—— ФИЗИКА ПРИБОРОСТРОЕНИЯ ———

(Дискуссионное краткое сообщение)

УДК 537.622.3-022.532:543.422.3-74

© А. И. Жерновой, С. В. Дьяченко

НАБЛЮДЕНИЕ ВЛИЯНИЯ ПОВЕРХНОСТНЫХ МАГНИТНЫХ ЗАРЯДОВ НА МАГНИТНУЮ ИНДУКЦИЮ ВНУТРИ И СНАРУЖИ ОБРАЗЦА МАГНИТНОЙ ЖИДКОСТИ В МАГНИТНОМ ПОЛЕ

Методом ЯМР были измерены магнитные индукции B_1 внутри и B_2 , B_3 снаружи образца магнитной жидкости, помещенного во внешнее магнитное поле с индукцией B_0 . Измерения показали: 1) внутри образца магнитная индукция $B_1 = B_0 + (\lambda - K)\mu_0 M$, где M — намагниченность, λ — константа эффективного поля, K коэффициент размагничивания; 2) снаружи образца, у поверхности, нормальной B_0 , $B_2 = B_0 + (\lambda + K)\mu_0 M$; 3) снаружи образца у поверхности, параллельной B_0 , $B_3 = B_0 - K\mu_0 M$. Таким образом, при переходе через нормальные индукции B_0 поверхности магнетика внутрь образца индукция скачком уменьшается на $2K\mu_0 M$, а при переходе наружу индукция скачком увеличивается на $2K\mu_0 M$. Это несоответствие теореме Гаусса, отрицающей скачок нормальной проекции индукции при переходе через поверхность образца, можно объяснить присутствием поверхностных магнитных зарядов. При выходе из образца через боковую поверхность индукция уменьшается на $\lambda\mu_0 M$, а при входе увеличивается на $\lambda\mu_0 M$. Это можно объяснить тем, что внутри образца магнитные моменты однодоменных наночастиц создают поток индукции, параллельный B_0 .

Кл. сл.: парамагнетик, намагниченность, коэффициент размагничивания, поверхностные магнитные заряды, скачок магнитной индукции, теорема Гаусса

введение

По теореме Гаусса при переходе через границу магнетика нормальная поверхности проекция магнитной индукции не меняется, что объясняется отсутствием магнитных зарядов. Для проверки этого был проведен эксперимент.

ЭКСПЕРИМЕНТ

В качестве магнетика использовали коллоидный раствор наночастиц магнетита в воде (магнитную жидкость), который является парамагнетиком с магнитными моментами частиц в 10⁴ раз больше магнетона Бора. Для измерения индукции магнитного поля применили метод ЯМР. В опыте 1, описанном в [1], при помощи спектрометра ЯМР С-200, имеющего индукцию магнитного поля $B_0 = 4.7$ Тл, измерили зависимость резонансной частоты ЯМР f протонов растворителя от концентрации С наночастиц магнетита в двух образцах магнитной жидкости — одном в виде сферы, другом в виде длинного цилиндра, расположенного параллельно вектору магнитной индукции В₀. Оказалось, что с увеличением концентрации С частота ЯМР увеличивается по закону $f = \gamma B_0 +$ + $\Upsilon \mu_0(\lambda - K)M$, где Υ — гиромагнитное отношение протонов, μ_0 — магнитная постоянная, $\lambda = 0.187$ константа эффективного поля, М — пропорциональная концентрации *C* магнетита намагниченность коллоидного раствора, *K* — коэффициент размагничивания образца (для цилиндрического образца $K = 0, \,$ для сферического образца K = 0.33). Из результатов опыта 1 следует, что индукция магнитного поля внутри образца магнитной жидкости $B_1 = (f / \Upsilon)$ отличается от индукции поля магнита спектрометра B_0 :

$$B_1 - B_0 = \mu_0 (\lambda - K) M.$$
 (1)

В опыте 2, выполненном в настоящей работе на установке, описанной в [2], методом ЯМР измерили зависимость индукции магнитного поля снаружи образца коллоидного раствора магнетита, расположенного во внешнем магнитном поле с индукцией $B_0 \approx 0.05$ Тл, от коэффициента размагничивания образца К. Результаты измерений приведены на рисунке, где представлены зависимости индукций магнитного поля B_2 и B_3 снаружи образца: *B*₂ — вблизи поверхности, нормальной *B*₀ (кривая 1), и В₃ — вблизи поверхности, параллельной *B*₀ (кривая 2), — от коэффициента размагничивания К, определяемого по таблице, приведенной в работе [3]. Из рисунка следует, что индукция В2, измеренная снаружи образца вблизи поверхности, нормальной B_0 , отличается от индукции B_0 , измеренной в этой же точке при отсутствии образ-

ца, на величину

Экспериментальные зависимости индукции магнитного поля (выраженной через частоту ЯМР-протонов) снаружи образца от его коэффициента размагничивания *К*.

 B_2 — индукция магнитного поля вблизи поверхности, нормальной индукции внешнего поля B_0 (кривая 1); B_3 — вблизи поверхности, параллельной B_0 (кривая 2). Единица измерения индукции — частота ЯМРпротонов (кГц)

$$B_2 - B_0 = \mu_0 \left(\lambda + K\right) M,\tag{2}$$

а индукция B_3 , измеренная снаружи образца вблизи поверхности, параллельной B_0 , отличается от индукции B_0 , измеренной в этой точке при отсутствии образца:

$$B_3 - B_0 = -\mu_0 K M.$$
 (3)

Сравнив выражения (1) и (2), находим скачок индукции $B_2 - B_1$ при выходе из образца через поверхность, нормальную индукции внешнего поля B_0 :

$$B_2 - B_1 = 2\mu_0 K M_1$$

Это нарушение теоремы Гаусса можно объяснить присутствием поверхностных магнитных зарядов — положительного на границе, где индукция внешнего магнитного поля B_0 выходит из образца, и отрицательного на границе, где индукция B_0 входит в образец. Поверхностные магнитные заряды создают индукции, равные по модулю $K\mu_0M$, усиливающие магнитное поле снаружи образца и ослабляющие магнитное поле внутри образца. Сравнив выражения (3) и (1), находим скачок индукции $B_3 - B_1$ при выходе из образца через поверхность, параллельную индукции внешнего поля B_0 :

58

$B_3 - B_1 = -\mu_0 \lambda M.$

Скачок касательной к поверхности составляющей индукции вызван тем, что поток индукции магнитного поля $\mu_0 \lambda M$, создаваемой магнитными моментами однодоменных ферромагнитных наночастиц внутри образца, не выходит за пределы его боковой поверхности.

ЗАКЛЮЧЕНИЕ

Эксперимент показывает, что на границах образца магнитной жидкости, нормальных направлению ее намагниченности, имеются поверхностные магнитные заряды, равные произведению коэффициента размагничивания образца на намагниченность. На поверхности, к которой направлен вектор намагничивания, магнитный заряд положительный, на поверхности, от которой направлен вектор намагничивания, магнитный заряд отрицательный. Положительный поверхностный магнитный заряд создает магнитную индукцию, которая внутри магнетика ослабляет, а вне магнетика усиливает индукцию внешнего магнитного поля, т. е. которая направлена от заряда. Отрицательный поверхностный магнитный заряд создает магнитную индукцию, которая направлена к поверхности магнетика, где сосредоточен заряд, поэтому она также внутри магнетика ослабляет, а снаружи магнетика усиливает внешнее магнитное поле. На боковой поверхности магнетика скачок индукции вызван тем, что магнитные моменты наночастиц создают поток магнитной индукции внутри магнетика только в направлении, параллельном *B*₀.

выводы

Индукция магнитного поля B_1 внутри образца магнитной жидкости складывается из трех составляющих: индукции внешнего магнитного поля B_0 , параллельной B_0 индукции $B_{\lambda} = \mu_0 \lambda M$, создаваемой магнитными моментами наночастиц, и антипараллельной B_0 индукции $B_{\kappa} = \mu_0 K M$, создаваемой поверхностными магнитными зарядами. При выходе из образца через поверхности, нормальные B_0 , индукция B_{λ} не меняется, а индукция B_{κ} меняет полярность и становится параллельной B_0 . При выходе из образца через поверхности, параллельные B_0 , индукция B_{λ} уменьшается до нуля, а индукция B_{κ} не меняется. Поведение на границе магнетика составляющей магнитной индукции В_к аналогично поведению на границе диэлектрика напряженности электрического поля, создаваемой поверхностными электрическими зарядами. Это подтверждает, что причиной появления составляющей В_к являются поверхностные магнитные заряды. Поведение на границе магнетика составляющей магнитной индукции В_λ аналогично поведению на границе диэлектрика электрического смещения, создаваемого свободными электрическими зарядами. Исходя из этого по аналогии можно предположить, что составляющая В₂ создается свободными магнитными зарядами, образующими кванты магнитного потока [4] в однодоменных ферромагнитных наночастицах магнитных жилкостей.

СПИСОК ЛИТЕРАТУРЫ

- 1. Жерновой А.И., Наумов В.Н., Рудаков Ю.Р. Измерение намагниченности и константы эффективного поля магнитной жидкости методом ЯМР // Научное приборостроение. 2008. Т. 18, № 2. С. 33–38. URL: http://213.170.69.26/mag/2008/abst2.php#abst4.
- 2. Жерновой А.И., Наумов В.Н., Рудаков Ю.Р. Получение кривой намагничивания дисперсии парамагнитных наночастиц путем нахождения намагниченности и намагничивающего поля методом ЯМР // Научное приборостроение. 2009. Т. 19, № 3. С. 57–61. URL: http://213.170.69.26/mag/2009/abst3.php#abst8.
- 3. Арнольд Р.Р. Расчет и проектирование магнитных систем с постоянными магнитами. М.: Энергия, 1969. 184 с.
- 4. Жерновой А.И., Улашкевич Ю.В., Дьяченко С.В. Дискретность магнитных моментов однодоменных ферромагнитных наночастиц // Научное приборостроение. 2017. Т. 27, № 1. С. 72–76. URL: http://213.170.69.26/mag/2017/abst1.php#abst12.

Санкт-Петербургский государственный технологический институт (технический университет)

Контакты: *Жерновой Александр Иванович*, azhspb@rambler.ru

Материал поступил в редакцию: 24.01.2017

(Debatable short message)

OBSERVATION OF THE IMPACT OF THE SURFACE MAGNETIC CHARGES ON THE MAGNETIC INDUCTION INSIDE AND OUTSIDE A SIMPLE OF THE MAGNETIC FLUID, PLASED IN AN EXTERNAL MAGNETIC FIELD

A. I. Zhernovoy, S. V. Diachenko

Saint-Petersburg State Institute of Technology (Technical University), Russia

An NMR method was used to measure the magnetic induction B_1 inside and both B_2 and B_3 outside a simple of magnetic fluid, placed in an external magnetic field with induction B_0 . The measurements showed that there was a magnetic induction inside the simple: $B_1 = B_0 + (\lambda - K)\mu_0 M$, where M — magnetization, λ — the constant of effective field, K — demagnetization factor, outside the simple near the surface of normal B_0 : $B_2 = B_0 + (\lambda + K)\mu_0 M$, near the surface of parallel B_0 : $B_3 = B_0 - K\mu_0 M$. Thus, when the surface of magnetic passes the normal B_0 inside the simple, induction reduces on $2K\mu_0 M$, and while passing outside, the induction increases on $2K\mu_0 M$, this discrepancy to the Gauss theorem may by explained by the presence of the surface magnetic charges. The induction decreases on $\lambda\mu_0 M$ at the exit through the side surface of the simple, and it increases on $\lambda\mu_0 M$ at the entrance of it. It may be explained by the effect of the nanoparticles magnetic flow orientation.

Keywords: paramagnetic, magnetization, demagnetization factor, the surface magnetic charges, a leap of magnetic induction, Gauss theorem

REFERENCES

 Zhernovoi A.I., Naumov V.N., Rudakov Yu.R. [Measurement of magnetization and effective field constant of magnetic liquid by NMR method]. *Nauchnoe Priborostroenie* [Scientific Instrumentation], 2008, vol. 18, no. 2, pp. 33–38.

URL: http://iairas.ru/en/mag/2008/abst2.php#abst5. (In Russ.).
Zhernovoi A.I., Naumov V.N., Rudakov Yu.R. [Paramagnetic nanoglobules dispersion curve definition via magnetization and magnetizable field using NMR method]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2009, vol. 19, no. 3, pp. 57–61. URL:

Contacts: Zhernovoy Aleksandr Ivanovich, azhspb@rambler.ru

http://iairas.ru/en/mag/2009/abst3.php#abst8. (In Russ.).

- 3. Arnol'd R.R. *Raschet i proektirovanie magnitnyh sistem s po-stoyannymi magnitami* [Calculation and design of magnetic systems with permanent magnets]. Moscow, Energy Publ., 1969. 184 p. (In Russ.).
- Zhernovoy A.I., Ulashkevich Yu.V., Diachenko S.V. [The discreteness of magnetic moments of single-domain ferromagnetic nanoparticles]. *Nauchnoe Priborostroenie* [Scientific Instrumentation], 2017, vol. 27, no. 1, pp. 72–76. Doi: 10.18358/np-27-1-i7276. (In Russ.).

Article received in edition: 24.01.2017