logo
blue band <-
  JOURNAL "NP" ISSUES

"Nauchnoe Priborostroenie", 2024, Vol. 34, no. 3. ISSN 2312-2951

"NP" 2024 year Vol. 34 no. 3.,   ABSTRACTS

ABSTRACTS, REFERENCES

G. E. Rudnitskaya, A. N. Zubik, A. A. Evstrapov

MICROVALVES IN MICROFLUIDIC DEVICES.
PART 2. PASSIVE MICROVALVES (REVIEW)

"Nauchnoe Priborostroenie", 2024, vol. 34, no. 3, pp. 3—27.
 

Valves are important functional elements needed to create microfluidic devices, lab-on-a-chip platforms, and micro total analysis systems (μTAS). An ideal microfluidic system integrates numerous sequential operations, provides precise spatiotemporal release of reagents and flow control, and is suitable for fast and low-cost fabrication. Therefore, the development of valves is one of the most important tasks when constructing such systems. Compared to active valves, passive valves are more convenient for integration into microfluidic devices, since they allow you to regulate the flow rate without complex feedback and provide flow shut-off, flow mixing, etc. Passive microvalves have a lower cost and simpler design than active ones. The article discusses passive check and capillary microvalves and provides examples of different designs.
 

Keywords: microfluidics, microfluidic devices, microvalve, passive valve, capillary microvalves

Author affiliations:

Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia

 
Contacts: Zubik Aleksandra Nikolaevna, tunix@yandex.ru
Article received by the editorial office on 02.04.2024

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Sesen M., Rowlands C.J. Thermally-actuated microfluidic membrane valve for point-of-care applications. Microsyst Nanoeng, 2021, vol. 7, Id. 48. DOI: 10.1038/s41378-021-00260-3
  2. Keating S.J., Gariboldi M.I., Patrick W.G., Sharma S., Kong D.S., Oxman N. 3D Printed Multimaterial Microfluidic Valve. PLoS ONE, 2016, vol. 11, no. 8, Id. e0160624. DOI: 10.1371/journal.pone.0160624
  3. Qian J.-Y., Hou C.-W., Li X.-J., Jin Z.-J. Actuation Mechanism of Microvalves: A Review . Micromachines, 2020, vol. 11, no. 2, Id. 172. DOI: 10.3390/mi11020172
  4. Zubik A.N., Rudnitskaya G.E., Evstrapov A.A. Micro-valves in microfluidic devices. Part 1. Active microvalves. Nauchnoe Priborostroenie [Scientific Instrumentation], 2023, vol. 33, no. 4, pp. 3—27. (In Russ.). URL: http://iairas.ru/mag/2023/abst4.php#abst1
  5. Oh K.W., Ahn C.H. A review of microvalves. J. Micromech. Microeng., 2006, vol. 16, no. 5, pp. R13—R39. DOI: 10.1088/0960-1317/16/5/R01
  6. Chang Y.-J., Chen S.-C., Hsu C.-L. Study on microchannel design and burst frequency detection for centrifugal microfluidic system. Adv Mat Sci Eng, 2013, vol. 2013, Id. 137347. DOI: 10.1155/2013/137347
  7. Yamada M., Seki M. Nanoliter-sized liquid dispenser array for multiple biochemical analysis in microfluidic devices. Anal Chem, 2004, vol. 76, pp. 895—899. DOI: 10.1021/ ac0350007
  8. Wu J., Fang H., Zhang J., Yan S. Modular microfluidics for life sciences. J Nanobiotechnol, 2023, vol. 21, Id. 85. DOI: 10.1186/s12951-023-01846-x
  9. Yang B., Lin Q. A Planar Compliance-Based Self-Adaptive Microfluid Variable Resistor. Journal of Microelectromechanical Systems, 2007, vol. 16, no. 2, pp. 411—419. DOI: 10.1109/jmems.2007.892892
  10. Ni J., Huang F., Wang B., Li B., Lin Q. A planar PDMS micropump using in-contact minimized-leakage check valves. J. Micromech. Microeng., 2010, vol. 20, no. 9, Id. 095033. DOI: 10.1088/0960-1317/20/9/095033
  11. Chang H.-J., Ye W., Kartalov E.P. Quantitative modeling of the behaviour of microfluidic autoregulatory devices. Lab Chip, 2012, vol. 12, no. 10, pp. 1890—1896. DOI: 10.1039/c2lc20956j
  12. Zhang X., Oseyemi A.E. Microfluidic Passive Valve with Ultra-Low Threshold Pressure for High-Throughput Liquid Delivery. Micromachines, 2019, vol. 10, no. 12, Id. 798. DOI: 10.3390/mi10120798
  13. Brask A., Snakenborg D., Kutter J.P., Bruus H. AC electroosmotic pump with bubble-free palladium electrodes and rectifying polymer membrane valves. Lab Chip, 2006, vol. 6, no. 2, pp. 280—288. DOI: 10.1039/b509997h
  14. Doh I., Cho Y.-H. Passive flow-rate regulators using pressure-dependent autonomous deflection of parallel
    membrane valves. Lab Chip, 2009, vol. 9, no. 14, Id. 2070. DOI: 10.1039/b821524c
  15. Zhang Õ., Zhang Z. Microfluidic Passive Flow Regulatory Device with an Integrated Check Valve for Enhanced
    Flow Control. Micromachines, 2019, vol. 10, no. 10, Id. 653. DOI: 10.3390/mi10100653
  16. Zhang X., Wang X., Chen K., Cheng J., Xiang N., Ni Z. Passive flow regulator for precise high-throughput flow rate control in microfluidic environments. RSC Advances, 2016, vol. 6, no. 38, pp. 31639—31646. DOI: 10.1039/c6ra01093h
  17. Hyeon J., So H. Microfabricaton of microfluidic check valves using comb-shaped moving plug for suppression of backflow in microchannel. Biomed Microdevices, 2019, vol. 21, Id. 19. DOI: 10.1007/s10544-019-0365-1
  18. Lau K.H., Giridhar A., Harikrishnan S., Satyanarayana N., Sinha S.K. Releasing high aspect ratio SU-8 microstructures using AZ photoresist as a sacrificial layer on metallized Si substrates. Microsystem Technologies, 2013, vol. 19, no. 11, pp. 1863—1871. DOI: 10.1007/s00542-013-1740-0
  19. Kim T., Jo K. Microfluidic Device to Maximize Capillary Force Driven Flows for Quantitative Single-Molecule DNA Analysis. BioChip J, 2023, vol. 17, pp. 384—392. DOI: 10.1007/s13206-023-00115-1
  20. Glière A., Delattre C. Modeling and fabrication of capillary stop valves for planar microfluidic systems. Sensors and Actuators A: Physical, 2006, vol. 130-131, pp. 601—608. DOI: 10.1016/j.sna.2005.12.011
  21. Andersson H., van der Wijngaart W., Griss P., Niklaus F., Stemme G. Hydrophobic valves of plasma deposited octafluorocyclobutane in DRIE channels. Sensors and Actuators B: Chemical, 2001, vol. 75, no. 1-2, pp. 136—141. DOI: 10.1016/s0925-4005(00)00675-4
  22. Man P.F., Mastrangelo C.H., Burns M.A., Burke D.T. Microfabricated capillary driven stop valves and sample injector. Proc. MEMS Conference, Heidelberg, Germany, January 25—29, 1998. DOI: 10.1109/MEMSYS.1998.659727
  23. Zoval J.V., Madou M.J. Centrifuge-Based Fluidic Platforms. Proceedings of the IEEE, 2004, vol. 92, no. 1, pp. 140—153. DOI: 10.1109/jproc.2003.820541
  24. Wang S., Zhang X., Ma C., Yan S., Inglis D., Feng S.
    A Review of Capillary Pressure Control Valves in Microfluidics. Biosensors (Basel), 2021, vol. 11, no. 10, Id. 405. DOI: 10.3390/bios11100405
  25. Zhang Y., Chen Y., Huang J., Liu,Y., Peng J., Chen S., Song K., Ouyang X., Cheng H., Wang X. Skin-interfaced microfluidic devices with one-opening chambers and hydrophobic valves for sweat collection and analysis. Lab Chip. 2020, vol. 20, no. 15, pp. 2635—2645. DOI: 10.1039/D0LC00400F
  26. Mohammed M.I., Desmulliez M.P.Y. Characterization and Theoretical Analysis of Rapidly Prototyped Capillary Action Autonomous Microfluidic Systems. Journal of Microelectromechanical Systems, 2014, vol. 23, no. 6, pp. 1408—1416. DOI: 10.1109/jmems.2014.2314470
  27. Zimmermann M., Hunziker P., Delamarche E. Valves for autonomous capillary systems. Microfluid. Nanofluid., 2008, vol. 5, pp. 395—402. DOI: 10.1007/s10404-007-0256-2
  28. Olanrewaju A., Beaugrand M., Yafia M., Juncker D. Capillary microfluidics in microchannels: from microfluidic networks to capillaric circuits. Lab Chip, 2018, vol. 18, no. 16, pp. 2323—2347. DOI: 10.1039/C8LC00458G
  29. Melin J., Roxhed N., Gimenez G., Griss P., van der Wijngaart W., Stemme G. A liquid-triggered liquid microvalve for on-chip flow control. Sens. Actuators, B: Chemical, 2004, vol. 100, no. 3, pp. 463—468. DOI: 10.1016/j.snb.2004.03.010
  30. Safavieh R., Juncker D. Capillarics: pre-programmed, self-powered microfluidic circuits built from capillary elements. Lab Chip, 2013, vol. 13, no. 21, pp. 4180—4189. DOI: 10.1039/C3LC50691F
  31. Olanrewaju A.O., Robillard A., Dagher M., Juncker D. Autonomous microfluidic capillaric circuits replicated from 3D-printed molds. Lab Chip, 2016, vol. 16, no. 19, pp. 3804—3814. DOI: 10.1039/C6LC00764C
  32. Li J., Liang C., Zhang B., Liu C. A comblike time-valve used in capillary-driven microfluidic devices. Micro-electronic Engineering, 2017, vol. 173, pp. 48—53. DOI: 10.1016/j.mee.2017.03.013
  33. Image. URL: ars.els-cdn.com/content/image/1-s2.0-S0167931717301260-fx1_lrg.jpg (accessed 02.04.2024)
  34. Chang Y.-J., Lin Y.-T., Liao C.-C. Chamfer-Type Capillary Stop Valve and Its Microfluidic Application to Blood Typing Tests. SLAS Technology : Translating Life Sciences Innovation, 2019, vol. 24, no. 2, pp. 188—195. DOI: 10.1177/2472630318808196
  35. Hitzbleck M., Avrain L., Smekens V., Lovchik R.D., Mertens P., Delamarche E. Capillary soft valves for microfluidics. Lab Chip, 2012. Vol. 12, no. 11, pp. 1972—1978. DOI: 10.1039/C2LC00015F
  36. Juncker D., Schmid H., Drechsler U., Wolf H., Wolf M., Michel B., de Rooij N., Delamarche E. Autonomous Microfluidic Capillary System. Anal. Chem., 2002, vol. 74, no. 24, pp. 6139—6144. DOI: 10.1021/ac0261449
  37. Cesaro-Tadic S., Dernick G., Juncker D., Buurman G., Kropshofer H., Michel B., Fattinger C., Delamarche E. High-sensitivity miniaturized immunoassays for tumor necrosis factor α using microfluidic systems. Lab Chip, 2004, vol. 4, no. 6, pp. 563—569. DOI: 10.1039/b408964b
  38. Ahn C.H., Choi J.-W., Beaucage G., Nevin J., Lee J.-B., Puntambekar A., Lee R.J.Y. Disposable Smart Lab on
    a Chip for Point-of-Care Clinical Diagnostics. Proceedings of the IEEE, 2004, vol. 92, no. 1, pp. 154—173. DOI: 10.1109/jproc.2003.820548
  39. Pouletty P.J., Ingalz T. Matrix controlled method of delayed fluid delivery for assays. US Pat., no. 5135872, Aug. 4, 1992.
  40. Lenk G.A., Stemme G., Roxhed N. Delay valving in capillary driven devices based on dissolvable thin films. Proceedings of The 18th International Conference on Miniaturized Systems for Chemistry and Life Sciences ( μ TAS). San Antonio, USA, 2014. P. 216—218. URL: https://www.proceedings.com/content/024/024717webtoc.pdf ZAO "FIRMA GALEN" [CJSC "FIRMA GALEN"]. URL: galen.ru/item/diagnosticheskie-paneli-i-rashodnye-materialy-dlya-immunofluorestsentnogo-analizatora-triage-meterpro/ (accessed 02.04.2024) (In Russ.).
  41. Xie Y., You H., Gao Z., Huang Z., Yang M. An Effective Capillary Valve based on Micro-hole Array for Microfluidic Systems. Anal Sci, 2018, vol. 34, no. 11, pp. 1323—1327. DOI: 10.2116/analsci.18p257
  42. Sun C., You H., Xie Y., Xu R.X. Performance Optimization of Microvalves Based on a Microhole Array for Microfluidic Chips. Journal of Analytical Methods in Chemistry, 2020, vol. 2020, Id. 8842890. DOI: 10.1155/2020/8842890
  43. Tesla N. Valvular Conduit. US Patent no. 1329559A, 3 February 1920.
  44. Nguyen Q.M., Abouezzi J., Ristroph L. Early Turbulence and Pulsatile Flows Enhance Diodicity of Tesla’s Macrofluidic Valve. Nat. Commun., 2021, vol. 12, Id. 2884.
    DOI: 10.1038/s41467-021-23009-y
  45. Nobakht A.Y., Shahsavan M., Paykani A. Numerical Study of Diodicity Mechanism in Different Tesla-Type Microvalves. Journal of Applied Research and Technology, 2013, vol. 11, no. 6, pp. 876—885. DOI: 10.1016/s1665-6423(13)71594-3
  46. Liu Z., Shao W.-Q., Sun Y., Sun B.-H. Scaling law of the one-direction flow characteristics of symmetric Tesla valve. Engineering Applications of Computational Fluid Mechanics, 2022, vol. 16, no. 1, pp. 441—452. DOI: 10.1080/19942060.2021.2023648
  47. Purwidyantri A., Prabowo B.A. Tesla Valve Microfluidics: The Rise of Forgotten Technology. Chemosensors, 2023, vol. 11, no. 4, Id. 256. DOI: 10.3390/chemosensors11040256
  48. Wang C.-T., Chen Y.-M., Hong P.-A., Wang Y.-T. Tesla Valves in Micromixers. International Journal of Chemical Reactor Engineering, 2014, vol. 12, no. 1, pp. 397—404. DOI: 10.1515/ijcre-2013-0106
  49. Gamboa A.R., Morris C.J., Forster F.K. Improvements in Fixed-Valve Micropump Performance Through Shape Optimization of Valves. Journal of Fluids Engineering, 2005, vol. 127, no. 2, pp. 339—346. DOI: 10.1115/1.1891151
  50. Abdelwahed M., Chor N., Malek R. Reconstruction of Tesla micro-valve using topological sensitivity analysis. Adv. Nonlinear Anal., 2020, vol. 9, pp. 567—590. DOI: 10.1515/anona-2020-0014
  51. Du G., Alsenani T.R., Kumar J., Alkhalaf S., Alkhalifah T., Alturise F., Almujibah H., Znaidia S., Deifalla A. Improving thermal and hydraulic performances through artificial neural networks: An optimization approach for Tesla valve geometrical parameters. Case Studies in Thermal Engineering , 2023, vol. 52, Id. 103670. DOI: 10.1016/j.csite.2023.103670
  52. Zhang S., Winoto S.H., Low H.T. Performance Simulations of Tesla Microfluidic Valves. First International Conference on Integration and Commercialization of Micro and Nanosystems, Parts A and B. ASMEDC, Sanya, China, 10—13 January 2007. P. 15—19. DOI: 10.1115/mnc2007-21107
  53. Shi H., Cao Y., Zeng Y., Zhou Y., Wen W., Zhang C., Zhao Y., Chen Z. Wearable Tesla Valve-Based Sweat Collection Device for Sweat Colorimetric Analysis. Talanta, 2022, vol. 240, Id. 123208. DOI: 10.1016/j.talanta.2022.123208
  54. Mohammadzadeh K., Kolahdouz E.M., Shirani E., Shafii M.B. Numerical study on the performance of Tesla type microvalve in a valveless micropump in the range of low frequencies. J Micro-Bio Robotics, 2013, vol. 8,
    pp. 145—159. DOI: 10.1007/s12213-013-0069-1
  55. Hong C.-C., Choi J.-W., Ahn C.H. A novel in-plane passive microfluidic mixer with modified Tesla structures. Lab Chip, 2004, vol. 4, no. 2, pp. 109—113. DOI: 10.1039/b305892a
  56. Wang H., Chen X. Optimization of micromixer based on an improved Tesla valve-typed structure. J Braz. Soc. Mech. Sci. Eng., 2022, vol. 44, Id. 143. DOI: 10.1007/s40430-022-03454-6
  57. Kubar A.A., Cheng J., Kumar S., Liu S., Chen S., Tian J. Strengthening mass transfer with the Tesla-valve baffles to increase the biomass yield of Arthrospira platensis in a column photobioreactor. Bioresour Technol, 2021, vol. 320 (Pt. A), Id. 124337. DOI: 10.1016/j.biortech.2020.124337
  58. García-Morales N.G., Morales-Cruzado B., Camacho-López S., Romero-Méndez R., Devia-Cruz L.F., Pérez-Gutiérrez F.G. Numerical modeling of a micropump without mobile parts actuated by thermocavitation bubbles. Microsyst. Technol., 2021, vol. 27, pp. 801—812. DOI: 10.1007/s00542-020-04998-0
  59. Leigh S.C., Summers A.P., Hoffmann S.L., German D.P. Shark Spiral Intestines May Operate as Tesla Valves. Proc. R. Soc. B Biol. Sci., 2021, vol. 288, iss. 1955, Id. 20211359. DOI: 10.1098/rspb.2021.1359
  60. Palecek A. Shark Bellies Flow like Tesla Valves. J. Exp. Biol., 2021, vol. 224, no. 19, Id. JEB237339. DOI: 10.1242/jeb.237339
  61. Farmer C.G., Cieri R.L., Pei S. A Tesla Valve in a Turtle Lung: Using Virtual Reality to Understand and to Communicate Complex Structure-Function Relationships. J. Morphol., 2019, vol. 280, iss. S1, pp. S1—S244. DOI: 10.1002/jmor.21003
  62. Peshin S., Madou M., Kulinsky L. Microvalves for Applications in Centrifugal Microfluidics. Sensors, 2022, vol. 22, no. 22, Id. 8955. DOI: 10.3390/s22228955
  63. Peshin S., George D., Shiri R., Kulinsky L., Madou M. Capillary Flow-Driven and Magnetically Actuated Multi-Use Wax Valves for Controlled Sealing and Releasing of Fluids on Centrifugal Microfluidic Platforms. Micro-machines, 2022, vol. 13, no. 2, Id. 303. DOI: 10.3390/mi13020303
  64. Woolf M.S., Dignan L.M., Lewis H.M., Tomley C.J., Nauman A.Q., Landers J.P. Optically-controlled closable microvalves for polymeric centrifugal microfluidic devices . Lab Chip, 2020, vol. 20, no. 8, pp. 1426—1440. DOI: 10.1039/c9lc01187k
  65. Strohmeier O., Keller M., Schwemmer F., Zehnle S., Mark D., von Stetten F., Zengerle R., Paust N. Centrifugal microfluidic platforms: advanced unit operations and applications. Chem Soc Rev, 2015, vol. 44, no. 17, pp. 6187—6229. DOI: 10.1039/c4cs00371c
  66. Bohm S., Phi H.B., Moriyama A., Runge E., Strehle S., König J., Cierpka C., Dittrich L. Highly efficient passive Tesla valves for microfluidic applications. Microsyst Nanoeng, 2022, vol. 8, Id. 97. DOI: 10.1038/s41378-022-00437-4
 

A. P. Voloshchenko, P. P. Pivnev

FEATURES AND RESULTS OF USING PARAMETRIC
PROFILOGRAPH IN UNDERWATER ARCHEOLOGY

"Nauchnoe Priborostroenie", 2024, vol. 34, no. 3, pp. 28—36.
 

The article discusses the use of hydroacoustic equipment to solve problems in underwater archeology. In particular, the problems of remote detection and identification of cultural heritage objects hidden by sediments are considered. The indicated problems are solved using a parametric profilograph. The basic principles of the operation of an acoustic profilograph are outlined. The differences between linear and parametric profilographs are given. The principles and features of the operation of a parametric profilograph are explained. The results of hydroacoustic profiling of the excavation site of the flooded Khazar fortress Sarkel are discussed. The methods and conditions for conducting the study are outlined. The parameters of the equipment used are given. The obtained profilograms are presented. Analysis and interpretation of the profiling results were carried out. Characteristic features of the bottom topography and cultural heritage objects discovered during the hydroacoustic survey and archaeological excavation data were compared. As a result, an area that fully corresponded to the description of the excavation site was found. The correspondence was confirmed both by the presence of characteristic features of the relief and by traces of excavations. The ditches surrounding the fortress and the remains of brick buildings were also discovered and identified. The ditches were completely covered with a mixture of sand and silt, so their detection became possible only with the help of a parametric profilograph.
 

Keywords: parametric profilograph, profilogram, river sediments, bottom structure, underwater archeology, Sarkel

Author affiliation:

Southern Federal University, Taganrog, Russian Federation

 
Contacts: Voloshchenko Alexander Petrovich , apvoloshhenko@sfedu.ru
Article received by the editorial office on 25.03.2024

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Green J. Maritime archaeology: A technical handbook. 2nd ed. San Diego, Elsevier Academic Press, 2004. 430 p.
  2. Catsambis A., Ford B., Hamilton D. The Oxford handbook of maritime archaeology. New York, Oxford University Press, 2011. 1203 p.
  3. Bowens A. Underwater archaeology: The NAS guide to principles and practice. 2nd ed. Singapore: Nautical Archaeology Society, Black-well Publishing, 2009. 226 p. DOI: 10.1002/9781444302875
  4. Quinn R., Bull J.M, Dix J.K. Imaging wooden artefacts using Chirp sources. Archaeological Prospection, 1997, vol. 4, iss. 1, pp. 25—35. DOI: 10.1002/(SICI)1099-0763(199703)4:1<25::AID-ARP66>3.0.CO;2-U
  5. Plets R., Dix J., Bastos A., Best A. Characterization of buried inundated peat on seismic (Chirp) data, inferred from core information. Archaeological Prospection, 2007, vol. 14, iss. 4, pp. 1—12. DOI: 10.1002/arp.318
  6. Papatheodorou G., Geraga M., Ferentinos G. The Navarino Naval Battle Site, Greece—an integrated remote-sensing survey and a rational management approach. International Journal of Nautical Archaeology, 2005, vol. 34, iss. 1, pp. 95—109. DOI: 10.1111/j.1095-9270.2005.00047.x
  7. Kaevitser V.I., Krivtsov A.P., Smolyaninov I.V., Elbakidze A.V. [Parametric profiler using a linearly frequency modulated signal]. Zhurnal Radioelektroniki [Journal of Radio Electronics], 2021, no. 11, (9 p.). DOI: 10.30898/1684-1719.2021.11.11 (In Russ.).
  8. Denisov E.Yu. [Waveshaping of parametric profilograph with linear frequency modulation]. Nelineinyi mir
    [Nonlinear world], 2013, vol. 11, no. 2, pp. 132—133. (In Russ.).
  9. Matishov G.G., Pol’shin V.V., Dyuzhova K.V., Sushko K.S., Titov V.V. [Results of integrated researches of the Taganrog bay of the Sea of Azov holocene deposits]. Nauka Yuga Rossii [Science in the South of Russia], 2017, vol. 13, no. 4, pp. 43—59. DOI: 10.23885/2500-0640-2017-3-4-43-59 (In Russ.).
  10. Glazunov V.V., Bukatov A.A., Panchenko V.V., Efimova N.N. [Application of bottom electrotomography for increasing the informativity of marine geophysical investigations of underwater archaeological sites]. Vestnik Kamchatskoy regional'noy assotsiatsii «Uchebno-nauchnyy tsentr». Seriya: Nauki o Zemle [Bulletin of Kamchatka Regional Association "Educational-Scientific Center". Earth Sciences], 2022, no. 4 (56), pp. 5—18. DOI: 10.31431/1816-5524-2022-4-56-5-18 (In Russ.).
  11. Brekhovskikh A.L., Greenberg O.V., Evsenko E.I., Klyuev M.S., Ol’khovsky S.V., Rakitin I.Ya., Sazhneva A.E., Shreider A.A., Shreider Al.A. [Development of the basics of technology for studying objects of cultural heritage buried in bottom unconsolidated sediments by the method of parametric profilography using satellite navigation data]. Okeanologicheskie issledovaniya [Journal of Oceanological Research], 2018, vol. 46, no. 2, pp. 5—14. DOI: 10.29006/1564-2291.JOR-2018.46(2).1 (In Russ.).
  12. Shmatkov A.A., Olkhovsky S.V., Verkhnyatskiy A.A. [Three-dimensional surveying with a parametric profiler during the study of Phanagoria]. Trudy Mezhdunarodnoi geologo-geofizicheskoi konferentsii "GeoEvraziya 2018. Sovremennye metody izucheniya i osvoeniya nedr Evrazii" [Proc. International Geological and Geophysical Conference "GeoEurasia 2018. Modern Methods of Study and Development of Eurasian Subsoil"], 2018, pp. 766—769. (In Russ.).
  13. Voloshchenko A.P. [Application of a parametric profilograph to study the fine structure of the seabed]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2021, vol. 31, no. 1, pp. 84—95. DOI: 10.18358/np-31-1-i8495 (In Russ.).
  14. Voloshchenko A.P., Pivnev P.P., Soldatov G.V. [Investigation of the landscape features of the shelf of the Black Sea by hydroacoustic means]. Vestnik VGU. Seriya: Geografiya. Geoehkologiya [Proceedings of Voronezh State University. Series: geography. Geoecology], 2019, no. 3, pp. 15—21. DOI: 10.17308/geo.2019.3/2319 (In Russ.).
  15. Khokhlov S.A., Ivanov S.V., Bardashov M.N., Tkachenko Y.G., Pivnev P.P. [Underwater archaeological research of the fortress Sarkel — Belaya Vezha, submerged in the Tsimlyansk reservoir]. Trudy XI Mezhdunarodnoi nauchno-prakticheskoi konferentsii "Morskie issledovaniya i obrazovanie" (MARESEDU-2022) [Proc. XI International Scientific and Practical Conference "Marine Research and Education" (MARESEDU-2022)], 2022, pp. 382—387. (In Russ.).
  16. Voloshchenko A.P. [Application of hydroacoustic instruments in underwater archaeology in coastal areas of water areas]. Sbornik trudov XIV Vserossiiskoi shkoly-seminara molodykh uchenykh, aspirantov, studentov i shkol'nikov "Issledovaniya i tvorcheskie proekty dlya razvitiya i osvoeniya problemnykh i pribrezhno-shel'fovykh zon yuga Rossii" [Proc. XIV All-Russian school-seminar of young scientists, postgraduates, students and schoolchildren "Research and creative projects for the development and exploration of problem and coastal-shelf zones of southern Russia"], 2023, pp. 124—130. (In Russ.).
  17. Artamonov M.I. Istoriya khazar [History of the Khazars]. Leningrad, State Hermitage Publ., 1962. 302 p. (In Russ.).
  18. Pletneva S.A. Drevnerusskii gorod v kochevoi stepi. Istoriko-stratigraficheskoe issledovanie [Old Russian town in nomadic steppe. Historical and stratigraphic research]. Voronezh, VSU Publ., 2006. 392 p. (In Russ.).
  19. Rappoport P.A. [Fortress buildings of Sarkel]. Materialy i issledovaniya po arkheologii SSSR [Materials and Studies on the Archaeology of the USSR], 1959, no. 75, pp. 9—39. (In Russ.).
  20. Afanasyev G.E. [Who built the fortress of Levoberezhnoye Tsimlyanskoye?]. Rossiiskaya arkheologiya [Russian archaeology], 2011, no. 3, pp. 108—119. URL: http://www.ra.iaran.ru/?page_id=3366&lang=ru (In Russ.)
 

E. V. Voloshchenko

PROSPECTS FOR THE APPLICATION OF HYDROACOUSTIC
SYSTEMS USING PARAMETRIC RADIATION MODE
TO MEASURE SEA WAVE CHARACTERISTICS

"Nauchnoe Priborostroenie", 2024, vol. 34, no. 3, pp. 37—53.
 

The analysis of ultrasonic methods for measuring the parameters of sea waves and the technical characteristics of the devices implementing them is carried out. Among the devices, the main attention is paid to the prospect of using a "virtual" parametric transmitting array (PTA) in a new way – as a tool for indirectly assessing the degree of sea surface roughness when measuring hydro conditions in coastal waters. The measurement scheme and methodology, the instrumentation of the measuring installation were opted to calibrate the employed PTA in the range of generated difference frequency waves, as well as to carry out model experiments to study the patterns of ultrasonic field scattering when irradiating several acoustically soft reflector plates with different parameters of the sinusoidal profile of irregularities. Based on the analysis of the results obtained, a method for measuring the parameters of rough sea surface is proposed, for example, for the mode of broadband bistatic irradiation (the oscillator and receiver are spaced apart) with ultrasonic signals from the bottom.
 

Keywords: parametric transmitting array, nonlinear acoustics, scattering of ultrasonic waves at rough water-air interface

Author affiliations:

Southern Federal University, Taganrog, Russia

 
Contacts: Voloshchenko Elizaveta Vadimovna, voloshchenko.liza@mail.ru
Article received by the editorial office on 22.04.2024

Full text (In Russ./In Eng.) >>

REFERENCES

  1. UNESCO. The Integrated Strategic Design Plan for the Coastal Ocean Observations Module of the Global Ocean Observing System. URL: https://unesdoc.unesco.org/ark:/48223/pf0000130523 (accessed 10.03.2024).
  2. Volovov V.I., Krasnoborod'ko V.V., Lysanov Yu.P. Akusticheskii sposob opredeleniya vysoty morskikh voln [Acoustic method for determining the height of sea waves]. Patent USSR no. N 412578 A1. Prioritet 25.01.1974. URL: https://patentdb.ru/patent/412578 (In Russ.).
  3. Molebnyi V.V. Izmeritel' napravleniya morskikh voln [Sea wave direction meter]. Patent USSR no. SU419826 A1. Prioritet 15.03.1974. URL: https://patents.su/2-419826-izmeritel-napravleniya-morskikh-voln.html (In Russ.).
  4. Balakin R.A., Timets V.M. Gidroakusticheskii avto-nomnyi volnograf [Hydro-acoustic autonomous wavemaker]. Patent RF RU2011132211 A. Prioritet 10.02.2011. (In Russ.). URL: https://patents.google.com/patent/RU2011132211A/ru
  5. Grekov A.N., Vasiliev D.M., Kotov M.N. [Acoustic measuring parameters of the waves]. Sistemy kontrolya okruzhayushchej sredy [Monitoring systems of environment], 2006, no. 9, pp. 51—56. URL: https://msoe.ru/articles/2006/09-05/ (In Russ.).
  6. Bogorodskii V.V., Yakovlev G.V., Korepin E.A., Dol-zhikov A.K. Gidroakusticheskaya tekhnika issledovaniya
    i osvoeniya okeana
    [Hydroacoustic Techniques for Ocean Exploration and Development]. Leningrad: Gidro­meteoizdat Publ., 1984. 263 p. (In Russ.).
  7. Fissel D.B., Birch J.R., Borg K., Melling H. Wave measurements using upward-looking sonar for continental shelf application. Proc. Offshore Technology Conference, Houston, TX, USA, 3—6 May 1999. DOI: 10.4043/10794-MS
  8. Strong B.S. System and method for determining wave characteristics from a moving platform. Patent USA
    US 2010302908 A1. Prioritet 02.12.2010.
  9. Deines A. Broadband acoustic doppler current profiler. Patent USA US 5615173. Prioritet 25.03.1997.
  10. Brumley B.H., Terray E.A., Strong B.S. System and method for measuring wave directional spectrum and wave height. Patent USA US 6282151 B1. Rowe-Deines Instruments Incorporated. Prioritet 28.08.2001.
  11. Terray E.A., Brumley B.H., Strong B. Measuring waves and currents with an upward-looking ADCP. Proc. of the IEEE Sixth Working Conference on Current Measurement, 1999. P. 66—71. DOI: 10.1109/CCM.1999.755216
  12. Keisuke A. Multifrequency ultrasonic transducer. Patent USA US 4490640. Prioritet 25.12.1984.
  13. Transducer. Patent USA US 4209766 A. Prioritet 24.06.1980.
  14. ZORA. Advanced Technologies. Akusticheskii lag Consilium SAL R1a [Acoustic lag Consilium SAL R1a]. URL: https://zora.ru/?page_id=319 (accessed 10.03.2024). (In Russ.).
  15. Broadband acoustic transducer. Patent USA US 5343443 A. Prioritet 30.08.1994.
  16. Teledyne RD Instruments. (In Russ.). URL: https://datchiki.com/manufacturers/teledyne-rd-instruments-flagman-gidrologii/
  17. Muir T.G. [Nonlinear acoustics and its role in marine sediment geophysics]. Akustika morskikh osadkov [Acoustics of marine sediments] / Zhitkovskii Yu.Yu., transl. edit.. Moscow: Mir Publ., 1977. P. 227—273. (In Russ.).
  18. Kobyakov Yu.S., Kudryavtsev N.N., Timoshenko V.I. Konstruirovanie gidroakusticheskoi rybopoiskovoi apparatury [Design of hydroacoustic fish-finding equipment]. Leningrad, Sudostroenie Publ., 1986. 272 p. (In Russ.).
  19. Bakhvalov N.S., Zhileikin N.M., Zabolotskaya E.A. Nelineinaya teoriya zvukovykh puchkov [Nonlinear theory of sound beams]. Moscow, Nauka Publ., 1982. 176 p. (In Russ.).
  20. Kudryavtsev V.I. Promyslovaya gidroakustika i rybolokatsiya [Fishing hydroacoustics and fish locators]. Moscow, Pishchevaya promyshlennost' Publ., 1978. 312 p. (In Russ.).
  21. Novikov B.K., Rudenko O.V., Timoshenko V.I. Neli-neinaya gidroakustika [Nonlinear hydroacoustics]. Leningrad, Sudostroenie Publ., 1981. 264 p. (In Russ.).
  22. Blinova L.P., Kolesnikov A.E., Langans L.B. Akusticheskie izmereniya [Acoustic measurements]. Moscow,
    Izdatel'stvo standartov Publ., 1971. 271 p. (In Russ.).
  23. Zagrai N.P. Nelineinye vzaimodeistviya v sloistykh i neodnorodnykh sredakh [Nonlinear interactions in layered and inhomogeneous media]. Taganrog, TRTU Pudl., 1998. 433 p. (In Russ.).
  24. Voronin V.A., Tarasov S.P., Timoshenko V.I. Gidroakusticheskie parametricheskie sistemy [Hydroacoustic parametric systems]. Rostov-on-Don, Rostizdat Publ., 2004. 400 p. (In Russ.).
  25. Novikov B.K., Timoshenko V.I. Parametricheskie antenny v gidrolokatsii [Parametric antennas in sonar]. Leningrad, Sudostroenie Publ., 1989. 256 p. (In Russ.).
  26. Evtyutov A.P., Mit'ko V.B. Inzhenernye raschety v gidroakustike. 2-e izd., pererab. i dop. [Engineering calculations in hydroacoustics. 2nd ed., rev. and ext.]. Leningrad, Sudostroenie Publ., 1988. 288 p.
  27. Voloshchenko V.Yu., Voloshchenko A.P., Voloshchenko E.V. Akusticheskii volnograf [Acoustic Wavegraph]. Patent RF RU168083 U1. Prioritet 17.01.2017. (In Russ.). URL: https://patents.google.com/patent/RU168083U1/ru
  28. Voloshchenko E.V., Tarasov S.P. et al. Akusticheskii sposob i ustroistvo izmereniya parametrov morskogo volneniya [Acoustic method and device for measuring sea swell parameters]. Patent RF RU2721307 C1. Prioritet 18.05.2020. URL: https://patents.google.com/patent/RU2721307C1/ru (In Russ.).
  29. Voloshchenko E.V., Tarasov S.P. [Measurement of sea wave characteristics based on the application of nonlinear acoustic effects]. Materialy Shestoi Vserossiiskoi konferentsii molodykh uchenykh i spetsialistov: "Akustika sredy obitaniya (ASO-2021)" [Proc. 6th All-Russ. conf. young sci. and spec. "Habitat Acoustics (ASO-2021)"]. Moscow: BMSTU Publ., 2021, pp. 70—75. (In Russ.). URL: http://mhts.ru/data/ckfiles/files/ASO2021_%D0%A1%D0%B1%D0%BE%D1%80%D0%BD%D0 %B8%D0%BA_%D0%90%D0%A1%D0%9E-2021.pdf
  30. Voloshchenko E.V., Voloshchenko V.Yu. Mnogo-chastotnyi doplerovskii sposob izmerenii skorosti techenii v vodnoi srede [Multi-frequency Doppler method of current velocity measurements in aquatic environment]. Patent RF RU2795579 C1. Prioritet 05.05.2023. URL: https://patents.google.com/patent/RU2795579C1/ru (In Russ.).
  31. Voloshchenko E.V. [The nonlinear acoustics application for increasing sonar’s efficiency on shelf]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2024, vol. 34, no. 2, pp. 67—76. URL: http://iairas.ru/mag/2024/abst2.php#abst7 (In Russ.).
  32. Voloshchenko E.V. [The multi-component pump signal’s parametric transmitting antenna for shallow water hydroacoustic monitoring]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2024, vol. 34, no. 2, pp. 102—111. (In Russ.). URL: http://iairas.ru/mag/2024/abst2.php#abst10
 

D. A. Kosteev, A. K. Britenkov, N. E. Zemnyukov, A. V. L'vov, M. B. Salin

APPLICATION OF DEVICES FOR RELAYING SIGNALS
DURING HYDROACOUSTIC MEASUREMENTS

"Nauchnoe Priborostroenie", 2024, vol. 34, no. 3, pp. 54—63.
 

The use of repeaters in hydroacoustic experiments makes it possible to increase the accuracy of measured parameters such as the speed of an object, its scattering force, and propagation losses. The paper discusses the use of a frequency-shifted repeater when emitting hydroacoustic signals in continuous and pulsed modes. A technique has been tested for determining the speed of a moving object using a repeater based on a compact 3D LF – a low-frequency hydroacoustic transducer of the longitudinal-bending type with a complex shape of the radiating shell. It is shown that the proposed technique provides modulation of the backlight signal in real time as well as simulation of signals reflected by large moving objects. The results of the experiments are consistent with preliminary calculations and confirm, within the framework of the proposed methodology, the possibility of using signals (including continuous signals) of various shapes for the acoustic diagnosis of anomalies in the marine environment.
 

Keywords: hydroacoustics, signal relay, hydroacoustic emitter, scattering force, Doppler effect, piezoelectric transducer, acoustic power

Author affiliations:

Federal Research Center "A.V. Gaponov-Grekhov Institute of Applied Physics of RAS",
Nizhny Novgorod, Russia

 
Contacts: Kosteev Dmitriy Alekseevich, dkosteev@ipfran.ru
Article received by the editorial office on 26.04.2024

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Garant. Ukaz Prezidenta Rossiiskoi Federatsii ot 26.10.2020 ¹ 645 "O strategii razvitiya Arkticheskoi zony Rossiiskoi Federatsii i obespecheniya natsional'noi bezopasnosti na period do 2035 goda" [Decree of the President of the Russian Federation of 26.10.2020 No. 645 "On the Strategy for the Development of the Arctic Zone of the Russian Federation and Ensuring National Security for the Period until 2035"]. URL: https://base.garant.ru/74810556/ (In Russ.).
  2. Kobylkin D.N. [Arctic shelf resources are our strategic reserve]. Ehnergeticheskaya politika [Energy policy]. 14.11.2019. URL: https://energypolicy.ru/resursy-arkticheskogo-shelfa-eto-nash/business/2019/22/14/ (In Russ.).
  3. Yamoaka H., Kaneko A., Park J.-H., Zheng H., Gohda N., Takano T., Zhu X.H., Takasugi Y. Coastal acoustic tomography system and its field application. IEEE J. Ocean. Eng., 2002, vol. 27, no. 2, pp. 283—295. DOI: 10.1109/JOE.2002.1002483
  4. Munk W. Acoustic thermometry of ocean climate (ATOC). J. Acoust. Soc. Am., 1999, vol. 105, no. 2, Id. 982. DOI: 10.1121/1.425359
  5.   Bogdanovich M.L., Borodin M.A., Kovalenko Y.A., Hametov R.K. [Possibility of refining coordinates of underwater vehicle in navigation field of navigation beacons using its inertial navigation system data]. Gidroakustika [Hydroacoustics], 2020, no. 44(4), pp. 37—44. URL: https://oceanpribor.ru/docs/SbGA44.pdf (In Russ.).
  6. Karalyun V.Yu. Gidroakusticheskii mayak-otvetchik [Hydroacoustic transponder beacon]. Patent RF no. RU 2125733 C1. Prioritet 27.01.1999. (In Russ.). https://patents.google.com/patent/RU2125733C1/ru
  7. Mironov A.S., Gabov V.S. [Using microprocessor with a heterogeneous architecture for the implementation of the information and control system for the hydroacoustic beacon]. Perspektivy nauki [SCIENCE PROSPECTS], 2022, no. 4 (151), pp. 26—31. (In Russ.). URL: https://elibrary.ru/item.asp?id=49162453
  8. Filippov B.I., Rudkovskiy A.A. [Design of the relaying line of a hydroacoustic communication channel]. Sbornik nauchnykh trudov Novosibirskogo gosudarstvennogo tekhnicheskogo universiteta [Transaction of scientific papers of the Novosibirsk state technical university], 2017, no. 4 (90), pp. 77—96. DOI: 10.17212/2307-6879-2017-4-77-96 (In Russ.).
  9. Murphy S.M., Scrutton J.G.E., Paul C. Hines Experimental Implementation of an Echo Repeater for Continuous Active Sonar. IEEE Journal of Oceanic Engineering, 2017, vol. 42, no. 2, pp. 289—297. DOI: 10.1109/JOE.2016.2595380
  10. Bates J.R., Hines P.C., Canepa G., Tesei A., Ferri G., LePage K.D. Doppler estimates for large time-bandwidthproducts using linear fm active sonar pulses. UACE2017 – 4th Underwater Acoustics Conference and Exhibition, 2017, pp. 169—176. URL: https://www.uaconferences.org/docs/UACE2017_Papers/169_UACE2017.pdf
  11. Andreev M.Ya., Bogolyubov B.N., Klyushin V.V., Rubanov I.L. [Low-frequency small-sized longitudinal flexural electroacoustical converter]. Datchiki i sistemy [Sensors and Systems], 2010, no. 12, pp. 51—55. URL: https://sensors-and-systems.ru/issues/148 (In Russ.).
  12. Bogolyubov B.N., Kirsanov A.V., Leonov I.I., Smirnov S.A., Farfel V.A. [Design and experimental testing of compact flextensional hydroacoustic transducer with central radiation frequency 520 Hz]. Gidroakustika [Hydroacoustics], 2015, no. 23(3), pp. 20—26. (In Russ.). URL: https://elibrary.ru/item.asp?id=30598910
  13. Britenkov A.K., Farfel V.A., Bogolyubov B.N. [Comparison and analysis of electroacoustic characteristics of high power density compact low frequency hydroacoustic transducers]. Prikladnaya fizika [Plasma Physics Reports], 2021, no. 3, pp. 72—77. DOI: 10.51368/1996-0948-2021-3-72-77 (In Russ.).
  14. Salin M.B., Ermoshkin A.V., Razumov D.A., Salin B.M. [Models of formation of the Doppler spectrum of surface reverberation for sound waves of the metre range]. Akusticeskij zurnal [Acoustical Physics], 2023, vol. 69, no. 5, pp. 595—607. URL: https://www.elibrary.ru/item.asp?id=54493934 (In Russ.).
  15. Salin B.M., Kemarskaya O.N., Salin M.B. ["Near-field" measurement of scattering characteristics of a moving object based on Doppler signal filtering]. Akusticeskij zurnal [Acoustical Physics], 2010, vol. 56, no. 6, pp. 802—812. URL: https://elibrary.ru/item.asp?id=15524483 (In Russ.).
  16. Ermoshkin A.V., Kosteev D.A., Ponomarenko A.A., Razumov D.A., Salin M.B. Surface Waves Prediction Based on Long-Range Acoustic Backscattering in a Mid-Frequency Range. J. Mar. Sci. Eng., 2022, vol. 10, no. 6, Id. 722. DOI: 10.3390/jmse10060722
  17. Ermoshkin A.V., Kapustin I.A., Kosteev D.A., Ponomarenko A.A., Razumov D.D., Salin M.B. Monitoring Sea Currents with Midrange Acoustic Backscattering. Water, 2023, vol. 15, no. 11, Id. 2016. DOI: 10.3390/w15112016
  18. Britenkov A.K., Norkin M.S., Stulenkov A.V., Travin R.V. [Study of the electroacoustic characteristics of the compact low-frequency hydroacoustic transducer (3D LFHE) of a longitudinal-bending type and a complex shape]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2023, vol. 33, no. 4, pp. 28—39. URL: http://iairas.ru/mag/2023/abst4.php#abst2 (In Russ.).
 

A. A. Gavrishev1, D. L. Osipov2

INVESTIGATION OF THE INFLUENCE OF THE PEAK FACTOR
OF INPUT SIGNALS ON SOME CHARACTERISTICS OF THE ADC

"Nauchnoe Priborostroenie", 2024, vol. 34, no. 3, pp. 64—69.
 

This article evaluates the effect of the peak factor of input signals on the signal-to-noise ratio of an analog-to-digital converter (ADC). It is indicated that ADC play an important role in modern radio communication systems based on software-configurable radio systems. It is noted that one of the key characteristics of the ADC is quantization noise, which directly affects its important property such as the signal-to-noise ratio. An expression is described for calculating the signal-to-noise ratio of the ADC, depending on the peak factor of the input signal. The evaluation of the signal-to-noise ratio of the ADC for radio communication systems with various types of signals (simple signals; signals generated using binary pseudorandom sequences; signals generated using chaotic signal generators) was carried out. The results obtained, taking into account the assumptions and limitations introduced, show that the peak factor of input signals directly affects the signal-to-noise ratio of the ADC, and its influence should be taken into account when operating, developing and improving modern radio communication systems, including those using promising complex signals.
 

Keywords: radio communication systems, ADC, quantization noise, signal-to-noise ratio, peak factor, input signal

Author affiliations:

1NRNU MEPhI, Moscow, Russia
2NCFU, Stavropol, Russia

 
Contacts: Gavrishev Aleksey Andreevich, alexxx.2008@inbox.ru
Article received by the editorial office on 16.04.2024

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Klyuev L.L. Teoriya ehlektricheskoi svyazi [Electrical communication theory]. Minsk, Novoe znanie Publ., Moscow: INFRA-M Publ., 2016. 448 p. (In Russ.).
  2. Maltsev A.A., Maslennikov R.O., Khoryaev A.V. [Studying the impact of ADC quantization noise on 60-GHZ wireless communication systems]. Izvestiya vuzov. Radiofizika [Radiophysics and Quantum Electronics], 2010, no. 9/10, pp. 669—677. (In Russ.). URL: https://radiophysics.unn.ru/issues/2010/9/669
  3. Mokhseni T.I., Kikot A.M. [Coherent digital information transmission with binary chaotic pulse modulation]. Zhurnal radioehlektroniki [Journal of radio electronics], 2015, no. 6, 24 p. URL: http://jre.cplire.ru/jre/jun15/10/text.pdf (In Russ.).
  4. Penin P.I., Filippov L.I. Radiotekhnicheskie sistemy peredachi informatsii [Radio-technical information transmission systems]. Moscow, Radio i svyaz' Publ., 1984. 256 p. (In Russ.).
  5. Bryukhanov Yu.A., Gvozdarev A.S. [Probabilistic and statistical analysis of quantization effects in next generation communication systems]. Doklady 22-i Mezhdunarodnoi konferentsii: "Tsifrovaya obrabotka signalov
    i ee primenenie. DSPA-2020"
    [Rep. of the 22nd Int. Conf. "Digital signal processing and its application. DSPA-2020"], Moscow, RNTOREhIS im. A.S. Popova, 2020, pp. 84—89. (In Russ.). URL: https://www.elibrary.ru/item.asp?edn=xlpioo
  6. Kuzmin E.V. [Efficiency of the non-threshold spread spectrum signal searching procedure in case of quantization of the incoming observations]. Tsifrovaya obrabotka signalov [Digital Signal Processing], 2020, no. 1, pp. 9—12. (In Russ.). URL: http://www.dspa.ru/articles/year2020/jour20_1/art20_1_2.pdf
  7. Gavrishev A.A., Gavrishev A.N. [To the question of calculating the crest factor values of signals generated by common hidden communication systems]. Vestnik NTsBZhD [NCBWC Bulletin], 2020, no. 3 (45), pp. 149—157. (In Russ.). URL: https://ncbgd.tatarstan.ru/rus/file/pub/pub_2478119.pdf
  8. Loginov S.S. Tsifrovye radioehlektronnye ustroistva i sistemy s dinamicheskim khaosom i variatsiei shaga vremennoi setki. Diss. d-ra techn. nauk [Digital radio-electronic devices and systems with dynamic chaos and time grid step variation. Doct. techn. sci. diss.]. Kazan, 2015. 228 p. (In Russ.).
  9. Prasolov A.A. [Overview of automatic gain control systems application in radio receiving devices]. Ehkonomika
    i kachestvo sistem svyazi
    [Economics and quality of communication systems], 2021, no. 1, pp. 45—57. URL: https://cyberleninka.ru/article/n/obzor-primeneniya-sistem-avtomaticheskoy-regulirovki-usileniya-v-radiopriemnyh-ustroystvah (In Russ.).
  10. Litvinenko I.A., Vagin F.A. Sposob avtomaticheskoi regulirovki usileniya i ustroistvo ego realizuyushchee [Patent for method of automatic gain control and device realising it]. Patent RF no. 2719419. Prioritet 17.04.2020. (In Russ.).
  11. Tarchenko N.V., Tishkov P.V. Mnogokanal'nye sistemy peredachi: laboratornyi praktikum [Multichannel transmission systems: laboratory workshop]. Minsk: BGUIR Publ., 2006. 42 p. (In Russ.).
  12. On Analog-to-Digital Converter (ADC), 6 dB SNR Gain per Bit, Oversampling and Undersampling. URL: https://wirelesspi.com/on-analog-to-digital-converter-adc-6-db-snr-gain-per-bit-oversampling-and-undersampling/ (cited: 01.03.2024).
 

B. P. Sharfarets

SYSTEM OF EQUATIONS FOR MODELING ELECTROOSMOTIC
EMITTER IN THE APPROXIMATION OF VISCOUS
INCOMPRESSIBLE HEAT-CONDUCTING FLUID

"Nauchnoe Priborostroenie", 2024, vol. 34, no. 3, pp. 70—78.
 

The paper substantiates the possibility of using a hydrodynamic model of a viscous, incompressible, heat-conducting fluid to calculate the parameters of electroosmotic flow in a porous medium filled with liquid under conditions of the application of a constant and alternating electric field to this medium. Conditions for transitioning to this model from the model of viscous, compressible liquid are given. The boundaries of the problem parameters, in particular the boundaries of flow velocities and frequency constraints for the justification of such a transition, are specified. The obtained results can be used in modeling the above processes using computational packages.
 

Keywords: electroosmosis, viscous incompressible heat-conducting fluid, system of Navier-Stokes equations and heat transfer

Author affiliations:

Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia

 
Contacts: Sharfarets Boris Pinkusovich, sharb@mail.ru
Article received by the editorial office on 06.05.2024

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Kurochkin V.E., Sergeyev V.A., Sharfarets B.P., Gu-lyayev Yu.V. [Theoretical argumentation of the new method of electro-acoustic conversion. Linear approximation]. Doklady Akademii nauk [Doklady Physics], 2018, vol. 483, no. 3, pp. 260—264. DOI: 10.31857/S086956520003244-1 (In Russ.).
  2. Sharfarets B.P., Kurochkin V.E., Sergeev V.A., Gulyaev Yu.V. [On the electroacoustic transformation method based on electrokinetic phenomena]. Akusticeskij zurnal [Acoustical Physics], 2020, vol. 66, no. 4, pp. 453—462. DOI: 10.31857/S0320791920030053 (In Russ.).
  3. Sharfarets B.P., Kurochkin V.E., Sergeev V.A. [On the operation of an electroacoustic transducer based on electrokinetic phenomena under turbulent fluid motion]. Akusticeskij zurnal [Acoustical Physics], 2020, vol. 66, no. 5, pp. 575—580. DOI: 10.31857/S0320791920050135 (In Russ.).
  4. Sharfarets B.P. [Implementation of receiving antenna using mechanism of electrokinetic phenomenon "flow potential"]. Nauchnoe Priborostroenie [Scientific
    Instrumentation], 2019, vol. 29, no. 2, pp. 103—108. DOI: 10.18358/np-29-2-i103108 (In Russ.).
  5. Sharfarets B.P., Dmitriev S.P., Kurochkin V.E., Sergeev V.A. [On the method of acoustoelectric transformation based on electrokinetic phenomena]. Akusticeskij zurnal [Acoustical Physics], 2022, vol. 68, no. 5, pp. 571—578. URL: https://elibrary.ru/item.asp?id=49273414 (In Russ.).
  6. Dmitriev S.P., Kurochkin V.E., Sharfarets B.P. [On the question of the sensitivity of a new type of microphone]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2021. vol. 31, no. 2, pp. 77—83. DOI: 10.18358/np-31-2-i7783 (In Russ.).
  7. Sharfarets B.P., Dmitriev S.P., Kurochkin V.E., Legusha F.F. [Electrokinetic repeater of acoustic vibrations]. Pis'ma v ZhTF [Technical Physics Letters], 2022, vol. 48, no. 11, pp. 29—31. (In Russ.). DOI: 10.21883/PJTF.2022.11.52610.18971
  8. Sharfarets B.P., Dmitriev S.P., Kurochkin V.E. [An electrokinetic acoustic repeater located in a constant electric field]. Zhurnal tekhnicheskoi fiziki [Technical Physics], 2024, vol. 94, no. 1, pp. 151—155. (In Russ.). DOI: 10.61011/JTF.2024.01.56913.100-23
  9. Prohorov A.M., ed. Fizicheskaya ehnciklopediya [Physical encyclopedia]. In 5 vol. Vol. 2. Moscow, Sovetskaya ehnciklopediya Publ., 1990. 704 p. (In Russ.).
  10. Sharfarets B.P. [System electrohydrodynamics equations applied to electroosmotic processes]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2019. vol. 29, no. 1, pp. 135—142. DOI: 10.18358/np-29-1-i135142 (In Russ.).
  11. Landau L.D., Lifshits E.M. Teoreticheskaya fizika, t. 6. Gidrodinamika [Theoretical Physics, vol. 6. Hydro-dynamics]. Moscow, Nauka Publ., 1986. 736 p. (In Russ.).
  12. Sharfarets B.P. [Justification of the possibility of using the hydrodynamic model of a viscous incompressible fluid in software simulation of the radiated field of the electroosmotic electroacoustic radiator]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2023, vol. 33, no. 3, pp. 117—124. URL: http://iairas.ru/en/mag/2023/abst3.php#abst8 (In Russ.)
  13. Koshlyakov N.S., Gliner Eh.B., Smirnov M.M. Uravneniya v chastnykh proizvodnykh matematicheskoi fiziki [Equations in partial derivatives of mathematical physics]. Moscow, Vysshaya shkola Publ., 1970. 712 p. (In Russ.).
  14. Prohorov A.M., ed. Fizicheskaya ehnciklopediya [Physical encyclopedia]. In 5 vol., Vol. 1. Moscow, Sovetskaya ehnciklopediya Publ., 1988. 699 p. (In Russ.).
  15. Dukhin S.S., Deryagin B.V. Ehlektroforez [Electrophoresis]. Moscow, Nauka Publ., 1976. 332 p. (In Russ.).
  16. Fridrikhsberg D.A. Kurs kolloidnoi khimii [Colloidal chemistry course]. Leningrad, Khimiya Publ., 1984. 368 p. (In Russ.).
 

I. V. Kurnin

THE EFFECTIVENESS OF A JET DISRUPTOR TO PREVENT
FOR THE NON-EVAPORATED DROPLETS TO PASS THROUGH
THE INPUT INTERFACE OF THE MASS SPECTROMETER

"Nauchnoe Priborostroenie", 2024, vol. 34, no. 3, pp. 79—86.
 

The paper presents the results of modeling the motion of non-evaporated droplets (from an electrospray ionization source) entering the input interface of a mass spectrometer through a capillary. The interface is a radio frequency ion funnel with a jet disruptor, which is a disk plate located on the axis of the funnel behind the capillary. It is shown that when matching the parameters of the output jet with the size of the disk, the non-evaporated droplets with a diameter of 0.1—10 microns effectively deflect sideways along with the gas flow and thus do not spread further along the ion path, that contributes to a significant reduction in the noise level in the mass spectrum.
 

Keywords: transport capillary, electrospray, atmospheric pressure interface of mass spectrometer, gasflow, ion funnel

Author affiliations:

Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia

 
Contacts: Kurnin Igor' Vasil'evich, igor.kurnin@gmail.com
Article received by the editorial office on 11.07.2024

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Cole R.B., ed. Electrospray ionization mass-spectrometry: fundamentals, instrumentation, and applications. Wiley-Interscience, 1997. 600 p.
  2. Kebarle P., Verkerk U.H. Electrospray: from ions in solution to ions in the gas phase, what we know now. Mass Spectr. Rev., 2009, vol. 28, iss. 6, pp. 898—917. DOI: 10.1002/mas.20247
  3. Apffel J.A., Werlich M.H., Bertsch J.L., Goodley P.C. Orthogonal ion sampling for electrospray LC/MS. US patent: 5495108, date of patent Feb.27, 1996.
  4. Bajic S. Electrospray and atmospheric pressure chemical ionization mass spectrometer and ion source. US patent: 5756994, date of patent May 26, 1998.
  5. Wu S., Zhang K., Kaiser N.K., Bruce J.E., Prior D.C., Anderson J.A. Incorporation of a flared inlet capillary tube on a Fourier transform ion cyclotron resonance mass spectrometer. J. Am. Soc. Mass Spectrom., 2006, vol. 17, iss. 6, pp. 772—779. DOI: 10.1016/j.jasms.2006.02.011
  6. Shaffer S.A., Tang K., Anderson G.A., Prior D.C., Udseth H.R., Smith R.D. A novel ion funnel for focusing ions at elevated pressure using electrospray ionization mass spectrometry. Rapid. Commun. Mass Spectrom., 1997, vol. 11, iss. 16, pp. 1813—1817. DOI: 10.1002/(SICI)1097-0231(19971030)11:16<1813::AID-RCM87>3.0.CO;2-D
  7. Kelly R.T., Tolmachev A.V., Page J.S., Tang K., Smith R.D. The ion funnel: theory, implementations and applications. Mass Spectrom. Rev., 2010, vol. 29, iss. 2, pp. 294—312. DOI: 10.1002/mas.20232
  8. Ibrahim Y., Belov M.E., Tolmachev A.V., Prior D.C., Smith R.D. Ion funnel trap interface for orthogonal time-of-flight mass spectrometry. Anal. Chem., 2007, vol. 79, iss. 20, pp. 7845—7852. DOI: 10.1021/ac071091m
  9. Wilm M. Principles of electrospray ionization. Molecular and Cellular Proteomics, 2011, vol. 10, iss. 7, ID M111.009407. DOI: 10.1074/mcp.M111.009407
  10. Avduevskii V.S., Ashratov Eh.A., Ivanov A.V., Pirumov U.G. Gazodinamika sverkhzvukovykh neizobaricheskikh strui [Gas dynamics of supersonic non-isobaric jets]. Moscow, Mashinostroenie Publ., 1989. 320 p. (In Russ.).
 

S. V. Biryukov

A CONSTRUCTIVE SOLUTION FOR A DUAL
SPHERICAL ELECTRIC FIELD STRENGTH DETECTOR
WITH BIANGULAR SENSITIVE ELEMENTS

"Nauchnoe Priborostroenie", 2024, vol. 34, no. 3, pp. 87—97.
 

The article highlights the formation of sensitive elements in a dual spherical detector of electric field strength. The construction of a dual detector is based on two double detectors located on the same coordinate axis. The dual detector consists of a conductive sphere and three pairs of sensing elements. Sensitive elements are part of a spherical surface and are formed as a result of cutting the sphere by three planes passing through its center and a plane passing through the center of the sphere perpendicular to its axis of rotation. The planes dissect the sphere into six sensitive elements in the form of spherical biangles, organized into three diametrically opposite pairs. In the first pair, two sensitive elements located on the same coordinate axis are central, the remaining sensitive elements included in the other two pairs are lateral. A pair of central sensor elements is part of the first double detector. Two pairs of lateral sensitive elements, combined with a pair of central ones, form the composite sensitive elements of the second double detector. The compiled mathematical model of a dual spherical detector with sensitive elements in the form of spherical biangles made it possible to determine the best angular dimensions of the sensitive elements in terms of obtaining the minimum error due to field inhomogeneity and the permissible spatial range of measurements. It has been revealed that the central sensitive elements of the dual detector should have a range of angular dimensions limited by the longitudinal 2Θ01 = 62° and transverse 2φ01 = 180° angles, and the lateral elements — by 2Θ02 = 58° and 2φ02 = 180° angles of the longitudinal Θ and latitudinal φ angles of the polar coordinate system. This solution will provide the dual detector with a field strength measurement error of δ(α) ≤ |± 0.7|% in the permissible 0 ≤ α ≤ 0.94 spatial measurement range.
 

Keywords: twin spherical sensor, double-angle sensing element, electric field, error from field inhomogeneity, distance to the field source

Author affiliations:

Omsk State Technical University, Omsk, Russia

 
Contacts: Biryukov Sergey Vladimirovich, sbiryukov154@mail.ru
Article received by the editorial office on 23.05.2024

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Bassen H.I., Smith G.S. Electric field probes — a review. IEEE Transactions on Antennas and Propagation, 1983, vol. 31, no. 5, pp. 710-718. DOI: 10.1109/TAP.1983.1143126
  2. Berent G.N., Place I.R. [Electric Field Sensor]. Pribory dlya nauchnykh issledovanii [Instruments for scientific research], 1971, no. 6, pp. 141—142. (In Russ.).
  3. Misakian M., Kotter F.R., Kahler R.L. Miniature ELF Electric Field Probe. Review of scientific instruments, 1978, vol. 49, no. 7, pp. 933—935. DOI: 10.1063/1.1135497
  4. Lawton R.A. New Standard of Electric Field Strength. IEEE Transactions on Instrumentation and Measurement, 1970, vol. 19, no. 1, pp. 45-51. DOI: 10.1109/TIM.1970.4313855
  5. Biryukov S.V., Tyukina L.V., Dan'shina V.V. Ustroistvo dlya izmereniya napryazhennosti ehlektricheskogo polya
    so sdvoennym datchikom
    [Device for measuring electric field strength with dual sensor]. Patent RF no. 207465 U1,
    Prioritet 28.10.2021. (In Russ.). URL: https://www.elibrary.ru/download/elibrary_47255890_69402749.PDF
  6. Biryukov S.V., Tyukina L.V. Sdvoennyi datchik dlya izmereniya napryazhennosti ehlektricheskogo polya
    s nakladnymi chuvstvitel'nymi ehlementami
    [Dual sensor for measuring electric field strength with clamp-on sensing elements]. Patent RF no. 210427 U1, Prioritet 15.04.2022. (In Russ.). URL: https://www.elibrary.ru/download/elibrary_47255890_69402749.PDF
  7.   Biryukov S.V. [Investigation of a double spherical electric field strength sensor with overhead sensing elements]. Pribory [Instruments], 2022, no. 7 (265), pp. 28—36. URL: https://www.elibrary.ru/item.asp?id=49450884 (In Russ.).
  8. Biryukov S.V., Tyukin A.V., Tyukina L.V. [Dual type of electric field sensors of increased accuracy]. Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta [Bulletin of Voronezh state Technical University], 2022, vol. 18, no. 2, pp. 86—93. (In Russ.). URL: https://www.elibrary.ru/item.asp?id=48315805
  9. Biryukov S.V., Tyukina L.V., Ehismont N.G. Ustroistvo dlya izmereniya napryazhennosti ehlektricheskogo polya so sdvoennym datchikom [Device for measuring electric field strength with dual sensor]. Patent RF no. 207464 U1, Prioritet 28.10.2021. (In Russ.). URL: https://www.elibrary.ru/download/elibrary_47255889_72720620.PDF
  10. Biryukov S.V., Tyukina L.V. Sdvoennyi datchik dlya izmereniya napryazhennosti ehlektricheskogo polya
    s sostavnymi chuvstvitel'nymi ehlementami
    [Dual sensor for measuring electric field strength with composite sensing elements]. Patent RF no. 210806 U1, Prioritet 05.05.2022. (In Russ.). URL: https://www.elibrary.ru/download/elibrary_48489529_32501046.PDF
  11. Biryukov S.V., Tyukin A.V., Tyukina L.V. [Investigation of a dual spherical electric field strength sensor with composite sensitive elements]. Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta [Bulletin of Voronezh state Technical University], 2022, vol. 18, no. 5, pp. 113—123. (In Russ.). URL: https://www.elibrary.ru/download/elibrary_49606560_12320535.pdf
  12. Biryukov S.V., Tyukina L.V. Sdvoennyi datchik dlya izmereniya napryazhennosti ehlektricheskogo polya [Dual sensor for measuring the electric field strength]. Patent RF no. 211166 U1, Prioritet 24.05.2022. (In Russ.). URL: https://www.elibrary.ru/download/elibrary_48489529_32501046.PDF
  13. Biryukov S.V., Tyukina L.V. Sposob izmereniya napryazhennosti ehlektricheskogo polya datchikom sdvoennogo tipa [Method of measuring electric field strength by a dual-type sensor]. Patent RF no. 211936 U1, Prioritet 29.06.2022. (In Russ.). URL: https://www.elibrary.ru/download/elibrary_49200772_49620492.PDF
  14. Böcker W. Messung der elektrischen Feldstärke bei hohen transienten und periodisch zeitabhängigen Spannungen. Elektrotechnische Zeitschrift A, 1970, Bd. 91, 8, s. 427-430.
  15. Biryukov S.V., Shilikov A.S. [Sensor of electric field strength with electrodes in the form of spherical polygons]. Omskii nauchnyi vestnik [Omsk scientific bulletin], 2002, no. 18, pp. 123—127. (In Russ.). URL: https://www.omgtu.ru/general_information/media_omgtu/ journal_of_omsk_research_journal/files/arhiv/2002/18%20pdf.pdf
  16. Biryukov S.V., Glukhoverya E.G. Sposob izmereniya napryazhennosti ehlektricheskogo polya povyshennoi tochnosti [Method of measurement of electric field strength of increased accuracy]. Patent RF no. 2733100 C1, Prioritet 29.09.2020. (In Russ.). URL: https://www.elibrary.ru/download/elibrary_44111489_42689492.PDF
  17. Wilhelmy L. Eine Sonde zur potenzialfreien Messung der periodischen und transienten Feldstärke. Elektrotechnische Zeitschrift A, 1973, Bd. 94, 8, s. 441—445.
  18. Mirolyubov N.N., Kostenko M.V., Levinshtein M.L., et al. Metody rascheta ehlektrostaticheskikh polei [Methods of calculation of electrostatic fields]. Moscow: Vysshaya shkola Publ., 1963. 415 p. (In Russ.).
  19. Biryukov S.V., Tyukina L.V. [An upgraded method for measuring the electric field strength by the average value of dual sensorsand devices for its implementation]. Dinamika sistem, mekhanizmov i mashin [Dynamics of Systems, Mechanisms and Machines], 2021, vol. 9, no. 3, pp. 64—72. DOI: 10.25206/2310-9793-9-3-64-72 (In Russ.).
  20. Biryukov S.V. Izmerenie napryazhennosti ehlektri-cheskikh polei v diehlektricheskikh sredakh ehlektroinduktsionnymi datchikami. Metody i sredstva izmerenii: monografiya [Measurement of electric field strength in dielectric media by electroinduction sensors. Methods and means of measurements: monograph]. Omsk, OmGTU Publ., 2011. 196 p. (In Russ.).
 

E. A. Krasiukov, T. G. Demyanov, V. V. Petrosyants

DEVELOPMENT AND INVESTIGATION OF HYDROACOUSTIC
ANTENNAS WITH ELECTROHYDRAULIC IMPACT

"Nauchnoe Priborostroenie", 2024, vol. 34, no. 3, pp. 98—105.
 

Experimental installation for a high-power hydroacoustic signal generator is developed. Experimental installation is accounted for creating electric discharges in liquids with impulse power of more than 10 megawatts and frequency of discharges up to 30 hertz. Two designs of impact excitation hydroacoustic antennas are suggested: double plate and cylindrical. Selection of cylindrical shaped antenna is justified. Based on experimental data directional diagram is drawn and mathematical model of cylinder-shaped antenna is suggested. Power of sound propagationas a function of distance is suggested. Calculation method for such antennas is developed. Suitability of electrohydraulic antennas for high-distance underwater sound propagation is shown.
 

Keywords: electrohydraulic impact, sound pressure, directional diagram, magnification coefficient, quality factor,
frequency of fluctuations

Author affiliations:

The Far Easter Federal University, city of Vladivostok, Russkiy island, Ajax village, Russian Federation

 
Contacts: Krasiukov Egor Andreevich, krasyukov.eggor@gmail.com
Article received by the editorial office on 23.07.2024

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Yutkin L.A. Ehlektrogidravlicheskii ehffekt i ego primenenie v promyshlennosti: uchebnik [Electrohydraulic effect and its application in industry: textbook]. Leningrad, "Mashinostroenie", Leningradskoe otdelenie Publ., 1986. 253 p. (In Russ.).
  2. Shemigon N.N., Petrakov A.V. Okhranaobjektov. Tekhnika i tekhnologii [Facility security. Techniques and technologies]. Moscow, Ehnergoatomizdat Publ., 2005. 680 p. (In Russ.).
  3. Kedrinskii V.K. Gidrodinamika vzryva: ehksperiment i modeli [Explosion hydrodynamics: experiment and models]. Novosibirsk, SO RAN Publ., 2000.435 p. (In Russ.).
  4. Brovin A.V. [Use of electrohydraulic shock effect in the fight against underwater terrorism]. Morskoi sbornik
    [Marine collection], 2010, no. 3, pp. 26—30. (In Russ.). URL: https://elibrary.ru/item.asp?edn=mwogfz
  5. Orlenko L.P., editor. Fizika vzryva. T. 1 [The physics of explosion. Vol. 1]. Moscow, Fizmatlit Publ., 2002. 832 p. (In Russ.).
  6. Ilgamov M.A. [Bending oscillations of a plate at change of average pressure on its surfaces]. Akusticeski jzurnal [Acoustical Physics], 2018, vol. 64, no. 5, pp. 598—604. (In Russ.). URL: https://sciencejournals.ru/cgi/download.pl?jid=akust&year=2018&file=akust5_18v64cont.pdf
  7. Kravchenko V.A., editor. Morskaya radioehlektronika: Spravochnoe izdanie [Marine Radio Electronics: Reference Edition]. Saint Petersburg, Politekhnika Publ., 2003. 246 p. (In Russ.).
  8. Rimskii-Korsakov A.V., Yamshchikov V.S., Zhulin V.I., Rekhtman V.I. Akusticheskie podvodnye nizkochastotnye izluchateli: uchebnik [Acoustic underwater low-frequency radiators: a textbook]. Leningrad, Sudostroenie Publ., 1984. 184 p. (In Russ.).
  9. Kushnir F.V. Ehlektroradioizmereniya [Electroradio measurements]. Leningrad, Ehnergoatomizdat, Leningradskoe otdelenie Publ., 1983. 320 p. (In Russ.).
  10. VisualMathStart. Uchebnaya programma dlya gazodinamicheskikh raschetov StartFlow [Training program for gas dynamic calculations StartFlow. Tutorial]. 2015. 112 p. (In Russ.). URL: https://visualmathstart.ru/upload/file/download/manual.pdf
 

E. V. Lutschekina

UPDATING THE RESEARCH INFRASTRUCTURE OF SCIENTIFIC
INSTITUTIONS DURING THE IMPLEMENTATION
OF THE FIRST STAGE OF THE NATIONAL
PROJECT "SCIENCE AND UNIVERSITIES"

"Nauchnoe Priborostroenie", 2024, vol. 34, no. 3, pp. 106—116.
 

A brief analysis of the results of the implementation of the national projects "Science" and "Science and Universities" in 2019—2022 in terms of the tasks of updating the research infrastructure was carried out. The problems arising during the implementation of the task under the conditions of the adopted sanctions are noted. Possible solutions to these problems are proposed. Based on the state statistics, the analysis of trends in the development of the research infrastructure of scientific organizations in 2019—2023 was carried out. It is stated that the development of domestic instrumentation is one of the main conditions for the renewal of the instrument park of scientific organizations.
 

Keywords: infrastructure for scientific research, scientific devices and equipment

Author affiliations:

Institute for study of science of the Russian Academy of Sciences (ISS RAS), Moscow, Russia

 
Contacts: Lutschekina Elena Vasil'evna, E.Lutschekina@issras.ru
Article received by the editorial office on 02.07.2024

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Ukaz Prezidenta Rossiiskoi Federatsii ot 13 maya 2017 goda ¹ 208 "O Strategii ehkonomicheskoi bezopasnosti Rossiiskoi Federatsii na period do 2030 goda" [Decree of the President of the Russian Federation No. 208
    of May 13, 2017 "On the Strategy of Economic Security of the Russian Federation for the Period until 2030"]. URL: http://www.kremlin.ru/acts/bank/41921 (In Russ.).
  2. Opublikovan pasport natsional'nogo proekta "Nauka" [The passport of the national project "Science" was published]. URL: http://government.ru/info/35565 (In Russ.).
  3. Federal'nyi proekt "Razvitie peredovoi infra-struktury dlya provedeniya issledovanii i razrabotok v Rossiiskoi Federatsii" [Federal project "Development of advanced infra-structure for research and development in the Russian Federation"]. (In Russ.). URL: https://sudact.ru/law/pasport-natsionalnogo-proekta-nauka-utv-prezidiumom-soveta/pasport/4/4.2/
  4. Pasport federal'nogo proekta "Razvitie peredovoi infrastruktury dlya provedeniya issledovanie i razrabotok v Rossiiskoi Federatsii" [Passport of the federal project "Development of advanced infrastructure for research and development in the Russian Federation"]. URL: https://pnzreg.ru/upload/iblock/18d/18db05fdaf711843fbff31f605fc8d02.pdf (In Russ.).
  5. Protsent kassovogo ispolneniya natsproekta "Nauka i universitety" v God nauki i tekhnologii sostavil 99,4% [Percentage of cash execution of the national project "Science and Universities" in the Year of Science and Technology amounted to 99.4%]. URL: https://minobrnauki.gov.ru/press-center/news/novosti-ministerstva/48832/ (In Russ.).
  6. Dmitrii Grigorenko: Aktsent monitoringa natsproektov — na vypolnenie meropriyatii [Dmitry Grigorenko: The focus of monitoring of national projects is on the implementation of measures]. (In Russ.). URL: http://government.ru/news/44606/
  7. Zavarukhin V.P., Solomentseva O.A., et al., eds. Nauka, tekhnologii i innovatsii Rossii: 2023. Kratkii statis-ticheskii sbornik [Science, Technology and Innovation in Russia: 2023. Brief statistical compendium]. Moscow: ISS RAS, 2023. 132 p. (In Russ.). URL: https://issras.ru/publication/books.php?id_b=426
  8. Dmitrii Chernyshenko: Na importozameshchenie nauchnogo oborudovaniya v ehtom godu budet napravleno 8 mlrd rublei [Dmitry Chernyshenko: 8 billion rubles will be allocated for import substitution of scientific equipment this year]. URL: http://government.ru/news/45098/ (In Russ.).
  9. Sbor predlozhenii po razrabotke nauchnykh priborov [Collection of proposals for the development of scientific instruments]. (In Russ.). URL: https://minobrnauki.gov.ru/press-center/news/novosti-ministerstva/68357/
  10. Fal'kov: finansirovanie programmy nauchnogo priborostroeniya sostavit 4 mlrd rub. v god [Falkov: financing of the scientific instrumentation program will amount to 4 billion rubles per year]. (In Russ.). URL: http://nauka.tass.ru/nauka/15246277
  11. V Rossii budet sozdan konsortsium "Nauchnoe priborostroenie" ["Scientific Instrumentation" Consortium to be established in Russia]. (In Russ.). URL: https://minobrnauki.gov.ru/press-center/news/novosti-ministerstva/60311/
 

Ulitsa Ivana Chernykh, 31-33, lit. A, St. Petersburg, Russia, 198095, P.O.B. 140
tel: (812) 3630719, fax: (812) 3630720, mail: iap@ianin.spb.su

content: Valery D. Belenkov design: Banu S. Kuspanova layout: Anton V. Manoilov