logo
blue band <-
  JOURNAL "NP" ISSUES

"Nauchnoe Priborostroenie", 2017, Vol. 27, no. 1. ISSN 2312-2951, DOI: 10.18358/np-27-1-941

"NP" 2017 year Vol. 27 no. 1.,   ABSTRACTS

ABSTRACTS, REFERENCES

W. V. Lundin, E. E. Zavarin, A. V. Sakharov, A. F. Tsatsulnikov, V. M. Ustinov

III-N MOVPE REACTORS: PRESENT AND FUTURE

"Nauchnoe priborostroenie", 2017, vol. 27, no. 1, pp. 5—9.
doi: 10.18358/np-27-1-i59
 

An analysis of the current situation on the market of III-N MOVPE equipment shows a lack of state-of-the-arts reactors of low-and moderate capacity. Our solution a compact horizontal flow reactor for one 100 mm wafer is presented in the paper. The reactor allows fast growth in the pressure range of 100—1600 mbar which results in a few times reduction of the duration of HEMT and LED epitaxial processes on sapphire and SiC substrates keeping high wafer uniformity. In addition to standard III-N materials and heterostructures deposition of Si3N4 and graphene layers, growth of GaN on graphene, doping with carbon from propane, and selective growth of highly-doped contact regions were demonstrated using the developed reactor.
 

Keywords: III-N, MOVPE, technological equipment, LED, HEMT

Author affiliations:

Scientific and Technological Center for Microelectronics and Submicron Heterosctructures of the RAS,
Saint-Petersburg, Russia
Ioffe Physical Technical Institute of the RAS, Saint-Petersburg, Russia

 
Contacts: Lundin Wsevolod Vladimirovich, lundin.vpegroup@mail.ioffe.ru
Article received in edition: 12.01.2017
Full text (In Russ.) >>

REFERENCES

  1. Manasevit H.M. Single-crystal gallium arsenide on insulating substrates. Appl . Phys . Lett., 1968, vol. 12, no. 4, pp. 156. Doi: 10.1063/1.1651934.
  2. Lundin W.V., Davydov D.V., Zavarin E.E., Popov M.G., Sakharov A.V., Yakovlev E.V., Bazarevskij D.S., Talalaev R.A., Tsatsulnikov A.F., Mizerov M.N., Ustinov V.M. MOVPE of III-N LED structures with short technological process. Technical Physics Letters, 2015, vol. 41, no. 3, pp. 213—216. Doi: 10.1134/S1063785015030116.
  3. Velikovskij L.E., Sim P.E., Polivanova Yu.N., Shishkin D.A., Lundin W.V., Zavarin E.E., Tsatsulnikov A.F. [Development of powerful GaN of L-S-C transistors of the range]. Trudy 10-j Vserossijskoj konferencii "Nitridy galliya, indiya i alyuminiya – struktury i pribory" [Proceedigs of the 10th All-Russian conference "Gallium Nitrides, India and Aluminium – Structures and Devices"], Saint-Petersburg, 2015, 23—25 march, pp. 131. (In Russ.).
  4. Tsatsulnikov A.F., Lundin W.V., Zavarin E.E., et al. [Growth of HEMT of heterostructures of AlGaN/GaN on substrates of SiC of domestic production]. Trudy 10-j Vserossijskoj konferencii "Nitridy galliya, indiya i alyuminiya – struktury i pribory" [Proceedigs of the 10th All-Russian conference "Gallium Nitrides, India and Aluminium – Structures and Devices"], Saint-Petersburg, 2015, 23—25 march, pp. 129. (In Russ.).
  5. Tsatsulnikov A.F., Lundin W.V., Zavarin E.E., Yagovkina M.A., Sakharov A.V., Usov S.O., Zemlyakov V.E., Egorkin V.I., Bulashevich K.A., Karpov S.Yu., Ustinov V.M. Effect of the parameters of AlN/GaN/AlGaN and AlN/GaN/InAlN heterostructures with a two-dimensional electron gas on their electrical properties and the characteristics of transistors on their basis. Semiconductors, 2016, vol. 50, no. 10, pp. 1383—1389. Doi: 10.1134/S1063782616100237.
  6. Lundin W.V., Sakharov A.V., Zavarin E.E., Kazantsev D.Yu., Ber B.Ya., Yagovkina M.A., Brunkov P.N., Tsatsulnikov A.F. Study of GaN doping with carbon from propane in a wide range of MOVPE conditions. Journal of Crystal Growth, 2016, vol. 449, pp. 108—113.
    Doi: 10.1016/j.jcrysgro.2016.06.002.
  7. Lundin W.V., Zavarin E.E., Popov M.G., Troshkov S.I., Saharov A.V., Smirnova I.P., Kulagina M.M., Davydov V.Yu., Smirnov A.N., Tsatsulnikov A.F. The influence of growth conditions on the surface morphology and development of mechanical stresses in Al(Ga)N layers during metalorganic vapor phase epitaxy. Technical Physics Letters, 2016, vol. 42, no. 4, pp. 431—434.
    Doi: 10.1134/S1063785016040192.
  8. Lundin W.V., Zavarin E.E., Sakharov A.V., Davydov V.Yu., Smirnov A.N., Zakheim D.A., Markov L.K., Brunkov P.N., Yagovkina M.A., Lundina E.Yu., Tsatsulnikov A.F. Growth of III-N graphene heterostructures in single OVPE MOVPE epitaxial process. Proc . of IC MOVPE XVIII , San Diego, California, July 10—15, 2016.
 

S. Kh. Karaevsky1, S. I. Potashev1, Yu. M. Burmistrov1, A. I. Drachev2, A. A. Afonin1, V. I. Razin1

TWO DIMENSION DETECTORS FOR THERMAL AND COLD NEUTRONS WITH SIZES 120 × 120 mm AND 380 × 380 mm WITH ACTIVE LAYER OF SOLID BORON-10

"Nauchnoe Priborostroenie", 2017, vol. 27, no. 1, pp. 10—18.
doi: 10.18358/np-27-1-i1018
 

Two dimension slow neutron detector on base of gaseous chamber with active boron-10 layer of area (120 × 120) mm2 is created and many boron-10 layer detector of area (380 × 380) mm2 is proposed. Effect to background ratio is less than 10—5. Experimental pulse height resolution is equal 15 %, position resolution is approximately 2.5 mm. Efficiency for detector of ten boron-10 layers is evaluated as 41 % (λ~1.82 Å) and 62 % (λ~8 Å).
 

Keywords: detector, neutron, boron-10, two-dimentional, gaseous

Author affiliations:

1Institute for Nuclear Research of RAS, Moscow, Russia
2The State Scientific Center of RF "State Research Institute for Chemistry and Technology of Organoelement Compounds" of the RF Ministry for Industry and Trade, Moscow, Russia

 
Contacts: Karaevsky Sergey Kharitonovich, karaevsk@inr.ru
Article received in edition: 13.01.2017
Full text (In Russ.) >>

REFERENCES

  1. Tarnavich V.V., Volegov A.S., Lott D., Mattauch S., Vorobiev A., Oleshkevych A., Grigoriev S.V. [Structural and magnetic properties of the holmium-yttrium superlattice]. Poverchnost' [Journal of Surface Investigation], 2014, vol. 8, no. 5, pp. 976—982. Doi: 10.1134/S1027451014050425.
  2. Efremov R., Shiryaeva G., Bueldt G., Islamov A., Kuklin A., Yaguzhinsky L., Fragneto-Cusani G., Gordeliy V. SANS investigations of the lipidic cubic phase behaviour in course of bacteriorhodopsin crystallization. J. of Cryst. Growth, 2005, vol. 275, no. 1-2, pp. e1453—e1459.
    Doi: 10.1016/j.jcrysgro.2004.11.235.
  3. Klein M., Schmidt C.J. CASCADE, neutron detectors for highest count rates in combination with ASIC/FPGA based readout electronics. Nucl. Instr. Meth. A, 2011, vol. 628, no. 1, pp. 9—18.
    Doi: 10.1016/j.nima.2010.06.278.
  4. Bleuel M., Carpenter J.M., Micklich B.J., Geltenbort P., Mishima K., Shimizu H.M., Iwashita Y., Hirota K., Hino M., Kennedy S.J., Lal J. A small angle neutron scattering (SANS) experiment using very cold neutrons (VCN). Physica B: Condensed Matter., 2009, vol. 404, no. 17, pp. 2629—2632.
    Doi: 10.1016/j.physb.2009.06.048.
 

E. I. Demikhov, V. V. Lysenko, E. A. Kostrov, T. E. Demikhov, A. S. Rybakov, A. V. Bagdinov, Yu. A. Tysjachnykh, M. M. Konstantinov, G. M. Pistrak, B. A. Shumm, V. Tarasov

THE FIRST-IN-RUSSIA SUPERCONDUCTING MAGNET RESONANCE 1.5 TESLA IMAGING SYSTEM FOR HIGH-PRECISION MEDICAL DIAGNOSTICS

"Nauchnoe Priborostroenie", 2017, vol. 27, no. 1, pp. 19—23.
doi: 10.18358/np-27-1-i1923
 

The first-in-Russia 1.5 MRI system for high precision medical diagnostics is developed and manufactured. It is based on own 1.5 T superconducting magnet with warm bore 90 cm built in cooperation between FIAN and Russian RTI company (Moscow). The field homogeneity is about 2 ppm in 40 cm sphere; the magnet field stability is 0.01 ppm/h which equals the standard value of the class MRI systems. MRI allows to obtain images of the layers in the 3 main planes – axial, sagittal and frontal – as well as on inclined planes with an inclination of up to 45°. The minimum thickness of the section plane in 2D mode is not more than 2 mm, in 3D mode – no more than 0.5 mm. Spatial resolution in the image plane at a thickness of 5 mm layer structure allows to distinguish with the linear dimensions no more than 0.4 mm. The technical documentation is ready for production.
 

Keywords: superconducting coils, high magnet fields, MRI systems, cryogenic

Author affiliations:

Lebedev Physical Institute RAS, Moscow

 
Contacts: Rybakov Aleksandr Sergeevich, alecksandr@bk.ru
Article received in edition: 24.11.2016
Full text (In Russ.) >>

REFERENCES

  1. Demikhov E., Kostrov E., Lysenko V., Piskunov N., Troitskiy V. 8 T cryogen free magnet with a variable temperature insert using a heat switch. IEEE Transactions on Applied Superconductivity, 2010, vol. 20, no. 3, pp. 612—615. Doi: 10.1109/TASC.2010.2041592.
  2. Naumov P.G., Lyubutin I.S., Frolov K.V., Demikhov E.I. A closed-cycle cryostat for optical and Mössbauer spectroscopy in the temperature range 4.2—300 K. Instruments and Experimental Techniques, 2010, vol. 53, no. 5, pp. 770—776. Doi: 10.1134/S0020441210050301.
  3. Demikhov T., Kostrov E., Lysenko V., Demikhov E., Piskunov N. 9 T NbTi cryogen free HTS Test Stand. IEEE Transactions on Applied Superconductivity, 2012, vol. 22, no. 3. Article Sequence Number:9501004. Doi: 10.1109/TASC.2011.2178994.
  4. Demikhov E.I. Cryogenic devices for X-ray, synchrotron and neutron measurements. Nuclear Instruments & Methods in Physics Research. Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, vol. 543, no. 1, pp. 365—367. Doi: 10.1016/j.nima.2005.01.257.
  5. Demikhov E.I., Dolganov V.K., Filev V.M. Pretransitional anomalies in the rotation of the plane of polarization of light in ferroelectric liquid crystals. JETP Letters, 1983, vol. 37, no. 7, pp. 361—365.
  6. Demikhov E., Stegemeyer H., Blumel Th. Domain growth laws for the phase ordering of chiral liquid crystals. Physical Review E, 1994, vol. 49, no. 6, pp. R4787—R4790.
    Doi: 10.1103/PhysRevE.49.R4787.
  7. Demikhov E.I., John M., Krohn K. Preliminary communication Anomalous behaviour of photoactive free-standing smectic films under illumination. Liquid Crystals, 1997, vol. 23, no. 3, pp. 443—445. Doi: 10.1080/026782997208361.
  8. Demikhov E., Stegemeyer H. Novel structures of a smectic C* phase with high spontaneous polarization in free-standing films. Liquid Crystals, 1995, vol. 18, no. 1. pp. 37—43.
    Doi: 10.1080/02678299508036588.
 

S. V. Anisimov, K. V. Aphinogenov, A. V. Guriev

HARDWARE PLATFORM FOR BALLOON AEROELECTRICAL OBSERVATIONS

"Nauchnoe Priborostroenie", 2017, vol. 27, no. 1, pp. 24—28.
doi: 10.18358/np-27-1-i2428
 

An atmospheric boundary layer electricity investigation involves long-term geophysical and meteorological observations, including air electric conductivity, atmospheric electrical field strength, aerosol particles concentration and radon (222Rn) volume activity altitude profiles measurement. A prototype of the helium-filled balloon platform for altitude aeroelectrical profiles observations was developed and manufactured in Borok Geophysical Observatory. The platform is equipped with unique scientific equipment for measurement of atmospheric electrical field strength, polar air electrical conductivities, radon volume activity and aerosol particles concentration. A number of methodical and structural problems associated with atmospheric boundary layer investigations equipment development and manufacturing were success fully solved.
 

Keywords: atmospheric electric field, atmospheric electric conductivity, atmospheric boundary layer, balloon field observations, electrometry, radiometry, aerosols, light ions

Author affiliations:

Borok Geophysical Observatory of Schmidt Institute of Physics of the Earth of RAS,
Yaroslavsky Reg., Russia

 
Contacts: Afinogenov Konstantin Viktorovich, aphin@borok.yar.ru
Article received in edition: 17.01.2017
Full text (In Russ.) >>

REFERENCES

  1. Anisimov S.V., Mareev E.A. [Geophysical surveys of a global electric circuit]. Fizika Zemli [Physics of Earth], 2008, no. 10, pp. 8—18. (In Russ.).
  2. Chalmers J.A. Atmospheric electricity. Pergamon Press, 1957 (Russ. ed.: Chalmers Dz. Atmosfernoe elektrichestvo. Leningrad, Gidrometeoizdat Publ., 1974. 420 p.).
  3. Imyanitov I.M. Pribory i metody dlya izucheniya elektrichestva atmosfery [Devices and methods for atmosphere electricity studying]. Moscow, Gostechizdat Publ., 1957. 483 p. (In Russ.).
  4. Imyanitov I.M., Chubarina E.V. Elektrichestvo svobodnoy atmosfery [Electricity of the free atmosphere]. Leningrad, Gidrometeoizdat Publ., 1965. 239 p. (In Russ.).
  5. Anisimov S.V., Shichova N.M., Afinogenov K.V. [Dynamics of electricity of the nonperturbed atmosphere of middle latitudes: from observations to a skeyling]. Izv. vuzov. Radiofizika [News of higher education institutions. Radio physics], 2013, vol. 56, no. 11-12, pp. 787—802. (In Russ.).
  6. Anisimov S.V., Galichenko S.V., Shichova N.M., Afino­genov K.V. [Electricity of a convective atmospheric boundary layer: natural observations and numerical modeling]. Fizika atmosfery i okeana [Physics of the atmosphere and ocean], 2014, vol. 50, no. 4, pp. 445—454. (In Russ.).
  7. Smirnov V.V. Ionizaziya v troposfere [Ionization in the troposphere]. S.-Petersburg, Gidrometeoizdat Publ., 1992. 312 p. (In Russ.).
 

V. B. Dubovskoi, V. I. Leontyev, A. V. Sbitnev, V. G. Zhilnikov

POSSIBILITIES OF IMPROVING THE GRAVIINERTIAL GEOPHYSICAL EQUIPMENT

"Nauchnoe Priborostroenie", 2017, vol. 27, no. 1, pp. 29—34.
doi: 10.18358/np-27-1-i2934
 

A number of original research of IPE RAS in the field of graviinertial and strainmeter changes. Prototypes of these developments have been successfully used to measure the gravitational field, inclinations and deformations of the earth's crust in solving a wide range of fundamental and applied problems of geophysics and geodynamics.
 

Keywords: accelerometer, deformation monitoring, gravimeter, microleveling, borehole inclinometer

Author affiliations:

Schmidt Institute of Physics of the Earth of the RAS, Moscow, Russia

 
Contacts: Dubovskoi Vladimir Borisovich, dubovskoi@yandex.ru
Article received in edition: 29.12.2016
Full text (In Russ.) >>

REFERENCES

  1. Nikolaev A.V., Bashilov I.P., Shou K.J., Svalova V.B., Manukin A.B., Zubko Yu.N., Bechterev S.V., Kazanzeva O.S., Rebrov V.I., Volosov S.G., Korolev S.A. [Seismo-straining monitoring of ecologically dangerous objects and natural hazards]. Monitoring. Nauka i technologii [Monitoring. Science and technologies], 2011, no. 2, pp. 6—18. (In Russ.).
  2. Dubovskoi V.B., Zhilnikov V.G., Leontyev V.I, Sbitnev A.V. [Land geophysical surveys: measuring tools]. Nauka i technologicheskie razrabotki [Science and technological developments], Moscow, 2016, vol. 95, no. 4, part. 2, pp. 19—25. (In Russ.).
  3. Dubovskoi V.B., Zhilnikov V.G., Leontyev V.I, Sbitnev A.V. [Microlevel NI-3]. Gravimetriya i geodeziya [Gravitation measurements and geodesy], Moscow, Nauchnyy mir Publ., 2010, pp. 495—497. (In Russ.).
  4. Dubovskoi V.B., Leontyev V.I., Latyshev D.D., Sbitnev A.V., Chetverikova A.A. [Well inclinometer NI-2]. Gravimetriya i geodeziya [Gravitation measurements and geodesy], Moscow, Nauchnyy mir Publ., 2010, pp. 497—500. (In Russ.).
  5. Dubovskoi V.B., Belyaev M.Yu., Leontyev V.I. et al. [The current state and prospects of a satellite akselerometriya and gradiyentometriya]. Al'manach sovremennoy metrologii [Almanac of the modern metrology], Mosk. region., g. Mendeleevo, VNIIFTRI, 2015, no. 3, pp. 84—97. (In Russ.).
 

S. I. Sergeev, S. A. Korolyov, S. A. Volosov, O. P. Kuznetsov

A FURTHER DEVELOPMENT OF THE MIKHNEVO SMALL APERTURE SEISMIC ARRAY FOR NEW SEISMOLOGICAL STUDIES

"Nauchnoe Priborostroenie", 2017, vol. 27, no. 1, pp. 35—39.
doi: 10.18358/np-27-1-i3539
 

This paper describes a further development of the Mikhnevo small-aperture seismic array of IDG RAS for new seismological studies including seismic event detection with real time cross-correlation analysis, detailed research of seismogenic zones with low seismic emission, development of always-on automated seismic monitoring system for critical infrastructure facilities, automated real time frequency-wavenumber-analysis. The new SSD-3 seismic digitizer is presented in this paper has been developing specially for small aperture seismic arrays. This 24-bit digitizer has 3 differential inputs and provides high precision time synchronization of data acquisition needed for coherency of small aperture seismic array. The algorithm of automated full featured seismic data processing system for the Mikhnevo small-aperture seismic array are also describing. This algorithm combines different types of detection, identification and location of seismic events including frequency-wavenumber-analysis, phase association and cross-correlation analysis. It also provides real time transmission with de facto world standard Seedlink protocol.
 

Keywords: small-aperture seismic array, coherent seismic array, Mikhnevo, earthquake, computer-aided system, seismic digitizer, seismic trace stacking, cross-correlation analysis

Author affiliations:

Institute of Geosphere Dynamics of RAS (IDG RAS), Moscow, Russia

 
Contacts: Sergeev Sergey Il'ich, sergio68moscow@live.ru
Article received in edition: 15.12.2016
Full text (In Russ.) >>

REFERENCES

  1. Volosov S.G., Korolyov S.A., Soldatenkov A.M. [System of synchronization of records of stations of the low-aperture seismic antenna "Mikhnevo"]. Sejsmicheskie pribory [Seismic instruments], 2012, vol. 48, no. 1, pp. 26—34. (In Russ.).
  2. Adushkin V.V., Kitov I.O., Nesterkina M.A., Kon-stantinovskaya N.L., Sanina I.A., Nepeina K.S. [Detection of superweak signals on the low-aperture seismic Mikhnevo antenna by means of cross-correlation of wave forms]. DAN [Transactions (doklady) of the Russian Academy of Sciences], 2015, vol. 460, no. 6, pp. 707—709. (In Russ.).
  3. Beyreuther M., Barsch R., Krischer L., Megies T., Behr Y., Wassermann J. ObsPy: A Python toolbox for seismology. SRL, 2010, vol. 81, no. 3, pp. 530—533. Doi: 10.1785/gssrl.81.3.530.
  4. Megies T., Beyreuther M., Barsch R., Krischer L., Wassermann J. ObsPy – What can it do for data centers and observatories? Annals of Geophysics, 2011, vol. 54, no. 1, pp. 47—58.
  5. Krischer L., Megies T., Barsch R., Beyreuther M., Lecocq T., Caudron C., Wassermann J. ObsPy: a bridge for seismology into the scientific Python ecosystem. Computational Science & Discovery, 2015, vol. 8, no. 1, 014003. Doi: 10.1088/1749-4699/8/1/014003.
 

K. V. Kislov1, V. V. Gravirov1,2

EARTHQUAKE EARLY WARNING FOR RAILWAYS: PERSPECTIVES, PROBLEMS AND SOLUTIONS

"Nauchnoe Priborostroenie", 2017, vol. 27, no. 1, pp. 40—45.
doi: 10.18358/np-27-1-i4045
 

The train speeds and general load of the railways will be increasing in the future. This is caused by Railway Transport Development Strategy of the Russian Federation. Hence the earthquakes hazard also is increasing. Early warning system is one of the most effective instruments to reduce damage from earthquakes. It allows taking automatically action to protect railway objects and life of people. Also it takes into account the possibility of a rapid estimation of damage. This is necessary for effectiveness of rescue and repair activities. Specifics of such system in our country require development new algorithmic and software solutions. It is required to create minimum sufficient configuration with a possibility of further modernization and integration into regional warning systems. Results of development individual components of system, including the general ideology of its construction are presented.
 

Keywords: early warning system, railways, seismic monitoring, detection of the signal, man-made noise

Author affiliations:

1Institute of Earthquake Prediction Theory and Mathematical Geophysics (IEPT RAS), Moscow, Russia
2Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences (IPE RAS), Moscow, Russia

 
Contacts: Gravirov Valentin Valentinovich, gravirov@rambler.ru
Article received in edition: 10.11.2016
Full text (In Russ.) >>

REFERENCES

  1. Strategiya razvitiya zheleznodorozhnogo transporta v Rossijskoj Federacii do 2030 goda [The strategy of development of railway transport in the Russian Federation till 2030. Approved by the Order of the Government of the Russian Federation from 6/17/2008 No. 877-r]. (In Russ.).
  2. Hilbring D., Titzschkau T., Buchmann A., Bonn G., Wenzel F., Hohnecker E. Earthquake early warning for transport lines. Nat. Hazards, 2014, vol. 70, no. 3, pp. 1795—1825.
    Doi: 10.1007/s11069-010-9609-3.
  3. Nakamura Y., Saita J. UrEDAS, the earthquake warning system: today and tomorrow. Earthquake Early Warning Systems. P. Gasparini, G. Manfredi, J. Zschau (eds.), Berlin, Heidelberg, Springer, 2007, pp. 249—281. Doi: 10.1007/978-3-540-72241-0.
  4. Erdik M., Şeşetyan K., Demircioğlu M. B., Zülfikar C., Hancılar U., Tüzün C., Harmandar E. Rapid earthquake loss assessment after damaging earthquakes. Chapter 2. Perspectives on European Earthquake Engineering and Seismology. Ed. A. Ansal, Springer, 2014, vol. 1, 650 p.
  5. Kislov K.V., Gravirov V.V., Novikova O.V. [The early warning of earthquakes and other natural and technogenic disasters for Russia]. Problemy prognozirovaniya chrezvychajnyh situacij: Doklady i vystupleniya XIII Nauchno-prakticheskoj konfirencii [Proceedings of the XIII Scientific and practical conference: Problems of forecasting of emergency situations]. Moscow, 2014, pp. 309—316. (In Russ.).
  6. Gravirov V., Kislov K., Gravirova L., Vinberg F. The use of wavelet transformation techniques in structure of an artificial neural network for recognition of early arrival of earthquakes on strongly noisy seismic records. Book of Abstracts of CTBT: Science and Technology. Wien, 2013, pp. 139.
 

V. I. Osika1, B. M. Kochetkov2, E. I. Pavlov3, I. P. Kachan3

FACILITY DEFORMATION MONITORING

"Nauchnoe Priborostroenie", 2017, vol. 27, no. 1, pp. 46—52.
doi: 10.18358/np-27-1-i4652
 

The paper presents the results of scientific cooperation with the Institute and small businesses in order to develop a perspective instrument for facility deformation monitoring. The equipment has passed long-term tests for hydropower facilities, mining enterprises and civil construction projects. The report provides a description of the devices and examples of their application results.
 

Keywords: inclinometer, deformometer

Author affiliations:

1Schmidt Institute of Physics of the Earth of RAS, Moscow, Russia
2Limited liability company "Petrol-spring", Tula, Russia
3Science Park MSU, Limited liability company "Optical measuring systems", Moscow, Russia

 
Contacts: Kachan Irina Petrovna, i.p.kachan@gmail.com
Article received in edition: 13.01.2017
Full text (In Russ.) >>

REFERENCES

  1. Pashkin E.M., Bagmet A.L., Osika V.I., Novak Yu.V., Suchov A.A. [Monitoring of deformations as basis of safe operation of buildings and constructions]. Inzhenernaya geologiya [Engineering geology], Moscow, 2008, no. 3, pp. 40—50. (In Russ.).
  2. Galaganov O.N., Guseva T.V., Krupennikova I.S., Mokrova A.N., Osika V.I., Perederin V.P., Rozenberg N.K. [Straining monitoring as indicator of technogenic influence on the geological and ecological environment]. Monitoring. Nauka i technologii [Monitoring. Science and technologies], 2015, no. 2, pp. 15—24. (In Russ.).
  3. Kochetkov B.M., Molodenskiy S.M., Osika V.I., Osika I.V. [Inclination measuring and straining monitoring on pumped storage power plants]. Georisk [Geological risk], 2009, no. 1, pp. 22—28. (In Russ.).
  4. Lovchikov A.V., Zacharov V.V., Ivachno V.Ya. [Monitoring of a condition of the earned additionally thicknesses of breeds by high-precision straining methods]. Eksperimental'nye issledovaniya napryazhenno-deformirovannogo sostoyaniya massiva shacht i rudnikov [The pilot studies of an intense strained state of the massif of shafts and mines]. Novosibirsk, IGD SO AS USSR, 1991, pp. 142—146. (In Russ.).
  5. Postanovlenie Pravitel'stva Moskvy ot 6 maya 2008 g. ¹ 375-PP "O merach po obespecheniyu inzhenernoy bezopasnosti zdaniy i sooruzheniy i preduprezhdeniyu chrezvychaynych situaziy na territorii goroda Moskvy" [The resolution of the government of Moscow of May 6, 2008 No. 375-PP "About measures for ensuring engineering safety of buildings and constructions and a the prevention of emergency situations in the territory of the city of Moscow"]. URL: http://www.garant.ru/products/ipo/prime/doc/289804/. (In Russ.).
  6. Popov E.I., Rebrov V.I. Naklonomer [Dipmeter]. Copyright certificate No. 1721438, Bulletin of inventions, 1992, no. 11. (In Russ.).
  7. Lovchikov A.V., Osika V.I. Sposob registrazii lineynych deformaziy massiva skal'nych porod [Way of filing of the linear deformations of the massif of rocky breeds]. Copyright certificate No. 2008699, 28.02.1994. (In Russ.).
  8. GOST 53963.1-2010. Vibration. Measurements of vibration of constructions. Requirements to measuring instruments. URL: http://www.internet-law.ru/gosts/gost/50477/. (In Russ.).
  9. Kozyrev A.A., Kagan M.M., Konstantinov K.N., Zhirov D.V. [Straining harbingers of a technogenic earthquake on the integrated Kirov mine of JSC Apatit]. Trudy Vserossiyskoy konf. "Geodinamika i napryazhennoe sostoyanie nedr Zemli", posv. 80-letiyu akad. M.V. Kurleni [Proc. of the All-Russian conference "Geodynamics and Stressed State of a Subsoil of Earth" devoted to the 80 anniversary of the acad. M.V. Kurleni], IGD SO RAS, 2011, vol. II, pp. 228—234. (In Russ.).
 

V. I. Osika, V. A. Pchelintsev

DEVICES FOR CONTROL OF MACROROUGHNESSES OF A WORKING SURFACE OF DISKS OF THRUST BEARINGS AND BIAS OF A SHAFT OF HYDROUNITS OF HYDROELECTRIC POWER STATION

"Nauchnoe Priborostroenie", 2017, vol. 27, no. 1, pp. 53—56.
doi: 10.18358/np-27-1-i5356
 

Data on devices for measurements of a profile of a mirror disk of a thrust bearing and the bias of a shaft of hydrounits are provided in article. Development of Institute of Physics of Earth of the Russian Academy of Sciences passed long-term tests at the Zagorsk hydroheat-sink power plant during planned repairs and technical inspections of rotors of hydrounits. Short data on devices and examples of results of their application are provided in the present article.
 

Keywords: hydroelectric power station, hydrounit, shaft bias, disk, surface profile

Author affiliations:

Schmidt Institute of Physics of the Earth of RAS, Moscow, Russia

 
Contacts: Osika Viktor Ivanovich, osika@ifz.ru
Article received in edition: 16.01.2017
Full text (In Russ.) >>

REFERENCES

  1. Pchelinzev V.A., Osika V.I. Ustroystvo dlya izmereniya makronerovnostey poverchnostey [The device for measurement of macroroughnesses of surfaces]. Russian Federation patent No. 2576631, 17.12.2014.
  2. Pchelinzev V.A., Osika V.I. Ustroystvo dlya izmereniya ugla naklona valov gidroagregatov [The device for measurement of a slope angle of shaft of hydrounits]. Russian Federation patent No. 2569945, 02.09.2014.
  3. Bechterev S.V., Osika V.I., Pchelinzev V.A. [Metering devices for instrumental inspection of a step bearing and shaft of hydrounits]. Gidrotechnicheskoe stroitel'stvo [Hydrotechnical construction], 2008, no. 6, pp. 12—18. (In Russ.).
 

A. N. Arseniev1, N. V. Krasnov1, M. Z. Muradymov1, M. N. Krasnov2

SPECTROSCOPY OF ALKALI METAL AND ALLOYING METAL

"Nauchnoe Priborostroenie", 2017, vol. 27, no. 1, pp. 57—65.
doi: 10.18358/np-27-1-i5765
 

The paper presents experimental results for determining capabilities ion drift spectrometer with electrospray ion source with field desorption ion from solution under dynamic flow dividing the analyzed liquid at atmospheric pressure and normal conditions. As used researched objects aqueous acetonitrile solutions of salts of alkali metals and alloying. A comparison with serial devices capillary electrophoresis "Capel" series. The studies were conducted on the prototype analytical complex ES-IDS (electrospray ion source – ion drift spectrometer), developed at the request of FMBA of Russia under the Federal Target Program "National System of chemical and biological safety of the Russian Federation (2009—2014)".
 

Keywords: ion mobility spectrometer, alkali metals, alloying metals, electrospray liquid

Author affiliations:

1Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia
2Ltd "Grant Instrument", Saint-Petersburg, Russia

 
Contacts: Krasnov Nikolay Vasil'evich, krasnov@alpha-ms.com
Article received in edition: 12.12.2016
Full text (In Russ.) >>

REFERENCES

  1. Cohen M.J., Karasek F.W. Plasma chromatography – a new dimension for gas chromatography and mass spectrometry. J. Chrom. Sciens., 1970, vol. 8, no. 6, pp. 330—337.
    Doi: 10.1093/chromsci/8.6.330.
  2. Young L.M., Saunders J.C., Mahood R.A., Revill C.H., Foster R.J., Ashcroft A.E., Radford S.E. ESI-IMS-MS: A method for rapid analysis of protein aggregation and its inhibition by small molecules. Methods, 2016, vol. 95, pp. 62—69. Doi: 10.1016/j.ymeth.2015.05.017.
  3. Woods L.A., Radford S.E., Ashcroft A.E. Advances in ion-mobility spectrometry-mass spectrometry reveal key insights into amyloid assembly. Biochimica et Biophysica Acta, 2013, vol. 1834, no. 6, pp. 1257—1268.
  4. Hilderbrand A.E., Myung S., Srebalus Barnes C.A., Clemmer D.E. Development of LC-IMS-CID-TOF MS techniques analysis of a 256 component tetrapeptide combinatorial library. J. Am. Soc. Mass Spectrom., 2003, vol. 14, no. 12, pp. 1424—1436.
  5. Sowell R.A., Koeniger S.L., Valentine S.J., Moon M.H., Clemmer D.E. Nanoflow LC/IMS-MS and LC/IMS-CID/MS of protein mixtures. J. Am. Soc. Mass Spectrom., 2004, vol. 15, no. 9, pp. 1341—1353. Doi: 10.1016/j.jasms.2004.06.014.
  6. Baker E.S., Livesay E.A., Orton D.J., Moore R.J., DanielsonIII W.F., Prior D.C., Ibrahim Y.M., LaMarche B.L., Mayampurath A.M., Schepmoes A.A., Hopkins D.F., Tang K., Smith R.D., Belov M.E. An LC-IVS-MS platform providing increased dynamic range for high-throughput proteomic studies. J. Proteome Res., 2010, vol. 9, no. 2, pp. 997—1006. Doi: 10.1021/pr900888b.
  7. Samokish V.A., Krasnov N.V., Muradymov M.Z. [Electrospray ion source with a dynamic division of fluid flow]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2012, vol. 22, no. 3, pp. 5—12.
  8. Samokish V.A., Muradymov M.Z., Krasnov N.V. Electrospray ion sourse with a dynamic liquid flow splitter. Rapid Commun. Mass Spectrometry, 2013, vol. 27, no. 8, pp. 904—908.
    Doi: 10.1002/rcm.6524.
  9. Arseniev A.N., Krasnov N.V., Muradymov M.Z. [Investigation of electrospray stability with dynamic liquid flow splitter]. Mass-spektrometria [Mass-spektrometry], 2014, vol. 11, no. 1, pp. 36—38. (In Russ.).
  10. Arseniev A.N., Krasnov N.V., Muradymov M.Z. Investigation of electrospray stability with dynamic liquid flow splitter. J . Anal . Chem., 2014, vol. 69, no. 14. pp. 30—32.
    Doi: 10.1134/S1061934814140020.
  11. Koriakin P.S., Krasnov I.A., Krasnov N.V., Muradymov M.Z., Krasnov M.N. [Ion mobility spectrometer with an electrospray ion source as detector liquid chromatography]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2015, vol. 25, no. 2, pp. 34—39. http://213.170.69.26/mag/2015/full2/Art3.pdf. (In Russ.).
  12. Arseniev A.N., Alekseev D.N., Belchen G.V., Gavrik M.A., Krasnov N.V., Koryakin P.S., Krasnov I.A., Kurnin I.V., Myaldzin Sh.U., Muradymov M.Z., Monakov A.G., Pavlov V.G., Zvereva A.V., Nikitina S.N., Podolskaya E.P., Prisyach S.S., Semenov S.Yu., Krasnov M.N., Samokish A.V. [Spectroscopy of peptides, proteins and oligonukleotides from solutions by ion mobility]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2015, vol. 25, no. 1, pp. 17—26. http://213.170.69.26/mag/2015/full1/Art2.pdf. (In Russ.). Doi: 10.18358/np-25-1-i1726.
  13. Griffen G.W., Dzidic I., Carroll D.I., Stillwell R.N., Horning E.C. Ion mass assiguments based on mobility measurements validity of plasma chromatographic mass mobility correlations. J. Anal. Chem., 1973, vol. 45, no. 7, pp. 1204—1209. Doi: 10.1021/ac60329a026.
  14. Karasek F.W., Kim S.H., Pokushika S. Plasma chromatography of alkyl amines. J. Anal. Chim., 1978, vol. 50, no. 14, pp. 2013—2016. Doi: 10.1021/ac50036a019.
  15. Preston J.M., Karasek F.W., Kim S.H. Plasma chromatography of phosphorus esters. J. Anal. Chem., 1977, vol. 49, no. 12, pp. 1746—1750. Doi: 10.1021/ac50020a029.
  16. Tou J.G., Boggs G.U. Determination of sub parts-her-million levels of sec-butyl chlorodiphenil oxides in biological tissues by plasma chromatography. J. Anal. Chem., 1976, vol. 48, no. 9, pp. 1351—1357.
  17. Karasek F.W. Plasma chromatography of the polychlorinated biphenyls. J. Anal. Chem., 1971, vol. 43, no. 14, pp. 1982—1986. Doi: 10.1021/ac60308a024.
  18. Karasek F.W., Kim S.H. Identification of the isomeric phthalic acids by mobility and mass spectra. J. Anal. Chem., 1975, vol. 47, no. 7, pp. 1166—1168. Doi: 10.1021/ac60357a074.
  19. Carr T.W. Plasma chromatography of isomeric dihalogenated benzene. J. Anal. Chem., 1977, vol. 15, no. 2, pp. 85—88.
  20. Kim S.H., Spangler G.E. Ion mobility spectrometry/ mass spectrometry of two structurally different ion having identical ion mass. J. Anal. Chem., 1985, vol. 57, no. 2, pp. 567—569.
    Doi: 10.1021/ac50001a056.
  21. Karpas Z., Cohen M.J., Stimac R.M., Wemlund R.F. On the effects of structure and charge distribution an the mobility of ions. Int. J. Mass Spectrom. Ion Processes, 1986, vol. 74, no. 2-3, pp. 153—159.
  22. Karasek F.W., Kilpatrick W.D., Cohen M.J. Qualitative studies of trace constituents by plasma chromatography. J. Anal. Chem., 1971, vol. 43, no. 11, pp. 1441—1447.
    Doi: 10.1021/ac60305a025.
  23. Aleksandrov M.L., Gall L.N., Kusner Yu.S., Krasnov N.V., Nikolaev V.I. [Distribution formation the klastirovannykh of ions in a molecular bunch]. Pis'ma ZhETF [Technical Physics Letters], 1985, vol. 41, no. 5, pp. 203—206. (In Russ.).
  24. Kusner Yu.S., Krasnov N.V., Nikolaev V.I., Prihod'ko V.G., Shkurov V.A. [Magic numbers in cluster ions]. Zhurnal tekhnicheskoj fiziki [Technical Physics], 1984, vol. 54, no. 11, pp. 2212—2221. (In Russ.).
  25. Kusner Yu.S., Krasnov N.V., Mirgorodskaya O.A.. Nikolaeva G.G., Nikolaev V.I. [About mechanisms of formation of quasimolecular ions at evaporation of multicharged ionic clusters in gasdynamic collisions]. Zhurnal tekhnicheskoj fiziki [Technical Physics], 1988, vol. 58, no. 11, pp. 2113—2123. (In Russ.).
  26. Aleksandrov M.L., Gall L.N., Krasnov N.V., Nikolaev V.I., Shkurov V.A. [The operated fragmentation of organic molecules in mass spectrometry with extraction of ions from solution with an atmospheric pressure]. Mass-spektrometriya i himicheskaya kinetika [Mass-spectrometry and chemical kinetics], ed. V.L. Tal'roze, Moscow, Nauka Publ., 1986, pp. 304—313. (In Russ.).
  27. Nazimov I.V., Krasnov N.V., Novikov A.V., Bublyaev R.A., Fironov S.V., Prisyach S.S., Muradymov M.Z. [Analytical station for peptide amino acid sequencing]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2011, vol. 21, no. 4, pp. 22—26.
  28. Nikol'skij B.P., ed. Spravochnik himika. T . 1 [Reference book of the chemist. Vol. 1]. Moscow, Leningrad, 1982, pp. 329—332. (In Russ.).
 

A. V. Grebenyuk1, S. M. Irkaev1, V. V. Panchuk1,2, V. G. Semenov1,2

OPTIMIZATION OF THE GEOMETRIC CONDITIONS IN THE ABSORPTION MöSSBAUER EXPERIMENT

"Nauchnoe Priborostroenie", 2017, vol. 27, no. 1, pp. 66—71.
doi: 10.18358/np-27-1-i6671
 

The article is devoted to the development of methodical recommendations for selection of the optimum geometric conditions in the Mössbauer experiment. These conditions allow user to get the spectrum with the largest aperture ratio and with minimal distortion of spectral lines.
Mössbauer spectra of α-Fe with different collimation of gamma-ray beam were simulated. For this purpose we calculated the transmission integral taking into account geometrical parameters. Analysis the dependence of distortion spectral lines on the resonant velocity was done. The basic requirements for the geometrical conditions of the experiment were presented. We calculated the dependence of the critical angle divergence from the line position in the Mössbauer spectrum. This angle provides that the shift of lines and their widths don’t exceed 10% of natural width. The obtained dependence allows the experimenter to select geometrical conditions that don’t lead to a significant distortion of the spectral lines. These conditions are required for use in Mossbauer spectroscopy for qualitative and quantitative analysis.
 

Keywords: Mössbauerov spectroscopy, Doppler shift, divergence of a gamma radiation, gamma radiation collimation, cosine effect, hyperfine

Author affiliations:

1Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia
2Saint-Petersburg State University, Institute of Chemistry, Saint-Petersburg, Russia

 
Contacts: Grebenyuk Andrey Vladimirovich, yax-light@yandex.ru
Article received in edition: 16.11.2016
Full text (In Russ.) >>

REFERENCES

  1. Gor'kov V.P., Mitrofanov K.P. [Dependence of parameters of a Mössbauer range on geometrical experimental conditions]. Nekotorye voprosy avtomatizirovannoj obrabotki i interpretacii fizicheskogo ehksperimenta [Some questions of the automated processing and interpretation of a physical experiment], Moscow, Moscow University press, 1973, vol. 1, pp. 71—87. (In Russ.).
  2. Nistor C., Tinu T. Influence of the sourceabsorbent geometry on experimentally determined Mössbauer spectrum parameters. Rev. Roum. Phys., 1966, vol. 11, pp. 551—558.
  3. Hershkowitz N. Velosity shifts in Mössbauer spectroscopy. Nucl. Inst. Meth., 1967, vol. 53, pp. 172. Doi: 10.1016/0029-554X(67)91349-3.
  4. Gor'kov V.P. [Taking note of hardware factors in Mössbauer spectroscopy]. Obrabotka i interpretaciya fizicheskogo ehksperimenta [Processing and interpretation of a physical experiment], Moscow, Moscow University press, 1980, pp. 99—103. (In Russ.).
  5. Spijkerman J.J., Ruegg F.C., DeVoe J.R. Standardization of the differential chemical shift for 57Fe. Mössbauer effect methodology, 1965, vol. 1, pp. 115—120. Doi: 10.1007/978-1-4757-1541-5_10.
  6. Belyaev A.A., Volodin V.S., Irkaev S.M., Panchuk V.V., Semenov V.G. Methodological problems of quantitative analysis in Mössbauer spectroscopy. Bulletin of the Russian academy of sciences: Physics, 2010, vol. 74, no. 3, pp. 326—329. Doi: 10.3103/S1062873810030081.
  7. Grebenyuk A.V., Irkaev S.M., Panchuk V.V., Semenov V.G. [Ab initio calculation of optimum absorber thickness in Mössbauer spectroscopy]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2016, vol. 26, no. 1, pp. 47—53. Doi: 10.18358/np-26-1-i4753.
 

A. I. Zhernovoy, Yu. V. Ulashkevich, S. V. Diachenko

THE DISCRETENESS OF MAGNETIC MOMENTS OF SINGLE-DOMAIN FERROMAGNETIC NANOPARTICLES

"Nauchnoe Priborostroenie", 2017, vol. 27, no. 1, pp. 72—76.
doi: 10.18358/np-27-1-i7276
 

The linear character of IR spectra of magnetic liquid in a magnetic field showed that magnetic moment P values of single-domain ferromagnetic nanoparticles are discrete. Using the distance between lines of spectra, that have been got under magnetic induction values of 0.08 and 0.03 T, magnetic moment’s discrete steps were determined. Their values are: ΔP = 0.66·10–19 and 0.97·10–19 A·m2. It was suggested, that discreteness P has been caused by quantification of nanoparticle from magnetic flow Φ. Supposing that nanoparticle’s link between P and Φ is similar to solenoid’s: Φ = (Pµ0 / L), where L – solenoid’s length, the effective length of magnetic flow’s quant is: Lf = (∆Pµ0 / f) ≈ a0, where f = 2·10–15 Wb — quant of magnetic flow, a0 ≈ 0.5·10–10 m — Bohr radius. The less the induction of field is, the more quant’s length is.
 

Keywords: single-domain ferromagnetic nanoparticles, magnetic moment, magnetic flow, the quantum of magnetic flow

Author affiliations:

Saint-Petersburg State Institute of Technology (Technical University), Russia

 
Contacts: Zhernovoy Aleksandr Ivanovich , azhspb@rambler.ru
Article received in edition: 21.11.2016
Full text (In Russ.) >>

REFERENCES

  1. Zhernovoy A.I., Ulashkevich Yu.V., Diyachenko S.V. [Magnetic fluid in magnetic field infrared absorbtion spectra investigation]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2016, vol. 26, no. 2, pp. 60—63. Doi: 10.18358/np-26-2-i6063. (In Russ.).
  2. Berkovskiy B.M., Medvedev V.F., Krakov M.S. Magnitnye zhidkosti [Magnetic liquids]. Moscow, Chimiya Publ., 1989, 240 p. (In Russ.).
  3. Emelyanov S.G., Karpova G.V., Paukov V.M., Polunin V.M., Ryapolov P.A. [Estimation of physical parameters of magnetic nanoparticles]. Akusticheskiy zhurnal [Acoustical Physics], 2010, vol. 56, no. 3, pp. 283—289. Doi: 10.1134/S1063771010030048.
 

D. V. Dvortsov, V. A. Parfenov

MULTIMODE REGIME OF RED LASER DIODES

"Nauchnoe Priborostroenie", 2017, vol. 27, no. 1, pp. 77—82.
doi: 10.18358/np-27-1-i7782
 

Multimode lasing regime of red laser diodes with Fabry–Perot resonator (FP-laser diodes) is considered in the paper. This regime is usual between the areas of single-frequency generation and it is not acceptable for many practical applications. Interest in this issue is associated with the possibility to determine the boundaries of the single-frequency generation regime. It is shown that multimode regime can be realized in differently for different types of lasers. It is found that there are at least two different types of realization of multimode generation. In one case there was a switching of two competing longitudinal modes, in the other case – switching of three modes. Short-time switches of generating mode with following return of lasing regime may occur for a short (about 1 µs) time at almost steady single frequency regime.
 

Keywords: laser diode, semiconductor laser, single-frequency mode of operation, single longitudinal mode, multimode lasing

Author affiliations:

Peter the Great Saint-Petersburg Polytechnic University, Russia

 
Contacts: Parfenov Vladimir Aleksandrovich, ppparfen@mail.ru
Article received in edition: 2.12.2016
Full text (In Russ.) >>

REFERENCES

  1. Dvortsov D.V., Parfenov V.A. [Single-frequency operating mode of laser diodes]. NTV SPbGPU. Fiz.-mat. nauki [St. Petersburg State Polytechnical University Journal. Physics and Mathematics], 2013, no. 2 (170), pp. 89—96. (In Russ.).
  2. Dvortsov D.V., Parfenov V.A. [Spectral characteristics of single-frequency mode of operation of diode lasers]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2014, vol. 24, no. 3, pp. 42—48. URL: http://213.170.69.26/mag/2014/full3/Art6.pdf. (In Russ.).
  3. Dvortsov D.V., Parfenov V.A. [Research of dependence of emissive power of laser diodes on an operation mode]. Sbornik dokumentov 24-i Mezhdunarodnoj konfirencii "LAZERY, IZMERENIYA, INFORMACIYA", t. 2 [Proc. 24th International conference "LASERS, MEASUREMENTS, INFORMATION", vol. 2]. Saint-Petersburg, Peter the Great Saint-Petersburg Polytechnic University Publ., 2014, pp. 153—157. (In Russ.).
  4. Camparo J.C. The diode laser in atomic physics. Contemp. Phys., 1985, vol. 26, no. 5, pp. 443—477.
  5. Wieman C.E., Hollberg L. Using diode lasers for atomic physics. Rev. Sci. Instrum., 1991, vol. 62, no. 1, pp. 1—20. Doi: 10.1063/1.1142305.
  6. Fox R.W., Hollberg L., Zibrov A.S. Semiconductor Diode Lasers. Experimental Methods in the Physical Sciences, vol. 29, part C, Atomic, Molecular, and Optical Physics: Electromagnetic Radiation, Eds. F.B. Dunning and R.G. Hulet, Elsevier, 1997. P. 77—102. Doi: 10.1016/S0076-695X(08)60613-4.
  7. Friman R. Volokonno-opticheskie sistemy svyazi [Fiber-optical communication systems]. Moscow, Associate printing-and-publication centre Technosphera, 2006. 496 p. (In Russ.).
  8. Acsente T. Laser diode intensity noise induced by mode hopping. Romanian Reports in Physics, 2007, vol. 59, no. 1, pp. 87—92.
 

D. A. Belov1, Yu. V. Belov1, V. V. Manoylov1,2

DNA MELTING DATA PROCESSING TECHNIQUES DEVELOPMENT

"Nauchnoe Priborostroenie", 2017, vol. 27, no. 1, pp. 83—89.
doi: 10.18358/np-27-1-i8389
 

The conditions and parameters of the implementation of the DNA melting techniques were chosen. There were developed the DNA melting data processing techniques with advanced models based on sigmoidal nonlinear function and its derivative, a model based on a Gaussian function, a model based on power polynomials of degree 3 and 7. The comparison of the results of the application of techniques for processing real data of 8 samples received on the device ANK-32 was carried out. An algorithm for computing the full automation in MATLAB software environment was developed. The possibility of the separation of systematic and random error are shown. Developed techniques used to determine the temperature unevenness in nucleic acid analyzer tubes.
 

Keywords: DNA, the nucleic acid analyzer, melting techniques, uneven temperature tubes

Author affiliations:

1Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia
2ITMO University, Saint-Petersburg, Russia

 
Contacts: Belov Dmitriy Anatol'evich, onoff_10@mail.ru
Article received in edition: 12.01.2017
Full text (In Russ.) >>

REFERENCES

  1. Vedenov A.A., Dychne A.M., Frank-Kamenezkiy M.D. [The helix-coil transition in DNA]. Physics-Uspekhi [Advances in Physical Sciences], 1972, vol. 14, no. 6, pp. 715—736.
  2. DNK plavlenie [DNA melting]. URL: http://humbio.ru/humbio/dnastructure/0002a247.htm. (In Russ.).
  3. Kalendar' R.N., Sivolap Yu.M. [Polymerase chain reaction with the arbitrariest primers]. Biopolimery i kletka [Biopolmers and cell], 1996, vol. 11, no. 3-4, pp. 55—65. URL: http://www.biopolymers.org.ua/pdf/ru/11/3/055/biopolym.cell-1995-11-3-055-ru.pdf. (In Russ.).
  4. Sivolap Yu.M., Kalendar' R.N., Chebotar' S.V. [Genetic polymorphism of cereals by means of PCR with the arbitrariest primers]. Citologiya i genetika [Cytology and genetics], 1994, vol. 28, no. 6, pp. 54—61. URL: http://www.biocenter.helsinki.fi/bi/genomedynamics/Pdfs/zyt.pdf. (In Russ.).
  5. Gibridizaziya_DNK. Vychislenie temperatury plavleniya [DNA hybridization. Melting point calculation]. URL: https://ru.wikipedia.org/wiki/Ãèápèäèçaöèÿ_ÄHK. (In Russ.).
  6. Rebrikov D.V., Samatov G.A., Trofimov D.Yu. Seme­nov P.A., Savilova A.M., Kofiadi I.A., Abramov D.D. PCR "v real'nom vremeni" [PCR "in real time"]. Moscow, BINOM. Laboratoriya znaniy Publ., 2009. 224 p.
  7. Belov D.A., Korneva N.A., Aldekeeva A.S., Belov Yu.V., Kiselev I.G. [Genetic analyzer resolution increasing at DNA melting temperature determination]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2016, vol. 26, no. 2. pp. 17—22. Doi: 10.18358/np-26-2-i1722. (In Russ.).
  8. Belov D.A, Belov Yu.V., Manoylov V.V. [Method of processing data in melting of real-time polymerase chain reactions]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2016, vol. 26, no. 3, pp. 10—14. Doi: 10.18358/np-26-3-i1014. (In Russ.).
  9. Eydel'shteyn M.V., Alekseev Ya.I., Nikulin A.A., Romanov A.V., Kozlov R.S. Sposob detekzii spezificheskich nukleotidnych posledovatel'nostey i nukleotidnych zamen s pomosch'yu PCR v rezhime real'nogo vremeni s effektom gasheniya fluoreszenzii zonda praymerom [Way of detection of the specific nucleotide sequences and nucleotide replacements by means of PTsR in real time with effect of clearing of a bloom of the probe with a primer]. Patent RF No. 2451086. 20.05.2012. (In Russ.).
 

S. I. Shevchenko

ABOUT THE PROPERTIES OF CYLINDRICAL MIRRORS FOR THE ACCOUNTING OF ELECTRONS WITH THE AZIMUTHAL COMPONENT OF VELOCITY. THE DISTRIBUTION OF ELECTRONS NEAR THE OUTPUT APERTURE

"Nauchnoe Priborostroenie", 2017, vol. 27, no. 1, pp. 90—101.
doi: 10.18358/np-27-1-i90101
 

By numerical simulation the distribution of electrons on the surface of the cylinder containing the output aperture for schemes axele-ring and the ring-ring of the cylindrical mirror are investigated. The distributions for different values of the starting radius, the radius of the cylinder and the width of the emission ring are obtained. It is shown that for a fixed width emission rings and increasing its radius among two competing processes (increase the current on detector by increasing the area of emissions and current decreasing due to the greater proportion of electrons with an azimuthal velocity component) dominates the first. It is shown that the peaks of the electron distribution on the surface of the cylinder are increased significantly with increasing radius of the emission ring, becoming asymmetrical with increasing of the peak tails.
 

Keywords: energy analyzer, cylindrical mirror, emission ring, output aperture

Author affiliations:

Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia

 
Contacts: Shevchenko Sergey Ivanovich, nyro2@yandex.ru
Article received in edition: 18.11.2016
Full text (In Russ.) >>

REFERENCES

  1. Afanas'ev V.P., Yavor S.Ya. Elektrostaticheskie ehnergoanalizatory dlya puchkov zaryazhennyh chastic [Electrostatic power analyzers for bunches of charged particles]. Moscow, Nauka Publ., 1978. 224 p. (In Russ.).
  2. Kozlov I.G. Sovremennye problemy ehlektronnoj spektroskopii [Modern problems of electronic spectroscopy]. Moscow, Atomizdat Publ., 1978. 248 p. (In Russ.).
  3. Yavor M. Optics of charged particle analyzers. Elsevier, Advances in Imaging and Electron Physics, 2009, vol. 157. 381 p.
  4. Zashkvara V.V., Korsunskij M.I., Lavrov V.P., Red'kin V.S. [About influence of the final size of a source on focusing of a bunch of charged particles in an electrostatic spectrometer with the cylindrical field]. ZhTF [Technical Physics], 1971, vol. 41, no. 1, pp. 187—192. (In Russ.).
  5. Sar‐El H.Z. Cylindrical mirror analyzer with surface entrance and exit slots. I. Nonrelativistic Part. Review of Scientific Instruments, 1971, vol. 42, no. 11, pp. 43—48. Doi: 10.1063/1.1684948 [Russ. ed.: Sar‐El H.Z. Pribory dlya nauchnyh issledovanij, 1971, vol. 42, no. 11, pp. 43—48].
  6. Aksela S. Instrument function of a cylindrical electron energy analyzer. Review of Scientific Instruments, 1972, vol. 43, no. 9, pp. 122—128. Doi: 10.1063/1.1685923 [Russ. ed.: Aksela S. Pribory dlya nauchnyh issledovanij, 1972, vol. 43, no. 9, pp. 122—128].
  7. Draper J.E., Lee Ch.-yi. Response functions of ring‐to‐axis, axis‐to‐axis, and n=1.5 cylindrical mirror analyzers with finite source and slit and central angle 30°—65°. Review of Scientific Instruments, 1977, vol. 48, no. 7, pp. 138—154. Doi: 10.1063/1.1135162 [Russ. ed.: Draper J.E., Lee Ch.-yi. Pribory dlya nauchnyh issledovanij, 1977, vol. 48, no. 7, pp. 138—154].
  8. Zashkvara V.V., Korsunskij M.I., Kosmachev O.S. [The focusing properties of an electrostatic mirror with the cylindrical field]. ZhTF [Technical Physics], 1966, vol. 36,
    no. 1, pp. 132—137. (In Russ.).
  9. Zashkvara V.V., Ashimbaeva B.U. [The proofreader of the line of focuses of an electrostatic mirror with the field close to cylindrical]. ZhTF [Technical Physics], 1976. vol. 46, no. 8, pp. 1755—1759. (In Russ.).
  10. Shevchenko S.I. [Some aspects of the energy analyzer work of a cylindrical mirror type. Part III]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2013, vol. 23, no. 3, pp. 56—68.
  11. Kel'man V.M., Yavor S.Ya. Elektronnaya optika [Electron optics]. Leningrad, Nauka Publ., 1968. 372 p. (In Russ.).
  12. Krylov V.I. Shul'gina L.T. Spravochnaya kniga po chislennomu integrirovaniyu [The reference book on numerical integration]. Moscow, Nauka Publ., 1966. 370 p. (In Russ.).
  13. Abramovic V.A., Stigan I. Spravochnik po special'nym funkciyam [Reference book on special functions]. Moscow, Nauka Publ., 1979. 830 p. (In Russ.).
  14. Shevchenko S.I. [Multidimensional functions’ approximation]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2010, vol. 20, no. 2, pp. 73—81. URL: http://213.170.69.26/mag/2010/full2/Art10.pdf. (In Russ.).
  15. Sobol' I.M. Metod Monte-Karlo. Populyarnye lekcii po matematike [Monte-Carlo method. Popular lectures on mathematics]. Moscow, Nauka Publ., 1968, no. 46. 64 p. (In Russ.).
  16. Dvajt G.B. Tablicy integralov i drugie matematicheskie formuly [Tables of integrals and other mathematical formulas]. Moscow, Nauka Publ., 1973. 228 p. (In Russ.).
  17. Hemming R.V. Chislennye metody [Numerical methods]. Moscow, Nauka Publ., 1968. 400 p. (In Russ.).
  18. Shevchenko S.I. [About the lower and upper input of electrons in cylindrical mirror analyzer. Part 1]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2015, vol. 25, no. 3, pp. 19—28.
    Doi: 10.18358/np-25-3-i1928. (In Russ.).
 

B. P. Sharfarets

VARIATIONAL METHODS AS THE MOST EFFECTIVE MECHANISM FOR MODELING PHYSICAL INTERRELATED FIELDS IN CONTINUOUS MEDIUM.
I. OVERVIEW OF THE THEORY

"Nauchnoe Priborostroenie", 2017, vol. 27, no. 1, pp. 102—112.
doi: 10.18358/np-27-1-i102112
 

In order to solve the problem of choosing the most effective mechanism for mathematical modeling of Interrelated physical fields in continuous media are considered using the variational approach. It summarizes the current theory on the subject, based on the use of variational principles, or variational equations. Specifies the criteria for their selection, discusses the features of this method. Is provided specific example. In the second part of the work will be done the analysis of the cases, when the variational approach is only possible to produce mathematical models of multiphysical phenomena. The appendix describes the dissipative function (dissipative potential) in the case of a homogeneous viscous heat-conducting fluid, which plays an important role in the modeling of irreversible processes.
 

Keywords: mechanics of continua, related physical fields, variational principle, the variational equation,
terms of holonomic of variational equations, dissipative potential

Author affiliations:

Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia

 
Contacts: Sharfarets Boris Pinkusovich, sharb@mail.ru
Article received in edition: 15.12.2016
Full text (In Russ.) >>

REFERENCES

  1. Berdichevskij V.L. Variacionnye principy mekhaniki sploshnoj sredy [Variation principles of mechanics of the continuous environment]. Moscow, Nauka Publ., 1983. 448 p. (In Russ.).
  2. Rayleigh, Lord. On the Instability of jets. Proceedings of the London mathematical Society, 1878, vol. 10, pp. 4—13.
  3. Biot M.A. Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range. J. Acoust. Soc. Am., 1956, vol. 28, pp. 168—178. Doi: 10.1121/1.1908239.
  4. Biot M.A. Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. J. Acoust. Soc. Am., 1956, vol. 28, pp. 179—191. Doi: 10.1121/1.1908241.
  5. Johnson D.L. Recent developments in the acoustic properties of porous media. Frontiers in Physical Acoustics, XCIII, North Holland, 1986, pp. 255—290.
  6. Knyaz'kov N.N., Sharfarets B.P. [Acoustics of porous-elastic fluid saturated medium (an overview of the Biot theory)]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2016, vol. 26, no. 1, pp. 77—84. URL: Doi: 10.18358/np-26-1-i7784. (In Russ.).
  7. Polak L.S., ed. Variacionnye principy mekhaniki [Variation principles of mechanics]. Collection of articles. Moscow, Fizmatgiz Publ., 1959. 952 p. (In Russ.).
  8. Polak L.S. Variacionnye principy mekhaniki. Ih razvitie i primenenie v fizike [Variation principles of mechanics. Their development and application in physics]. Moscow, URSS Publ., 2010. 600 p. (In Russ.).
  9. Rayleigh, Lord. Teoriya zvuka [The Theory of Sound]. Vol. 1. Moscow, GITTL Publ., 1955. 504 p. (In Russ.).
  10. Kurant R., Gilbert D. Metody matematicheskoj fiziki [Methods of mathematical physics]. Vol. 1. Moscow, GTTI Publ., 1933. 525 p. (In Russ.).
  11. Mors F.M., Feshbah G. Metody teoreticheskoj fiziki [Methods of theoretical physics]. Vol. 1. Moscow, IIL Publ., 1958. 930 p. (In Russ.).
  12. Bio M. Variacionnye principy v teorii teploobmena [The variation principles in the theory of heat exchange]. Moscow, Energy Publ., 1975. 209 p. (In Russ.).
  13. Serrin J. Matematicheskie osnovy klassicheskoj mekhaniki zhidkosti [Mathematical principles of classical fluid mechanics]. Moscow, Inostrannaya literatura Publ., 1963. 256 p. (In Russ.).
  14. Pierce A.D. Variational formulations in acoustic radiation and scattering. Physical Acoustics, vol. XXII, San Diego, Acad. Press, 1993. pp. 195—394.
  15. Sedov L.I. [Mathematical methods of creation of new models of continuous environments]. Uspekhi matematicheskikh nauk [Achievements of mathematical sciences], 1965, vol. 20, no. 5, pp. 121—180. (In Russ.).
  16. Prohorov A.M., ed. Fizicheskaya ehnciklopediya [Physical encyclopedia]. In 5 vol. Moscow, Sovetskaya ehnciklopediya Publ., 1988—1998. 704+704+672+704+760 p. (In Russ.).
  17. Gibbs J. Termodinamicheskie raboty [Thermodynamic works]. Moscow, Leningrad, Gostekhizdat Publ., 1950. 492 p. (In Russ.).
  18. Vajnberg M.M. Variacionnye metody issledovaniya nelinejnyh operatorov [Variation methods of a research of nonlinear operators]. Moscow, Gostekhizdat Publ., 1956. 344 p. (In Russ.).
  19. Vajnberg M.M. Variacionnyj metod i metod monotonnyh operatorov [Variation method and method of monotonous operators]. Moscow, Nauka Publ., 1972. 416 p. (In Russ.).
  20. Faddeev L.D., ed. Ehnciklopediya matematicheskoj fiziki [Encyclopedia of mathematical physics]. Moscow, Bol'shaya rossijskaya ehnciklopediya Publ., 1998. 691 p. (In Russ.).
  21. Landau L.D., Lifshic E.M. Teoreticheskaya fizika. T. 1. Mekhanika [Theoretical physics. Vol. 1. Mechanics]. Moscow, Nauka Publ., 1988. 216 p. (In Russ.).
  22. Landau L.D., Lifshic E.M. Teoreticheskaya fizika. T. VI. Gidrodinamika [Theoretical physics. Vol. VI. Hydrodynamics]. Moscow, Nauka Publ., 1988. 736 p. (In Russ.).
  23. Sharfarets B.P., Sharfarets E.B., Knyaz'kov N.N., Pashovkin T.N. [Some features of the numerical solution of tasks of thermoelasticity and hydrodynamics heat-conducting compressed viscous liquid by means of universal packages]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2016, vol. 26, no. 3, pp. 57—63. Doi: 10.18358/np-26-3-i5763. (In Russ.).
  24. Yavorskiy B.M., Detlaf A.A., Lebedev A.K. Spravochnik po fizike. Dlya inzhenerov i studentov vuzov [Reference book on physics. For engineers and students of higher education institutions]. Moscow, Oniks: Mir i obrazovanie Publ., 2006. 1056 p. (In Russ.).
  25. Schlichting H. Teoriya pogranichnogo sloya [Boundary layer theory]. Moscow, Nauka Publ., 1974. 712 p. (In Russ.).
 

Ulitsa Ivana Chernykh, 31-33, lit. A, St. Petersburg, Russia, 198095, P.O.B. 140
tel: (812) 3630719, fax: (812) 3630720, mail: iap@ianin.spb.su

content: Valery D. Belenkov design: Banu S. Kuspanova layout: Anton V. Manoilov