logo
blue band <-
  JOURNAL "NP" ISSUES

"Nauchnoe Priborostroenie", 2016, Vol. 26, no. 2. ISSN 2312-2951, DOI: 10.18358/np-26-2-1310

"NP" 2016 year Vol. 26 no. 2,   ABSTRACTS

ABSTRACTS, REFERENCES

O. V. Mosin1, I. Ignatov2, V. I. Shvets3, G. Tyminski4

FAST ATOM BOMBARDMENT MASS SPECTROMETRY IN EVALUATION OF BIOSYNTHETIC PATHWAYS OF PURINE RIBONUCLEOSIDE [2H]INOSINE

"Nauchnoe priborostroenie", 2016, vol. 26, no. 2, pp. 3—16.
doi: 10.18358/np-26-2-i316
 

In this paper was demonstrated the possibility of the use of fast atom bombardment (FAB) mass spectrometry on an impulse mass spectrometer VG-70 SEQ ("Fisons VG Analytical", USA) for the study of biosynthetic pathways of 2H-labeled purine ribonucleoside inosine secreted into the culture liquid (CL) by Gram-positive chemoheterotrophic bacterium Bacillus subtilis VKPM B-3157 when grown on heavy water (HW) medium with 2 % hydrolyzate of deuterated biomass of methylotrophic bacterium Brevibacterium methylicum VKPM B-5662 as a source of growth 2H-labeled substrates. Isolation of 2H-labeled inosine from the LC was performed by adsorption/desorption on activated carbon with following extraction by 0.3 M ammonium—formate buffer (pH = 8.9), crystallization in 80 % (v/v) ethanol and ion exchange chromatography (IEC) on a column with AG50WX 4 cation exchange resin equilibrated with 0.3 M ammonium—formate buffer and 0.045 M NH4Cl. The investigation of deuterium incorporation into the molecule of biosynthetic [2H]inosine by FAB mass spectrometry demonstrated the incorporation of 5 deuterium atoms into the molecule (the total level of deuterium enrichment – 62.5 atom% 2H) with incorporation of 3 deuterium atoms into the ribose and 2 deuterium atoms – into the hypoxanthine residue of the molecule. Three non-exchangeable deuterium atoms were incorporated into the ribose residue owing to reactions of enzymatic izomerization of glucose in 2H2O-medium due to reactions of glycolysis, associated with the Embden–Meyerhof pathway with participation of reactions of isotope (1H—2H) exchange, while two other deuterium atoms at C2, C8-positions in the hypoxanthine residue were synthesized from [2H]amino acids that originated from the deuterated hydrolysate of the methylotrophic bacterium Brevibacterium methylicum VKPM B-5662.
 

Keywords: 2H-labeled inosine, biosynthesis, heavy water, Bacillus subtilis VKPM B-3157, mass spectrometry FAB

Author affiliations:

1Moscow State University of Applied Biotechnology, Russia
2The Scientific Research Center of Medical Biophysics, Sofia, Bulgaria
3Moscow State University of Fine Chemical Technology named after M.V. Lomonosov, Russia
4European Scientific Society , European Academy of Natural Sciences , Hannover, Germany  

 
Contacts: Ěosin Oleg Victorovich, mosin-oleg@yandex.ru
Article received in edition: 14.02.2016
Full text (In Engl.) >>

REFERENCES

  1. Chen B., Jamieson E.R., Tullius T.D. A general synthesis of specifically deuterated nucleotides for studies of DNA and RNA. Bioorg. & Med. Chem. Lett., 2002, vol. 12, pp. 3093—3096. Doi: 10.1016/S0960-894X(02)00650-9.
  2. Kundu M.T., Trifonova A., Dinya Z., Foldes A., Chattopadhyaya J. Synthetic studies to improve the deuterium labelling in nucleosides for facilitating structural studies of large RNAs by high-field NMR spectroscopy. Nucleosides, Nucleotides and Nucleic Acids, 2001, vol. 20, no. 4-7, pp. 1333-1337. Doi: 10.1081/NCN-100002549.
  3. Chirakul P., Litzer J.R., Sigurdsson S.T. Preparation of base-deuterated 2'-deoxyadenosine nucleosides and their site-specific incorporation into DNA. Nucleosid., Nucleotid. Nucleic Acids, 2001, vol. 20, no. 12, pp. 1903-1913. Doi: 10.1081/NCN-100108321.
  4. Mosin O.V., Skladnev D.A., Egorova T.A., Shvets V.I. [Mass-spectrometry evaluation of enrichment levels of 2H and 13C isotopes in molecules of bacterial objects]. Bioorganicheskaja himija [Bioorganic chemistry], 1996, vol. 22, no. 10-11, pp. 856—869 (In Russ.).
  5. Mosin O.V., Shvets V.I., Skladnev D.A., Ignatov I. [Biosynthesis of transmembrane photo-transforming protein [2H]bacteriorhodopsin, labeled with deuterium on residues of aromatic amino acids [2,3,4,5,6-2H5]Phe, [3,5-2H2]Tyr č [2,4,5,6,7-2H5]Trp]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2013, vol. 23, no. 2, pp. 14—26 URL: http://213.170.69.26/mag/2013/full2/Art3.pdf
    (In Russ.).
  6. Caprioli R.M. Continuous flow fast atom bombardment mass spectrometry. Ed. R.M. Caprioli, New York, Wiley, 1990. 125 p. Doi: 10.1016/0076-6879(90)93417-j.
  7. Tomer K.B. The development of fast atom bombardment combined with tandem mass spectrometry for the determination of biomolecules. Mass Spectrometry Reviews, 1989, vol. 8, no. 6, pp. 445—482. Doi: 10.1002/mas.1280080602.
  8. Morris H.R., Panico M., Barber M., Bordoli R.S., Sedgwick R.D., Tyler A. Fast atom bombardment: a new mass spectrometric method for peptide sequence analysis. Biochem. Biophys. Res. Commun., 1981, vol. 101, no. 2, pp. 623—631. Doi: 10.1002/mas.1280080602.
  9. Muñoz García D., Midaglia L., Martinez Vilela J. et al. Associated Inosine to interferon: results of a clinical trial in multiple sclerosis. Acta Neurologica Scandinavica, 2015, vol. 131, no. 6, pp. 405—410. Doi: 10.1111/ane.12333.
  10. Mosin O.V., Skladnev D.A., Shvets V.I. [Biosynthesis of 2H-labelled inosine by bacterium Bacillus subtilis on heavy water medium]. Izv. RAN. Ser. Biologicheskaja [News of the Russian Academy of Sciences. A series is biological], 1999, vol. 4, pp. 396—402 (In Russ.).
  11. Mosin O.V., Skladnev D.A., Shvets V.I. Biosynthesis of 2H-labeled phenylalanine by a new methylotrophic mutant Brevibacterium methylicum. Biosci, Biotechnol., Biochem., 1999, vol. 62, no. 2, pp. 225-229. Doi: 10.1271/bbb.62.225.
  12. Mosin O.V., Shvets V.I., Skladnev D.A., Ignatov I. Microbial synthesis of 2H-labelled L-phenylalanine with different levels of isotopic enrichment by a facultive methylotrophic bacterium Brevibacterium methylicum with RuMP assimilation of carbon. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 2013, vol. 7, no. 3, pp. 249—260.
  13. Mosin O.V., Shvets V.I., Skladnev D.A., Ignatov I. [Studying of microbial synthesis of deuterium labeled L-phenylalanine by methylotrophic bacterium Brevibacterium methylicum on media with different content of heavy water]. Biofarmacevticheskij zhurnal [Russian Journal of Biopharmaceuticals], 2012, vol. 4, no. 1, pp. P. 11—22 (In Russ.).
  14. Mosin O.V., Ignatov I. [Biological influence of deuterium on prokaryotic and eukaryotic cells]. Razrabotka i registracija lekarstvennyh sredstv [Drug development and registration], 2014, vol. 2, no. 7, pp. 122—131 (In Russ.).
  15. Mosin O.V., Kazarinova L.A., Preobrazhenskaja K.A., Skladnev D.A., Jurkevich A.M., Shvets V.I. [Growth of the bacteria Bacillus subtilis, and the biosynthesis of inosine on high deuterated medium]. Biotechnologiya [Biotechnology], 1996, no. 4, pp. 19—26 (In Russ.).
  16. Mosin O.V., Shvez V.I., Skladnev D.A., Ignatov I. Microbiological synthesis of [2H]inosine with high degree of isotopic enrichment by Gram-positive chemoheterotrophic bacterium Bacillus subtilis. Applied Biochemistry and Microbiology, 2013, vol. 49, no. 3, pp. 255—266. Doi: 10.1134/S0003683813030137.
  17. Mosin O.V., Ignatov I. Microbiological synthesis of 2H-labeled phenylalanine, alanine, valine, and leucine/isoleucine with different degrees of deuterium enrichment by the Gram-positive facultative methylotrophic bacterium Brevibacterium methylicum. International Journal of BioMedicine, 2013, vol. 3, no. 2, pp. 132—138.
  18. Skladnev D.A., Mosin O.V., Egorova T.A., Eremin S.V., Shvets V.I. [Methylotrophic bacteria — the sources of isotopically labeled 2H- and 13C-amino acids]. Biotechnologiya [Biotechnology], 1996, no. 5, pp. 24—34 (In Russ.).
  19. Mosin O.V., Ignatov I., Shvets V.I. Tyminski G. Electron impact mass spectrometry in analysis of introduction of stable isotopes of deuterium and carbon-13 into amino acid molecules from bacterial objects. Nauchnoe Priborostroenie [Scientific Instrumentation], 2015, vol. 25, no. 4, pp. 14—26. Doi: 10.18358/np-25-4-i318 (In Russ.).
  20. Ignatov I., Mosin O.V. Possible processes for origin of life and living matter with modeling of physiological processes of bacterium Bacillus subtilis in heavy water as model system. Journal of Natural Sciences Research, 2013, vol. 3, no. 9, pp. 65—76.
  21. Bohinski R.C. Modern concepts in biochemistry. R.C. Bohinski, ed., Boston, London, Sydney, Toronto, Massachusetts, Allyn & Bacon Inc., 1983, 378 p.
 

D. A. Belov1,2, N. A. Korneva1, A. S. Aldekeeva1,3, Yu. V. Belov1, I. G. Kiselev2

GENETIC ANALYZER RESOLUTION INCREASING AT DNA MELTING TEMPERATURE DETERMINATION

"Nauchnoe Priborostroenie", 2016, vol. 26, no. 2, pp. 17—22.
doi: 10.18358/np-26-2-i1722
 

The genetic analyzers resolution necessity explanation at DNA melting temperature determination is discussed in the article. Digitizing error, noise and baseline drift are the main factor of DNA melting temperature measurement error. In order to reduce the influence of these factors on the melting temperature Tm measurement error, DNA melting curve signals upgraded model and its parameters optimization methods based on the sigmoidal function (SF) approximating method are offered. The displacement and linear and quadratic dependences of the baseline on the temperature are taken into account in the above formula. The melting curve can be directly approximated by using of the proposed method as the construction of the derivative melting curve is not required. The initial data of the melting curve of the two mRNA samples NAP-22 obtained on the nucleic acid analyzer, which is commercially available at the Institute for Analytical Instrumentation of Russian Academy of Sciences (IAI RAS). The detailed procedure for the SF optimized parameters approximations method receiving is provided. The values of the melting temperatures of two identical samples are calculated. The difference in melting temperatures of these samples equaled to 0.06 °C can be explained by the adjacent holder tubes tempe­rature gradient. DNA melting temperature measurement accuracy can be taken as the main parameter, which limits the genetic analyzers resolution. The initial data of the melting curve and the SF application results are presented in graphical form. The possibility of full calculation automatization to determine the DNA melting temperature is shown. A high resolution genetic analyzer at a certain temperature the DNA melting is shown.
 

Keywords: real-time PCR, DNA melting temperature, a sigmoid function

Author affiliations:

1Institute for Analytical Instrumentation of RAS, Saint - Petersburg , Russia
2Petersburg State Transport University, Saint - Petersburg , Russia
3Pavlov Institute of Physiology RAS, Saint-Petersburg, Russia

 
Contacts: Belov Dmitriy Anatol'evich, onoff_10@mail.ru
Article received in edition: 20.04.2016
Full text (In Russ.) >>

REFERENCES

  1. Vedenov A.A., Dyhne A.M., Frank-Kameneckij M.D. [Transition a spiral–a ball in DNA]. Uspekhi fizicheskih nauk [Achievements of physical sciences], 1971, vol. 105, no. 11, pp. 479—519. Doi: 10.3367/UFNr.0105.197111d.0479 (In Russ.).
  2. DNK plavlenie [DNA melting]. Baza znanij po biologii cheloveka. Available at: http://humbio.ru/humbio/dnastructure/0002a247.htm (In Russ.).
  3. Diagnostika. Novejshie tekhnologii v genodiagnostike. Polimeraznaya cepnaya reakciya v real'nom vremeni [Diagnostics. The latest technologies in a genodiagnostika. Polymerase chain reaction in real time]. Available at: http://menshealth.ua/article.php?id=genodiag&type=701 (In Russ.).
  4. Eprincev A.T., Popov V.N., Fedorin D.N. Identifikaciya i issledovanie ehkspressii genov. Uchebno-metodicheskoe posobie dlya vuzov [Identification and research of an expression of genes. An educational and methodical grant for higher education institutions]. Voronezh, Izdatel'sko-poligraficheskij centr Voronezhskogo gosudarstvennogo universiteta, 2008. Available at: http://window.edu.ru/catalog/pdf2txt/497/65497/36874 (In Russ.).
  5. Kalendar' R.N., Sivolap Yu.M. [Polymerase chain reaction with any primers]. Biopolimery i kletka [Biopolymers and cell], 1996, vol. 11, no. 3-4, pp. 55—65. Doi: 10.7124/bc.0003ED (In Russ.).
  6. Sivolap Yu.M., Kalendar' R.N., Tchebotar' S.V. [Genetic polymorphism of cereals by means of PCR with any primers]. Citologiya i genetika [Cytology and genetics], 1994, vol. 28, no. 6, pp. 54—61. Available at: http://www.biocenter.helsinki.fi/bi/genomedynamics/Pdfs/zyt.pdf (In Russ.).
  7. Vychislenie temperatury plavleniya [Calculation of temperature of melting]. Available at: https://ru.wikipedia.org/wiki/Ăčápčňčçaöč˙_ÄHK (In Russ.).
  8. Rebrikov D.V., Samatov G.A., Trofimov D.Yu., Semenov P.A., Savilova A.M., Kofiadi I.A., Abramov D.D. PCR v "real'nom vremeni" [PCR in "real time"]. Moscow, BINOM Publ., Laboratoriya znanij, 2009. 223 p. Available at: http://nashol.com/2014072579193/pcr-v-realnom-vremeni-rebrikov-d-v-samatov-g-a-trofimov-d-u-2009.html (In Russ.).
  9. Rutledge R.G., Stewart D. A kinetic-based sigmoidal model for the polymerase chain reaction and its application to high-capacity absolute quantitative real-time PCR. Available at: http://www.biomedcentral.com/1472-6750/8/47.
  10. Belov Yu.V., Petrov A.I., Lavrov V.V., Kurochkin V.E. [Optimisation of RT-PCR nucleic acid quantitative analysis]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2011, vol. 21, no. 1, pp. 44—49. Available at: http://213.170.69.26/mag/2011/full/Art4.pdf (In Russ.).
  11. Belov Yu.V., Petrov A.I., Lavrov V.V., Kurochkin V.E. [Optimization of sigmoid function parameters in real-time PCR signals modeling]. Nauchnoe Priborostroenie [Science Instrumentastion], 2011, vol. 21, no. 3, pp. 130—134. Available at: http://213.170.69.26/mag/2011/full3/Art15.pdf (In Russ.).
  12. Al'dekeeva A.C., Korneva N.A., Rudenko E.D., Klyueva N.Z. [mRNA NAP-22 expression in kidneys of rats with spontaneous hypertensia (SHR line) and holes-motenzivnykh of rats (WKY line) in early is fast-talnom ontogenesis in the conditions of normal intake of exogenous calcium and its deficiency]. Arterial'naya gipertenziya [Arterial hypertension], 2014, vol. 20, no. 5, pp. 401—405. Available at: http://htn.almazovcentre.ru/jour/article/view/73 (In Russ.).
  13. Homo sapiens brain abundant membrane attached signal protein 1 (BASP1), transcript variant 2, mRNA. National Center for Biotechnology Information. ORIGIN. Available at: http://www.ncbi.nlm.nih.gov/nuccore/NM_001271606.
  14. Protocol for mRNA amplification and target preparation. Based on Wang E. et. al. Nature Biotechnology, april, 2000. Last edited by Max Diehn, June, 2001. Available at: http://cmgm.stanford.edu/pbrown/protocols/ampprotocol_3.html.
 

D. A. Belov, Yu. V. Belov

FLUORESCENTLY MARKED DNA FRAGMENTS ELECTROPHORETIC MOBILITY COMPENSATION IN GENETIC ANALYSIS

"Nauchnoe Priborostroenie", 2016, vol. 26, no. 2, pp. 23—28.
doi: 10.18358/np-26-2-i2328
 

The main factor of adjacent peaks uneven distribution in the experimental graphs during the nucleotide sequences determination which are recorded on four color channels outputs of genetic analyzer fluorescence detector is discussed in the article. The reason of this is the difference in the electrophoretic mobility of fluorescently marked DNA fragments. DNA fragments electrophoretic mobility differences compensation method is suggested and detailed sequence of calculations is given. The experimental data of plasmid DNA fragment separation is taken as an example. The peak time values and the unevenness of the original sequence of peaks in the four color channel fluorescence detector are determined, fluorescently marked DNA fragments electrophoretic mobility differences compensation results are estimated. Graphs of small segments of peaks sequence reflecting the results of the fragments separation at compensating differences in electrophoretic mobility are shown. The peak time shift parameters optimization for each color channel is made and refined graphs are built in the range of up to 300 nucleotides. It is also shown that the errors in determining the peaks time position are reduced significantly and have a random character. Horizontal axis calibration and linearization can be used in order to expand the proposed method applicability. The proposed method provides a reliable determination of missing and "extra" peaks.
 

Keywords: strukturing of water, electrolytes, radiospectroscopy, dielcometry

Author affiliations:

Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia

 
Contacts: Belov Dmitriy Anatol'evich, onoff_10@mail.ru
Article received in edition: 22.04.2016
Full text (In Russ.) >>

REFERENCES

  1. Budilov A. Metody rasshifrovki nukleotidnoj po-sledovatel'nosti fragmentov DNK [Methods of interpretation of nucleotide sequence of fragments of DNA]. Available at: http://molbiol.ru/protocol/13_03.html (In Russ.).
  2. Tu O., Mnott T., Marsh M., Bechtol K., Harris D., Barker D. and Bashkin J. The influence of fluorescent dye structure on the electrophoretic mobility of end-labeled DNA. Nucleic Acids Research, 1998, vol. 26, no. 11, pp. 2797—2802. Doi: 10.1093/nar/26.11.2797.
  3. Ju J., Glazer1 A.N., Mathies R.A. Cassette labeling for facile construction of energy transfer fluorescent primers. Nucleic Acids Research, 1996, vol. 24, no. 6, pp. 1144—1148. Doi: 10.1093/nar/24.6.1144.
  4. Lunina N.L. Sistema obrabotki nukleotidnyh posledovatel'nostej HEID [System of processing of nucleotide sequences of HEID]. Available at: http://www.impb.ru/pdf/NL_1984_1r.pdf (In Russ.).
  5. Fluorescentnye krasiteli [Fluorescent dyes]. ZAO "Syntol". Available at: http://www.syntol.ru/infoflu.htm
    (In Russ.).
  6. Alekseev Ya.I., Belov D.A., Belov Yu.V., Kurochkin V.E. [Research of the genetic analyzer digitization peaks errors]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2014, vol. 24, no. 2, pp. 79—85. Available at: http://213.170.69.26/mag/2014/full2/Art10.pdf (In Russ.).
  7. Leontyev I.A. [Data analysis in capillary electrophoresis applications]. Nauchnoe Priborostroenie [Science Instrumentastion], 2003, vol. 13, no. 2, pp. 96—99 (In Russ.).
  8. Leontyev I.A. [Peak calculations in electrophoresis problems]. Nauchnoe Priborostroenie [Science Instrumentastion], 2004, vol. 14, no. 1. pp. 94—96 (In Russ.).
  9. Alekseev Ya.I., Belov Yu.V., Malyuchenko O.P., Monahova Yu.A., Natyrov A.N., Orekhov V.A., Konovalov S.V., Kurochkin V.E., Petrov A.I. [Genetic analyser for DNA fragment analysis]. Nauchnoe Priborostroenie [Science Instrumentation], 2012, vol. 22, no. 4. pp. 86—92. Available at: http://213.170.69.26/mag/2012/full4/Art12.pdf (In Russ.).
  10. Instructions for importing GeneScan™ 1200 LIZ® Size Standard definition into GeneMapper® Software. Available at: http://www6.appliedbiosystems.com/support/software/genescan_sizestandards/GS1200LIZ_Size_Standard_Definition_import_instructions.pdf.
 

A. G. Varekhov

FLUORESCENT PROBING OF BIOLOGICAL PARTICLES SUSPENSIONS

"Nauchnoe Priborostroenie", 2016, vol. 26, no. 2, pp. 29–36.
doi: 10.18358/np-26-2-i2936
 

The article considered fluorescence as a method of research of biological particles suspensions (bacterial cells, mitochondrions, chloroplasts, liposomes and others). The expressions for calculation of membrane potential, a transmembrane gradient of pH and density of a surface-bound charge of particles are given. The new directions of fluorescent researches, including the technologies based on processes of excitation energy migration in biological material are considered. There have been discussed the numerous FRET- sensors intended for such technologies, and feature of their use.
 

Keywords: membrane potential, pH gradient, surface-bound charge, FRET-sensors

Author affiliations:

Saint-Petersburg State University of Aerospace Instrumentation, Russia

 
Contacts: Varekhov Aleksey Grigor'evich, varekhov@mail.ru
Article received in edition: 11.03.2016
Full text (In Russ.) >>

REFERENCES

  1. Vladimirov Yu.A., Dobrezov G.E. Fluoreszentnye zondy v issledovanii biologicheskich membran [Fluorescent probes in research of biological membranes]. Moscow, Nauka Publ., 1980. 320 p. (In Russ.).
  2. Lemke E.A., Schultz C. Principles for designing fluorescent sensors and reporters. Nature Chemical Biology, 2011, vol. 7, no. 8, pp. 480—483. Doi: 10.1038/nchembio.620.
  3. Waggoner A.S. Dye indicators of membrane potential. Ann. Rev. Biophys. Bioeng., 1979, vol. 8, pp. 47—68. Doi: 10.1146/annurev.bb.08.060179.000403.
  4. Tsien R.Y. New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype. Biochemistry, 1980, vol. 19, pp. 2396—2404. Doi: 10.1021/bi00552a018.
  5. Villa F., Cappitelli F., Principi P., Polo A., Sorlini C. Permeabilization method for in-situ investigation of fungal conidia on surfaces. Lett. Appl. Microbiol., 2009, vol. 48, no. 2, pp. 234—240. Doi: 10.1111/j.1472-765X.2008.02520.x.
  6. Prigione V., Marchisio V.F. Methods to maximise the staining of fungal propagules with fluorescent dyes. J. of Microbiol. Methods, 2004, vol. 59, no. 3, pp. 371—379. Doi: 10.1016/j.mimet.2004.07.016.
  7. Brauer D.K., Yermiyahu U., Ritwo G., Kinraide T.B. Characteristics of the quenching of 9-aminoacridine fluorescence by liposomes from plant lipids. J. Membrane Biol., 2000, vol. 178, pp. 43—48. Doi: 10.1007/s002320010013.
  8. Selvin P.R. The renaissance of fluorescence resonance energy transfer. Nature Structural and Molecular Biology, 2000, vol. 7, no. 9, pp. 730—734. Doi: 10.1038/78948.
  9. Kraajenhof R. Quenching of uncoupler fluorescence in relation on energized state in chloroplasts. FEBS Letters, 1970, vol. 6, pp. 161. Doi: 10.1016/0014-5793(70)80047-3.
  10. Schuldiner Sh., Rottenberg H., Avron M. Determination of Δ pH in chloroplasts. Fluorescent amines as a probe for the determination of Δ pH in chloroplasts. Eur. J. Biochem., 1972, vol. 25, pp. 64—70. Doi: 10.1111/j.1432-1033.1972.tb01667.x.
  11. Rozhkova Yu.A. Issledovanie vodorodnyh svyazej akridina v razlichnyh agregatnyh sostoyaniyah. Autoref. diss. kand. f.-m. nauk. [Research of hydrogen communications of acridin in various aggregate states. Cand. diss.]. Saint-Petersburg, 2014. (In Russ.).
  12. Chow W.S., Barber J. 9-aminoacridine fluorescence changes as a measure of surface charge density of the thylakoid membrane. Biochim. et Biophys. Acta, 1980, vol. 589, no. 2, pp. 346—352. Doi: 10.1016/0005-2728(80)90050-X.
  13. Jain M.K., Wagner R.C. Introduction to biological membranes. Wiley and Sons, NY, 1980. 36 p.
  14. Ermakov Yu.A. [Bioelectrochemistry bisloynykh of lipidic membranes]. Rossijskij himicheskij zhurnal [Russian chemical magazine], 2005, vol. 49, no 5, pp. 114—120. (In Russ.).
  15. Varekhov A.G. [Electrometric measurements of transmembrane potential of cages with use of the getting ions]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2015, vol. 25, no. 1. pp. 27—35. Doi: 10.18358/np-25-1-i2735. (In Russ.).
  16. Engel G.S., Calhoun T.R., Read E.L. et al. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature, 2007, vol. 446, pp. 782—786. Doi: 10.1038/nature05678.
  17. Qiao W., Mooney M., Bird A.J., Winge D.R., Eide D.J. Zinc binding to a regulatory zinc-sensing domain monitored in vivo by using FRET. Proc. Natl. Acad. Sci. USA, 2006, vol. 103, no. 6, pp. 8674—8679. Doi: 10.1073/pnas.0600928103.
  18. Stryer L., Haugland R. Energy transfer: a spectroscopic ruler. Proc. Natl. Acad. USA, 1967, vol. 58, pp. 719—726. Doi: 10.1073/pnas.58.2.719.
  19. Dexter D.L. A theory of sensitized luminescence in solids. J. Chem. Phys., 1953, vol. 21, pp. 836—850.
  20. Ito A., Stewart D.J, Zhang Fang, Brennaman M.K., Meyer Th.J. Sensitization of ultra-long-range excited-state electron transfer by energy transfer in a polymerized film. Proc. Natl. Acad. Sci. USA, 2012, vol. 109, no. 38, pp. 15132—15135. Doi: 10.1063/1.1699044.
  21. Vorob'ev A.H. Diffuzionnye zadachi v himicheskoj kinetike [Diffusive tasks in chemical kinetics]. Moscow, MGU Publ., 2003. 75 p. (In Russ.).
  22. Gray H.B., Winkler J.R. Long- range electron transfer. Proc. Natl. Acad. Sci. USA, 2005, vol. 102, no. 10, pp. 3534—3539. Doi: 10.1073/pnas.0408029102.
  23. Tomat E., Lippard S.J. Imaging mobile zinc in biology. Current Opinion in Chemical Biology, 2010, vol. 14, no. 2, pp. 225—230. Doi: 10.1016/j.cbpa.2009.12.010.
  24. Zherdeva V.V., Savickij A.P. [Application of lanthanide inductive and resonant transfer of energy when studying biological processes of invitro]. Uspekhi biologicheskoj himii [Achievements of biological chemistry], 2012, vol. 52, pp. 315—362. (In Russ.).
  25. Silva A.F., Fiedler H.D., Nome F. Ionic quenching of naphthalene fluorescence in sodium dodecyl sulfate micelles. J. Phys. Chem. A, 2011, vol. 115, no. 12, P. 2509—2514. Doi: 10.1021/jp109759f.
  26. Klymchenko A.S. Fluorescent probes for lipid rafts: from model membranes to living cells. Chemistry and Biology, 2014, vol. 21, no. 1, pp. 97—113. Doi: 10.1016/j.chembiol.2013.11.009.
 

L. P. Kislyakova1, A. L. Bulyanitsa1,2, Yu. Ya. Kislyakov1, V. I. Gulyaev1

ESTIMATION OF A PEOPLE'S FUNCTIONAL CONDITION AFTER PHYSICAL ACTIVITIES BASED ON THE INDICATORS OF THE EXHALED AIR CONDENSATE REGISTERED BY POLYSELECTIVE ELECTROCHEMICAL SENSORS WITH USING THE PROJECTIVE METHODS OF THE MULTIDIMENSIONAL ANALYSIS

"Nauchnoe Priborostroenie", 2016, vol. 26, no. 2, pp. 37—47.
doi: 10.18358/np-26-2-i3747
 

This paper connected with Project realized the new principle of noninvasive diagnostics and medicobiological researches with use of the artificial multisensors trained analytical system "Electronic Tonque". Its essence - in application of the massif of polyselective sensors with cross sensitivity for an assessment of the maintenance of physiologically significant components in condensate of the exhaled air, their analysis with use of artificial neurosimilar systems and mathematical methods of processing of big arrays of multidimensional information. The structure is developed and the model of the analytical system which is turning on the sample preparation module for collecting condensate of the exhaled air and three functional modules is created: touch, microprocessor measuring and information, providing formation of images of the studied object, their storing and recognition. Compositions of working solutions are developed for calibration, conditioning, storage of sensors and an assessment of their cross sensitivity, and also a technique of collecting condensate, preparation of sensors for measurements, an assessment of their characteristics in control solutions. Technical and physiological researches which testify to efficiency of the used principle of noninvasive diagnostics of a functional condition of examinees at rest and at the moderate physical activities controlled on indicators of the sensors sensitive to various components of condensate of the exhaled air are conducted. Efficiency of application of a projective method as a principal component analysis for formation of an image of people’s reaction (change of a functional state) to physical activities is shown. The traditional way of creation of a correlation matrix using informative signals array of the examined patients as the training selection. The alternative way of correlation matrix formation based on analogy of two formulas for correlation coefficient and a cosine of the angle between vectors is offered. Thus, coordinates of vectors are sensitivity coefficients (tangents of angle of inclinations of the calibration characteristic) of each polyselective sensor in relation to various test substances. Independence of a choice of test substances provides orthogonality of coordinates of a vector. Thereby, coefficients of correlation are in number equal to a cosine of the angle between the corresponding vectors, and the way of creation of a correlation matrix allows to refuse preliminary "training" of diagnostic system by means of examinees of patients.
 

Keywords: multisensor system, polyselective sensor, cross sensitivity, functional condition of the people, the exhaled air condensate, principal component analysis, correlation matrix, test solution, scalar product

Author affiliations:

1Institute for Analytical Instrumentation of RAS, Saint - Petersburg , Russia
2Peter the Great Saint-Petersburg Polytechnic University, Russia

 
Contacts: Kislyakov Yury Yakovlevich, yukis@rambler.ru
Article received in edition: 1.04.2016
Full text (In Russ.) >>

REFERENCES

  1. Di Natale C., Mantini A., D'Amico A., Paolesse R., Macagnano A., Legin A., Lvova L., Rudnitskaya A., Vlasov Yu. Electronic nose and electronic tongue integration for improved classification of clinical and food samples. Sensors and Actuators B: Chemical, 2000, vol. 64, no. 1-3, pp. 15—21. Doi: 10.1016/S0925-4005(99)00477-3.
  2. Vlasov Yu.G., Legin A.V., Rudnitskaya A.M. [Multitouch systems of type electronic language – new opportunities of creation and application of chemical sensors]. Uspekhi himii [Achievements of chemistry], 2006, vol. 75, no. 2, pp. 141—150 (In Russ.).
  3. Kislyakova L.P., Kislyakov Yu.Ya., Zaiceva A.Yu., Gulyaev V.I. Multisensory educational system "Electronic tongue" for the diagnosis of the functional state of the human body on the characteristics of exhaled breath condensate. Fiziologichnij zhurnal [Physiological magazine], 2013, vol. 59, no. 4, pp. 99—102.
  4. Kislyakova L.P., Kislyakov Yu.Ya., Zaiceva A.Yu., Gulyaev V.I. [The electrochemical trained system for research of a functional condition of the person at moderate physical activities on indicators of condensate of the exhaled air. "Oxygen and free radicals"]. Materialy Respublikanskoj nauchno-prakticheskoj konferencii [Materials of Republican scientific and practical conference], Belarus, Grodno, 2014, pp. 103—104 (In Russ.).
  5. Kislyakova L.P., Kislyakov Yu.Ya., Zaiceva A.Yu., Gulyaev V.I. [The multitouch system "Electronic Language" for control of a functional condition of an organism on electrochemical indicators of liquid environments]. V mire nauchnyh otkrytij [In the world of science discoveries], 2014, vol. 50, no. 2, pp. 406—412 (In Russ.).
  6. Bulyanica A.L., Kurochkin V.E., Knop I.S. Metody statisticheskoj obrabotki ehkologicheskoj informacii: diskriminantnyj, korrelyacionnyj i regressionnyj analiz [Methods of statistical processing of ecological information: discriminant, correlation and regression analysis]. Saint-Petersburg State University of Aerospace Instrumentation Publ.; IAP Russian Academy of Sciences Publ., 2005. 48 p. (In Russ.).
 

Yu. P. Turov, D. A. Lazarev

INSTRUMENTAL ERROR SOURCES IN QUANTITATIVE ABSORPTION SPECTROSCOPY

"Nauchnoe Priborostroenie", 2016, vol. 26, no. 2, pp. 48—53.
doi: 10.18358/np-26-2-i4853
 

The paper discusses how to identify and assess the impact of instrumental errors caused by non-uniformity of the energy spectral efficiency of the monochromator diffraction grating and the non-linearity of the spectral sensitivity of the spectrophotometer detector, for the absorption spectra and the optical density of the samples study. It is shown that, due to these causes may be distorted the absorption band contour and absorption band area, even when spectrophotometer operates in the standard mode and recommended range of the optical sample density scale.
 

Keywords: light absorption, medium optical density, signal measurement errors, absorption band contour distortion

Author affiliations:

Surgut State University, Russia

 
Contacts: Turov Yuriy Prokop'evich, yuri_tom@rambler.ru
Article received in edition: 8.04.2016
Full text (In Russ.) >>

REFERENCES

  1. Ishanin G.G., Pankov E.D., Andreev A.L., Pol'shchikov G.V. Istochniki i priemniki izlucheniya [Sources and receivers of radiation]. Saint-Petersburg, Politekhnika Publ., 1991. 240 p. (In Russ.).
  2. Aksenenko M.D., Baranochnikov M.A. Priemniki opticheskogo izlucheniya [Receivers of optical radiation]. Moscow, Radio i svyaz' Publ., 1987. 296 p. (In Russ.).
  3. Rozhin V.V. Fotoehlektricheskie priemniki opticheskogo izlucheniya na vnutrennem fotoehffekte [Photo-electric receivers of optical radiation on internal photoeffect]. Kazan', KGTU im. A.N. Tupoleva Publ., 1995. 130 p. (In Russ.).
  4. Ishanin G.G. Priemniki opticheskogo izlucheniya [Receivers of optical radiation]. Leningrad, Mashinostroenie Publ., 1986. 175 p. (In Russ.).
  5. Okosi T. Optoehlektronika i opticheskaya svyaz' [Optoelectronics and optical communication]. Moscow, Mir Publ., 1988. 96 p. (In Russ.).
  6. Andreev A.N., Gavrilov E.V., Ishanin G.G., Kirillovskij V.K., Prokopenko V.T., Tomskij K.A., Shereshev A.B. Opticheskie izmereniya [Optical measurements]. Moscow, Universitetskaya kniga Publ.; Logos Publ., 2008. 416 p. (In Russ.).
  7. Parvulyusov Yu.B., Soldatov V.P., Yakushenkov Yu.G. Proektirovanie optiko-ehlektronnyh priborov [Design of optical-electronic devices]. Moscow, Mashinostroenie Publ., 1990. 432 p. (In Russ.).
  8. Talor J. Vvedenie v teoriyu oshibok [Introduction to the theory of mistakes]. Moscow, Mir Publ., 1985. 272 p. (In Russ.).
  9. Rozhin V.V. Istochniki opticheskogo izlucheniya optiko-ehlektronnyh sistem [Sources of optical radiation of optical-electronic systems]. Kazan', KGTU im. A.N. Tupoleva Publ., 1995. 122 p. (In Russ.).
  10. Gordon A., Ford R. Sputnik himika [Companion of the chemist]. Moscow, Mir Publ., 1976. 541 p. (P. 237). (In Russ.).
  11. Labusov V.A., Selyunin D.O., Zarubin I.A. [Multichannel analyzers of issue ranges of MAES a gage for the nuclear and issue spectral analysis]. Interekspo Geo-Sibir', 2011, vol. 5, no. 1, pp. 12. Available at: http://cyberleninka.ru/article/n/mnogokanalnye-analizatory-emissionnyh-spektrov-maes-sredstvo-izmereniya-dlya-atomno-emissionnogo-spektralnogo-analiza. (In Russ.).
 

E. V. Butaeva1, A. V. Grebenyuk2, S. M. Irkaev2, V. V. Panchuk1,2, V. G. Semenov1,2

THE NEW ALGORITHM OF QUANTITATIVE ANALYSIS IN MÖSSBAUER SPECTROSCOPY

"Nauchnoe Priborostroenie", 2016, vol. 26, no. 2, pp. 54—59.
doi: 10.18358/np-26-2-i5459
 

The main problem of the quantitative analysis is connected with the need to take into account in the theoretical model of interaction of Mössbauer radiation with matter both fundamental and empirical parameters reflecting the characteristics of the sample under investigation. Nowadays for quantitative analysis of locally inhomogeneous systems in Mössbauer spectroscopy an approach based on the experimental determination of the parameters in the equation which connect the concentration of the element with intensity of analytical signal is used. For this purpose, the analysis of the form of the experimental spectrum which described by transmission integral is performed, from which the basic parameters affecting the results of the experiment is derived. In this paper, we propose a new approach of quantitative analysis. This approach is based on the technique of determining the main parameters, affecting on results of a quantitative analysis. It consists in plotting the calibration curve on the basis of experimental data for the analytical signal depending on the concentration of resonant atoms using readily available reference samples, which may differ in composition from the samples to be analyzed. The algorithm for quantitative analysis was tested in the study of the real sample – iron containing mineral. It was shown that the proposed approach using a calibration curve is less labor-intensive in terms of experimental and more accurate than the previously proposed method without using reference samples.
 

Keywords: non-destructive method of analysis, Mössbauer spectroscopy, inhomogeneous systems, hyperfine interactions, quantitative analysis, standard sample

Author affiliations:

1Saint-Petersburg State University, Institute of Chemistry, Russia
2Institute for Analytical Instrumentation of RAS, Saint-Petersburg , Russia

 
Contacts: Grebenyuk Andrey Vladimirovich, yax-light@yandex.ru
Article received in edition: 6.02.2016
Full text (In Russ.) >>

REFERENCES

  1. Kuzmann E., Nagy S., Vertes A. Critical review of analytical applications of Mössbauer spectroscopy illustrated by mineralogical and geological examples (IUPAC Technical Report). J. Pure Appl. Chem., 2003, vol. 75, no. 6, pp. 801—858. Doi: 10.1351/pac200375060801.
  2. Rancourt D.G. Accurate site populations from Mössbauer spectroscopy. Nucl. Instrum. Methods B, 1989, vol. 44, pp. 199—210. Doi: 10.1016/0168-583X(89)90428-X.
  3. Gutlich Ph., Bill E., Trautwein A.X. Mössbauer spectroscopy and transition metal chemistry. New York, London, Springer, 2011. 569 p. Doi: 10.1007/978-3-540-88428-6.
  4. Semenov V.G., Moskvin L.N., Efimov A.A. [Analytical opportunities of Mössbauer Spectroscopy in the analysis]. Uspekhi himii [Achievements of chemistry], 2006, vol. 75, no. 4, pp. 71—83 (In Russ.).
  5. Long G.J., Cranshaw T.E. and Longworth G. The Ideal Mössbauer Effect Absorber Thickness. Mössbauer Effect Ref. Data J., 1983, vol. 6, pp. 42—49.
  6. Vandenberghe R.E., De Grave E., De Bakker P.M.A. On the Methodology of the Analysis of Mössbauer Spectra. Hyperfine Interactions, 1994, vol. 83, no. 1, pp. 29—49. Doi: 10.1007/BF02074257.
  7. Belyaev A.A., Volodin V.S., Irkaev S.M., Panchuk V.V., Semenov V.G. [Methodological problems of the quantitative analysis in Mössbauer Spectroscopy]. Izvestiya RAN. Seriya fizicheskaya [News of the Russian Academy of Sciences. Series physical], 2010, vol. 74, no. 3, pp. 355—359 (In Russ.).
  8. Grebenyuk A.V., Irkaev S.M., Panchuk V.V., Semenov V.G. [Ab initio calculation of optimum absorber thickness in Mössbauer Spectroscopy]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2016, vol. 26, no. 1, pp. 47—53. Doi: 10.18358/np-26-1-i4753 (In Russ.).
 

A. I. Zhernovoy, Yu. V. Ulashkevich, S. V. Diyachenko

MAGNETIC FLUID IN MAGNETIC FIELD INFRARED ABSORBTION SPECTRA INVESTIGATION

"Nauchnoe Priborostroenie", 2016, vol. 26, no. 2, pp. 60—63.
doi: 10.18358/np-26-2-i6063
 

The appearance of resonant energy absorbtion of infrared electromagnetic radiation in magnetic fluid, containing single-domain magnetite nanoparticles, was observed, when placed in a magnetic field. It is suggested, that the energy absorption caused by the forced reorientation of the magnetic moments of nanoparticles in an external magnetic field.
 

Keywords: magnetic fluid, single-domain ferromagnetic nanoparticles, absorption of energy of infrared radiation

Author affiliations:

Saint-Petersburg State Institute of Technology (Technical University), Russia

 
Contacts: Zhernovoy Aleksandr Ivanovich,azhspb@rambler.ru
Article received in edition: 15.04.2016
Full text (In Russ.) >>

REFERENCES

  1. Zhernovoy A.I., Naumov V.N., Rudakov Yu.R. [Paramagnetic nanoglobules dispersion curve definition via magnetization and magnetizable field using NMR method]. Nauchnoe Priborostroenie [Scientific Instru-mentation], 2009, vol. 19, no. 3, pp. 57–61. URL: http://213.170.69.26/mag/2009/full3/Art8.pdf.
 

T. A. Lukashenko1, A. N. Tupik1, G. E. Rudnitskaya1, A. L. Bulyanitsa1,2, A. I. Tsimbalov1, A. A. Evstrapov1,3

THERMAL, ADHESIVE AND SOLVENT BONDING TECHNIQUES FOR POLYMER AND POLYMER-GLASS MICROCHIP DEVICE FABRICATION

"Nauchnoe Priborostroenie", 2016, vol. 26, no. 2, pp. 64—74.
doi: 10.18358/np-26-2-i6474
 

The creation of analytical systems based on microchip foundation for biological, biochemical, genetic analysis is one of the modern analytical instrumentation development tendencies. Sealing is a process of the irreversible bonding formation. Usually it is a finish microchip fabrication stage. The article presents the sealing technologies, which are developing for polymethylmethacrylate (PMMA) microchip device, designed for polymerase chain reaction (PCR). Characteristic features techniques of thermal, adhesive (by the photo-polymerization optical compositions) and solvent bonding are discussed. It is shown, that solvent bonding may be applied for hybrid (PMMA-glass) microchip device irreversible sealing. Estimation criterion of the microchip device impermeability is proposed when testing by gravimetric method.
 

Keywords: polymethylmethacrylate, microchip device, irreversible sealing, irreversible bonding, adhesive bonding, thermal bonding, solvent bonding, gravimetric method, polymerase chain reaction

Author affiliations:

1Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia
2Peter the Great Saint-Petersburg Polytechnic University, Russia
3ITMO University, Saint-Petersburg, Russia

 
Contacts: Lukashenko Tat'yana Alekseevna, tanly@fromru.com
Article received in edition: 16.02.2016
Full text (In Russ.) >>

REFERENCES

  1. Nge P.N., Rogers C.I., Woolley A.T. Advances in microfluidic materials, functions, integration, and applications. Chemical Reviews, 2013, vol. 113, pp. 2550—2583. Doi: 10.1021/cr300337x .
  2. Alrifaiy A., Lindahl O.A., Ramser K. Polymer-based microfluidic devices for pharmacy, biology and tissue engineering. Polymers, 2012, vol. 4, pp. 1349–1398. Doi: 10.3390/polym4031349.
  3. Becker H., Gartner C. Polymer microfabrication technologies for microfluidic systems. Analytical and Bioanalytical Chemistry, 2008, vol. 390, no. 1, pp. 89–111. Doi: 10.1007/s00216-007-1692-2.
  4. Materialy: Steklo organicheskoe listovoe konstrukcionnoe [Materials: Glass organic sheet constructional]. ZAO PKF "Megatakt". URL: http://megatakt.com/materialy.html (accessed 01.02.2016). (In Russ.).
  5. ACRYMA© XT. Dealers of OAO "DOS". URL: http://www.acryma.ru (accessed: 01.02.2016). (In Russ.).
  6. Organicheskoe steklo: Produkciya [Organic glass: Production]. FGUP NII polimerov. URL: http://www.nicp.ru/ru/52/55/ (accessed 01.02.2016). (In Russ.).
  7. Kuleznev V.N., Shershnev V.A. Himiya i fizika polimerov: uchebnik dlya himiko-tekhnologicheskih vuzov [Chemistry and physics of polymers: the textbook for chemical and technological higher education institutions]. Moscow, Vyshaya shkola, 1988. 312 p. (In Russ.)
  8. Tupik A.N. Razrabotka mikrochipovyh ustrojstv dlya provedeniya polimeraznoj cepnoj reakcii v gelevoj srede. Diss. kand. techn. nauk [Development of microchip devices for carrying out polimerazny chain reaction in the gel environment. Cand. techn. sci. diss.]. Saint-Petersburg, 2015. 130 p. (In Russ.).
  9. Tsao C.W., DeVoe D.L. Bonding of thermoplastic polymer microfluidics. Microfluid Nanofluid, 2009, no 6, pp. 1–16. Doi: 10.1007/s10404-008-0361-x.
  10. Komarov G.V. Sposoby soedineniya detalej iz plasticheskih mass [Ways of connection of details from plastics]. Moscow, Himiya Publ., 1979. 288 p. (In Russ.).
  11. Evstrop'eva K.S., ed. Kogeziya i adgeziya goryachego stekla [Cohesion and adhesion of hot glass]. Moscow, Mashinostroenie Publ., 1969. 175 p. (In Russ.)
  12. Evstrapov A.A., Kurochkin V.E., Lukashenko T.A., Gornyj S.G., Yudin K.V. [Microfluid chips from polymethyl methacrylate: method of a laser ablyation and thermal binding]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2005, vol. 15, no. 2, pp. 72–81. (In Russ.).
  13. Volkov S.S. Svarka i skleivanie polimernyh materialov [Welding and pasting of polymeric materials]. Moscow, Himiya Publ., 2001. 376 p. (In Russ.).
  14. Okatova M.A., ed. Spravochnik tekhnologa-optika [Reference book of the technologist-optician. Second Edition.]. Saint-Petersburg, Politekhnika Publ., 2004. 680 p. (In Russ.).
  15. Bukatin A.S. Razrabotka i issledovanie mikroflyuidnyh ustrojstv s metallicheskimi mikro i nanorazmernymi funkcional'nymi ehlementami dlya izucheniya kletok. Diss. kand. fiz.-mat. nauk [Development and research of microfluid devices with metal micro and nanotime-dimensional functional elements for studying of cages. Cand. phis.-math. sci. diss.]. Saint-Petersburg, 2013. 144 p. (In Russ.).
  16. Koschwanez J.H., Carlson R.H., Meldrum D.R. Thin PDMS films using long spin times or tert-butyl alcohol as a solvent. PLoS ONE, 2009, vol. 4, no 2, e4572. URL: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0004572 (accessed 01.02.2016).
  17. Evonik Industries — Specialty Chemicals. Evonik Industries AG. URL: http://www.evonik.com (accessed 01.02.2016).
  18. Hjerten S. High-performance electrophoresis: Elimination of electro end osmosis and solute adsorption. Journal of Chromatography, 1985, vol. 347, pp. 191–198. Doi: 10.1016/S0021-9673(01)95485-8.
  19. Rudnitskaya G.E., Lukashenko T.A., Posmitnaya Ya.S., Tupik A.N., Evstrapov A.A. [Physical and chemical methods of modification of a surface of polymethyl methacrylate for microfluid chips]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2014, vol. 24, no. 3, pp. 22–31. URL: http://213.170.69.26/mag/2014/full3/Art4.pdf (In Russ.).
  20. Vil'nav Zh.Zh. Kleevye soedineniya [Glue joint]. Moscow, Tekhnosfera Publ., 2007. 384 p. (In Russ.).
  21. Nejland O.Ya. Organicheskaya himiya: uchebnik dlya himiko-tekhnologicheskih vuzov [Organic chemistry: the textbook for chemical and technological higher education institutions]. Moscow, Vyshaya shkola Publ., 1990, 751 p. (In Russ.).
  22. Zverev V.A., Krivopustova E.V., Tochilina T.V. Opticheskie materialy (Ch. 1): uchebnoe posobie dlya konstruktorov opticheskih sistem i priborov [Optical materials (Part 1): manual for designers of optical systems and devices]. Saint-Petersburg, SPbGU ITMO, 2009, 244 p. (In Russ.).
  23. Teploprovodnost', teploemkost', plotnost' i drugie teplofizicheskie svojstva veshchestv i materialov [Heat conductivity, thermal capacity, density and other heatphysical properties of substances and materials]. Thermalinfo.ruTi. URL: http://thermalinfo.ru (accessed: 01.02.2016). (In Russ.).
  24. Permabond — klei, germetiki i ehpoksidnye smoly vysshego kachestva. [Permabond — glues, sealants and epoxies of the superior quality]. The official distributor in Russia ZAO "Permabond Rus". URL: http://www.permabond.ru/ (accessed: 01.02.2016). (In Russ.).
 

D. V. Lisin, N. I. Lebedev

CREATING A PRECISION CIRCUITS FOR DISCHARGE OF CHARGE INTEGRATOR FOR USE IN SPECTROMETRIC DEVICES FOR OBSERVATIONS IN THE FAR SPACE

"Nauchnoe Priborostroenie", 2016, vol. 26, no. 2, pp. 75—81.
doi: 10.18358/np-26-2-i7581
 

The method of circuit realization of an electronic key for discharge of the charge integrator in specific applications, due to the carrying out spectrometric measurements of solar radiation in space experiments is described. Data of laboratory tests of synthesized circuit and the evaluation of the introduced measurement error of the solar flux by means of CCD-matrices with the use of this circuit is presented.
This problem is considered from the point of view of application in the INTERHELIOPROBE project in the solar photometer. The impossibility of the implementation of the electronic key for discharge of the charge integrator by using the classical approach is shown. A complicated scheme of implementation of the electronic key is presented and the data of laboratory tests of this scheme are discussed.
It is shown that the scheme of an electronic key for discharge of the charge integrator can be successfully implemented from electronic components currently produced in Russia.
 

Keywords: solar spectrometer, linear photosensor, reset key for integrator, space experiment

Author affiliations:

Pushkov Institute of Terrestrial Magnetism, Ionosphere and
Radio Wave Propagation (IZMIRAN), Moscow, Russia

 
Contacts: Lisin Dmitry Valerievich, lisindv@izmiran.ru
Article received in edition: 15.03.2016
Full text (In Russ.) >>

REFERENCES

  1. NMOS linear image sensor. URL: http://www.hamamatsu.com/us/en/product/category/3100/4005/4120/S5931-512S/index.html (accessed at 01.02.2016).
  2. Characteristic and use of NMOS linear image sensors. Technical information SD-26. URL: http://www.hamamatsu.com/resources/pdf/ssd/nmos_kmpd9001e.pdf (accessed at 01.02.2016).
  3. Horowitz P., Hill W. The art of electronics. 2th ed. New York, Cambridge University Press, 1980. 1101 p. (Russ ed.: Horowitz P., Hill W. Iskusstvo skhemotekhniki. Moscow, BINOM Publ., 2012. 704 p.) ISBN 978-5-9518-0351-1.
  4. Aksenov A.I., Nefedov A.V. Otechestvennye poluprovodnikovye pribory spezial'nogo naznacheniya [Domestic semiconductor devices of a special purpose]. SOLON-R Publ., 2002. 312 p. ISBN 5-93455-165-5 (In Russ.).
 

A. I. Petrov

THE TRANSITION FROM A DOMAIN SPECIFIC LANGUAGE TO THE FINITE STATE LANGUAGE IN THE DESIGN ANALYTICAL INSTRUMENTS

"Nauchnoe Priborostroenie", 2016, vol. 26, no. 2, pp. 82—92.
doi: 10.18358/np-26-2-i8292
 

Automata-based programming basic provisions are considered and advantages of its using in software deve­lopment are justified in the article. The method of construction of the domain  specific language based on behavioral, functional, informational and structural models developed at the outline design stage when developing analytical instruments is described and examples of successful application of the proposed approach in practice are given.
 

Keywords: problem-oriented programming language, automatic programming, automatic language, finite-state machine, analytical devices

Author affiliations:

Institute for Analytical Instrumentation of RAS, Saint - Petersburg , Russia

 
Contacts: Petrov Aleksandr Ivanovich, fataip@rambler.ru
Article received in edition: 4.04.2016
Full text (In Russ.) >>

REFERENCES

  1. Alekseev Ya.I., Belov Yu.V., Varlamov D.A., Konovalov S.V., Kurochkin V.E., Marakushin N.F., Petrov A.I., Petryakov A.O., Rumyancev D.A., Skoblilov E.Yu., Sokolov V.N., Fesenko V.A., Chernyshev A.V. [Devices for diagnostics of biological objects based on the real-time polymerase chain reaction (RT-PCR) method]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2006, vol. 16, no. 3, pp. 132—136. URL: http://213.170.69.26/mag/2006/full3/Art14.pdf (In Russ.).
  2. Shalyto A.A. [Automatic design of programs. Algorithmization and programming of problems of logical management]. Izvestiya RAN. Teoriya i sistemy upravleniya [News of the Russian Academy of Sciences. Theory and control systems], 2000, no. 6, pp. 63—81. (In Russ.).
  3. Polikarpova N.I., Shalyto A.A. Avtomatnoe programmirovanie [Automata-based programming]. Saint-Petersburg, Piter Publ., 2009. 176 p. (In Russ.).
  4. Vasil'ev S.S., Novosel'cev V.B. [About use in programming of problem-oriented languages]. Izvestiya Tomskogo politekhnicheskogo universiteta [News of Tomsk polytechnical university], 2008, vol. 313, no. 5, pp. 68—72 (In Russ.).
  5. Glushkov V.M. Vvedenie v ASU [Introduction to Automated Control Systems]. Second edition. Kiev, Technika Publ., 1974. 319 p. (In Russ.)
  6. Nikanorov S.P., Nikitina N.K., Teslinov A.G. Vvedenie v konceptual'noe proektirovanie ASU: Analiz i sintez struktur [Introduction to conceptual design of ACS: Analysis and synthesis of structures]. Second edition. Moscow, Koncept Publ., 2007. 234 p. (In Russ.).
  7. Marchenkov S.S. Konechnye avtomaty [Finite state machine]. Moscow, Fizmatlit Publ., 2008. 56 p. (In Russ.).
  8. Yakubajtis E.A., Vasyukevich V.O., Gobzemis A.Yu., Zaznova N.E., Kurmit A.A., Lorenc A.A. , Petrenko A.F., Chapenko V.P. [Automata theory]. Itogi nauki i tekhniki. Seriya: Teoriya veroyatnostej. Matematicheskaya statistika. Teoreticheskaya kibernetika [Results of science and equipment. Series: Probability theory. Mathematical statistics. Theoretical cybernetics], 1976, vol. 13, pp. 109—188 (In Russ.).
  9. "Plant / 35S+FMV/NOS screening". Test system for detection of GMO of a phytogenesis. URL: http://syntol.ru/bitrix/docs/GM-415-instrukciya.pdf (In Russ.).
  10. Rebrikov D.V., Samatov G.A., Trofimov D.Yu., Semyonov P.A., Savilova A.M., Kofiadi I.A., Abramov D.D. PCR v "real'nom vremeni" [PCR in "real time"]. Moscow, Binom Publ., 2009. 223 p. (In Russ.).
 

A. S. Ilyin

PROPERTIES OF MEDIAN UNDER DRIFT OF ONE OF GROUP OF MEASURING INSTRUMENTS (ON THE EXAMPLE OF UNIFORM DISTRIBUTION)

"Nauchnoe Priborostroenie", 2016, vol. 26, no. 2, pp. 93—100.
doi: 10.18358/np-26-2-i93100
 

The detailed derivation of the formulas for calculation of expected value and dispersion of the median is presented. Thus the uniform law of distribution is considered and it is supposed that data from one of the group of measuring instruments are subject to drift. The number of measuring instruments is odd, therefore as a median we take only one value which appeared in the middle of the sorted list. For the uniform law of distribution it was possible to take integrals and to receive exact analytical formulas, — at some values of the size of drift. The results of calculations, which allow to compare the parameters of the median and arithmetic mean, and also to form the expert opinion on the necessary number of measuring instruments, are presented.
 

Keywords: median, arithmetic mean, expected value, dispersion, sensitivity drift

Author affiliations:

State Scientific Center for Robotics and Technical Cybernetics , Saint-Petersburg, Russia

 
Contacts: Ilyin Anatolij Stepanovich , TOLY@RTC.RU
Article received in edition: 12.04.2016
Full text (In Engl.) >>

REFERENCES

  1. Arkadiev V.B., Lapin O.E., Lopota A.V., Pervishko A.F., Putilov A.A. [Gamma-radiation detecting unit to operate as part of light-class UAV]. Robototekhnika i tekhnicheskaya kibernetika [Robotics and Technical Cybernetics], 2013, vol. 1, no. 1, pp. 75—76. (In Russ.).
  2. URL: http://www.rosinform.ru/razrabotki/42969-chirok-mal-da-udal/ (Accessed 15.04.2016) (In Russ.).
  3. Vlasenko A.N., Demchenkov V.P., Lapin O.E., Lopota V.A., Nikulenkov K.P., Shelepkov E.A., Judin V.I. Ustrojstvo dlja izmerenija potokov fotonnogo izluchenija. Patent RF no. 2299450. [Patent for the device for measurement of streams of photon radiation]. Prioritet 20.05.2007. (In Russ.).
  4. Izmeritel' moshchnosti dozy i differencial'nyh potokov gamma-izlucheniya IMD-24. [Measuring instrument of dose rate and differential streams of gamma radiation IMD-24]. URL: http://www.rtc.ru/index.php/sredstva-radiatsionnogo-kontrolya/imd-24 (Accessed 04.04.2016) (In Russ.).
  5. Arkad'ev V.B., Golubeva O.A., Ilyin A.S., Lapin O.E. [Features of the software of the measuring instrument of dose rate and differential streams of gamma radiation, presentation]. URL: http://www.atomic-energy.ru/
    presentations/19074 (Accessed 19.11.2015) (In Russ.).
  6. Katalog schetchikov registracii izluchenij [Catalog of counters of registration of radiations]. NPF "Konsensus". URL: http://consensus-group.ru/katalog (Accessed 11.04.2016) (In Russ.).
  7. Vilenkin N.Ja., Vilenkin A.N., Vilenkin P.A. Kombinatorika [Combinatorics]. Moscow, FIMA Publ. and Moscow center of continuous mathematical education Publ., 2006. 400 p. (In Russ.).
  8. Gil'bo E.P., Chelpanov I.B. Obrabotka signalov na osnove uporjadochennogo vybora (mazhoritarnoe i blizkie k nemu preobrazovanija) [Processing of signals on the basis of the ordered choice (majority and other transformations)]. Moscow, Sovetskoe radio Publ., 1976. 344 p. (In Russ.).
  9. David H., Nagaraja H. Order statistics. 3rd ed. Wiley, 2003. (Russ. ed.: Dehjvid G. Poryadkovye statistiki. Moscow: Glavnaya redakciya fiziko-matematicheskoj literatury Publ., 1979. 336 p.). Doi: 10.1002/0471722162.
  10. Chistjakov V.P. Kurs teorii verojatnostej [Probability theory course]. Textbook, 3rd edition. Moskow, Nauka Publ., 1987, 240 p. (In Russ.).
 

Ulitsa Ivana Chernykh, 31-33, lit. A, St. Petersburg, Russia, 198095, P.O.B. 140
tel: (812) 3630719, fax: (812) 3630720, mail: iap@ianin.spb.su

content: Valery D. Belenkov design: Banu S. Kuspanova layout: Anton V. Manoilov