logo
blue band <-
  JOURNAL "NP" ISSUES

"Nauchnoe Priborostroenie", 2017, Vol. 27, no. 2. ISSN 2312-2951, DOI: 10.18358/np-27-2-211

"NP" 2017 year Vol. 27 no. 2.,   ABSTRACTS

ABSTRACTS, REFERENCES

E. A. Al-Tavil1, V. Z. Muradymov2, N. V. Krasnov2, M. N. Krasnov3

ELECTROSPRAYING CONDUCTIVE SOLUTIONS IN NORMAL CONDITIONS WITH A WIDE VOLUME FLOW VELOCITY RANGE

"Nauchnoe priborostroenie", 2017, vol. 27, no. 2, pp. 3—12.
doi: 10.18358/np-27-2-i312
 

The production of charged particles (ions, clusters) from fluid in a strong electric field while in normal conditions was experimentally studied using a dynamic liquid flow splitter on the meniscus. The existence of non-droplets regimes for obtaining charged particles for liquid flow rates up to 1000 μl/min, solute concentrations up to 1 M and acid content in solution up to 1 % was displayed. Depending on the experimental conditions the existence of a "classic" fluid electrospraying regime in normal conditions in air and a non-droplets regime were demonstrated for obtaining charged particles current. The performance of an ion mobility spectrometer with Bradbury–Nielsen gate is demonstrated in a non-droplets regime of obtaining charged particles using the example of the suspension of human cells epidermoid carcinoma A431. The cells concentration in the suspension is 1 ppm.
 

Keywords: solution electrospraying, ion mobility spectrums, dynamic liquid flow splitter of sprayed liquid

Author affiliations:

1Peter The Great Saint-Petersburg Polytechnic University, Russia
2Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia
3Ltd "Grant Instrument", Saint-Petersburg, Russia

 
Contacts: Krasnov Nikolay Vasil'evich, krasnov@alpha-ms.com
Article received in edition: 29.03.2017
Full text (In Russ.) >>

REFERENCES

  1. Taylor G. Electrically driven jets. Proc. Roy. Soc. Lond. A, 1969, vol. 313, no. 1515, pp. 453—475. Doi: 10.1098/rspa.1969.0205.
  2. Gilbert. W. De Magnete. London, 1600. (In Latin). Translated by P.F. Mottelay. Dover Publication, Mineola, N.Y., 1958.
  3. Zeleny J. The electric discharge from liquid points and a hydrostatic method of measuring the electric intensity at their surfaces. Phys. Rev., 1914, vol. 3, no. 2, pp. 69—91. Doi: 10.1103/PhysRev.3.69.
  4. Zeleny J. Instability of electrified liquid surfaces. Phys. Rev., 1917, vol. 10, no. 1, pp. 1—6.
  5. Taylor G. Disintegration of water drops in an electric field. Proc. Roy. Soc. Lond. A., 1964, vol. 280, no. 1382, pp. 383—397. Doi: 10.1098/rspa.1964.0151.
  6. Dole M., Mack L.L., Hines R.L., Mobley R.C., Ferguson L.D., Alice M.B. Molecular beams of macroions. J. Chem. Physics, 1968, vol. 49, no. 5, pp. 2240—2249. Doi: 10.1063/1.1670391.
  7. Grace J.M., Manijnissen J.C.M. A review of liquid atomization by electrical means. J. of Aerosol Sience, 1994, vol. 25, no. 6, pp. 1005—1010. Doi: 10.1016/0021-8502(94)90198-8.
  8. Cloupeau M., Prunet-Foch B. Electrodynamic spraing functioning modes: a critical review. J. of Aerosol Sience, 1994, vol. 25, no. 6, pp. 1021—1036. Doi: 10.1016/0021-8502(94)90199-6.
  9. Alexandrov M.L., Gall L.N., Krasnov N.V., Nikolaev V.I., Pavlenko V.A., Shkurov V.A. Extraction of ions from solutions under atmospheric pressure as a method for mass spectrometric analysis of bioorganic compounds. Rapid Communications in Mass Spectrometry, 2008, vol. 22, no. 3, pp. 267—270. Doi: 10.1002/rcm.3113.
  10. IonMax API Sourse hardware Manual. Thermo Fisher Scientific.
    URL: http://tools.thermofisher.com/content/sfs/manuals/Ion-Max-Ion-Max-S-Hardware.pdf
  11. Fischer S.M., Perkins P.D. Simultaneous electrospray and atmospheric pressure chemical ionization: The science behind the Agilent multimode ion source (Technical overview).
    URL: http://cn.agilent.com/cs/library/technicaloverviews/public/5989-2935EN.pdf
  12. Dual ion sourse DUIS-2020 for simultaneous ESI and APCI measurement. Shimadzu Corp. Technical Report, vol. 35. URL: http://www.ssi.shimadzu.com/products/literature/lcms/C190-E132.pdf.
  13. Gale D.C., Smith R.D. Small volume and low flow rate electrospray ionization mass spectrometry for aqueous samples. Rapid Commun. Mass Spectrom., 1993, vol. 7, no. 11, pp. 1017—1021. Doi: 10.1002/rcm.1290071111.
  14. Emmett M.R., Caprioli R.M. Micro-electrospray mass spectrometry: ultra-high-sensitivity analysis of peptides and proteins. J. Am. Soc. Mass Spectrom., 1994, vol. 5, no. 7, pp. 605—613. Doi: 10.1016/1044-0305(94)85001-1.
  15. Wilm M.S., Mann M. Electrospray and Taylor-Cone theory, Dole's beam of macromolecules at last?  Int. J. Mass Spectrom. Ion Proc., 1994, vol. 136, no. 2—3, pp. 167—180.  Doi: 10.1016/0168-1176(94)04024-9.
  16. Wilm M., Mann M. Analytical properties of the nanoelectrospray ion source.  Anal. Chem., 1996, vol. 68, no. 1, pp. 1—8. Doi: 10.1021/ac9509519.
  17. Rayleigh L. On the equilibrium of liquid conducting masses charged with electricity. Philosophical Magazine Series 5, 1882, vol. 14, no. 87, pp. 184—186. Doi: 10.1080/14786448208628425.
  18. Maulbetsch W., Wiener B., Poole W., Bush J., Stein D. Preserving the sequence of a biopolymer’s monomers as they enter an electrospray mass spectrometer. Phys. Rev. Applied, 2016, vol. 6, no. 5.
  19. Alexandrov M.L., Gall L.N., Krasnov N.V., Nikolaev V.I., Pavlenko V.A., Shkurov V.A. On the working characteristics of an ion sourse with electrohydro dynamic introducrional of liquids into the mass spectrometer. Int. J. Mass Spect. Ion Proc., 1983, vol. 54, no. 1-2, pp. 231—235. Doi: 10.1016/0168-1176(83)85021-6.
  20. Coy S.L., Krylov E.V., Nazarov E.G., Fornace A.Y. Jr., Kidd R.D. Differential mobility spectrometry with nanospray ion sourse as a compact detector for small organics and inorganics. Int. J. Ion Mobil. Spec., 2013, vol. 16, no. 3, pp. 217—227. Doi: 10.1007/s12127-013-0136-3.
  21. Sowell R.A., Koeniger S.L., Valentine S.J., Moon M.H., Clemmer D.E. Nanoflow LC/IMS-MS and LC/IMS-CID/MS of protein mixtures. J. Am. Soc. Mass Spectrom., 2004, vol. 15, no. 9, pp. 1341—1353. Doi: 10.1016/j/jasms.2004.06.014.
  22. Merkley E.D., Baker E.S., Crowell K.L., Orton D.J., Tavemer T., Ansong C., Ibrahim Y.M., Burnet M.C., Cort J.R., Anderson G.A., Smith R.D., Adkins J.N. Mixed-isotope labeling with LC-IMS-MS for characterization of protein- pritein interactions by chemical cross-linking. J. Am. Soc. Mass Spectrom., 2013, vol. 24, no. 3, pp. 444—449. Doi: 10.1007/s13361-012-0565-x.
  23. Krasnov N.V., Muradymov M.Z., Samokish V.A. Electrospray ion sourse with a dynamic liquid flow splitter. Rapid Commun. in Mass Spectrometry, 2013, vol. 27, no. 8, pp. 904—908.
  24. Arseniev A.N., Krasnov N.V., Muradymov M.Z. Investigation of electrospray stability with dynamic liquid flow splitter. Analytical Chemistry, 2014, vol. 69, no. 14, pp. 30–32.
  25. Arseniev A.N., Alekseev D.N., Belchenko G.V., Gavrik M.A., Krasnov N.V., Koryakin P.S., Krasnov I.A., Kurnin I.V., Myaldzin Sh.U., Muradymov M.Z., Monakov A.G., Pavlov V.G., Zvereva A.V., Nikitina S.N., Podolskaya E.P., Prisyach S.S., Semenov S.Yu., Krasnov M.N., Samokish A.V. [Spectroscopy of peptides, proteins and oligonukleotides from solutions by ion mobility]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2015, vol. 25, no. 1, pp. 17–26. Doi: 10.18358/np-25-1-i316. (In Russ.).
 

Y. S. Posmitnaya1,2, A. S. Bukatin2,3, D. A. Makarov4, K. V. Yudin5, A. A. Evstrapov1,2,3

ALTERNATIVE SOLUTIONS OF MASTER MOLDS CREATION FOR FABRICATION MICROFLUIDIC CHIPS BY "SOFT" LITHOGRAPHY

"Nauchnoe Priborostroenie", 2017, vol. 27, no. 2, pp. 13—20.
doi: 10.18358/np-27-2-i1320
 

Special attention is paid to improving the methods of fabrication microfluidic devices in the research laboratories. The search of solutions for more efficient and cheaper ways of manufacturing master molds for "soft" lithography (in comparison with the traditional method of photolithography), which do not require expensive equipment and clean room conditions is carried out. The fabrication of elastic master molds using "soft" lithography is a fairly convenient technology at a presence of master mold from silicon and photoresist, since in this case only additional materials are required. An important advantage of this approach is the possibility of fabrication solid replicas of adhesive compounds and epoxy resins. The time for manufacturing master molds from epoxy compounds (for elastomer replicas) can increase significantly, in other cases, the duration of the process is ~4.5—9 hours. Laser microprocessing of metals are relatively cheap and operational. These technologies allow to produce a solid master mold for a short time for "soft" lithography, which increases the maximum possible number of fabricated polymer replicas.
 

Keywords: microfluidic chip, master mold, soft lithography, laser microprocessing, elastomer, adhesive compound, epoxy resin, polydimethylsiloxane

Author affiliations:

1ITMO University, Saint-Petersburg , Russia
2Institute for Analytical Instrumentation of RAS, Saint-Petersburg , Russia
3Saint-Petersburg National Research Academic University RAS, Russia
4Scientific Instruments, SC., Saint-Petersburg , Russia
5Laser center, Saint-Petersburg , Russia

 
Contacts: Posmitnaya Yana Stanislavovna, arabica_sampo@bk.ru
Article received in edition: 21.04.2017
Full text (In Russ.) >>

REFERENCES

  1. Zhao X.-M., Xia Y., Whitesides G.M. Soft lithographic methods for nano-fabrication. J. Mater. Chem., 1997, no. 7, pp. 1069—1074. Doi: 10.1039/A700145B.
  2. Frienda J., Yeo L. Fabrication of microfluidic devices using polydimethylsiloxane. BIOMICROFLUIDICS, 2010, vol. 4, no. 2, 026502. Doi: 10.1063/1.3259624.
  3. Abdelgawad M., Watson M.W.L., Young E.W.K., Mudrik J.M., Ungrin M.D., Wheeler A.R. Soft lithography: masters on demand. Lab Chip, 2008, no. 8, pp. 1379—1385. Doi: 10.1039/B804050H.
  4. Wang L., Liu W., Li S., Liu T., Yan X., Shi Y., Cheng Z., Chen Ch. Fast fabrication of microfluidic devices using a low-cost prototyping method. Microsyst Technol., 2016, vol. 22, no. 4, pp. 677—686. Doi: 10.1007/s00542-015-2465-z.
  5. Waheed S., Cabot J.M., Macdonald N.P., Lewis T., Guijt R.M., Paull B., Breadmore M.C. 3D printed microfluidic devices: enablers and barriers. Lab Chip, 2016, no. 16, pp. 1993—2013. Doi: 10.1039/C6LC00284F.
  6. Pan Y.-J., Yang R.-J. Fabrication of UV epoxy resin masters for the replication of PDMS-based microchips. Biomed Microdevices, 2007, vol. 9, no. 4, pp. 555—563. Doi: 10.1007/s10544-007-9063-5.
  7. Estevez-Torres A., Yamada A., Wang L. An inexpensive and durable epoxy mould for PDMS. URL: http://blogs.rsc.org/chipsandtips/2009/04/22/an-inexpensive-and-durable-epoxy-mould-for-pdms/.
  8. Zhang J., Tan K.L., Gong H.Q. Characterization of the polymerization of SU-8 photoresist and its applications in micro-electro-mechanical systems (MEMS). Polymer Testing, 2001, vol. 20, no. 6, pp. 693—701. Doi: 10.1016/S0142-9418(01)00005-8.
  9. Silikonovoe maslo razbavitel' DC 200 [Silicone oil thinner DC 200]. URL: https://lassospb.ru/products/8047921 (In Russ.).
  10. Laser polishing of metals. URL: http://www.ilt.fraunhofer.de/en/media-center/brochures/brochure-laser-polishing-of-metals.html.
  11. Nüsser C., Sändker H., Willenborg E. Pulsed laser micro polishing of metals using dual-beam technology. Physics Procedia, 2013, vol. 41, pp. 346—355. Doi: 10.1016/j.phpro.2013.03.087.
  12. Nüsser C., Wehrmannb I., Willenborg E. Influence of intensity distribution and pulse duration on laser micro polishing. Physics Procedia, 2011, vol. 12, pp. 462—471. Doi: 10.1016/j.phpro.2011.03.057.
  13. Shtrikh-013. Ustanovka lazernoj gravirovki [Shtrikh-013. Device of a laser engraving]. URL: http://www.sinstr.ru/products/lazernoe/shtrikh-013/. (In Russ.).
  14. Plazmennaya obrabotka metalla v ehlektrolite: kak eto rabotaet [Plasma metal working in electrolyte: how is it works]. URL: http://plasmacraft.ru/plazmennaya-obrabotka-metalla-v-elektrolite-kak-eto-rabotaet.
  15. Polirovka metalla: vidy i sposoby finishnoj obrabotki poverhnosti metallicheskih izdelij [Metal polishing: types and ways of finishing processing of a surface of metal products]. URL: http://plasmacraft.ru/finishnoe-polirovanie.
 

A. G. Varekhov

THE ELECTROKINETIC POTENTIAL MEASUREMENTS OF BIOCOLLOIDS PARTICLES

"Nauchnoe Priborostroenie", 2017, vol. 27, no. 2, pp. 21—31.
doi: 10.18358/np-27-2-i2131
 

There the ways of measurements of an electrokinetic potential (zeta-potential) of colloid particles and, in particular, a problem assotiated with use of the classical electrophoresis are briefly discussed in the article. The methods and devices based on measurements of a light scattering of particles and became a frequent practice now are analyzed most extensively. It is shown that the Doppler spectroscopy of the light scattered by particles is accompanied by difficulties not only by the analyse of particle sizes, in particular, for polydisperse colloids, but also, first of all, while measuring the zeta-potential because it is defined not so much by the size, as totality of peripheral parameters of the particles. The way of measurement near to a classical electrophoresis is offered, where the sign-variable electric field is used, the drift length of the particles and a difference of electric potentials are minimized.
 

Keywords: zeta-potential, electrophoresis, dynamic light scattering, modified electrophoretic method

Author affiliations:

Saint-Petersburg State University of Aerospace Instrumentation, Russia

 
Contacts: Varechov Aleksey Grigor'evich, varekhov@mail.ru
Article received in edition: 20.02.2017
Full text (In Eng.) >>

REFERENCES

  1. Ostroumova O.S., Efimova S.S., Malev V.V., Shagina L.V. Ionnye kanaly v model'nyh lipidnyh membranah [Ion channels in model lipidic membranes]. Saint-Petersburg, Institute of Cytology RAS, 2012. 164 p. (In Russ.).
  2. Paluch M. Electrical properties of free surface of water and aqueous solutions. Advances in colloid and interface science, 2000, January, vol. 84, no. 1-3, pp. 27—45. Doi: 10.1016/S0001-8686(99)00014-7.
  3. Diaz S., Amalfa F., Biondi de Lopez A.C., Disalvo E.A. Effect of water polarized at the carbonyl groups of phosphatydilcholines on the dipole potential of lipid bilayers. Langmuir, 1999, vol. 15, no. 15, pp. 5179—5182. Doi: 10.1021/la981235f.
  4. Lobaskin V.A. Modelirovanie mezhchastichnyh vzaimodejstvij v kolloidnyh dispersiyah. Diss. dokt. fiz.-mat. nauk [Modeling of interpartial interactions in colloidal dispersions. Dr. phys. and math. sci. diss.]. Chelyabinsk, South Ural State University, 2004. 283 p. (In Russ.).
  5. Zdraevskaya O.N., Dyuk V.A., Ehmanuehl' V.L., Novik V.I. [The diagnostic importance of laser correlation spectroscopy at inflammatory and tumoral diseases of lungs]. Klinicheskaya laboratornaya diagnostika. Nauchno-prakticheskij zhurnal [Clinical laboratory diagnostics. Scientific and practical journal], 2006, no. 5, pp. 21. (In Russ.).
  6. Sze A., Erickson D., Ren L., Li D. Zeta-potential measurement using the Smoluchowski equation and the slope of the current—time relationship in electroosmotic flow. J. of Colloid and Interface Science, 2003, vol. 261, no. 2, pp. 402—410. Doi: 10.1016/S0021-9797(03)00142-5.
  7. Aladashvili N.Z. Elektroforeticheskaya podvizhnost' ehritrocitov perifericheskoj krovi detej s nespecificheskimi vospalitel'nymi zabolevaniyami. Autoref. diss. kand. biol. nauk. [Elektroforetic mobility of erythrocytes of peripheral blood of children with nonspecific inflammatory diseases. Cand. biol. sci. diss. abstr.] Moscow, Hematologic scientific center RAMS, 2005. (In Russ.).
  8. Kuzniatsova T., Kim Y., Shqau K., Prabir K., Dutta P.K., Verweij H. Zeta potential measurements of zeolite Y: Application in homogeneous deposition of particle coatings. Microporous and Mesoporous Materials, 2007, vol. 103, no. 1—3, pp. 102—107.
  9. Dukhin A.S., Goetz Ph. Ultrasound for characterizing colloids. Particle sizing, zeta potential, rheology. Elsevier Science, Amsterdam, Netherlands, 2002. 425 p.
  10. Varekhov A.G. Sposob opredeleniya ehlektrokineticheskogo potenciala kolloidnyh chastiz [Way of determination of electrokinetic potential of colloidal particles]. Copyright certificate SU 1658042. Bulletin of inventions, 1991, no. 23. (In Russ.).
  11. Stecyura I.Yu. Distancionno peremeshchaemye sensory na osnove ehffekta gigantskogo kombinacionnogo rasseyaniya sveta dlya issledovanij invitro. . Diss. kand. fiz.-mat. nauk [Remotely the moved sensors on the basis of effect of huge combinational dispersion of light for the researches invitro. Cand. phys. and math. sci. diss.]. Saratov, Saratov State University, 2016. 134 p. (In Russ.).
  12. Yankovskii G.M., Kuznetsov D.V., Kondakov S.E., Melnikov M.Y. [Solution of the inverse problem of light beating spectroscopy using tikhonov regularisation method for the analysis of polydisperse suspensions of nanoparticles]. Vestnik MGU, ser. 2, Himiya [MSU Vestnik, Series 2. Chemistry], 2013, vol. 54, no. 5, pp. 278—287. (In Russ.).
  13. Tscharnuter W. Photon correlation spectroscopy in particle sizing. Encyclopedia of Analytical Chemistry, R.A. Meyers (Ed.), J. Wiley & Sons, Chichester, 2000, pp. 5469—5485.
  14. Fiocco G., De Wolf J.B. Frequency spectrum of laserechoes from atmospheric constituents and determination of the aerosol content of air. J. of the Atmospheric Sciences, 1968, vol. 25, no. 5, pp. 488—496. Doi: 10.1175/1520-0469(1968)025<0488:FSOLEF>2.0.CO;2.
  15. Cummins H.Z., Knable N., Yeh Y. Observations of diffusion broadening of Rayleigh scattered light. Phys. Rev. Letters, 1964, vol. 12, no. 6, pp. 150—153. Doi: 10.1103/PhysRevLett.12.150.
  16. Xu R. Progress in nanoparticles characterization: sizing and zeta potential measurement. Particuology, 2008, vol. 6, pp. 112—115. Doi: 10.1016/j.partic.2007.12.002.
  17. Dejrmendzhan D. Rasseyanie ehlektromagnitnogo izlucheniya sfericheskimi polidispersnymi chasticami [Dispersion of electromagnetic radiation spherical polydisperse particles]. Moscow, Mir Publ., 1971. 165 p. (In Russ.).
  18. Lebedev A.D., Levchuk Yu.N., Lomakin A.V., Noskin L.A. Lazernaya korrelyacionnaya spektroskopiya v biologii [Laser correlation spectroscopy in biology]. Kiev, Naukova Dumka Publ., 1987. 256 p. (In Russ.).
  19. Kammins G., Pajk E., eds. Spektroskopiya opticheskogo smesheniya i korrelyaciya fotonov [Spectroscopy of optical mixture and correlation of photons]. Moscow, Mir Publ., 1978. 583 p. (In Russ.).
  20. Fuks N.A. Mekhanika aerozolej [Mechanics of aerosols]. Moscow, AN SSSR, 1955. 351 p. (In Russ.).
  21. Weitz D.A., Pine D.J., Pusey P.N., Tough R.J.A. Nondiffusive Brownian motion studied by diffusing-wave spectroscopy. Physical Review Letters, 1989, vol. 63, no. 16, pp. 1747—1750. Doi: 10.1103/PhysRevLett.63.1747.
  22. Huang R., Chavez I., Taute K.M., Lukic B., Jeney S., Raizen M.G., Florin E.-L. Direct observation of the full transition from ballistic to diffusive Brownian motion in a liquid. Nature Physics, 2011, vol. 7, no. 7, pp. 576—580.
  23. Eme F. Diehlektricheskie izmereniya [Dielectric measurements]. Moscow, Chemistry Publ., 1967. 223 p. (In Russ.).
  24. Bell A.J., Sejnowski T.J. An information-maximisation approach to blind separation and blind deconvolution. Neural Computation, 1995, vol. 7, no. 6, pp. 1129—1159. Doi: 10.1162/neco.1995.7.6.1129.
 

E. E. Maiorov, A. V. Dagaev, S. E. Ponomarev, T. A. Chernyak

THE STUDY OF A SHEARING INTERFEROMETER IN THE PHASE MEASURING DEVICES AND SYSTEMS OF DECODING HOLOGRAPHIC INTERFEROGRAMS

"Nauchnoe Priborostroenie", 2017, vol. 27, no. 2, pp. 32—40.
doi: 10.18358/np-27-2-i3240
 

In the present article the methods of holographic interferometry, which are highly informative and high-precision tool for obtaining data are presented. The relevance and urgency of application of the shearing interferometer for measurement of the disturbed object are revealed. The analysis of the effect of cross-interference on the measurement accuracy, namely: mismatch, not exceeding 2 µm, the measurement error in the mode of determining the relative magnitude of the displacement vector does not exceed 0.015 rad, accounting for 0.002 shares of interference fringes, and with the additional offset of ~10 µm, the maximum error does not exceed 0.001 of a share of the interference fringes are performed. Equalization interference for the shearing interferometer, where it is seen that for the case of rotation of the plate relative to the axis Õ2 the graph of the phase difference and the derivative of the angle αó is essentially nonlinear, which leads to the deformation of interference field and the error of the read information are received. The first investigated the limits of applicability of the interferometer and the upper limit of the measuring range of the magnitude of the displacement vector is equal to 1.5 mm and the lower limit determined by displacement of 0.01 µm.
 

Keywords: holographic interferometry, shearing interferometer, holographic interferogram, phase measurement systems, perturbed object

Author affiliations:

Saint-Petersburg University of Management Technologies and Economics , Russia

 
Contacts: Maiorov Evgeniy Evgen'evich, majorov_ee@mail.ru
Article received in edition: 10.04.2017
Full text (In Russ.) >>

REFERENCES

  1. Powell R.L., Stetson K.A. Interferometric analysis by wavefront reconstruction. J. Opt. Soc. Am., 1965, vol. 55, pp. 1593—1599. Doi: 10.1364/JOSA.55.001593.
  2. Vest Ch. Golograficheskaya interferometriya [Interferometric holography]. Moscow, Mir Publ., 1982. 504 p. (In Russ.).
  3. Maiorov E.E., Prokopenko V.T. [The use of two-frequency radiation to implement the principles of heterodyne holographic interferometry with a single reference beam]. Izvestiya vysshih uchebnyh zavedenij. Priborstroenie [Journal of Instrument Engineering], 2012, vol. 55, no. 12, pp. 43—45. (In Russ.).
  4. Maiorov E.E., Prokopenko V.T., Sherstobitova A.S. [Investigating an optoelectronic system for interpreting holographic interferograms]. Opticheskij zhurnal [Journal of Optical Technology], 2013, vol. 80, no. 3, pp. 47—51. (In Russ.).
  5. Maiorov E.E., Prokopenko V.T., Sherstobitova A.S. Investigating an optoelectronic system for interpreting holographic interferjgrams. Journal of Optical Tecynology, 2013, vol. 80, no. 3, pp. 162—165.
  6. Zahar'evskij A.N. Interferometry [Interferometer]. Moscow, Oborongiz Publ., 1952. 296 p. (In Russ.).
  7. Aleksandrov E.B., Bonch-Bruevich A.M. [Research of superficial deformations by means of the gologrammny equipment]. ZhTF [Soviet physics: technical physics], 1967, vol. 37, no. 2, pp. 360—365. (In Russ.).
  8. Maiorov E.E., Prokopenko V.T. [Measuring the stressedly -deformed surface of ob jects with the method of holographic interferometry]. Nauchnoe obozrenie [Science Review], 2013, no. 1, pp. 43—46. (In Russ.).
  9. Bolshakov O.P., Kotov I.R., Maiorov E.E., Prokopenko V.T. [Analysis of the effect of cross-interference on shearing interferometer accuracy]. Izvestiya vysshih uchebnyh zavedenij. Priborstroenie [Journal of Instrument Engineering], 2013, vol. 56, no. 5, pp. 18—21. (In Russ.).
  10. Maiorov E.E., Prokopenko V.T. [Derivation of an analytical expression for the path difference of the rays passed through jamin interferometer]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2013, vol. 23, no. 3, pp. 76—81. (In Russ.). URL: http://iairas.ru/en/mag/2013/abst3.php#abst10.
  11. Maiorov E.E., Prokopenko V.T., Ushveridze L.A. [A System for the Coherent Processing of Specklegrams for Dental Tissue Surface Examination]. Medicinskaya tekhnika. Moskva: SOO "MNTO PM" [Biomedical engineering], 2013, vol. 6, pp. 25—27. (In Russ.).
  12. Maiorov E.E. [Measuring the shift of diffusive reflective surfaces out of the plane of systematic processing of holographic interferograms]. Nauchnoe obozrenie [Science Review], 2013, no. 12, pp. 190—195. (In Russ.).
  13. Mayorov E.E., Mashek A.C., Udakhina S.V., Tsygankova G.A., Chaydarov G.G., Chernyak T.A. [Development of the computer interferential control system of rough surfaces]. Pribory. Moskva, SOO "MNTO PM" [Instruments], 2015, vol. 185, no. 11, pp. 26—31. (In Russ.).
  14. Mayorov E.E., Mashek A.C., Udakhina S.V., Tsygankova G.A., Chaydarov G.G., Chernyak T.A. [Algorithms of processing of the information signal of the computer interference control system of non-smooth surfaces. Nauchnoe Priborostroenie [Scientific Instrumentation], 2015, vol. 25, no. 4, pp. 61—66. Doi: 10.18358/np-25-4-i6166. (In Russ.).
  15. Maiorov E.E., Prokopenko V.T., Udakhina S. V. , Tsygankova G. A., Chernyak T. A. [Optoelectronic Computer System for Detection of Foreign Agents in Subsurface Layers of Skin Optoelectronic Computer System for Detection of Foreign Agents in Subsurface Layers of Skin]. Medicinskaya tekhnika. Moskva: SOO "MNTO PM" [Biomedical engineering], 2016, no. 2, pp. 7—10. (In Russ.).
  16. Prokopenko V.T., Maiorov E.E., Mashek A.Ch., Udakhina S.V., Tsygankova G.A., Khaidarov A.G., Chernyak T.A. Optical-electronic instrument for control over geometrical parameters of diffuse reflecting objects. Izvestiya vysshih uchebnyh zavedenij. Priborstroenie [Journal of Instrument Engineering], 2016, vol. 59, no. 5, pp. 388—394. (In Russ.).
 

A. N. Tropin

PRE-PRODUCTION ANALYSIS IN THE THIN-FILM OPTICAL COATINGS TECHNOLOGY

"Nauchnoe Priborostroenie", 2017, vol. 27, no. 2, pp. 41—46.
doi: 10.18358/np-27-2-i4146
 

Valid and reliable method of thickness control is a key instrument for the successful manufacture of thin film optical coatings. Determining the best control strategy may be carried out using the pre-production analysis. In this work possibilities of this approach are demonstrated on the example of structures of narrow-band and short-blocking filter for IR spectral range. Procedure development for the determination of the most appropriate control strategy will allow to obtain reproducible results in processes vacuum deposition of multilayer optical coatings.
 

Keywords: thin-film optics, multilayer thin-film coatings, broadband optical monitoring system, computation experiment, pre-production analysis

Author affiliations:

"NII "GIRICOND" JS Co., Saint-Petersburg, Russia
Saint-Petersburg State University of Aerospace Instrumentation, Russia

 
Contacts: Tropin Aleksei Nikolaevich, 216@giricond.ru
Article received in edition: 6.02.2017
Full text (In Russ.) >>

REFERENCES

  1. Macleod H. Monitoring of optical coating. Appl. Opt., 1981, vol. 20, pp. 82—89. Doi: 10.1364/AO.20.000082.
  2. Willey R.R. Practical production of optical thin films. Willey Optical Consultants, Charlevoix, USA, 2008. 419 p.
  3. Koòëèêoâ E.H., Hoâèêoâa Þ.A., Tpoïèí A.H. Proektirovanie i izgotovlenie interferentsionnykh pokrytii [Design and production of interferential coatings]. Saint-Petersburg State University of Aerospace Instrumentation Publ., 2016. 288 p. (In Russ.).
  4. Vidal B., Fornier A., Pelletier E. Optical monitoring of nonquarterwave mutilayer filters. Appl. Opt., 1978, vol. 17, pp. 1038—1047. Doi: 10.1364/AO.17.001038.
  5. Vidal B., Fornier A., Pelletier E. Wideband optical monitoring of nonquarterwave mutilayer filters. Appl. Opt., 1979, vol. 18, pp. 3851—3856. Doi: 10.1364/AO.18.003851.
  6. Ristau D., Ehlers H., Gross T., Lappschies M. Optical broadband monitoring of conventional and ion processes. Appl. Opt., 2006, vol. 45, pp. 1495—1501. Doi: 10.1364/AO.45.001495.
  7. Zhupanov V.G., Klyuev E.V., Alekseev S.V., Kozlov I.V., Trubetskov M.K., Kokarev M.A., Tikhonravov A.V. Indirect broadband optical monitoring with multiple witness substrates. Appl. Opt., 2009, vol. 48, pp. 2315—2320. Doi: 10.1364/AO.48.002315.
  8. "EssentOptics Ltd" company advertisements. URL: http://www.essentoptics.com/eng/products/monitoring/iris.
  9. Tikhonravov A. Virtual Deposition Plant. Proc . of SPIE, 2005, vol. 5870, pp. 1—13. Doi: 10.1117/12.617043.
  10. Kotlikov E.N., Kuznetsov Yu.A., Lavrovskaya N.P., Tropin A.N. [The optical film-forming materials for infra-red area of the spectrum]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2008, vol. 18, no. 3, pp. 32—36. URL: http://iairas.ru/mag/2008/full3/Art3.pdf. (In Russ.).
  11. Kotlikov E.N., Ivanov V.A., Prokashev V.N., Tropin A.N. [Study of the optical properties of germanium films in the mid-IR spectral range]. Optika i spektroskopiya [Opt. and Spectr.], 2010, vol. 108, no. 6, pp. 827—830. Doi: 10.1134/S0030400X10060196.
  12. Willey R.R. Simulation of errors in the monitoring of narrow bandpass filters. Appl. Opt., 2002, vol. 41, pp. 3193—3195. Doi: 10.1364/AO.41.003193.
  13. Zoller A., Boos M., Goetzelmann R., Hagedorn H., Romanov B., Viet M. Accuracy and error compensation with direct monochromatic monitoring. OSA Technical Digest (online) (Optical Society of America, 2013). Paper WB.5. Doi: 10.1364/OIC.2013.WB.5.
  14. Kotlikov E.N., Ivanov V.A., Mozar' E.V., Novikova Yu.A., Tropin A.N. [Analysis of stability of spectral characteristics of multilayer optical coatings]. Optika i spektroskopiya [Opt. and Spectr.], 2011. vol. 111, no. 3. pp. 525—531. Doi: 10.1134/S0030400X11090128.
 

A. I. Belozertsev1, O. V. Cheremisina2, S. Z. El Salim3, V. V. Manoylov4,5

QUANTITATIVE DETERMINATION OF ASYMMETRIC DIMETHYLHYDRAZINE IN SOLUTIONS BY RAMAN SPECTROSCOPY

"Nauchnoe Priborostroenie", 2017, vol. 27, no. 2, pp. 47—56.
doi: 10.18358/np-27-2-i4756
 

In the real work the possibility of qualitative and quantitative test of one of important components of rocket fuels – the asymmetrical dimethyl hydrazine by method of a spectrometry of a Raman effect with a wavelength of the irradiating laser of 532 nanometers is considered SKR-200 spectrometer constructed according to the confocal scheme is applied to analytical definition. A qualitative analysis is carried out without use of padding reagents by preparation of tests. The possibility of the quantitative definition of the asymmetrical dimethyl hydrazine in water and spirits is shown.
 

Keywords: asymmetrical dimethyl hydrazine, rocket fuel, Raman effect, the quantitative analysis, wave number, intensity

Author affiliations:

1Research Institute of Physical Measurements. Penza, Russian Federation
2Saint-Petersburg Mining University, Russian Federation
3Ltd "Omega", Saint-Petersburg, Russian Federation
4Institute for Analytical Instrumentation, Saint-Petersburg, Russian Federation
5ITMO University, Saint-Petersburg, Russian Federation

 
Contacts: Manoylov Vladimir Vladimirovich, manoilov_vv@mail.ru
Article received in edition: 20.02.2017
Full text (In Russ.) >>

REFERENCES

  1. Volkov E.B. Raketnye dvigateli [Rocket engines]. Moscow, Voenizdat Publ., 1969. 241 p. (In Russ.).
  2. Zrelov V.N., Seregin E.P. Zhidkie raketnye topliva [Liquid rocket fuels]. Moscow, Chemistry Publ., 1975. 320 p. (In Russ.).
  3. Sushchinsky M.M. Spektry kombinacionnogo rasseyaniya molekul i kristallov [Ranges of combinational dispersion of molecules and crystals]. Moscow, Nauka Publ., 1969. 576 p. (In Russ.).
  4. El-Salim S.Z. [Means of indication and monitoring of atmospheric air, water and soil]. Himicheskaya bezopasnost' [Chemical safety], 2009, no. 8, pp. 23—44. (In Russ.).
  5. Mitchell F.H.Jr., Mitchell F.H.Sr. Introduction to electronics design. 2-nd edit. NJ, Prentice Hall, 1988. 885 p. ISBN 0-13-481276-X.
 

A. I. Zhernovoy, S. V. Diachenko

(Debatable short message)

OBSERVATION OF THE IMPACT OF THE SURFACE MAGNETIC CHARGES ON THE MAGNETIC INDUCTION INSIDE AND OUTSIDE A SIMPLE OF THE MAGNETIC FLUID, PLASED IN AN EXTERNAL MAGNETIC FIELD

"Nauchnoe Priborostroenie", 2017, vol. 27, no. 2, pp. 57—60.
doi: 10.18358/np-27-2-i5760
 

An NMR method was used to measure the magnetic induction B1 inside and both B2 and B3 outside a simple of magnetic fluid, placed in an external magnetic field with induction B0. The measurements showed that there was a magnetic induction inside the simple: B1 = B0 + (λ – K)µ0M, where M – magnetization, λ – the constant of effective field, K – demagnetization factor, outside the simple near the surface of normal B0: B2 = B0 + (λ + K)µ0M, near the surface of parallel B0: B3 = B00M. Thus, when the surface of magnetic passes the normal B0 inside the simple, induction reduces on 20M, and while passing outside, the induction increases on 20M, this discrepancy to the Gauss theorem may by explained by the presence of the surface magnetic charges. The induction decreases on λµ0M at the exit through the side surface of the simple, and it increases on λµ0M at the entrance of it. It may be explained by the effect of the nanoparticles magnetic flow orientation.
 

Keywords: paramagnetic, magnetization, demagnetization factor, the surface magnetic charges, a leap of magnetic induction, Gauss theorem

Author affiliations:

Saint-Petersburg State Institute of Technology (Technical University), Russia

 
Contacts: Zhernovoy Aleksandr Ivanovich, azhspb@rambler.ru
Article received in edition: 24.01.2017
Full text (In Russ.) >>

REFERENCES

  1. Zhernovoi A.I., Naumov V.N., Rudakov Yu.R. [Measurement of magnetization and effective field constant of magnetic liquid by NMR method]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2008, vol. 18, no. 2, pp. 33—38. URL: http://iairas.ru/en/mag/2008/abst2.php#abst5. (In Russ.).
  2. Zhernovoi A.I., Naumov V.N., Rudakov Yu.R. [Paramagnetic nanoglobules dispersion curve definition via magnetization and magnetizable field using NMR method]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2009, vol. 19, no. 3, pp. 57—61. URL: http://iairas.ru/en/mag/2009/abst3.php#abst8. (In Russ.).
  3. Arnol'd R.R. Raschet i proektirovanie magnitnyh sistem s po-stoyannymi magnitami [Calculation and design of magnetic systems with permanent magnets]. Moscow, Energy Publ., 1969. 184 p. (In Russ.).
  4. Zhernovoy A.I., Ulashkevich Yu.V., Diachenko S.V. [The discreteness of magnetic moments of single-domain ferromagnetic nanoparticles]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2017, vol. 27, no. 1, pp. 72—76. Doi: 10.18358/np-27-1-i7276. (In Russ.).
 

A. I. Zhernovoy, U. V. Ulashkevich, S. B. Dyachenko

(Debatable short message)

THE STUDY OF THE INFRARED SPECTRUM OF A MAGNETIC NANOPARTICLES IN A MAGNETIC FIELD STRUCTURE

"Nauchnoe Priborostroenie", 2017, vol. 27, no. 2, pp. 61—65.
doi: 10.18358/np-27-2-i6165
 

The action of a magnetic field on the magnetite nanoparticles colloidal solution leads to the appearance of an oscillatory rotational absorbtion specrum of infrared radiation with an energy of lower vibration levels close to exchange interaction energy in the domains of the nanoparticles. The effect can be explained by the conversion of photons energy into the energy of vibrations, which break off the domain structure of magnetite above the Curies temperature. The depth of the potential well, defined by bringing together the vibration levels, is more than Curies temperature in energetic units. That's why it is possible to suppose tunnel effect or a vibration and rotational levels superposition as a reason of the domain destruction.
 

Keywords: magnetic fluid, magnetic field, oscillatory rotational infrared spectrum, single-domain ferromagnetic nanoparticles

Author affiliations:

Saint-Petersburg State Institute of Technology (Technical University), Russia

 
Contacts: Zhernovoy Aleksandr Ivanovich, azhspb@rambler.ru
Article received in edition: 20.04.2017
Full text (In Russ.) >>

REFERENCES

  1. Æepíoâoé A.È., Óëaøêeâè÷ Þ.B., Äüÿ÷eíêo C.B. Èccëeäoâaíèe èíôpaêpacíoão cïeêòpa ïoãëoùeíèÿ ìaãíèòíoé æèäêocòè â ìaãíèòíoì ïoëe // Haó÷íoe ïpèáopocòpoeíèe. 2016. T. 26, ¹ 2. C. 60—63. URL: http://iairas.ru/en/mag/2016/abst2.php#abst8.
  2. Æepíoâoé A.È., Óëaøêeâè÷ Þ.B., Äüÿ÷eíêo C.B. Äècêpeòíocòü ìaãíèòíûõ ìoìeíòoâ íaío÷acòèö â ìaãíèòíoé æèäêocòè // Haó÷íoe ïpèáopocòpoeíèe. 2017. T. 27, ¹ 1. C. 72—76.
  3. Mikhaylovskiy R.V., Hendry E., Secchi A., Mentink J.H., Eckstein M., Wu A., Pisarev R.V., Kruglyak V.V., Katsnelson M.I., Rasing Th., Kimel A.V. Ultrafast optical modification of exchange interactions in iron oxides // Nat. Commun. 2015. No. 6. Article number 8190 (2015). Doi: 10.1038/ncomms9190.
  4. Áepêoâcêèé Á.M., Meäâeäeâ B.Ô., Kpaêoâ M.C. Maãíèòíûe æèäêocòè. M.: .Õèìèÿ, 1989. 240 c.
 

B. P. Sharfarets

VARIATIONAL METHODS AS THE MOST EFFECTIVE MECHANISM FOR MODELING PHYSICAL INTERRELATED FIELDS IN CONTINUOUS MEDIUM. II. CASE STUDY

"Nauchnoe Priborostroenie", 2017, vol. 27, no. 2, pp. 66—74.
doi: 10.18358/np-27-2-i6674
 

A number of examples, both trivial and complex enough, to demonstrate the effectiveness of variational methods for mathematical modeling of various physical processes. Some of the examples may be modeled using alternative approaches, such as the acoustic model of porous media (Bio theory), probably only modeled using variational techniques. The focus of the review is made on the details cast of the application of variational approach, which is not always done in the original papers in which these methods are used to solve complex problems. In the appendix provides some useful information on variational methods, including the Onsager principle of symmetry of kinetic coefficients and generalized variational principle.
 

Keywords: mechanics of continua, related physical fields, variational principle, variational equation, terms of holonomic of variational equations, dissipative potential, generalized variational principle

Author affiliations:

Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia

 
Contacts: Sharfarets Boris Pinkusovich, sharb@mail.ru
Article received in edition: 2.02.2017
Full text (In Russ.) >>

REFERENCES

  1. Sharfarets B.P. [Variational methods as the most effective mechanism for modeling physical interrelated fields in continuous medium. I. Overview of the theory]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2017, vol. 27, no. 1, pp. 102—112. Doi: 10.18358/np-27-1-i102112. (In Russ.).
  2. Evstrapov A.A., Kurochkin V.E., Sharfarets B.P. [The modeling of microfluidic processes. Account of the surface forces]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2016, vol. 26, no. 4, pp. 55—63.
  3. 170.69.26/mag/2016/abst4.php#abst5">Doi: 10.18358/np-26-4-i5563. (In Russ.).
  4. Biot M.A. Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range. J. Acoust. Soc. Am., 1956, vol. 28, pp. 168—178. Doi: 10.1121/1.1908239.
  5. Biot M.A. Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. J. Acoust. Soc. Am., 1956, vol. 28, pp. 179—191. Doi: 10.1121/1.1908241.
  6. Mors F.M., Feshbah G. Metody teoreticheskoj fiziki [Methods of theoretical physics]. Vol. 1. Moscow, IIL Publ., 1958. 930 p. (In Russ.).
  7. Berdichevskij V.L. Variacionnye principy mekhaniki sploshnoj sredy [Variation principles of mechanics of the continuous environment]. Moscow, Nauka Publ., 1983. 448 p. (In Russ.).
  8. Johnson D.L. Recent developments in the acoustic properties of porous media. Frontiers in Physical Acoustics, XCIII, North Holland, 1986, pp. 255—290.
  9. Carcione J.M. Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media. Handbook of Geophysical Exploration, vol. 31, Seismic Exploration, Pergamon-Elsevier, 2001. 390 p.
  10. Onsager L. Reciprocal relations in irreversible process. I. Phys. Rev., 1931, vol. 37, pp. 405—426. Doi: 10.1103/PhysRev.37.405.
  11. Onsager L. Reciprocal relations in irreversible process. II Phys. Rev., 1931, vol. 38, pp. 2265—2279. Doi: 10.1103/PhysRev.38.2265.
  12. Landau L.D., Lifshic E.M. Teoreticheskaya fizika. T . V. Statisticheskaya fizika. Ch. 1 [Theoretical physics. Vol. 1. Statistical physics. P. 1]. Moscow, Nauka Publ., 1976. 584 p. (In Russ.).
  13. Landau L.D., Lifshic E.M. Teoreticheskaya fizika. T . X. Fizicheskaya kinetika. [Theoretical physics. Vol. X. Physical kinetics]. Moscow, Nauka Publ., 1979. 528 p. (In Russ.).
  14. Maximov G.A. Generalized variational principle for dissipative hydrodynamics and its application to the Biot’s equations for multicomponent, multiphase media with temperature gradient. New research in acoustics, ed. B.N. Weis, NY, Nova Science Publisher, 2008, pp. 21−61.
  15. Maximov G.A. [The generalized variation principle for dissipative hydrodynamics and mechanics of the continuous environment]. Vychislitel'naya mekhanika sploshnyh sred [Computational Continuum Mechanics], 2009, vol. 2, no. 4, pp. 92—104. Doi: 10.7242/1999-6691/2009.2.4.34. (In Russ.).
  16. Maximov G.A. Generalization of Biot’s equations with allowance for shear relaxation of a fluid. Acoust. Phys., 2010, vol. 56, no. 4, pp. 493—500. Doi: 10.1134/S1063771010040147.
  17. Prohorov A.M., ed. Fizicheskaya ehnciklopediya [Physical encyclopedia]. In 5 vol. Moscow, Sovetskaya ehnciklopediya Publ., 1988—1998. 704+704+672+704+760 p. (In Russ.).
  18. Rayleigh, Lord. Teoriya zvuka [The Theory of Sound]. Vol. 1. Moscow, GITTL Publ., 1955. 504 p. (In Russ.).
  19. Landau L.D., Lifshic E.M. Teoreticheskaya fizika. T. 1. Mekhanika [Theoretical physics. Vol. 1. Mechanics]. Moscow, Nauka Publ., 1988. 216 p. (In Russ.).
  20. Maximov G.A. O variacionnom principe v dissipativnoj gidrodinamike [About the variation principle in dissipative hydrodynamics]. Preprint 006-2006, Moscow, MIFI Publ., 2006. 36 p. (In Russ.).
 

B. V. Bardin

WAY DECONVOLUTION SPECTROMETER INFORMATION AND DETECTION OF SPECTRAL PEAKS

"Nauchnoe Priborostroenie", 2017, vol. 27, no. 2, pp. 75—82.
doi: 10.18358/np-27-2-i7582
 

Basis of operation of a deconvolution of a spectrum is filtering according to Winer. Multiplication of an exit of the filter of Winer by an input spectrum is made for suppression of fluctuations of Gibbs and low-frequency noise. The threshold curve determining operation of detection of peaks contains the background component dividing a useful signal and noise, and the local component separating noise satellite peaks. 2-fold differentiation of result of threshold processing is made for additional increase in resolution of detection of peaks.
 

Keywords: spectrum dekonvolyution, detection of spectral peaks, filter of Wiener

Author affiliations:

Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia

 
Contacts: Bardin Boris Vasil’evich, bardin.bv@mail.ru
Article received in edition: 20.03.2017
Full text (In Russ.) >>

REFERENCES

  1. Wiener N. Extrapolation, interpolation and smoothing of stationary time series with engineering applications. N.Y., J. Wiley, 1950.
  2. Tihonov A.N., Arsenin V.Ya. Metody resheniya nekorrektnyh zadach [Methods of the solution of incorrect tasks]. Moscow, Nauka Publ., 1986. 288 p. (In Russ.).
  3. Vasilenko G.I. Teoriya vosstanovleniya signalov [Theory of restoration of signals]. Moscow, Sovetskoe radio Publ., 1979. 272 p. (In Russ.).
  4. Sirvidas S.I., Zaruckij I.V., Larionov A.M., Manoylov V.V. [Detection, division and assessment of parameters of mass and spectrometer peaks by method of convolution of experimental data with derivatives of Gaussian functions]. Nauchnoe Priborostroenie [Scientific Instrumentation], 1999, vol. 9, no. 2, pp. 71—75. (In Russ.).
  5. Kosarev E.L. [About a superpermission limit at restoration of signals]. Radiotekhnika i elektronika [Soviet journal of communications technology and electronics], 1990, no. 1, pp. 68—87. (In Russ.).
  6. Bukingem M. Shumy v elektronnych priborach i sistemach [Noise in electronic devices and systems]. Moscow, Mir Publ., 1986. 398 p.
 

V. N. Yakimov, A. V. Mashkov

THE BINARY ALGORITHM FOR THE ANALYSIS OF THE SPECTRUM AMPLITUDE AND RECOVER OF HARMONIC COMPONENTS SIGNALS IN THE PRESENCE OF UNCORRELATED BACKGROUND NOISE

"Nauchnoe Priborostroenie", 2017, vol. 27, no. 2, pp. 83—90.
doi: 10.18358/np-27-2-i8390
 

The problem of detecting and distinguishing between the informative components of multicomponent signals in the presence of additive uncorrelated noises. The solution of this problem is based on harmonic analysis Fourier series using the sign-function analog-stochastic quantization of the investigated signal. This kind of quantization makes it possible to carry out extremely coarse two-level quantization without a systematic error, regardless of the statistical properties of the analyzed signals. A developed algorithm for harmonic analysis provides a high computational efficiency. The practical implementation of these algorithms basically reduces to performing the simplest arithmetic operations of summation and subtraction of the discrete values of the filtering functions calculated at the instants of time when the result of sign-function analog-stochastic quantization changes its sign. For the decision about the detection of harmonic components, we use a criterion for exceeding of a threshold value by estimating the amplitudes of the harmonic components. The results of experimental studies show that the use of sign-function analog-stochastic quantization has allowed to effectively eliminate the effect of the additive uncorrelated noise and to obtain high quality recover of continuous multicomponent signals useful.
 

Keywords: multicomponent signals, additive noise, harmonic analysis, sign-function analog-stochastic quantization, binary signal

Author affiliations:

Samara State Technical University, Russia

 
Contacts: Mashkov Andrey Valer'evich, mavstu@list.ru
Article received in edition: 17.04.2017
Full text (In Russ.) >>

REFERENCES

  1. Bogdanovich V.A., Vostrecov A.G. Teoriya ustojchivogo obnaruzheniya, razlicheniya i ocenivaniya signalov [Theory of steady detection, distinction and estimation of signals]. Moscow, Fizmatlit Publ., 2004. 320 p. (In Russ.).
  2. Beletckij Yu.S. Metody i algoritmy kontrastnogo obnaruzheniya signalov na fone pomekh s apriori neizvestnymi harakteristikami [Methods and algorithms of contrast detection of signals against the background of hindrances with a priori unknown characteristics]. Moscow, Radiotekhnika Publ., 2011. 436 p. (In Russ.).
  3. Mirskij G.Ya. Harakteristiki stohasticheskoj vzaimosvyazi i ih izmereniya [Characteristics of stochastic interrelation and their measurement]. Moscow, Energoizdat Publ., 1982. 320 p. (In Russ.).
  4. Maks Zh. Metody i tekhnika obrabotki signalov pri fizicheskih izmereniyah. T. 1 [Methods and technology of processing of signals at physical measurements. Vol. 1]. Moscow, Mir Publ., 1983. 312 p. (In Russ.).
  5. Yakimov V.N. [Mathematical representation of streams of discrete sign transformation of continuous signals]. Vestnik samarskogo gosudarstvennogo tekhnicheskogo universiteta. seriya tekhnicheskie nauki [Bulletin of the Samara State Technical University. Technical Sciences Series], 2000, vol. 8, pp. 190—192. (In Russ.).
  6. Yakimov V.N. Digital harmonic analysis of multicomponent random processes. Measurement Techniques. New York, Springer, 2006, vol. 49, no. 4, pp. 341—347. Doi: 10.1007/s11018-006-0112-x.
 

A. I. Belozertsev1, O. V. Cheremisina2, S. Z. El Salim3, V. V. Manoylov4,5

DEPLOYED GAS ANALYSIS INSTRUMENT SYSTEMS FOR THE DETECTION OF THE COMPONENTS OF ROCKET FUEL IN THE ENVIRONMENT

"Nauchnoe Priborostroenie", 2017, vol. 27, no. 2, pp. 91—102.
doi: 10.18358/np-27-2-i91102
 

In this paper, a brief analysis of the analytical controls vapor component of rocket fuel (CRF) in the environment is made. A method to carry out the operational control of the environment to detect CRF vapors in line with the requirements of modern gas analysis is suggested. Shown on the formation of gas-analyzing complex airmobile, mobile and stationary basis to improve the reliability of control and improve chemical safety special facilities quality.
 

Keywords: components of rocket fuels, gas analysis instrument systems, environmental protection, gas sensitive semiconductor sensors, data processing algorithms for gas analysis

Author affiliations:

1Research Institute of Physical Measurements. Penza, Russian Federation
2Saint-Petersburg Mining University, Russian Federation
3Ltd "Omega", Saint-Petersburg, Russian Federation
4Institute for Analytical Instrumentation, Saint-Petersburg, Russian Federation
5ITMO University, Saint-Petersburg, Russian Federation

 
Contacts: Manoylov Vladimir Vladimirovich, manoilov_vv@mail.ru
Article received in edition: 10.02.2017
Full text (In Russ.) >>

REFERENCES

  1. Zrelov V.N., Seregin E.P. Zhidkie raketnye topliva [Liquid propellants]. Moscow, Chemistry Publ., 1975. 320 p. (In Russ.).
  2. Kolesnikov S.V. Okislenie nesimmetrichnogo dimetilgidrazina (geptila) i identifikaciya produktov ego prevrashcheniya pri prolivah [The oxidation of unsymmetrical dimethyl hydrazine (UDMH) and identification of its products during the conversion straits]. Novosibirsk, Sibac Publ., 2014. 110 p. (In Russ.).
  3. Feuer G., ed. Himiya nitro- i nitrozogrupp. T. 2 [Chemistry nitro and nitroso. Vol. 2]. Moscow, Mir Publ., 1973. 301 p. (In Russ.).
  4. Razbitnaya L.M., ed. Metody opredeleniya komponentov raketnyh topliv i ih proizvodnyh v ob`ektah proizvodstven-noj i okruzhayushchej sredy. Metodicheskoe posobie [Methods for determining the components of rocket fuels and their derivatives in the production and environmental objects. Toolkit]. Moscow, Institute of Biophysics, 1988. 338 p. (In Russ.).
  5. Tulupov P.E. et al. [Chemical transformations dimethylhydrazine in air and the identification of their products]. Trudy IV Vsesoyuz. soveshch. "Zagryaznenie atmosfery i pochvy" [Proc. 4th all-Union conference "Air pollution and soil". Tulupov P.E., ed.]. Moscow, Gidrometeoizdat Publ., 1991, pp. 87—101. (In Russ.).
  6. Bolshakov G.F. Himiya i tekhnologiya komponentov zhidkih raketnyh topliv [Chemistry and technology of liquid rocket fuel components]. Leningrad, Nauka Publ., 1983. 320 p. (In Russ.).
  7. Greeks A.P., Veselov V.Y. Fizicheskaya himiya gidrazina [Physical chemistry of hydrazine]. Kiev, Naukova Dumka Publ., 1979. 264 p. (In Russ.).
  8. Ioffe B.V, Kuznetsov M.A, Potekhin A.A. Himiya organicheskih proizvodnyh gidrazina [Chemistry, organic derivatives of hydrazine. Joffe B.V., ed.]. Leningrad, Chemistry Publ., 1978. 224 p. (In Russ.).
  9. Trushlyakov I.V., Shala V.V. Umen'shenie vrednogo vozdejstviya raketnyh sredstv vyvedeniya na okruzhayushchuyu sredu [Reducing the harmful effects of the missile launch vehicles on the environment]. Omsk, 1993. 99 p. (In Russ.).
  10. Tulupov P.E., Kolesnikov S.V. [The kinetics of the conversion of unsymmetrical dimethyl hydrazine in a gel-oxygen gas phase] Trudy IV Vsesoyuz. soveshch. "Zagryaznenie atmosfery i pochvy" [Proc. 4th all-Union conference "Air pollution and soil". Tulupov P.E., ed.]. Moscow, Gidrometeoizdat Publ., 1991, pp. 102—108. (In Russ.).
  11. Misiychuk Yu.I., Tereschenko G.F., Lebedev G.P., Dunez A.A. [Clinical and epidemiological confirmation of cancerogenic danger 1,1 dimethylhydrazines for the person]. Ekologicheskaya himiya [Ecological chemistry], 1998, vol. 7, no. 1, pp. 42—47. (In Russ.).
  12. Vejvlet-preobrazovaniya v pakete Matlab [The wavelet transformation in Matlab package]. URL: http://matlab.exponenta.ru/wavelet/index.php
 

S. A. Sheptunov1, I. S. Kabak2, Yu. M. Solomentsev1, N. V. Sukhanova2

AUTONOMOUS RESEARCH INTELLIGENT VEHICLES

"Nauchnoe Priborostroenie", 2017, vol. 27, no. 2, pp. 103—108.
doi: 10.18358/np-27-2-i103108
 

The purpose of science is acquisition of new knowledge. There are spheres where presence of the person is impossible. Remotely-controlled or autonomous research vehicles are necessary for acquisition of knowledge in such spheres. An essential element of such devices is the complex of scientific devices. This work is devoted to the main questions connected with creation of autonomous research vehicles which purpose is receiving new knowledge and transfer of this knowledge to the operator of the device.
 

Keywords: independent device, complex of scientific devices, artificial neural network, MODUS-NS technology, self-training, extraction of knowledge interferometry, phase volume environments

Author affiliations:

1Institute of Design-Technology Informatics of the Russian Academy of Sciences, Moscow, RF
2Moscow State Technological University "STANKIN", RF

 
Contacts: Kabak Il'ya Samuilovich, ikabak@mail.ru
Article received in edition: 10.04.2017
Full text (In Russ.) >>

REFERENCES

  1. Kabak I.S., Sukhanova N.V. [Technology of realization of the automated control systems on the basis of the
    MODUS-NS big artificial neural networks]. Mezhotraslevaya informacionnaya sluzhba [Interindustry information service], 2012, no. 4, pp. 43—47. (In Russ.).
  2. Stepanov S.Yu., Kabak I.S. [Convergence analysis of commutated neural networks traffic reduction algorithm]. Informacionnye tehnologii [Information Technologies], 2012, no. 7, pp. 73—78. (In Russ.).
  3. Kabak I.S. [Creation of big hardware-software neural networks for management systems]. Aviacionnaya promyshlennost' [Aviation industry], 2012, no. 4, pp. 57—61. (In Russ.).
  4. Solomencev Yu.M., Sheptunov S.A., Kabak I.S., Sukhanova N.V. [Increase of speed of a supercomputer at the expense of optimization of the information interprocessor traffic]. Izvestiya Kabardino-balkarskogo gosudarstvennogo universiteta [Proceeding of the Kabardino-Balkarian State University], 2012, vol. 2, no. 4, pp. 71—73. (In Russ.).
  5. Kabak I.S. [Neural network model for prediction and reliability assessment of the software]. Vestnik MGTU "Stankin" [Bulletin of MSTU of Stankin], 2014, vol. 28, no. 1, pp. 107—111. (In Russ.).
  6. Kabak I.S., Sukhanova N.V. Nejronnaya set' [Neural network]. Patent RF on useful model no. 66831. Prioritet 02.04.2007. (In Russ.).
  7. Kabak I.S., Sukhanova N.V. Domennaya nejronnaya set' [Domain neural network]. Patent RF on useful model no. 72084. Prioritet 03.12.2007. (In Russ.).
  8. Kabak I.S., Sukhanova N.V. Modul'naya vychislitel'naya sistema [Modular computing system]. Patent RF on useful model no. 75247. Prioritet 26.12.2008. (In Russ.).
  9. Solomentsev Yu.M., Sheptunov S.A., Kabak I.S., Sukhanova N.V. Mnogoslojnaya modul'naya vychislitel'naya sistema [Multilayered modular computing system]. Patent RF no. 2398281. Prioritet 07.11.2008. (In Russ.).
  10. Kabak I.S., Sukhanova N.V. [Hardware realization of associative memory of any size]. Vestnik MGTU "Stankin" [Bulletin of MSTU "Stankin"], 2010, vol. 9, no. 1, pp. 135—138. (In Russ.).
  11. Kabak I.S., Sukhanova N.V., Gadelev A.M. [The use of artificial neural networks in the diagnosis of cutting tools]. Izvestiya Kabardino-balkarskogo gosudarstvennogo universiteta [Proceeding of the Kabardino-Balkarian State University], 2012, vol. 2, no. 4, pp. 77—79. (In Russ.).
  12. Kabak I.S., Sukhanova N.V., Gadelev A.M. [Technique of use of the office of neural networks for the solution of problems of diagnostics of process of cutting]. Vestnik MGTU "Stankin" [Bulletin of MSTU "Stankin"], 2012, vol. 23, no. 4, pp. 130—133. (In Russ.).
  13. Kabak I.S., Gadelev A.M. [System of diagnostics the technological process of cutting with the using artificial neural networks]. Mekhatronika, avtomatizatsiya, upravlenie [Mechatronics, automation, control], 2012, no. 10, pp. 25—29. (In Russ.).
  14. Sheptunov S.A., Larionov M.V., Sukhanova N.V., Kabak I.S., Alshinbaeva D.A. Optimimization of the complex software reliability of control systems. IEEE Conference on Quality Management, Transport and Information Security, Information Technologies (IT&MQ&IS 2016), PROCEEDINGS 2016, pp. 189—192. Doi: 10.1109/ITMQIS.2016.7751955.
  15. Sheptunov S.A., Larionov M.V., Sukhanova N.V., Salakhov M.R., Solomentsev Y.M., Kabak I.S. Simulating of reliability of robotics system software on basis of artificial intelligence. IEEE Conference on Quality Management, Transport and Information Security, Information Technologies (IT&MQ&IS 2016), PROCEEDINGS 2016, pp. 193—197. Doi: 10.1109/ITMQIS.2016.7751956.
  16. Solomentsev Yu.M., Kabak I.S., Sukhanova N.V. Assessing the reliability of CAD software by means of neural networks. Russian Engineering Research, 2015, vol. 35, no. 12, pp. 879—882. Doi: 10.3103/S1068798X15120187.
 

Ulitsa Ivana Chernykh, 31-33, lit. A, St. Petersburg, Russia, 198095, P.O.B. 140
tel: (812) 3630719, fax: (812) 3630720, mail: iap@ianin.spb.su

content: Valery D. Belenkov design: Banu S. Kuspanova layout: Anton V. Manoilov