  7. Khursheed A., Nelliyan K., Chao F. First order focusing parallel electron energy magnetic sector analyzers design. Nucl. Instr. Meth. A, 2011, vol. 645, no.1, pp. 248—252. doi: 10.1016/j.nima.2010.12.008.
  8. Khursheed A. Second-order focusing parallel electron energy magnetic sector analyzer designs. Nucl. Instr. Meth. A, 2011, vol. 645, no. 1, pp. 253—256. doi: 10.1016/j.nima.2010.12.014.
  9. Golikov Yu.K., Krasnova N.K. [Application of electric fields uniform in the Euler sense in electron spectrography]. Zhurnal technicheskoy fiziki [Technical Physics], 2011, vol. 56, no. 2, pp. 164—170.
  10. 1134/S1063784211020149" target="_blank">10.1134/S1063784211020149.
  11. Krasnova N.K. Teoriya i sintez dispergiruyuschich i fokusiruyuschich elektronno-opticheskich sred. Doct. Diss. [The theory and synthesis of the dispersing and focusing electron-optical environments. Doct. Diss.] St. Petersburg Polytechnic University, 2014. 259 p. (In Russ.).
  12. Gabdullin P.G., Golikov Yu.K., Krasnova N.K., Davydov S.N. [The use of Donkin’s formula in the theory of energy analyzers. I]. Zhurnal technicheskoy fiziki [Technical Physics], 2000, vol. 45, no. 2, pp. 232—235.
  13. Gabdullin P.G., Golikov Yu.K., Krasnova N.K., Davydov S.N. [Application of Donkin’s formula in the theory of energy analyzers: Part II]. Zhurnal technicheskoy fiziki [Technical Physics], 2000, vol. 45, no. 3, pp. 330—333.
  14. Golikov Yu.K., Krasnova N.K. [Analytical structures of electric spectrographs the fields of which are expressed in a uniform generalized form]. Nauchnoe priborostroenie [Science Instrumentation], 2014, vol. 24, no. 1, pp. 50—58. (In Russ.).
 

B. P. Sharfarets

AN OVERVIEW OF THE THEORY OF TRANSPORT PHENOMENA AND SURFACE PHENOMENA IN RELATION TO THE SOLUTION OF SOME PROBLEMS OF ANALYTICAL INSTRUMENTATION

"Nauchnoe Priborostroenie", 2015, vol. 25, no. 3, pp. 45—64.
doi: 10.18358/np-25-3-i4564
 

The review is devoted to the consideration of surface phenomena and transport phenomena, occuring in fluid flow. Surface phenomena are considered to occur when the curvature of the phase boundary surface pressure and shear stress caused by the gradient of surface tension. The focus of the review is given to the phenomenon of momentum transfer in laminar those chenie fluids and is closely associated with it the phenomena of heat and mass transfer. All phenomena are re-of the nose are considered from a unified theory of similarity that makes it easy extrapola-VAT results from one to the other. Great attention is paid to the criteria of similarity, Fi-guiraudon in these processes and allows to transparently observe all of them huge lot of peculiarity. This is widely used formalism of the theory of the boundary layer that is fair to all these transfer phenomena. In applications of the methods of similarity theory with respect to the transfer phenomena, we summarize some aspects of the turbulent flow, the actual reference data. Materials can be usefully used in the practice of scientific instrumentation.
 

Keywords: capillary pressure, transport phenomena, momentum transfer, energy transfer, mass transfer, boundary layer, the thickness of the boundary layer, transport phenomena in circular tubes, similarity criterion

Author affiliations:

Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia

 
Contacts: Sharfarets Boris Pinkusovich, sharb@mail.ru
Article received in edition: 28.06.2015
Full text (In Russ.) >>

REFERENCES

  1. Landau L.D., Lifshiz E.M. Teoreticheskaya fizika. T. VI. Gidrodinamika [Theoretical physics. Vol. VI. Hydrodynamics]. Ìoscow, Nauka Publ., 1986. 736 p. (In Russ.).
  2. Levich V.G. Fiziko-chimicheskaya gidrodinamika [Physical and chemical hydrodynamics]. Ìoscow, GIFML Publ., 1959. 700 p. (In Russ.).
  3. Sivuchin D.V. Obschiy kurs fiziki. T. 2. Termodinamika i molekulyarnaya fizika [General course of physics. Vol. 2. Thermodynamics and molecular physics]. Ìoscow, Nauka Publ., 1975, 565 p. (In Russ.).
  4. Savel'ev I.V. Kurs obschey fiziki. T. 1. Mechanika, kolebaniya i volny, molekulyarnaya fizika [Course of the general physics. Vol. 1. Mechanics, fluctuations and waves, molecular physics]. Ìoscow, Nauka Publ., 1970. 508 p. (In Russ.).
  5. Gorshkov A.G., Medvedskiy A.L., Rabinskiy L.N., Tarlakovskiy D.V. Volny v sploshnych sredach [Waves in continuous environments]. Ìoscow, FIZMATLIT Publ., 2004. 472 p. (In Russ.).
  6. Kochin N.E., Kibel' I.A., Roze N.V. Teoreticheskaya gidromechanika. Ch. 2 [Theoretical hydromechanics. P. 2]. Ìoscow, FIZMATGIZ Publ., 1963. 728 p. (In Russ.).
  7. Yavorskiy B.M., Detlaf A.A. Spravochnik po fizike [Reference book on physics]. Ìoscow, Nauka Publ., 1968. 940 p. (In Russ.).
  8. Shlichting G. Teoriya pogranichnogo sloya [Boundary layer theory]. Ìoscow, Nauka Publ., 1974. 712 p. (In Russ.).
  9. Welty J.R., Wicks C.E., Wilson R.E., Rorrer G.L. Fundamentals of momentum, heat, and mass transfer. 5th ed. Wiley&Sons, 2008. 711 p.
  10. Incropera F.P., DeWitt D.P., Bergman T.L., Lavine A.S. Principles of heat and mass transfer. 7th ed. Wiley&Sons, 2013. 1048 p.
  11. Koshlyakov N.S., Gliner E.B., Smirnov M.M. Uravneniya v chastnych proizvodnych matematicheskoy fiziki [The equations in private derivatives of mathematical physics]. Ìoscow, Vysshaya shkola Publ., 1979. 712 p. (In Russ.).
  12. N'yumen Dzh. Elektrochimicheskie sistemy [Electrochemical systems]. Ìoscow, MIR Publ., 1977. 464 p. (In Russ.).
  13. Incropera F.P., DeWitt D.P. Fundamentals of heat and mass transfer. 5th ed. Wiley&Sons, 1996. 886 p.
  14. Red. Prochorov A.M. Fizicheskaya enziklopediya. T. 3 [Physical encyclopedia. Vol. 3]. Ìoscow, BRE Publ., 1992. 672 p. (In Russ.).
  15. Ekkert E.R., Dreyk R.M. Teoriya teplo- i massoobmena [Theory warm and mass exchange]. Ìoscow, GEI Publ. 1961. 680 p. (In Russ.).
  16. Red. Prochorov A.M. Fizicheskaya enziklopediya. T. 2 [Physical encyclopedia. Vol. 2]. Ìoscow, BRE Publ., 1990. 703 p. (In Russ.).
  17. Red. Prochorov A.M. Fizicheskaya enziklopediya. T. 5 [Physical encyclopedia. Vol. 5]. Ìoscow, BRE Publ., 1998. 760 p. (In Russ.).
  18. Bruus H. Theoretical microfluidics. Oxford, University Press, 2008. 346 p.
 

I. V. Kukhtevich1,2,4, Y. S. Posmitnaya1,2, K. I. Belousov2,4, A. S. Bukatin1,3,4, A. A. Evstrapov1,2,3

PRINCIPLES, TECHNOLOGIES AND DROPLET-BASED MICROFLUIDIC DEVICES. PART 1 (REVIEW)

"Nauchnoe Priborostroenie", 2015, vol. 25, no. 3, pp. 65—85.
doi: 10.18358/np-25-3-i6585
 

"Droplet" microfluidics is a promising base for development of new devices for the analysis of biological samples and the synthesis of substances in very small isolated volumes. Although foreign researchers have demonstrated the impressive capabilities of "droplet" microfluidics in recent years, its potential has not been exhausted for many practical applications yet. The basic concepts of "droplet" microfluidics giving an understanding of this unique technology are reviewed in this paper. The review is presented in several parts. The first part describes the physical basis and principles of generation of microdroplets (emulsion). The fundamental dimensionless numbers which use in microfluidics are given. A single part describes the regimes of droplet formation and design of the devices for their stable generation. The methods of numerical simulation of the processes in "droplet" microfluidics are discussed. The most applicable design devices for droplet generation are compared.
 

Keywords: microfluidic chip, droplet microfluidics, dimensionless numbers of fluid mechanics, droplet generator, droplet coalescence

Author affiliations:

1Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia
2ITMO University, Saint-Petersburg, Russia
3St. Petersburg Academic University – Nanotechnology Research and Education Center RAS, Russia
4Siberian Federal University, Krasnoyarsk, Russia

 
Contacts: Evstrapov Anatoliy Aleksandrovich, an_evs@mail.ru
Article received in edition: 15.06.2015
Full text (In Russ.) >>

REFERENCES

  1. Solvas X.C. et al. Droplet microfluidics: recent developments and future applications. Chemical Communications, 2011, vol. 47, no. 7, pp. 1936—1942. doi: 10.1039/C0CC02474K.
  2. Shum H.C. et al. Droplet microfluidics for fabrication of non‐spherical particles. Macromolecular rapid communications, 2010, vol. 31, no. 2, pp. 108—118.
  3. Günther A., Jensen K.F. Multiphase microfluidics: from flow characteristics to chemical and materials synthesis. Lab on a Chip, 2006, vol. 6, no. 12, pp. 1487—1503. doi: 10.1039/b609851g.
  4. Marre S., Jensen K.F. Synthesis of micro and nanostructures in microfluidic systems. Chemical Society Reviews, 2010, vol. 39, no. 3, pp. 1183—1202. doi: 10.1039/b821324k.
  5. Stanley C.E., Wootton R.C.R., deMello A.J. Continuous and segmented flow microfluidics: Applications in high-throughput chemistry and biology. CHIMIA International Journal for Chemistry, 2012, vol. 66, no. 3, pp. 88—98.
  6. Seemann R. et al. Droplet based microfluidics. Reports on progress in physics, 2012, vol. 75, no. 1, pp. 016601.
  7. Lederberg J. A simple method for isolating individual microbes. Journal of bacteriology, 1954, vol. 68, no. 2, pp. 258.
  8. Nossal G.J.V. Antibody production by single cells. British journal of experimental pathology, 1958, vol. 39, no. 5, pp. 544. doi: 10.1038/1811419a0.
  9. Theberge A.B. et al. Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology. Angewandte Chemie International Edition, 2010, vol. 49, no. 34, pp. 5846—5868. doi: 10.1002/anie.200906653.
  10. Günther P.M. et al. Formation of monomeric and novolak azo dyes in nanofluid segments by use of a double injector chip reactor. Chemical engineering & technology, 2005, vol. 28, no. 4, pp. 520—527. doi: 10.1002/ceat.200407122.
  11. Lee C.C. et al. A microfluidic oligonucleotide synthesizer. Nucleic Acids Research, 2010, vol. 38, no 8, pp. 2514—2521. doi: 10.1093/nar/gkq092.
  12. Shestopalov I., Tice J.D., Ismagilov R.F. Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system. Lab on a Chip, 2004, vol. 4, no. 4, pp. 316—321. doi: 10.1039/b403378g.
  13. Schaerli Y., Hollfelder F. The potential of microfluidic water-in-oil droplets in experimental biology. Molecular Biosystems, 2009, vol. 5, no. 12, pp. 1392—1404. doi: 10.1039/b907578j.
  14. Baret J.C. et al. Droplets and emulsions: very high-throughput screening in biology. Medecine sciences: M/S, 2008, vol. 25, no. 6-7, pp. 627—632. doi: 10.1051/medsci/2009256-7627.
  15. Leng X. et al. Agarose droplet microfluidics for highly parallel and efficient single molecule emulsion PCR. Lab on a Chip, 2010, vol. 10, no. 21, pp. 2841—2843. doi: 10.1039/c0lc00145g.
  16. Jing Yan et al. Monodisperse water-in-oil-in-water (W/O/W) double emulsion droplets as uniform compartments for high-throughput analysis via flow cytometry. Micromachines, 2013, vol. 4, pp. 402—413. doi: 10.3390/mi4040402.
  17. Rakszewska A., Tel J., Chokkalingam V., Huck W.T.S. One drop at a time: toward droplet microfluidics as a versatile tool for single-cell analysis. NPG Asia Materials, 2014, vol. 6, pp. e133. doi: 10.1038/am.2014.86.
  18. Wootton R.C.R., De Mello A.J. Analog-to-digital drug screening. Nature, 2012, vol. 483, pp. 43—44.
  19. Sackmann E.K. et al. The present and future role of microfluidics in biomedical research. Nature, 2014, vol. 507, pp. 181—189. doi: 10.1038/nature13118.
  20. Tabeling P. Recent progress in the physics of microfluidics and related biotechnological applications. Current Opinion in Biotechnology, 2014, vol. 25, pp. 129—134. doi: 10.1016/j.copbio.2013.11.009.
  21. Baroud C.N., Gallaire F., Dangla R. Critical review: dynamics of microfluidic droplets. Lab on a Chip, 2010, vol. 10, pp. 2032—2045. doi: 10.1039/c001191f.
  22. Choi K. et al. Digital microfluidics. Annual review of analytical chemistry, 2012, vol. 5, pp. 413—440. doi: 10.1146/annurev-anchem-062011-143028.
  23. Teh S.-Y., Lin R., Hung L.-H., Lee A.P. Droplet microfluidics. Lab on a Chip, 2008, vol. 8, pp. 198—220. doi: 10.1039/b715524g.
  24. Ying L., Wang Q. Microfluidic chip-based technologies: emerging platforms for cancer diagnosis. BMC Biotechnology, 2013, vol. 13, no. 76, pp. 10. doi: 10.1186/1472-6750-13-76.
  25. Rusling J.F. et al. Measurement of biomarker proteins for point-of-care early detection and monitoring of cancer. Analyst, 2010, vol. 135, no. 10, pp. 2496—2511. doi: 10.1039/c0an00204f.
  26. Hindson B.J. et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Analytical chemistry, 2011, vol. 83, no. 22, pp. 8604—8610. doi: 10.1021/ac202028g.
  27. Lin Y.Y., Welch E.R. F., Fair R.B. Low voltage picoliter droplet manipulation utilizing electrowetting-on-dielectric platforms. Sensors and Actuators B: Chemical, 2012, vol. 173, pp. 338—345. doi: 10.1016/j.snb.2012.07.022.
  28. Welch E.R.F. et al. Picoliter DNA sequencing chemistry on an electrowetting‐based digital microfluidic platform. Biotechnology journal, 2011, vol. 6, no. 2, pp. 165—176. doi: 10.1002/biot.201000324.
  29. Guo M.T. et al. Droplet microfluidics for high-throughput biological assays. Lab on a Chip, 2012, vol. 12, pp. 2146—2155. doi: 10.1039/c2lc21147e.
  30. Cubaud T., Mason T.G. Capillary threads and viscous droplets in square microchannels. Physics of Fluid, 2008, vol. 20, pp. 5. doi: 10.1063/1.2911716.
  31. Garstecki P. et al. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up. Lab on a Chip, 2006, vol. 6, pp. 437—446. doi: 10.1039/b510841a.
  32. Markey A.L., Mohr S., Day P.J. High-throughput droplet PCR. Methods, 2010, vol. 50, pp. 277—281. doi: 10.1016/j.ymeth.2010.01.030.
  33. Clausell-Tormos J. et al. Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms. Chemistry & biology, 2008, vol. 15, no. 5, pp. 427—437.
  34. Pilch M., Erdman C.A. Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop. International Journal of Multiphase Flow, 1987, vol. 13, no. 6, pp. 741—757. doi: 10.1016/0301-9322(87)90063-2.
  35. Lin S.P., Reitz R.D. Drop and spray formation from a liquid jet. Annual Review of Fluid Mechanics, 1998, vol. 30, no. 1, pp. 85—105. doi: 10.1146/annurev.fluid.30.1.85.
  36. Liu H. Science and Engineering of Droplets: Fundamentals and Applications. William Andrew Publishing, LLC. 1981. 539 p.
  37. Di Carlo D. Inertial microfluidics. Lab on a Chip, 2009, vol. 9, pp. 3038—3046. doi: 10.1039/b912547g.
  38. Amini H. et al. Engineering fluid flow using sequenced microstructures. Nature communication,. 2013, vol. 4, pp. 1826. doi: 10.1038/ncomms2841.
  39. Eggers J. Nonlinear dynamics and breakup of free-surface flows. Reviews of modern physics, 1997, vol. 69, pp. 865. doi: 10.1103/RevModPhys.69.865.
  40. Baroud C.N., Gallaire F., Dangla R. Dynamics of microfluidic droplets. Lab on a Chip, 2010, vol. 10, pp. 2032—2045. doi: 10.1039/c001191f.
  41. De Menech M. et al. Transition from squeezing to dripping in a microfluidic T-shaped junction. Journal of Fluid Mechanics, 2008, vol. 595, pp. 141—161. doi: 10.1017/S002211200700910X.
  42. Zhao C.X., Middelberg A.P.J. Two-phase microfluidic flows. Chemical Engineering Science, 2011, vol. 66, no. 7, pp. 1394—1411. doi: 10.1016/j.ces.2010.08.038.
  43. Liu H., Zhang Y. Droplet formation in a T-shaped microfluidic junction. Journal of applied physics, 2009, vol. 106, no. 3, pp. 034906. doi: 10.1063/1.3187831.
  44. Dreyfus R., Tabeling P., Willaime H. Ordered and disordered patterns in two-phase flows in microchannels. Physical Review Letters, 2003, vol. 90, no. 14, pp. 144505. doi: 10.1103/PhysRevLett.90.144505.
  45. Li W. et al. Screening of the effect of surface energy of microchannels on microfluidic emulsification. Langmuir, 2007, vol. 23, no. 15, pp. 8010—8014. doi: 10.1021/la7005875.
  46. Holm S. Experimental Biophysics, FFFN20, FYST23, FAF010F. Lund University. 2013.
  47. Arya S. et al. Microfluidic mechanics and applications: a review. Journal of Nano-& Electronic Physics, 2013, vol. 5, no. 4, pp. 04047.
  48. Leshansky A.M., Pismen L.M. Breakup of drops in a microfluidic T junction. Physics of Fluids, 2009, vol. 21, no. 2, pp. 023303. doi: 10.1063/1.3078515.
  49. Leshansky A.M. et al. Obstructed breakup of slender drops in a microfluidic T junction. Physical review letters, 2012, vol. 108, no. 26, pp. 264502. doi: 10.1103/PhysRevLett.108.264502.
  50. Malloggi F. et al. Monodisperse colloids synthesized with nanofluidic technology. Langmuir, 2009, vol. 26, no. 4, pp. 2369—2373. doi: 10.1021/la9028047.
  51. Raven J.P., Marmottant P. Periodic microfluidic bubbling oscillator: Insight into the stability of two-phase microflows. Physical Review Letters, 2006, vol. 97, no. 15, pp. 154501. doi: 10.1103/PhysRevLett.97.154501.
  52. Guillot P. et al. Stability of a jet in confined pressure-driven biphasic flows at low Reynolds numbers. Physical Review Letters, 2007, vol. 99, no. 10, pp. 104502. doi: 10.1103/PhysRevLett.99.104502.
  53. Huerre P., Monkewitz P.A. Local and global instabilities in spatially developing flows. Annual Review of Fluid Mechanics, 1990, vol. 22, no. 1, pp. 473—537. doi: 10.1146/annurev.fl.22.010190.002353.
  54. Saffman P.G., Taylor G. The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1958, vol. 245, no. 1242, pp. 312—329. doi: 10.1098/rspa.1958.0085.
  55. Kopf‐Sill A.R., Homsy G.M. Bubble motion in a Hele—Shaw cell. Physics of Fluids, 1988, vol. 31, no. 1, pp. 18—26. doi: 10.1063/1.866566.
  56. Beatus T., Bar-Ziv R.H., Tlusty T. The physics of 2D microfluidic droplet ensembles. Physics Reports, 2012, vol. 516, no. 3, pp. 103—145. doi: 10.1016/j.physrep.2012.02.003.
  57. Tan Y.C. et al. Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting. Lab on a Chip, 2004, vol. 4, no. 4, pp. 292—298. doi: 10.1039/b403280m.
  58. Guazzelli É., Hinch J. Fluctuations and instability in sedimentation. Annual Review of Fluid Mechanics, 2011, vol. 43, pp. 97—116. doi: 10.1146/annurev-fluid-122109-160736.
  59. Ramaswamy S. Issues in the statistical mechanics of steady sedimentation. Advances in Physics, 2001, vol. 50, no. 3, pp. 297—341. doi: 10.1080/00018730110050617.
  60. Brenner M.P. Screening mechanisms in sedimentation. Physics of Fluids, 1999, vol. 11, no. 4, pp. 754—772. doi: 10.1063/1.869948.
  61. Segre P.N., Herbolzheimer E., Chaikin P.M. Long-range correlations in sedimentation. Physical Review Letters, 1997, vol. 79, no. 13, pp. 2574. doi: 10.1103/PhysRevLett.79.2574.
  62. Batchelor G.K. Sedimentation in a dilute dispersion of spheres. Journal of Fluid Mechanics, 1972, vol. 52, no. 2, pp. 245—268. doi: 10.1017/S0022112072001399.
  63. Caflisch R.E., Luke J.H.C. Variance in the sedimentation speed of a suspension. Physics of Fluids, 1985, vl. 28, no. 3, pp. 759—760. doi: 10.1063/1.865095.
  64. Guazzelli É. Sedimentation of small particles: how can such a simple problem be so difficult? Comptes Rendus Mecanique, 2006, vol. 334, no. 8, pp. 539—544. doi: 10.1016/j.crme.2006.07.009.
  65. Mucha P.J. et al. A model for velocity fluctuations in sedimentation. Journal of Fluid Mechanics, 2004, vol. 501, pp. 71—104. doi: 10.1017/S0022112003006967.
  66. Tee S.Y. et al. Velocity fluctuations of initially stratified sedimenting spheres. Physics of Fluids (1994-present), 2007, vol. 19, no. 11, pp. 113304. doi: 10.1063/1.2806597.
  67. Tee S.Y. et al. Nonuniversal velocity fluctuations of sedimenting particles. Physical review letters, 2002, vol. 89, no. 5, pp. 054501. doi: 10.1103/PhysRevLett.89.054501.
  68. Tlusty T. Screening by symmetry of long-range hydrodynamic interactions of polymers confined in sheets. Macromolecules, 2006, vol. 39, no. 11, pp. 3927—3930. doi: 10.1021/ma060251d.
  69. Beatus T., Tlusty T., Bar-Ziv R. Phonons in a one-dimensional microfluidic crystal. Nature Physics, 2006, vol. 2, no. 11, pp. 743—748. doi: 10.1038/nphys432.
  70. Beatus T., Bar-Ziv R., Tlusty T. Anomalous microfluidic phonons induced by the interplay of hydrodynamic screening and incompressibility. Physical Review Letters, 2007, vol. 99, no. 12, pp. 124502.
  71. Fairbrother F., Stubbs A.E. Studies in electro-endosmosis. Part VI. The "bubble-tube" method of measurement. Journal of the Chemical Society (Resumed), 1935, pp. 527—529. doi: 10.1039/jr9350000527.
  72. Taylor G.I. Deposition of a viscous fluid on the wall of a tube. Journal of Fluid Mechanics, 1961, vol. 10, no. 2, pp. 161—165. doi: 10.1017/S0022112061000159.
  73. Bretherton F.P. The motion of long bubbles in tubes. Journal of Fluid Mechanics, 1961, vol. 10, no. 2, pp. 166—188. doi: 10.1017/S0022112061000160.
  74. Hodges S.R., Jensen O.E., Rallison J.M. The motion of a viscous drop through a cylindrical tube. Journal of Fluid Mechanics, 2004, vol. 501, pp. 279—301. doi: 10.1017/S0022112003007213.
  75. Wong H., Radke C.J., Morris S. The motion of long bubbles in polygonal capillaries. Part 1. Thin films. Journal of Fluid Mechanics, 1995, vol. 292, pp. 71—94. doi: 10.1017/S0022112095001443.
  76. Wong H., Radke C.J., Morris S. The motion of long bubbles in polygonal capillaries. Part 2. Drag, fluid pressure and fluid flow. Journal of Fluid Mechanics, 1995, vol. 292, pp. 95—110. doi: 10.1017/S0022112095001455.
  77. Schwartz L.W., Princen H.M., Kiss A.D. On the motion of bubbles in capillary tubes. Journal of Fluid Mechanics, 1986, vol. 172, pp. 259—275. doi: 10.1017/S0022112086001738.
  78. Reinelt D.A., Saffman P.G. The penetration of a finger into a viscous fluid in a channel and tube. SIAM Journal on Scientific and Statistical Computing, 1985, vol. 6, no. 3, pp. 542—561. doi: 10.1137/0906038.
  79. Hazel A.L., Heil M. The steady propagation of a semi-infinite bubble into a tube of elliptical or rectangular cross-section. Journal of Fluid Mechanics, 2002, vol. 470, pp. 91—114. doi: 10.1017/S0022112002001830.
  80. Aussillous P., Quéré D. Quick deposition of a fluid on the wall of a tube. Physics of Fluids, 2000, vol. 12, no. 10, pp. 2367—2371. doi: 10.1063/1.1289396.
  81. Abiev R.Sh. [Modeling of hydrodynamics of the snaryadny mode of a current of gas-liquid system in capillaries]. Teoreticheskie osnovy chimicheskoy technologii [Theoretical bases of chemical technology], 2008, vol. 42, no. 2, pp. 115—127.
  82. Sarrazin F. et al. Hydrodynamic structures of droplets engineered in rectangular micro-channels. Microfluidics and Nanofluidics, 2008, vol. 5, no. 1, pp. 131—137. doi: 10.1007/s10404-007-0233-9.
  83. Jousse F. et al. Compact model for multi-phase liquid—liquid flows in micro-fluidic devices. Lab on a Chip, 2005, vol. 5, no. 6, pp. 646—656. doi: 10.1039/b416666c.
  84. Fuerstman M.J. et al. The pressure drop along rectangular microchannels containing bubbles. Lab on a Chip, 2007, vol. 7, no. 11, pp. 1479—1489. doi: 10.1039/b706549c.
  85. Sessoms D.A. et al. Droplet motion in microfluidic networks: Hydrodynamic interactions and pressure-drop measurements. Physical Review E, 2009, vol. 80, no. 1, pp. 016317. doi: 10.1103/PhysRevE.80.016317.
  86. Labrot V. et al. Extracting the hydrodynamic resistance of droplets from their behavior in microchannel networks. Biomicrofluidics, 2009, vol. 3, no. 1, pp. 012804. doi: 10.1063/1.3109686.
  87. Adzima B.J., Velankar S.S. Pressure drops for droplet flows in microfluidic channels. Journal of Micromechanics and Microengineering, 2006, vol. 16, no. 8, pp. 1504—1510. doi: 10.1088/0960-1317/16/8/010.
  88. Xu J.H. et al. Correlations of droplet formation in T-junction microfluidic devices: from squeezing to dripping. Microfluidics and Nanofluidics, 2008, vol. 5, no. 6, pp. 711—717. doi: 10.1007/s10404-008-0306-4.
  89. Tice J.D. et al. Formation of droplets and mixing in multiphase microfluidics at low values of the Reynolds and the capillary numbers. Langmuir, 2003, vol. 19, no. 22, pp. 9127—9133. doi: 10.1021/la030090w.
  90. Ganán-Calvo A.M. Perfectly monodisperse microbubbling by capillary flow focusing: An alternate physical description and universal scaling. Physical Review E, 2004, vol. 69, no. 2, pp. 027301.
  91. Tan J. et al. Gas—liquid flow in T-junction microfluidic devices with a new perpendicular rupturing flow route. Chemical Engineering Journal, 2009, vol. 146, no. 3, pp. 428—433. doi: 10.1016/j.cej.2008.10.024.
  92. Dietrich N. et al. Bubble formation dynamics in various flow-focusing microdevices. Langmuir, 2008, vol. 24, no. 24, pp. 13904—13911. doi: 10.1021/la802008k.
  93. Xiong R., Chung J.N. Bubble generation and transport in a microfluidic device with high aspect ratio. Experimental Thermal and Fluid Science, 2009, vol. 33, no. 8, pp. 1156—1162. doi: 10.1016/j.expthermflusci.2009.07.005.
  94. Cristini V., Tan Y.C. Theory and numerical simulation of droplet dynamics in complex flows – a review. Lab on a Chip, 2004, vol. 4, no. 4, pp. 257—264. doi: 10.1039/b403226h.
  95. Zinchenko A.Z., Rother M.A., Davis R.H. Cusping, capture, and breakup of interacting drops by a curvatureless boundary-integral algorithm. Journal of Fluid Mechanics, 1999, vol. 391, pp. 249—292.
  96. Cristini V., Bławzdziewicz J., Loewenberg M. Drop breakup in three-dimensional viscous flows. Physics of Fluids, 1998, vol. 10, no. 8, pp. 1781—1783. doi: 10.1063/1.869697.
  97. Yeo L.Y. et al. Film drainage between two surfactant-coated drops colliding at constant approach velocity. Journal of Colloid and Interface Science, 2003, vol. 257, no. 1, pp. 93—107. doi: 10.1016/S0021-9797(02)00033-4.
  98. Hou T.Y., Lowengrub J.S., Shelley M.J. Boundary integral methods for multicomponent fluids and multiphase materials. Journal of Computational Physics, 2001, vol. 169, no. 2, pp. 302—362.
  99. Tryggvason G. et al. A front-tracking method for the computations of multiphase flow. Journal of Computational Physics, 2001, vol. 169, no. 2, pp. 708—759. doi: 10.1006/jcph.2001.6726.
  100. Shin S., Juric D. Modeling three-dimensional multiphase flow using a level contour reconstruction method for front tracking without connectivity. Journal of Computational Physics, 2002, vol. 180, no. 2, pp. 427—470. doi: 10.1006/jcph.2002.7086.
  101. Wilkes E.D., Phillips S.D., Basaran O.A. Computational and experimental analysis of dynamics of drop formation. Physics of Fluids, 1999, vol. 11, no. 12, pp. 3577—3598. doi: 10.1063/1.870224.
  102. Prosperetti A., Tryggvason G. Computational methods for multiphase flow. Cambridge university press, 2007. 470 p. doi: 10.1017/CBO9780511607486.
  103. Notz P.K., Chen A.U., Basaran O.A. Satellite drops: Unexpected dynamics and change of scaling during pinch-off. Physics of Fluids, 2001, vol. 13, no. 3, pp. 549—552. doi: 10.1063/1.1343906.
  104. Sankaranarayanan K. et al. A comparative study of lattice Boltzmann and front-tracking finite-difference methods for bubble simulations. International Journal of Multiphase Flow, 2003, vol. 29, no. 1, pp. 109—116.
  105. Watanabe T., Ebihara K. Numerical simulation of coalescence and breakup of rising droplets. Computers & Fluids, 2003, vol. 32, no. 6, pp. 823—834. doi: 10.1016/S0045-7930(02)00022-1.
  106. Aidun C.K., Clausen J.R. Lattice-Boltzmann method for complex flows. Annu. Rev. Fluid Mech., 2010, vol. 42,
    pp. 439—472. doi: 10.1146/annurev-fluid-121108-145519.
  107. Kupershtoch A.L. [Three-dimensional modeling of two-phase systems like liquid-steam by method the reshetochnykh of the equations of Boltzmann on GPU]. Vychislitel'nye metody i programmirovanie [Computing methods and programming], 2012, vol. 13, no. 1, pp. 130—138.
  108. Gupta A. et al. Droplet formation via squeezing mechanism in a microfluidic flow-focusing device. Computers & Fluids, 2014, vol. 100, pp. 218—226. doi: 10.1016/j.compfluid.2014.05.023.
  109. Zhang J. Lattice Boltzmann method for microfluidics: models and applications. Microfluidics and Nanofluidics, 2011, vol. 10, no. 1, pp. 1—28. doi: 10.1007/s10404-010-0624-1.
  110. Nourgaliev R.R. et al. The lattice Boltzmann equation method: theoretical interpretation, numerics and implications. International Journal of Multiphase Flow, 2003, vol. 29, no. 1, pp. 117—169.
  111. Yabe T., Xiao F., Utsumi T. The constrained interpolation profile method for multiphase analysis. Journal of Computational Physics, 2001, vol. 169, no. 2, pp. 556—593. doi: 10.1006/jcph.2000.6625.
  112. Zhambalova D.B., Chernyy S.G. [Method of an interpolation profile of the solution of the equations of transfer]. Vestnik NGU. Ser.: Informazionnye technologii [Bulletin of NGU. Series: Information technologies], 2012, vol. 10, pp. 33—54.
  113. Scardovelli R., Zaleski S. Direct numerical simulation of free-surface and interfacial flow. Annual Review of Fluid Mechanics, 1999, vol. 31, no. 1, pp. 567—603. doi: 10.1146/annurev.fluid.31.1.567.
  114. Bedram A., Moosavi A. Droplet breakup in an asymmetric microfluidic T junction. The European Physical Journal E. Soft Matter and Biological Physics, 2011, vol. 34, no. 8, pp. 1—8. doi: 10.1140/epje/i2011-11078-7.
  115. Hong Y., Wang F. Flow rate effect on droplet control in a co-flowing microfluidic device. Microfluidics and Nanofluidics, 2007, vol. 3, no. 3, pp. 341—346. doi: 10.1007/s10404-006-0134-3.
  116. Afkhami S., Leshansky A.M., Renardy Y. Numerical investigation of elongated drops in a microfluidic T-junction. Physics of Fluids, 2011, vol. 23, no. 2, pp. 022002. doi: 10.1063/1.3549266.
  117. Lee J., Lee W., Son G. Numerical study of droplet breakup and merging in a microfluidic channel. Journal of Mechanical Science and Technology, 2013, vol. 27, no. 6, pp. 1693—1699. doi: 10.1007/s12206-013-0418-y.
  118. Anderson D.M., McFadden G.B., Wheeler A.A. Diffuse-interface methods in fluid mechanics. Annual review of fluid mechanics, 1998, vol. 30, no. 1, pp. 139—165. doi: 10.1146/annurev.fluid.30.1.139.
  119. Jacqmin D. Calculation of two-phase Navier—Stokes flows using phase-field modeling. Journal of Computational Physics, 1999, vol. 155, no. 1, pp. 96—127.
  120. Badalassi V.E., Ceniceros H.D., Banerjee S. Computation of multiphase systems with phase field models. Journal of Computational Physics, 2003, vol. 190, no. 2, pp. 371—397. doi: 10.1016/S0021-9991(03)00280-8.
  121. Yue P. et al. A diffuse-interface method for simulating two-phase flows of complex fluids. Journal of Fluid Mechanics, 2004, vol. 515, pp. 293—317.
  122. De Menech M. Modeling of droplet breakup in a microfluidic T-shaped junction with a phase-field model. Physical Review E, 2006, vol. 73, no. 3, pp. 031505.
  123. Osher S., Fedkiw R.P. Level set methods: an overview and some recent results. Journal of Computational physics, 2001, vol. 169, no. 2, pp. 463—502.
  124. Yan Y., Guo D., Wen S.Z. Numerical simulation of junction point pressure during droplet formation in a microfluidic T-junction. Chemical Engineering Science, 2012, vol. 84, pp. 591—601. doi: 10.1016/j.ces.2012.08.055.
  125. Peng L. et al. The effect of interfacial tension on droplet formation in flow-focusing microfluidic device. Biome­dical Microdevices, 2011, vol. 13, no. 3, pp. 559—564.
  126. Renardy Y.Y., Cristini V. Effect of inertia on drop breakup under shear. Physics of Fluids, 2001, vol. 13, no. 1, pp. 7—13. doi: 10.1063/1.1331321.
  127. Renardy Y.Y., Cristini V. Scalings for fragments produced from drop breakup in shear flow with inertia. Physics of Fluids, 2001, vol. 13, no. 8, pp. 2161—2164.
  128. Ginzburg I., Wittum G. Two-phase flows on interface refined grids modeled with VOF, staggered finite volumes, and spline interpolants. Journal of Computational Physics, 2001, vol. 166, no. 2, pp. 302—335.
  129. Anderson A., Zheng X., Cristini V. Adaptive unstructured volume remeshing-I: The method. Journal of Computational Physics, 2005, vol. 208, no. 2, pp. 616—625.
  130. Zheng X. et al. Adaptive unstructured volume remeshing-II: Application to two-and three-dimensional level-set simulations of multiphase flow. Journal of Computational Physics, 2005, vol. 208, no. 2, pp. 626—650.
  131. Anna S.L., Bontoux N., Stone H.A. Formation of dispersions using "flow focusing" in microchannels. Applied physics letters, 2003, vol. 82, no. 3, pp. 364—366.
  132. Köster S. et al. Drop-based microfluidic devices for encapsulation of single cells. Lab on a Chip, 2008, vol. 8, no. 7, pp. 1110—1115. doi: 10.1039/b802941e.
  133. Edd J.F. et al. Controlled encapsulation of single-cells into monodisperse picolitre drops. Lab on a Chip, 2008, vol. 8, no. 8, pp. 1262—1264. doi: 10.1039/b805456h.
  134. Ahn K. et al. Electrocoalescence of drops synchronized by size-dependent flow in microfluidic channels. Applied Physics Letters, 2006, vol. 88, no. 26, pp. 264105.
  135. Brouzes E. et al. Droplet microfluidic technology for single-cell high-throughput screening. Proceedings of the National Academy of Sciences, 2009, vol. 106, no. 34, pp. 14195—14200. doi: 10.1073/pnas.0903542106.
  136. Love J.C. et al. A microengraving method for rapid selection of single cells producing antigen-specific antibodies. Nature Biotechnology, 2006, vol. 24, no. 6, pp. 703—707.
  137. Zhu Y., Fang Q. Analytical detection techniques for droplet microfluidics. A review. Analytica Chimica Acta, 2013, vol. 787, pp. 24—35. doi: 10.1016/j.aca.2013.04.064.
  138. Jiu-Sheng C., Jiang J.H. Droplet microfluidic technology: mirodroplets formation and manipulation. Chinese Journal of Analytical Chemistry, 2012, vol. 40, no. 8, pp. 1293—1300. doi: 10.1016/S1872-2040(11)60567-7.
  139. Gu H., Duits M.H.G., Mugele F. Droplets formation and merging in two-phase flow microfluidics. International Journal of Molecular Sciences, 2011, vol. 12, no. 4, pp. 2572—2597. doi: 10.3390/ijms12042572.
  140. Abate A.R. et al. Impact of inlet channel geometry on microfluidic drop formation. Physical Review E, 2009, vol. 80, no. 2, pp. 026310.
  141. Guo Z.X. et al. Valve-based microfluidic droplet micromixer and mercury (II) ion detection. Sensors and Actuators A: Physical, 2011, Vol. 172, no. 2, pp. 546—551.
  142. Vladisavljević G.T., Kobayashi I., Nakajima M. Generation of highly uniform droplets using asymmetric microchannels fabricated on a single crystal silicon plate: effect of emulsifier and oil types. Powder Technology, 2008, vol. 183, no. 1, pp. 37—45.
  143. Kobayashi I. et al. Microscopic observation of emulsion droplet formation from a polycarbonate membrane. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, vol. 207, no. 1, pp. 185—196.
  144. Kobayashi I. et al. CFD analysis of microchannel emulsification: Droplet generation process and size effect of asymmetric straight flow-through microchannels. Chemical Engineering Science, 2011, vol. 66, no. 22, pp. 5556—5565. doi: 10.1016/j.ces.2011.07.061.
  145. Kojima T. et al. Emulsion culture: A miniaturized library screening system based on micro-droplets in an emulsified medium. Journal of Bioscience and Bioengineering, 2011, vol. 112, no. 3, pp. 299—303.
  146. Utada A.S. et al. Dripping to jetting transitions in coflowing liquid streams. Physical Review Letters, 2007, vol. 99, no. 9, pp. 094502.
  147. Ren Y., Liu Z., Shum H.C. Breakup dynamics and dripping-to-jetting transition in a Newtonian/shear-thinning multiphase microsystem. Lab on a Chip, 2015, vol. 15, no. 1, pp. 121—134. doi: 10.1039/C4LC00798K.
  148. Jiang K. et al. Microfluidic generation of uniform water droplets using gas as the continuous phase. Journal of colloid and interface science, 2015, vol. 448, pp. 275—279.
  149. Hsiung S.K., Chen C.T., Lee G.B. Micro-droplet formation utilizing microfluidic flow focusing and controllable moving-wall chopping techniques. Journal of Micromechanics and Microengineering, 2006, vol. 16, no. 11,
    pp. 2403—2410. doi: 10.1088/0960-1317/16/11/022.
  150. Martín‐Banderas L. et al. Flow focusing: a versatile technology to produce size‐controlled and specific‐morphology microparticles. Small, 2005, vol. 1, no. 7, pp. 688—692. doi: 10.1002/smll.200500087.
  151. Leman M. et al. Droplet-based microfluidics at the femtolitre scale. Lab on a Chip, 2015, vol. 15, no. 3, pp. 753—765. doi: 10.1039/C4LC01122H.
  152. Kim H. et al. Controlled production of emulsion drops using an electric field in a flow-focusing microfluidic device. Applied Physics Letters, 2007, vol. 91, no. 13, pp. 133106. doi: 10.1063/1.2790785.
  153. Xiong S. et al. Droplet generation via a single bubble transformation in a nanofluidic channel. Lab on a Chip, 2015, vol. 15, no. 6, pp. 1451—1457.
  154. Park S.Y. et al. High-speed droplet generation on demand driven by pulse laser-induced cavitation. Lab on a Chip, 2011, vol. 11, no. 6, pp. 1010—1012.
  155. Lin X. et al. A microfluidic chip capable of switching W/O droplets to vertical laminar flow for electrochemical detection of droplet contents. Analytica Chimica Acta, 2014, vol. 828, pp. 70—79. doi: 10.1016/j.aca.2014.04.023.
  156. Isgor P.K. et al. Microfluidic droplet content detection using integrated capacitive sensors. Sensors and Actuators B: Chemical, 2015, vol. 210, pp. 669—675.
  157. Stone H.A., Stroock A.D., Ajdari A. Engineering flows in small devices: microfluidics toward a lab-on-
    a-chip. Annu. Rev. Fluid Mech., 2004, vol. 36, pp. 381—411. doi: 10.1146/annurev.fluid.36.050802.122124.
  158. Choi J. W. et al. Integrated pneumatic micro-pumps for high-throughput droplet-based microfluidics. RSC Advances, 2014, vol. 4, no. 39, pp. 20341—20345.
  159. Chen J. et al. Assembly-line manipulation of droplets in microfluidic platform for fluorescence encoding and simultaneous multiplexed DNA detection. Talanta, 2015, vol. 134, pp. 271—277. doi: 10.1016/j.talanta.2014.11.027.
  160. Cramer C., Fischer P., Windhab E.J. Drop formation in a co-flowing ambient fluid. Chemical Engineering Science, 2004, vol. 59, no. 15, pp. 3045—3058.
  161. Xiong R., Bai M., Chung J.N. Formation of bubbles in a simple co-flowing micro-channel. Journal of Micromechanics and Microengineering, 2007, vol. 17, no. 5, pp. 1002—1011. doi: 10.1088/0960-1317/17/5/021.
  162. Salmon J.B., Ajdari A. Transverse transport of solutes between co-flowing pressure-driven streams for microfluidic studies of diffusion/reaction processes. Journal of applied physics, 2007, vol. 101, no. 7, pp. 074902.
  163. Nunes J.K. et al. Dripping and jetting in microfluidic multiphase flows applied to particle and fibre synthesis. Journal of Physics D: Applied physics, 2013, vol. 46, no. 11, pp. 114002. doi: 10.1088/0022-3727/46/11/114002.
  164. Ma S. et al. On the flow topology inside droplets moving in rectangular microchannels. Lab on a Chip, 2014, vol. 14, no. 18, pp. 3611—3620.
  165. Zhu X. et al. Continuous monitoring of bisulfide variation in microdialysis effluents by on-line droplet-based microfluidic fluorescent sensor. Biosensors and Bioelectronics, 2014, vol. 55, pp. 438—445.
  166. Abkarian M., Stone H.A. Microfluidic flow focusing: Drop size and scaling in pressure versus flow-rate-driven pumping. Electrophoresis, 2005, vol. 26, pp. 3716—3724.
  167. Garstecki P. et al. Formation of monodisperse bubbles in a microfluidic flow-focusing device. Applied Physics Letters, 2004, vol. 85, no. 13, pp. 2649—2651.
  168. Lee W., Walker L.M., Anna S.L. Role of geometry and fluid properties in droplet and thread formation processes in planar flow focusing. Physics of Fluids, 2009, vol. 21, no. 3, pp. 032103. doi: 10.1063/1.3081407.
  169. Sullivan M.T., Stone H.A. The role of feedback in microfluidic flow-focusing devices. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2008, vol. 366, no. 1873,
    pp. 2131—2143.
 

A. G. Varekhov

9-AMINOACRIDINE FLUORESCENCE IN THE PREPARATIVE SUSPENSIONS OF ASPERGILLUS AND PENICILLIUM FUNGI

"Nauchnoe Priborostroenie", 2015, vol. 25, no. 3, pp. 86–93.
doi: 10.18358/np-25-3-i8693
 

There are given results of pilot studies of 9-aminoacridinefluorescence in the water suspensions containing the dispersed mycelium and spores of fungi-biodestructors of the genera Aspergillus and Penicillium in the article. It is shown that in addition to the quenching of fluorescence typically occurring for amino derivatives of acridine in the main maximum (460 nm for a 9-aminoacridine) the emergence of long-wave fluorescence takes place (about 700 nm). The model scheme explaining generation of long-wave fluorescence as result of dimerization of dye molecules on a polysaccharide matrix of fungi mycelium is offered. It is offered to use measurement of long-wave fluorescence level as control method of fungi development on the various materials.
 

Keywords: 9-aminoacridine, mold fungi, long-wave fluorescence, measurement

Author affiliations:

State University of Aerospace Instrumentation, Saint- Petersburg, RF

 
Contacts: Varekhov Aleksey Grigor'evich, varekhov@mail.ru
Article received in edition: 21.04.2015
Full text (In Russ.) >>

REFERENCES

  1. Semenov S.A. Gumargalieva K.Z., Kalinina I.G., Zaikov G.E. [Biodestructions of materials and products of equipment]. Vestnik MITChT [Bulletin of Lomonosov Moscow State University of Fine Chemical Technologies], 2007, vol. 2, no. 6, pp. 3—26. (In Russ.).
  2. Starzev S.A. [Problems of inspection of the construction designs having biodamage signs]. Inzh.-stroitel'nyy zhurnal [The engineer-construction journal], 2010, no. 10, pp. 41—46. (In Russ.).
  3. Shirokich A.A., Kolupaev A.P. [Mushrooms in biomonitoring of land ecosystems]. Teor. i prikl. Ekologiya [Theoretical and applied ecology], 2009, no. 3, pp. 4—14. (In Russ.).
  4. Hamada N., Fujita T. Effect of air-conditioner on fungal contamination. Atmospheric Environment, 2002, vol. 36, pp. 5443—5448. doi: 10.1016/S1352-2310(02)00661-1.
  5. Bushueva T.L. Izuchenie mechanizmov i dinamicheskich usloviy tusheniya fluoreszenzii triptofana v belkach i model'nych sistemach. Dr. sci. diss. [Studying of mechanisms and dynamic conditions of suppression of fluorescence of tryptophane in proteins and model systems. Dr. sci. diss.]. Puschino, Institut biologicheskoy fiziki AN SSSR, 1975. (In Russ.).
  6. Kraayenhof R. Quenching of uncoupler fluorescence in relation on the "energized state" in chloroplasts. FEBS Letters, 1970, vol. 6, no. 3, pp. 161—165. doi: 10.1016/0014-5793(70)80047-3.
  7. Vladimirov Yu.A., Dobrezov G.E. Fluoreszentnye zondy v issledovanii biologicheskich membran [Fluorescent probes in research of biological membranes]. Moscow, Nauka Publ., 1980. 320 p. (In Russ.).
  8. Eremenko A.M., Chujko A.A. Exciplexes photonics on the silica surface. Research on Chemical Intermediates, 1993, vol. 19, no. 4, pp. 375—391. doi: 10.1163/156856793X00172.
  9. Brauer D.K., Yermiyahu U., Ritwo G., Kinraide T.B. Characteristics of the quenching of 9-aminoacridine fluorescence by liposomes from plant lipids. J. Membrane Biol., 2000, vol. 178, pp. 43—48.
  10. 1007/s002320010013.
  11. Storck R. Molecular Mycology. Molekulyarnaya mikrobiologiya [Molecular microbiology], Moskow, Mir Publ., 1977, pp. 153—161. (In Russ.).
  12. Grachev A.V., Ponomarev A.N., Yuzhakov V.I. [Studying of kinetics of fluorescence the akridinovykh of dyes in polymeric matrixes]. Chimicheskaya fizika [Chemical physics], 1991, vol. 10, no. 4, pp. 459—464. (In Russ.).
  13. Nicholas R.O., WilliamsD.W., HunterP.A. Investigation of the value of β-glucan – cpecific fluorochromes for predicting the β-glucan content of the cell walls of zoopathogenic fungi. Mycol. Res., 1994, vol. 98, pp. 694—698.
  14. Woodside E.E., Kwapinski J.B.G. Polysaccharides of microorganisms. Molekulyarnaya mikrobiologiya [Molecular microbiology], Ìoskow, Mir Publ., 1977, pp. 145—240. (In Russ.).
  15. Förster Th. Zwischenmolekulare energiewanderung und fluoreszenz. Ann. Phys., 1948, vol. 437, no. 1-2, pp. 55—75. doi: 10.1002/andp.19484370105.
  16. Förster Th., Selinger B. Der konzentrationsumschlag der fluoreszenz aromatischer kohlenwasserstoffe in mizell-kolloidaler lösung. Z. für Naturforsch. A, 1964, vol. 19a, pp. 38—41.
  17. Selvin P.R. The renaissance of fluorescence resonance energy transfer. Nature Structural and Molecular Biology, 2000, vol. 7, no. 9, pp. 730—734. doi: 10.1038/78948.
  18. Fryelich G. Teoriya dielektrikov. Dielektricheskaya pronizaemost' i dielektricheskie poteri [Theory of dielectrics. Dielectric permeability and dielectric losses]. Ìoscow, Izd. Inostr. lit. Publ., 1960. 249 p. (In Russ.).
  19. Litinskiy G.B. [Kirkvud's factor of liquid of dipolar firm spheres. Model of the slowed-down rotation of molecules]. Zhurnal strukturnoy chimii [Journal of structural chemistry], 1998, vol. 39, no. 5, pp. 843—850.
 

I. V. Kukhtevich1,2,4, Y. S. Posmitnaya1,2, K. I. Belousov2,4, A. S. Bukatin1,3,4, A. A. Evstrapov1,2,3

PRINCIPLES, TECHNOLOGIES AND DROPLET-BASED MICROFLUIDIC DEVICES. PART 2 (REVIEW)

"Nauchnoe Priborostroenie", 2015, vol. 25, no. 3, pp. 94—109.
doi: 10.18358/np-25-3-i94109
 

The active and passive methods and the devices for coalescence of the droplets are considered in the second part of the review. Particular attention is paid to the methods of processing and surface modification of polydimethylsiloxane (the most frequently used material in microfluidics) in order to create the conditions for the stable droplet generation. Depending on the type of the emulsion (water drops in oil transport flow or vice versa) the surface should be hydrophilic or hydrophobic. The surface with the different wetting properties on the various local sections is required at generation of double emulsions. A single part describes the methods of stabilizing the emulsions. Usually the surfactants used for the droplets stabilizing. The surfactant reduces the surface tension between the two fluids through the formation of the oriented film at their interface. However, the choice of an appropriate surfactant should be carefully carried out, since these substances can affect on the components of sample and biomolecules.
 

Keywords: microfluidic chip, droplet microfluidics, dimensionless numbers of fluid mechanics, droplet generator, droplet coalescence

Author affiliations:

1Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia
2ITMO University, Saint-Petersburg, Russia
3St. Petersburg Academic University – Nanotechnology Research and Education Center RAS, Russia
4Siberian Federal University, Krasnoyarsk, Russia

 
Contacts: Evstrapov Anatoliy Aleksandrovich, an_evs@mail.ru
Article received in edition: 15.06.2015
Full text (In Russ.) >>

REFERENCES

  1. Riegler H., Lazar P. Delayed coalescence behavior of droplets with completely miscible liquids. Langmuir, 2008, vol. 24, no. 13, pp. 6395—6398. doi: 10.1021/la800630w.
  2. Tan Y.C. et al. Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting. Lab on a Chip, 2004, vol. 4, no. 4, pp. 292—298. doi: 10.1039/b403280m.
  3. Eggers J., Lister J.R., Stone H.A. Coalescence of liquid drops. Journal of Fluid Mechanics, 1999, vol. 401, pp. 293—310. doi: 10.1017/S002211209900662X.
  4. Wilhelm T.S. et al. Surface-induced droplet fusion in microfluidic devices. Lab on a Chip, 2007, vol. 7, no. 8, pp. 984—986. doi: 10.1039/b708091c.
  5. Köhler J.M. et al. Digital reaction technology by micro segmented flow – components, concepts and applications. Chemical Engineering Journal, 2004, vol. 101, no. 1, pp. 201—216. doi: 10.1016/j.cej.2003.11.025.
  6. Chokkalingam V. et al. Optimized droplet-based microfluidics scheme for sol-gel reactions. Lab on a Chip, 2010, vol. 10, no. 13, pp. 1700—1705. doi: 10.1039/b926976b.
  7. Bremond N., Thiam A.R., Bibette J. Decompressing emulsion droplets favors coalescence. Physical review letters, 2008, vol. 100, no. 2, pp. 024501. doi: 10.1103/PhysRevLett.100.024501.
  8. Hung L.H. et al. Alternating droplet generation and controlled dynamic droplet fusion in microfluidic device for CdS nanoparticle synthesis. Lab on a Chip, 2006, vol. 6, no. 2, pp. 174—178. doi: 10.1039/b513908b.
  9. Niu X. et al. Pillar-induced droplet merging in microfluidic circuits. Lab on a chip, 2008, vol. 8, no. 11, pp. 1837—1841. doi: 10.1039/b813325e.
  10. Chabert M., Dorfman K.D., Viovy J.L. Droplet fusion by alternating current (AC) field electrocoalescence in microchannels. Electrophoresis, 2005, vol. 26, no. 19, pp. 3706—3715. doi: 10.1002/elps.200500109.
  11. Link D.R. et al. Electric control of droplets in microfluidic devices. Angewandte Chemie International Edition, 2006, vol. 45, no. 16, pp. 2556—2560. doi: 10.1002/anie.200503540.
  12. Niu X. et al. Electro-coalescence of digitally controlled droplets. Analytical chemistry, 2009, vol. 81, no. 17, pp. 7321—7325. doi: 10.1021/ac901188n.
  13. Zagnoni M., Baroud C.N., Cooper J.M. Electrically initiated upstream coalescence cascade of droplets in a microfluidic flow. Physical Review E, 2009, vol. 80, no. 4, pp. 046303. doi: 10.1103/PhysRevE.80.046303.
  14. Schwartz J.A., Vykoukal J.V., Gascoyne P.R.C. Droplet-based chemistry on a programmable micro-chip. Lab on a Chip, 2004, vol. 4, no. 1, pp. 11—17. doi: 10.1039/b310285h .
  15. Singh P., Aubry N. Transport and deformation of droplets in a microdevice using dielectrophoresis. Electrophoresis, 2007, vol. 28, no. 4, pp. 644—657. doi: 10.1002/elps.200600549.
  16. Wang W., Yang C., Li C.M. On-demand microfluidic droplet trapping and fusion for on-chip static droplet assays. Lab on a Chip, 2009, vol. 9, no. 11, pp. 1504—1506. doi: 10.1039/b903468d.
  17. Baroud C.N., de Saint Vincent M.R., Delville J.P. An optical toolbox for total control of droplet microfluidics. Lab on a Chip, 2007, vol. 7, no. 8, pp. 1029—1033. doi: 10.1039/b702472j.
  18. Lorenz R.M. et al. Vortex-trap-induced fusion of femtoliter-volume aqueous droplets. Analytical chemistry, 2007, vol. 79, no. 1, pp. 224—228. doi: 10.1021/ac061586w.
  19. Lin B.C., Su Y.C. On-demand liquid-in-liquid droplet metering and fusion utilizing pneumatically actuated membrane valves. Journal of Micromechanics and Microengineering, 2008, vol. 18, no. 11, pp. 115005.
  20. Fischer A.E. et al. A high-throughput drop microfluidic system for virus culture and analysis. Journal of virological methods, 2015, vol. 213, pp. 111—117. doi: 10.1016/j.jviromet.2014.12.003.
  21. Jing Yan et al. Monodisperse water-in-oil-in-water (W/O/W) double emulsion droplets as uniform compartments for high-throughput analysis via flow cytometry. Micromachines, 2013, vol. 4, pp. 402—413.
  22. Bauer W.A.C. et al. Hydrophilic PDMS microchannels for high-throughput formation of oil-in-water microdroplets and water-in-oil-in-water double emulsions. Lab on a Chip, 2010, vol. 10, no. 14, pp. 1814—1819.
  23. Mazutis L. et al. Single-cell analysis and sorting using droplet-based microfluidics. Nature protocols, 2013, vol. 8, no. 5, pp. 870—891. doi: 10.1038/nprot.2013.046.
  24. Barbier V. et al. Stable modification of PDMS surface properties by plasma polymerization: application to the formation of double emulsions in microfluidic systems. Langmuir, 2006, vol. 22, no. 12, pp. 5230—5232.
  25. Liao C.Y., Su Y.C. Formation of biodegradable microcapsules utilizing 3D, selectively surface-modified PDMS microfluidic devices. Biomedical microdevices, 2010, vol. 12, no. 1, pp. 125—133.
  26. Shah R.K. et al. Designer emulsions using microfluidics. Materials Today, 2008, vol. 11, no. 4, pp. 18—27.
  27. Seo M. et al. Microfluidic consecutive flow-focusing droplet generators. Soft Matter., 2007, vol. 3, no. 8, pp. 986—992. doi: 10.1039/b700687j.
  28. Romanowsky M.B. et al. Functional patterning of PDMS microfluidic devices using integrated chemo-masks. Lab on a Chip, 2010, vl. 10, no. 12, pp. 1521—1524. doi: 10.1039/c004050a.
  29. Demming S. et al. Characterization of long‐term stability of hydrophilized PEG‐grafted PDMS within different media for biotechnological and pharmaceutical applications. Physica status solidi (a), 2011, vol. 208, no. 6, pp. 1301—1307. doi: 10.1002/pssa.201000967.
  30. Zdyrko B., Klep V., Luzinov I. Universal platform for modification employing grafted polymer layers. Material Matters, 2008, vol. 3, no. 2, pp. 44—46.
  31. Hwang S., Choi C.H., Lee C.S. Regioselective surface modification of PDMS microfluidic device for the generation of monodisperse double emulsions. Macromolecular Research, 2012, vol. 20, no. 4, pp. 422—428.
  32. Abate A.R., Weitz D.A. High‐order multiple emulsions formed in poly (dimethylsiloxane) microfluidics // Small. 2009. Vol. 5, no. 18. P. 2030—2032.
  33. Kim B.Y. et al. Solvent‐resistant PDMS microfluidic devices with hybrid inorganic/organic polymer coatings. Advanced Functional Materials, 2009, vol. 19, no. 23, pp. 3796—3803. doi: 10.1002/adfm.200901024.
  34. Abate A.R. et al. Patterning microfluidic device wettability using flow confinement. Lab on a Chip, 2010, vol. 10, no. 14, pp. 1774—1776. doi: 10.1039/c004124f.
  35. Abate A.R. et al. Photoreactive coating for high-contrast spatial patterning of microfluidic device wettability. Lab on a Chip, 2008, vol. 8, no. 12, pp. 2157—2160. doi: 10.1039/b813405g.
  36. Bibette J. et al. Stability criteria for emulsions. Physical Review Letters, 1992, vol. 69, no. 16, pp. 2439—2442.
  37. Amarouchene Y., Cristobal G., Kellay H. Noncoalescing drops. Physical Review Letters, 2001, vol. 87, no. 20, pp. 206104. doi: 10.1103/PhysRevLett.87.206104.
  38. Schramm L.L. Emulsions, Foams, and Suspensions: Fundamentals and Applications. Wiley-VCH, Weinheim, Germany, 2005. 463 p. doi: 10.1002/3527606750.
  39. Landfester K. Recent developments in miniemulsions ― formation and stability mechanisms. Macromolecular Symposia, 2000, vol. 150, no. 1, pp. 171—178.
  40. Goodwin G.W. Colloids and interfaces with surfactants and polymers. An Introduction. John Wiley & Sons Ltd., 2004. 289 p. doi: 10.1002/0470093919.
  41. Griffin W.C. Hydrophilic-lipophilic balance. J. Soc. Cosmet. Chem., 1949, vol. 1, pp. 311—326.
  42. Baret J.C. Surfactants in droplet-based microfluidics. Lab on a Chip, 2012, vol. 12, no. 3, pp. 422—433.
  43. Zhang R., Somasundaran P. Advances in adsorption of surfactants and their mixtures at solid/solution interfaces. Advances in colloid and interface science, 2006, vol. 123, pp. 213—229. doi: 10.1016/j.cis.2006.07.004.
  44. Joensson H.N., Andersson Svahn H. Droplet microfluidics – a tool for single‐cell analysis. Angewandte Chemie International Edition, 2012, vol. 51, no. 49, pp. 12176—12192. doi: 10.1002/anie.201200460.
  45. Link D.R. et al. Geometrically mediated breakup of drops in microfluidic devices. Physical Review Letters, 2004, vol. 92, no. 5, pp. 054503. doi: 10.1103/PhysRevLett.92.054503.
  46. Schaerli Y. et al. Continuous-flow polymerase chain reaction of single-copy DNA in microfluidic microdroplets. Analytical chemistry, 2008, vol. 81, no. 1, pp. 302—306. doi: 10.1021/ac802038c.
  47. Courtois F. et al. An integrated device for monitoring time‐dependent in vitro expression from single genes in picolitre droplets. ChemBioChem., 2008, vol. 9, no. 3, pp. 439—446. doi: 10.1002/cbic.200700536.
  48. Hatch A.C. et al. 1-Million droplet array with wide-field fluorescence imaging for digital PCR. Lab on a Chip, 2011, vol. 11, no. 22, pp. 3838—3845. doi: 10.1039/c1lc20561g.
  49. Huebner A.M. et al. Monitoring a reaction at submillisecond resolution in picoliter volumes. Analytical chemistry, 2011, vol. 83, no. 4, pp. 1462—1468. doi: 10.1021/ac103234a.
  50. Bremond N., Doméjean H., Bibette J. Propagation of drop coalescence in a two-dimensional emulsion: A route towards phase inversion. Physical review letters, 2011, vol. 106, no. 21, pp. 214502.
  51. Saint-Jaimes A., Zemb T., Langevin D. Trends in Colloid and Interface Science XV. Springer, Berlin, Heidelberg, 2001. 299 p.
  52. URL: (http://www.surfachem.com/abil-em180).
  53. Song H., Tice J.D., Ismagilov R.F. A microfluidic system for controlling reaction networks in time. Angewandte Chemie, 2003, vol. 115, no. 7, pp. 792—796. doi: 10.1002/ange.200390172.
  54. Niu X., de Mello A.J. Building droplet-based microfluidic systems for biological analysis. Biochemical Society Transactions, 2012, vol. 40, no. 4, pp. 615—623. doi: 10.1042/BST20120005.
  55. Basova E.Y., Foret F. Droplet microfluidics in (bio) chemical analysis. Analyst, 2014, vol. 140, no. 1, pp. 22—38.
  56. Zheng B., Roach L.S., Ismagilov R.F. Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets. Journal of the American Chemical Society, 2003, vol. 125, no. 3. pp. 11170—11171.
  57. URL: (http://www.ranbiotechnologies.com/).
  58. Chen C.H. et al. Enhancing protease activity assay in droplet-based microfluidics using a biomolecule concentrator. Journal of the American Chemical Society, 2011, vol. 133, no. 27. P. 10368—10371. doi: 10.1021/ja2036628.
  59. Courtois F. et al. Controlling the retention of small molecules in emulsion microdroplets for use in cell-based assays. Analytical chemistry, 2009, vol. 81, no. 8, pp. 3008—3016. doi: 10.1021/ac802658n.
  60. Woronoff G. et al. New generation of amino coumarin methyl sulfonate-based fluorogenic substrates for amidase assays in droplet-based microfluidic applications. Analytical chemistry, 2011, vol. 83, no. 8, pp. 2852—2857.
  61. Roach L.S., Song H., Ismagilov R.F. Controlling nonspecific protein adsorption in a plug-based microfluidic system by controlling interfacial chemistry using fluorous-phase surfactants. Analytical chemistry, 2005, vol. 77, no. 3, pp. 785—796. doi: 10.1021/ac049061w.
  62. Holtze C. et al. Biocompatible surfactants for water-in-fluorocarbon emulsions. Lab on a Chip, 2008, vol. 8, no. 10, pp. 1632—1639. doi: 10.1039/b806706f.
  63. Derkach S.R. Rheology of emulsions. Advances in Colloid and Interface Science, 2009, vol. 151, no. 1, pp. 1—23.
  64. Brouzes E. et al. Droplet microfluidic technology for single-cell high-throughput screening. Proceedings of the National Academy of Sciences, 2009, vol. 106, no. 34, pp. 14195—14200. doi: 10.1073/pnas.0903542106.
 

V. G. Demenkov1, B. V. Zhuravlev2, P. V. Demenkov2, A. A. Lychagin3

A MULTIDETECTOR STRUCTURE OF THE TIME-OF-FLIGH SPECTROMETRY OF FAST NEUTRONS

"Nauchnoe Priborostroenie", 2015, vol. 25, no. 3, pp. 110—115.
doi: 10.18358/np-25-3-i110115
 

A time-of-flight spectrometer of fast neutrons was designed to measure spectra of neutrons generated in (p-n), (d-n) and (α-n) reactions. The version of the multidetector analysis fast neutrons is presented. Its originality consists in single use of two signals. One of them is connected with a temporary mark, and another is identified with a tape of radiation. Problems of the organization of such measurements are discussed. A block diagram of the multiple time analyzer is given. Signals from the pick-up electrode are amplified by a fast preamplifier, are normalized by time shaper and are used as STOP pulses. A START pulses are get from fast output unit of multidetector time analysis. Specifics of structure of the electronic means applied in obtaining the neutron data realized in all variety of the directions of nuclear physics are considered. The block and schematic diagrams of a multidetector structure of the time-of-flight spectrometer are given and application it are discussed.
 

Keywords: time-of-flight spectrometry, fast neutrons, multidetector analysis, organization of measurements,
structure of setup, neutron date

Author affiliations:

1State Institute of Nuclear Power Engineering of National Nuclear Scientific University "MIFI", RF
2State Scientific Center of Russian Federation "Institute for Physics and Power Engineering,
named after A.I. Leypunskiy", Obninsk, RF
3Medical Radiological Scientific Center, Russian Academy Medical Sciences, Obninsk, RF

 
Contacts: Demenkov Vasiliy Georgievich, dem1@mail.ru
Article received in edition: 6.07.2015
Full text (In Russ.) >>

REFERENCES

  1. Kuz'minov B.D. [Role of a complex of FEI GNTs Russian Federation accelerators in ensuring nuclear technologies with nuclear data]. Sb. trud. XIII Mezhdunar. konf. po elektrostat. uskor. [Proc. of XIII Int. conferences on electrostatic accelerators], Obninsk, GNZ RF FEI, 2000, pp. 5—12. (In Russ.).
  2. V.I. Strizhak, Ed. Fizika bystrych neytronov [Physics of fast neutrons]. Ìoscow, Atomizdat Publ., 1977. 288 p. (In Russ.).
  3. Mironov A.N., Nesterenko V.S. Ustroystva dlya mnogodetektornogo i mnogomernogo analiza [Devices for the multidetector and multidimensional analysis]. Preprint FEI-945, Obninsk, 1979. 14 p. (In Russ.).
  4. Korostik K.N. [Method of priority temporary discrimination in physical experiment (Review)]. PTE [Devices and technology of experiment], 1995, no. 3, pp. 7—24. (In Russ.).
  5. Lychagin A.A. Zhuravlev B.V., Demenkov V.G. et al. [Differential sections of reactions (p, n) on isotopes Sn, Pb, Bi]. Voprosy atomnoy nauki i techniki. Seriya "Yadernye konstanty" [Questions of nuclear science and equipment. Ser. Nuclear Constants], 2004, iss. 1, pp. 3—30. (In Russ.).
  6. Zhuravlev B.V., Lychagin A.A., Titarenko N.N. et al. [Density of nuclear levels of 208Âi, 209Po from neutron ranges in (p, n)-reactions on kernels 208Pb and 209Âi]. Yadernaya fizika [Nuclear phisics], 2010, vol. 73, no. 7, pp. 1150—1154. (In Russ.).
  7. Zhuravlev B.V., Lychagin A.A., Titarenko N.N., et al. [Density of nuclear levels 47V; 48V; 49V; 53Mn; 54Mn from neutron vaporizing specters]. Yadernaya fizika [Nuclear phisics], 2011, vol. 74, no. 3, pp. 355—360. (In Russ.).
  8. Zhuravlev B.V., Lychagin A.A., Titarenko N.N. et al. [Statistical properties of the excited kernels in the mass range 47 ≤ À ≤ 59]. Yadernaya fizika [Nuclear phisics], 2012, vol. 75, no. 9, pp. 1099—1104. (In Russ.).
 

S. A. Kazakov, V. V. Kaminski, S. M. Soloviev, N. V. Sharenkova

SEMICONDUCTOR GAS OXYGEN SENSORS BASED ON POLYCRYSTALLINE FILMS
OF SAMARIUM SULFIDE

"Nauchnoe Priborostroenie", 2015, vol. 25, no. 3, pp. 116–123.
doi: 10.18358/np-25-3-i116123
 

Oxygen sensors based on samarium sulfide were made. The methods of coating of semiconductor samarium sulfide (SmS) thin and thick films on the dielectric substrates, as well as methods of forming of gas-sensitive layers of semiconductor oxygen sensors based on them were developed. A model describing the processes of oxygen chemisorption on the surface of such detectors was chosen, and main characteristics of semiconductor oxygen sensors were obtained: calibration dependence, static and dynamic parameters of converters, sensors time constant of the response to the concentration effect (~ 0.5 s). The paper briefly describes the construction features of oxygen sensors, made on the basis of a standard design. The advantages of this type of sensors in comparison with analogs are given.
 

Keywords: samarium sulfide, oxygen sensor, explosive sputtering method, sol-gel method

Author affiliations:

Ioffe Physical Technical Institute of the RAS , Saint- Petersburg, Russia

 
Contacts: Kaminski Vladimir Vasil'evich, vladimir.kaminski@mail.ioffe.ru
Article received in edition: 1.06.2015
Full text (In Russ.) >>

REFERENCES

  1. Myasnikov I.A., Sucharev V.Ya., Kupriyanov L.Yu., Zavyalov S.A. Poluprovodnikovye sensory v fiziko-chimicheskich issledovaniyach [Semiconductor sensors in physical and chemical researches]. Ìoscow, Nauka Publ., 1991. 327 p. (In Russ.).
  2. Kaminski V.V., Soloviev S.M., Golubkov A.V., Vo-lodin N.M. Tenzorezistor (varianty) [Tensoresistor (options)]. Patent RF, no. 110472, 10.05.2011. (In Russ.).
  3. Kaminski V.V., Golubkov A.V., Kazanin M.M. et al. Termoelektricheskiy generator (varianty) i sposob izgotovleniya termoelektricheskogo generatora [Thermoelectric generator (options) and way of production of the thermoelectric generator]. Patent RF, no. 2303834, 22.06.2005. (In Russ.).
  4. Kaminski V.V., Vasil'ev L.N., Gornushkina E.D. et al. [Influence γ-radiations on electric parameters of thin films of the SmS]. Fizika i technika poluprovodnikov [Physics and equipment of semiconductors], 1995, vol. 29, no. 2, pp. 306—308. (In Russ.).
  5. Vasil'ev L.N, Kaminski V.V., Soloviev S.M., Sha-renkova N.V. [Mechanism of high radiation resistance of electric parameters of thin films of the SmS]. Fizika i technika poluprovodnikov [Physics and equipment of semiconductors], 2000, vol. 34, no. 9, pp. 1066—1068. (In Russ.).
  6. Kaminski V.V., Kazakov S.A. Poluprovodnikovyy datchik kisloroda [Semiconductor sensor of oxygen]. Patent RF, no. 2546849, 05.07.2013. (In Russ.).
  7. Sharenkova N.V. Vliyanie strukturnych osobennostey na fizicheskie svoystva redkozemel'nych poluprovodnikov na osnove sul'fida samariya [Influence of structural features on physical properties of rare-earth semiconductors on the basis of samarium sulfide]. Autoref. Doct. Diss., Saint-Petersburg, 2009. 19 p.
  8. Vasil'ev L.N., Kaminski V.V., Kurapov Yu.M. et al.. [Conductivity of thin films of the SmS]. Fizika tverdogo tela [Physics of a Solid Body], 1996, vol. 38, no. 3, pp. 779—785. (In Russ.).
  9. Kaminski V.V., Kazakov S.A., Romanova M.V. et al. [Model of barrier conductivity in samarium sulfide polycrystals]. Fizika tverdogo tela [Physics of a Solid Body], 2015, vol. 57, no. 2, pp. 264—266. (In Russ.).
  10. Rumyanzeva M.N., Makeeva E.A., Gas'kov A.M. [Influence of a microstructure of semiconductor touch materials on an oxygen hemosorbtion on their surfaces]. Rossiyskiy chimicheskiy zhurnal [Russian chemical journal], 2008, vol. LII, no. 2, pp. 122—129. (In Russ.).
  11. Epifani M., Forleo A., Capone S. et al. Hall effect measurements in gas sensors based on nanosized Os-doped sol-gel derived SnO2 thin films. Sensors Journal, 2003, vol. 3, no. 6, pp. 827—834. doi: 10.1109/JSEN.2003.820322.
 

M. O. Iskandarov1, A. A. Nikitichev1, M. A. Sverdlov2, A. L. Ter-Martirosyan2,3

DIODE PUMPED SOLID STATE EYE SAFE LASER (SHORT MESSAGE)

"Nauchnoe Priborostroenie", 2015, vol. 25, no. 3, pp. 124–126.
doi: 10.18358/np-25-3-i124126
 

A prototype model of diode-pumped Nd:YAG solid state laser with an intracavity parametric frequency conversion of laser radiation to a spectral range of around 1.57 µm has been developed. A maximum output energy of 10 mJ, pulse duration of 10 ns, repetition rate up to 20 Hz and beam divergence of 0.7 mrad were obtained.
 

Keywords: Q-switched solid-state laser, diode pumping, parametric interaction

Author affiliations:

1Ltd "QuantumOptics", Saint- Petersburg , Russia
2 JSC "ATC-Semiconductor Devices", Saint- Petersburg , Russia
3 ITMO University, Saint- Petersburg , Russia

 
Contacts: Ter-Martirosyan Aleksandr Leonovich, ter@atcsd.ru
Article received in edition: 22.05.2015
Full text (In Russ.) >>

REFERENCES

    Stepanov A.I., Nikitichev A.A., Iskandarov M.O. Solid-state diode pumped eye-safe lasers in remote sensing and ecological monitoring systems. Proc. SPIE, 2002, vol. 4900, pp. 1085–1089.

Ulitsa Ivana Chernykh, 31-33, lit. A, St. Petersburg, Russia, 198095, P.O.B. 140
tel: (812) 3630719, fax: (812) 3630720, mail: iap@ianin.spb.su

content: Valery D. Belenkov design: Banu S. Kuspanova layout: Anton V. Manoilov