logo
blue band <-
  JOURNAL "NP" ISSUES

"Nauchnoe Priborostroenie", 2019, Vol. 29, no. 4. ISSN 2312-2951, DOI: 10.18358/np-29-4-18117b

"NP" 2019 year Vol. 29 no. 4.,   ABSTRACTS

ABSTRACTS, REFERENCES

P. K. Afonicheva1, A. L. Bulyanitsa1,2, A. A. Evstrapov1

"ORGAN-ON-A-CHIP" – MATERIALS AND METHODS OF CREATION (REVIEW)

"Nauchnoe priborostroenie", 2019, vol. 29, no. 4, pp. 3—18.
doi: 10.18358/np-29-4-i318
 

In the recent years new manufacturing technologies for micro- and nanoscale structures has significantly influenced progress in various academic fields. Thus, microfluidics technology has its place as an instrument for diverse uses, especially in bioengineering and biomedical researches.
For instance, microfluidic technology is successfully used for biological samples preparation, tissue engineering, molecular diagnosis, drug screening and so on. In addition to such application this technology is important auxiliary tool in modelling various organs and their properties. Combination of microfluidics and methods for the formation of 3D cellular tissue structures led to the creation of new area called "organ-on-a-chip". Main idea of "organ-on-a-chip" is creation of artificial test object that models live human organ. Developing of microfluidics helps overcome the gap between in vitro and in vivo, offering new modern approaches to medical, biological and pharmacological research. "Organ-on-a-chip" devices can be not just a whole organ, but are able to imitate particular processes occurring in the body. Cells are grown inside reaction chambers and channels cells are used for forming tissues and organs models. Whole functionality can be achieved by maintaining specific conditions for ensuring the organ and tissue functioning, such as pressure, flow rate, pH, osmotic pressure, nutrition content, the toxin presence and other properties.
This review provides data on the publication activity of researchers in the last decade on the subject of "organ-on-chip" and related topics, indexed in the bibliometric database SCOPUS. These data indicate not only the increased attention given to this subject, but also the multidisciplinary nature of this field. In addition to publications’ distribution by year, it is of interest to compare the publication activity of representatives of various countries (the leaders are the USA, China and South Korea, in almost all directions).
The paper highlights general issues related to the basic and auxiliary "organ-on-a-chip" technology systems, materials and methods of devices and elements manufacturing, as well as examples of some devices. In order to obtain adequate research results using "organ-on-chip" systems, it is necessary to produce conditions as close to natural as possible for the model systems functioning, including the required temperature conditions, conditions for shear stress formation in the flow washing cells, mechanical compression, cyclic deformation or the influence of other physical forces, and to create the necessary environment for investigated objects.
It also increases the system complexity and leads to a need to use different materials (and hence manufacturing methods), sensors and micro-electromechanical devices, to create multi-stage research algorithms. "Organ-on-a-chip" systems are dynamically developing and the efforts spent by researchers make it possible to obtain impressive results in the form of new knowledge about the human body.
 

Keywords: microfluidics, organ-on-chip, liver-on-chip, lung-on-chip, polymers, manufacturing technology

Table 1. Distribution of publications by field of knowledge

Table 2. Distribution of publications by state of authorship

Table 3. Distribution of publications by year (according to scopus.com on 08/01/2019)

Table 4. Materials used in microfluidic technologies

Author affiliations:

1Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia
2Peter the Great St. Petersburg Polytechnic University, Russia

 
Contacts: Afonicheva Polina Konstantinovna, polina.afonicheva@gmail.com
Article received by the editorial office on 02.10.2019
Full text (In Russ.) >>

REFERENCES

  1. Jeon N.L., Baskaran H., Dertinger S.K.W., Whitesides G.M., Van De Water L., Toner M. Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nature biotechnology, 2002, vol. 20, no. 8, pp. 826—830. DOI: 10.1038/nbt712
  2. Chung B.G., Flanagan L.A., Rhee S.W., Schwartz P.H., Lee A.P., Monuki E.S., Jeon N.L. Human neural stem cell growth and differentiation in a gradient-generating microfluidic device. Lab on a Chip, 2005, vol. 5, no. 4, pp. 401—406. DOI: 10.1039/b417651k
  3. Huh D., Hamilton G.A., Ingber D.E. From 3D cell culture to organs-on-chips. Trends in cell biology, 2011, vol. 21, no. 12, pp. 745—754. DOI: 10.1016/j.tcb.2011.09.005
  4. Yum K., Hong S.G., Healy K.E., Lee L.P. Physiologically relevant organs on chips. Biotechnology journal. 2014, vol. 9, no. 1, pp. 16—27. DOI: 10.1002/biot.201300187
  5. Aziz A., Geng C., Fu M., Yu X., Qin K., Liu B. The role of microfluidics for organ on chip simulations. Bioengineering, 2017, vol. 4, no. 2, pp. 39—53. DOI: 10.3390/bioengineering4020039
  6. Mammoto T., Mammoto A., Ingber D.E. Mechanobiology and developmental control. Annual review of cell and developmental biology, 2013, vol. 29, pp. 27—61. DOI: 10.1146/annurev-cellbio-101512-122340
  7. Henry O.Y.F., Villenave R., Cronce M.J., Leineweber W.D., Benz M.A., Ingber D.E. Organs-on-chips with integrated electrodes for trans-epithelial electrical resistance (TEER) measurements of human epithelial barrier function. Lab on a Chip, 2017, vol. 17, no. 13, pp. 2264—2271. DOI: 10.1039/C7LC00155J
  8. Pati F., Gantelius J., Svahn H.A. 3D bioprinting of tissue/organ models. Angewandte Chemie International Edition, 2016, vol. 55, no. 15, pp. 4650—4665. DOI: 10.1002/anie.201505062
  9. Bhise N.S., Manoharan V., Massa S., Tamayol A., Ghaderi M., Miscuglio M., Lang Q., Zhang S.Y., Shin S.R., Calzone G. A liver-on-a-chip platform with bioprinted hepatic spheroids. Biofabrication, 2016, vol. 8, no. 1, 014101. DOI: 10.1088/1758-5090/8/1/014101
  10. Johnson B.N., Lancaster K.Z., Hogue I.B., Meng F., Kong Y.L., Enquist L.W., McAlpine M.C. Correction: 3D printed nervous system on a chip. Lab on a Chip, 2016, vol. 16, no. 10, pp. 1946—1946. DOI: 10.1039/C6LC90045C
  11. Sun Y.S., Peng S.W., Cheng J.Y. In vitro electrical-stimulated wound-healing chip for studying electric field-assisted wound-healing process. Biomicrofluidics, 2012, vol. 6, no. 3, 034117. DOI: 10.1063/1.4750486
  12. Ma C., Zhao L., Zhou E., Xu J., Shen S., Wang J. On-chip construction of liver lobule-like microtissue and its application for adverse drug reaction assay. Analytical chemistry, 2016, vol. 88, no.3, pp. 1719—1727. DOI: 10.1021/acs.analchem.5b03869
  13. Huh D., Matthews B.D., MammotoA., Montoya-Zavala M., Hsin H.Y., Ingber D.E. Reconstituting organ-level lung functions on a chip. Science,. 2010, vol. 328, no. 5986,
    pp. 1662—1668. DOI: 10.1126/science.1188302
  14. Kim H.J., Huh D., Hamilton G., Ingber D.E. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab on a Chip, 2012, vol. 12, no. 12, pp. 2165—2174. DOI: 10.1039/c2lc40074j
  15. Tsao P.W. Polymer microfluidics: Simple, low-cost fabrication process bridging academic lab research to commercialized production. Micromachines, 2016, vol. 7, no. 12, pp. 225—236. DOI: 10.3390/mi7120225
  16. Edington P.D. Chen W.L.K., Geishecker E., et al. Interconnected microphysiological systems for quantitative biology and pharmacology studies. Scientific reports, 2018, vol. 8, no. 1, pp. 4530—4548.
  17. Halldorsson S., Lucumi E., Gómez-Sjöberg R., Fleming R.M.T. Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosensors and Bioelectronics, 2015, vol. 63, pp. 218—231. DOI: 10.1016/j.bios.2014.07.029
  18. Lee H., Cho D.W. One-step fabrication of an organ-on-a-chip with spatial heterogeneity using a 3D bioprinting technology. Lab on a Chip, 2016, vol. 16, no. 14, pp. 2618—2625. DOI: 10.1039/C6LC00450D
  19. Toepke M.W., Beebe D.J. PDMS absorption of small molecules and consequences in microfluidic applications. Lab on a Chip, 2006, vol. 6, no.12, pp. 1484—1486. DOI: 10.1039/b612140c
  20. Becker H., Locascio L.E. Polymer microfluidic devices. Talanta, 2002, vol. 56, no. 2, pp. 267—287. DOI: 10.1016/S0039-9140(01)00594-X
  21. Sethu P., Mastrangelo P.H. Cast epoxy-based microfluidic systems and their application in biotechnology. Sensors and Actuators B: Chemical, 2004, vol. 98, no. 2-3, pp. 337—346. DOI: 10.1016/j.snb.2003.09.036
  22. Kim P. Soft lithography for microfluidics: a review. Biochip, 2008, vol. 2, pp. 1—11.
  23. Pepin A., Youinou P., Studer V., Lebib A., Chen Y. Nanoimprint lithography for the fabrication of DNA electrophoresis chips. Microelectronic engineering, 2002, vol. 61, pp. 927—932. DOI: 10.1016/S0167-9317(02)00511-7
  24. Becker H., Locascio L.E. Polymer microfluidic devices. Talanta, 2002, vol. 56, no. 2, pp. 267—287. DOI: 10.1016/S0039-9140(01)00594-X
  25. Kellogg G.J. Centrifugal microfluidics: applications. Springer, 2000, pp. 239—242. DOI: 10.1007/978-94-017-2264-3_55
  26. Agarwal A., Farouz Y., Nesmith A.P., Deravi L.F., McCain M.L., Parker K.K. Micropatterning alginate substrates for in vitro cardiovascular muscle on a chip. Advanced functional materials, 2013, vol. 23, no. 30, pp. 3738—3746. DOI: 10.1002/adfm.201203319
  27. Badrossamay M.R., Balachandran K., Capulli A.K., Golecki H.M., Agarwal A., Goss J.A. Engineering hybrid polymer-protein super-aligned nanofibers via rotary jet spinning. Biomaterials, 2014, vol. 35, no. 10, pp. 3188—3197. DOI: 10.1016/j.biomaterials.2013.12.072
  28. Dittrich P.S., Manz A. Lab-on-a-chip: microfluidics in drug discovery. Nature reviews drug discovery, 2006, vol. 5, no. 3, pp. 210—218. DOI: 10.1038/nrd1985
  29. Wu W., DeConinck A., Lewis J.A. Omnidirectional printing of 3D microvascular networks. Advanced Materials, 2011, vol. 23, no. 24, pp. H178—H183. DOI: 10.1002/adma.201004625
  30. Kolesky D.B., Truby R.L., Gladman S.A., Busbee T.A., Homan K.A., Lewis J.A. 3D bioprinting of vascularized, heterogeneous cell‐laden tissue constructs. Advanced materials, 2014, vol. 26, no. 19, pp. 3124—3130. DOI: 10.1002/adma.201305506
  31. Sosa-Hernández, J., Villalba-Rodríguez A., Romero-Cas­tillo K., Aguilar-Aguila-Isaías M., García-Reyes I., Hernández-Antonio A. Organs-on-a-ChipModule: A Review from the Development and Applications Perspective. Micromachines, 2018, vol. 9, no.10, pp.536—556. DOI: 10.3390/mi9100536
  32. Yi H., Wu L.Q., Ghodssi R., Rubloff G.W., Payne G.F., Bentley W.E. Signal-directed sequential assembly of biomolecules on patterned surfaces. Langmuir, 2005, vol. 21, no. 6, pp. 2104—2107. DOI: 10.1021/la047529k
  33. Yi H.,  Wu L.Q., Bentley W.E., Ghodssi R., Rubloff G.W., Culver J.N., Payne G.F.  Biofabrication with chitosan. Biomacromolecules, 2005, vol. 6, no. 6, pp. 2881—2894. DOI: 10.1021/bm050410l
  34. Bettinger P.J.,  Cyr K.M., Matsumoto A., Langer R., Borenstein J.T., Kaplan D.L. Silk fibroin microfluidic devices. Advanced Materials, 2007, vol. 19, no. 19, pp. 2847—2850. DOI: 10.1002/adma.200602487
  35. Ling Y., Rubin J., Deng Y., Huang P., Demirci U., Karp J.M., Khademhosseini A. A cell-laden microfluidic hydrogel. Lab on a Chip, 2007, vol. 7, no. 6, pp. 756—762. DOI: 10.1039/b615486g
  36. Bertassoni L.E., Cecconi M., Manoharan V., Nikkhah M., Hjortnaes J., Cristino A.L. Hydrogel bioprintedmicrochannel networks for vascularization of tissue engineering constructs. Lab on a Chip, 2014, vol. 14, no.13, pp. 2202—2211. DOI: 10.1039/C4LC00030G
  37. Grover W.H., von Muhlen M.G., Manalis S.R. Teflon films for chemically-inert microfluidic valves and pumps. Lab on a Chip, 2008, vol. 8, no. 6, pp. 913—918. DOI: 10.1039/b800600h
  38. Rogers P.I., Qaderi K., Woolley A.T., Nordin G.P. 3D printed microfluidic devices with integrated valves. Biomicrofluidics, 2015, vol. 9, no. 1, 016501. DOI: 10.1063/1.4905840
  39. Han N., Shin J.H., Han K.H. An on-chip RT-PCR microfluidic device, thatintegrates mRNA extraction, cDNA synthesis, and gene amplification. RSC Advances, 2014, vol. 4, no. 18, pp. 9160—9165. DOI: 10.1039/c3ra47980c
  40. Chudobova D., Cihalova K., Skalickova S., Zitka J., Rodrigo M.A.M., Milosavljevic V. 3D‐printed chip for detection of methicillin‐resistant Staphylococcus aureus labeled with gold nanoparticles. Electrophoresis, 2015, vol. 36, no. 3, pp. 457—466. DOI: 10.1002/elps.201400321
  41. Krejcova L. Nejdl L., Rodrigo M.A.M., Zurek M., Matousek M., Hynek D. 3D printed chip for electrochemical detection of influenza virus labeled with CdSquantum dots. Biosensors and Bioelectronics, 2014, vol. 54,
    pp. 421—427. DOI: 10.1016/j.bios.2013.10.031
  42. Hanada Y., Sugioka K., Shihira-Ishikawa I., Kawano H., Miyawaki A., Midorikawa K. 3D microfluidic chips with integrated functional microelements fabricated by a femtosecond laser for studying the gliding mechanism of cyanobacteria. Lab on a Chip, 2011, vol. 11, no. 12, pp. 2109—2115. DOI: 10.1039/c1lc20101h
  43. Becker H., Gärtner P. Polymer microfabrication technologies for microfluidic systems. Analytical and bioanalytical chemistry, 2008, vol. 390, no. 1, pp. 89—111. DOI: 10.1007/s00216-007-1692-2
  44. Kuo J.S., Ng L., Yen G.S., Lorenz R.M., Schiro P.G., Edgar J.S. A new USP class VI-compliant substrate for manufacturing disposable microfluidic devices. Lab on a Chip, 2009, vol. 9, no. 7, pp. 870—876. DOI: 10.1039/b818873d
  45. Plegue T.J., Kovach K.M., Thompson A.J., Potkay J.A. Stability of polyethylene glycol and zwitterionic surface modifications in PDMS microfluidic flow chambers. Langmuir, 2017, vol. 34, no. 1, pp. 492—502. DOI: 10.1021/acs.langmuir.7b03095
  46. Cherpinski A.,  Torres-Giner S., Vartiainen J., Peresin M.S., Lahtinen P., Lagaron J.M. Improving the water resistance of nanocellulose-based films with polyhydroxyalkanoates processed by the electrospinning coating technique. Cellulose, 2018, vol. 25, no. 2, pp. 1291—1307. DOI: 10.1007/s10570-018-1648-z
  47. Chen M.B., Srigunapalan S., Wheeler A.R., Simmons P.A. A 3D microfluidic platform incorporating methacrylated gelatin hydrogels to study physiological cardiovascular cell-cell interactions. Lab on a Chip, 2013, vol. 13, no. 13, pp. 2591—2598. DOI: 10.1039/c3lc00051f
  48. Zamboni F., Keays M., Hayes S., Albadarin A.B., Walker G.M., Kiely P.A., Collins M.N. Enhanced cell viability in hyaluronic acid coated poly (lactic-co-glycolic acid) porous scaffolds within microfluidic channels. International journal of pharmaceutics, 2017, vol. 532, no. 1, pp. 595—602. DOI: 10.1016/j.ijpharm.2017.09.053
  49. Mogosanu D. E., Verplancke, R., Dubruel, P., Vanfleteren J. Fabrication of 3-dimensional biodegradable microfluidic environments for tissue engineering applications. Materials & Design, 2016, vol. 89, pp. 1315—1324. DOI: 10.1016/j.matdes.2015.10.046
  50. Miri A.K., Nieto D., Iglesias L., GoodarziHosseinabadi H., Maharjan S., Ruiz‐Esparza G.U. Microfluidics‐Enabled Multimaterial MasklessStereolithographic Bioprinting. Advanced Materials, 2018, 1800242. DOI: 10.1002/adma.201800242
  51. Chen Y., Zhang L., Chen G. Fabrication, modification, and application of poly(methyl methacrylate) microfluidic chips. Electrophoresis, 2008, vol. 29, no. 9, pp. 1801—1814. DOI: 10.1002/elps.200700552
  52. Roy E., Geissler M., Galas J.P., Veres T. Prototyping of microfluidic systems using a commercial thermoplastic elastomer. Microfluidics and nanofluidics, 2011, vol. 11, no. 3, pp. 235—244. DOI: 10.1007/s10404-011-0789-2
  53. Borysiak M.D., Yuferova E., Posner J.D. Simple, low-cost styrene-ethylene/butylene-styrene microdevices for electrokinetic applications. Analytical chemistry, 2013, vol. 85, no. 24, pp. 11700—11704. DOI: 10.1021/ac4027675
  54. Domansky K., Sliz J.D., Wen N., Hinojosa P., Thompson G., Fraser J.P. SEBS elastomers for fabrication of microfluidic devices with reduced drug absorption by injection molding and extrusion. Microfluidics and Nanofluidics, 2017, vol. 21, no. 6, 107. DOI: 10.1007/s10404-017-1941-4
  55. Sheehy S.P.,  Pasqualini F., Grosberg A., Park S.J., Aratyn-Schaus Y., Parker K.K.  Quality metrics for stem cell-derived cardiac myocytes. Stem cell reports, 2014, vol. 2, no. 3, pp. 282—294. DOI: 10.1016/j.stemcr.2014.01.015
  56. Luni C., Serena E., Elvassore N. Human-on-chip for therapy development and fundamental science. Current opinion in biotechnology, 2014, vol. 25, pp. 45—50. DOI: 10.1016/j.copbio.2013.08.015
  57. Zhang B., Korolj A., Lai B.F.L., Radisic M. Advances in organ-on-a-chip engineering. Nature Reviews Materials, 2018, vol. 3, no. 8, pp. 257—278. DOI: 10.1038/s41578-018-0034-7
  58. Maschmeyer I., Lorenz A.K., Schimek K., et al. A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents. Lab on a Chip, 2015, vol. 15, no. 12, pp. 2688—2699. DOI: 10.1039/C5LC00392J
  59. Ronaldson-Bouchard K., Vunjak-Novakovic G. Organs-on-a-chip: a fast track for engineered human tissues in drug development. Cell Stem Cell, 2018, vol. 22, no. 3, pp. 310—324. DOI: 10.1016/j.stem.2018.02.011
  60. Jiang B., Zheng W.F., Zhang W., Jiang X.Y. Organs on microfluidic chips: A mini review. Science China Chemistry, 2014, vol. 57, no. 3, pp. 356—364. DOI: 10.1007/s11426-013-4971-0
  61. Abaci H.E., Shuler M.L. Human-on-a-chip design strategies and principles for physiologically based pharmacokinetics/pharmacodynamics modeling. Integrative Biology, 2015, vol. 7, no. 4, pp. 383—391. DOI: 10.1039/C4IB00292J
  62. Bhusnure O.G., Satpute V., Gholve S.B., Giram P.S., Jagtap S., Chakure S.S. Organs-on-a-chip: a new tool for drug discovery. International Journal of ChemTech Research, 2017, vol. 10, no. 9, pp. 35—49.
  63. Nalayanda D.D., Puleo C., Fulton W.B., Sharpe L.M., Wang T.H., Abdullah F. An open-access microfluidic model for lung-specific functional studies at an air-liquid interface. Biomedical microdevices, 2009, vol. 11, no. 5, p. 1081—1089. DOI: 10.1007/s10544-009-9325-5
  64. Lee S.A., No D.Y., Kang E., Ju J., Kim D.S., Lee S.H. Spheroid-based three-dimensional liver-on-a-chip to investigate hepatocyte—hepatic stellate cell interactions and flow effects. Lab on a Chip, 2013, vol. 13, no. 18, pp. 3529—3537. DOI: 10.1039/c3lc50197c
  65. No Y., Lee D., Lee K.-H., Lee J. 3D liver models on a microplatform: well-defined culture, engineering of liver tissue and liver-on-a-chip. Lab Chip, 2015, vol. 15, pp. 3822—3837. DOI: 10.1039/C5LC00611B
  66. Bavli D., Prill S., Ezra E., Levy G., Cohen M., Vinken M., Vanfleteren J., Jaeger M., Nahmias Y. Real-time monitoring of metabolic function in liver-on-chip microdevices tracks the dynamics of mitochondrial dysfunction. Proceedings of the National Academy of Sciences, 2016, vol. 113, no. 16, pp. E2231—E2240. DOI: 10.1073/pnas.1522556113
  67. Günther A., Yasotharan S., Vagaon A., Lochovsky C., Pinto S., Yang J., Lau C., Voigtlaender-Bolz J., Bolz S.S. A microfluidic platform for probing small artery structure and function. Lab on a Chip, 2010, vol. 10, no. 18, pp. 2341—2349. DOI: 10.1039/c004675b
  68. Cheng W., Klauke N., Sedgwick H., Smith G.L., Cooper J.M. Metabolic monitoring of the electrically stimulated single heart cell within a microfluidic platform. Lab on a Chip, 2006, vol. 6, no. 11, pp. 1424—1431. DOI: 10.1039/b608202e
  69. Werdich A.A., Lima E.A., Ivanov B., Ges I., Anderson M.E., Wikswo J.P., Baudenbacher F.J. A microfluidic device to confine a single cardiac myocyte in a sub-nanoliter volume on planar microelectrodes for extracellular potential recordings. Lab on a Chip, 2004, vol. 4, no. 4, pp. 357—362. DOI: 10.1039/b315648f
  70. Sin A., Chin K.C., Jamil M.F., Kostov Y., Rao G., Shuler M.L. The design and fabrication of three‐chamber microscale cell culture analog devices with integrated dissolved oxygen sensors. Biotechnology progress, 2004, vol. 20, no. 1, pp. 338—345. DOI: 10.1021/bp034077d
 

F. R. Ismagilov, V. E. Vavilov, R. A. Nurgalieva

PRESENT AND FUTURE OF CIRCULATORY ASSIST DEVICES (REVIEW)

"Nauchnoe Priborostroenie", 2019, vol. 29, no. 4, pp. 19—27.
doi: 10.18358/np-29-4-i1927
 

This article is devoted to a review of existing third-generation assisted circulatory devices, which are indicated for severe forms of heart failure. The development of technologies has allowed the use of electromagnetic rotor suspension in heart pumps of the third generation, in which there is no or partially no mechanical contact of the main moving element — the rotor. This is allowed by the use of magnetic rotor suspension with hydrodynamic and electromagnetic bearings. The rotor is suspended by magnetic forces of repulsion or attraction. These devices are used in the absence of a donor organ or in the restoration of one’s own heart weakened by myocardium. An acute shortage of donor organs requires immediate decisions to improve existing ones and to design, manufacture new apparatuses for auxiliary blood circulation, which will extend the life of people with heart failure. Undoubtedly, such devices have high demands on reliability, safety and biocompatibility. The development of bearings and bearing assemblies for medical devices for auxiliary circulation is an urgent task and may become the subject of new researches and discoveries both in the field of mechanics of the heart pump and in the field of materials for nodes and devices for auxiliary circulation.
 

Keywords: nucleic acid, DNA isolation, DNA purification, silicon dioxide, spin column, magnetic particles, chelex, liquid phase methods

Fig. 1. Third generation pump layout

Fig. 2. The design of the pump apparatus AVK-N "Sputnik": 1 – pump rotor; 2 – guiding device ; 3 – prop of rotor sliding; 4 – magnetic suspension of the rotor; 5 – straightening device; 6 – insulating bush; 7 – pump housing; 8 – stator of an electric machine; 9 – node of power and control cable input [4]

Fig. 3. Implantable device INCOR LVAD

Fig. 4. Pump HeartWare HVAD [8]. General view (a), with cutout (á)

Fig. 5. Design of pump HeartMate 3, US [9]

Fig. 6. The design and main components of the auxiliary circulatory device TerumoDuraHeart (US)

Fig. 7. General view and layout in the body of HeartWare pump, I – rotor, II – turbine

Table 1. Characteristics of existing third generation auxiliary blood circulation apparatus.

Fig. 8. Heart pump with hybrid magnetic bearings [13]

Fig. 9. Structure of hybrid magnetic bearing [12]. General view (a), view along the Z axis (á), sectional view (â)

Author affiliations:

Ufa State Aviation Technical University, Ufa, Russia

 
Contacts: Nurgalieva Rushana Azatovna, Rushana39.45@mail.ru
Article received by the editorial office on 09.09.2019
Full text (In Russ.) >>

REFERENCES

  1. Petrovskij B.V. Bol'shaya Medicinskaya Enciklopediya. Izdanie tret'e, onlajn versiya. [The Great Medical Encyclopedia. Edition three, online version]. URL: https://ÁMÝ.opã (In Russ.).
  2. Gidravlicheskie i pnevmaticheskie podshipniki. Elektronnyj resurs [Hydraulic and pneumatic bearings. Electronic Resource]. Wikipedia russ. URL: https://ru.wikipedia.org/wiki/Ãèäðàâëè÷åñêèå_è _ïíåâìàòè÷åñêèå_ïîäøèïíèêè (accessed 06.06.2019). (In Russ.).
  3. Diffuzor (gidroaerodinamika). Elektronnyj resurs [Diffuser (hydroaerodynamics). Electronic Resource]. Wikipedia russ. URL: https://ru.wikipedia.org/wiki/Äèôôóçop_(ãèäpoaýpoäèíaìèêa) (accessed 10.06.2019). (In Russ.).
  4. Grinvald V.M., Kusmin G.S., Masloboev Yu.P., Selishchev S.V., Telyshev D.V. [First Domestic Ventricular Assistant Device AVK-N "Sputnik" on Basis of Implantable Blood Pump]. Izvestiya Vysshikh Uchebnykh Zavedenii. Elektronika [Journal Proceedings of universities. Electronics], 2015, vol. 20, no. 5, pp. 516—521. (In Russ.).
  5. Kosmicheskie tekhnologii prishli na pomoshch' kardiologam v Kitae [Space technology came to the help of cardiologists in China]. Site NAUCHNAYA ROSSIYA. URL: https://scientificrussia.ru/articles/china-robotic-heart  (accessed 16.06.2019).
  6. Implantiruemaya sistema vspomogatel'nogo krovoobrashcheniya dlya levogo zheludochka serdca [Implantable assisted circulation system for the left ventricle of the heart]. E-resourcet. URL: https://www.assomedica.by/sites/default/files/2017-12/Berlin%20Heart_INCOR%20LVAD.pdf (accessed 16.06.2019).
  7. Masuzawa T., Osa M., Mapley M. Ch. 11: Motor design and impeller suspension . Mechanical Circulatory and Respiratory Support. Elsevier, 2017, pp. 335—377. DOI: 10.1016/B978-0-12-810491-0.00011-4
  8. HeartWare HVAD system. Advanced Heart Failure Management. URL: https://www.medtronic.com/xg-en/healthcare-professionals/products/cardiac-rhythm/ventricular-assist-devices/heartware-hvad-system.html (accessed 16.06.2019).
  9. HeartMate 3 Offers new hope. URL: https://www.abbott.com/life-changing-tech/heartmate-3-offers-new-hope.html (accessed 16.06.2019)
  10. Griffith K., Jenkin E., Pagani F.D. First American experience with the Terumo DuraHeart™ left ventricular assist system. Perfusion, 2009, vol. 24, no. 2, pp. 83—89. DOI: 10.1177/0267659109106826
  11. Yoshio O., Keiji K., Masatoshi A., et al. Initial In Vivo Evaluation of the DexAide Right Ventricular Assist Device. ASAIO Journal, 2005, vol. 51, no. 6, pp. 739—742. DOI: 10.1097/01.mat.0000187399.46756.fc
  12. Lim T.M., Zhang D., Yang J., Cheng S., et al. Design and parameter estimation of hybrid magnetic bearings for blood pump applications. Mechanical Systems and Signal Processing, 2009, vol. 23, no. 7, pp. 2352—2382. DOI: 10.1016/j.ymssp.2009.03.012
 

D. G. Petrov, E. D. Makarova, N. N. Germash, I. E. Antifeev

METHODS FOR ISOLATION AND PURIFICATION
OF DNA FROM CELL LYSATES (REVIEW)

"Nauchnoe Priborostroenie", 2019, vol. 29, no. 4, pp. 28—50.
doi: 10.18358/np-29-4-i2850
 

This review discusses methods for the isolation/purification of DNA from cell lysates, classified by the basic principles and specific means used for this purpose. Here are described advantages known to date, features of use and possible limitations for PCR analysis. The materials used include both review publications and some of "old" works that have still not lost their relevance and are the basis for the development of modern "home" methods for DNA isolation and purification. The reasons for this variety of DNA isolation and purification methods are quite objective: there is no and potentially cannot be created a unified procedure that would be equally effective in processing countless types of samples and PCR analysis objects and in conditions of dramatically different infrastructure and funding for laboratories using methods of molecular diagnostics. Therefore, in addition to increasing the D&R aimed at automation with the strategy "sample at the input – the result at the output", one cannot pass over the existing trend of developing corporate protocols aimed primarily at the maximum possible reduction in the cost of isolation procedures while maintaining DNA quality.
 

Keywords: nucleic acid, DNA isolation, DNA purification, silicon dioxide, spin column, magnetic particles, chelex, liquid phase methods

Author affiliations:

Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia

 
Contacts: Petrov Dmitriy Grigorievitch, dimoon88@mail.ru
Article received by the editorial office on 14.10.2019
Full text (In Russ.) >>

REFERENCES

  1. Hedman J., Knutsson R., Ansell R., et al. Pre-PCR processing in bioterrorism preparedness: improved diagnostic capabilities for laboratory response networks. Biosecur. Bioterro., 2013, vol. 11, suppl. 1, pp. S87—S101. DOI: 10.1089/bsp.2012.0090.
  2. Kralik P., Ricchi M.A. Basic guide to real time PCR in microbial diagnostics: definitions, parameters, and everything. Front. Microbiol., 2017, vol. 8, 108. DOI: 10.3389/fmicb.2017.00108
  3. Bochkarev E.G., Denisova T.S., Generozov E.V., et al. Genodiagnostika vo ftiziatrii [Genodiagnosis in phthisiology]. Moscow, 2000. 15 p . (In Russ.). URL: https://docplayer.ru/65216677-Genodiagnostika-vo-ftiziatrii.html
  4. Doebler R.W., Erwin B., Hickerson A., et al. Continuous-flow, rapid lysis devices for biodefense nucleic acid diagnostic systems. JALA, 2009, June. pp. 119—125. DOI: 10.1016/j.jala.2009.02.010
  5. Martzy R., Kolm C., Krska R., et al. Challenges and perspectives in the application of isothermal DNA amplification methods for food and water analysis. Anal. Bioanal. Chem., 2019, vol. 411, pp. 1695—1702. DOI: 10.1007/s00216-018-1553-1
  6. Rantakokko-Jalava K., Jalava J. Optimal DNA isolation method for detection of bacteria in clinical specimens by broad-range PCR. J. Clin. Microbiol., 2002, vol. 40, no. 11, pp. 4211—4217. DOI: 10.1128/JCM.40.11.4211-4217.2002
  7. Thatcher S.A. DNA/RNA Preparation for molecular detection. Clin. Chem., 2015, vol. 61, no. 1, pp. 89—99. DOI: 10.1373/clinchem.2014.221374
  8. Islam M.S., Aryasomayajula A., Selvaganapathy P.R. A review on macroscale and microscale cell lysis methods. Micromachines, 2017, vol. 8, is. 3, 83. DOI: 10.3390/mi8030083
  9. Rudi K., Jakobsen K.S. Overview of DNA purification for nucleic acid-based diagnostics from environmental and clinical samples. Methods in Molecular Biology, 2006, vol. 345, pp. 23—35. DOI: 10.1385/1-59745-143-6:23
  10. Burden D. Guide to the Disruption of Biological Samples. Random Primers, 2012, vol. 25, no. 12, pp. 1—25. URL: https://opsdiagnostics.com/applications/homogenization_guide_download.htm
  11. Gibbons L.E., Brangs H.C.G., Burden D.W. Bead Beating: A Primer (OPS Diagnostics, LLC). Random Primers, 2014, no. 12. URL: https://opsdiagnostics.com/notes/ranpri/OPSD_Bead_Beating_Primer_2014%20v1.pdf
  12. Elphinstone J., Griffiths B., Goddard M., Stockdale E. Soil biology and soil health health partnership. Project 3: Molecular approaches for routine soil-borne disease and soil health assessment — establishing the scope. Research Review, no. 91140002-03, BBRO, 2018. 37 p. URL: https://cereals.ahdb.org.uk/media/1362039/91140002-final-report-03pdf.pdf
  13. Bakken L.R., Frostegård A. Nucleic acid extraction from soil. Nucleic acids and proteins in soil, eds. P. Nannipieri, K. Smalla, Springer-Verlag, Berlin, Heidelberg, 2006, pp. 49—73.
  14. Lopuhov L.V., Ejdel'shtejn M.V. Polymerase chain reaction in clinical microbiological diagnosis. Klinicheskaya mikrobiologiya i antimikrobnaya Terapiya [Clinical Microbiology and Antimicrobial Therapy], 2000, vol. 2, no. 3, pp. 96—106. (In Russ.) URL: https://cmac-journal.ru/publication/2000/3/cmac-2000-t02-n3-p096/cmac-2000-t02-n3-p096.pdf
  15. Vaneechoutte M., Van Eldere J. The possibilities and limitations of nucleic acid amplification technology in diagnostic microbiology. J. Med. Microbiol., 1997, vol. 46, pp. 188—194. DOI: 10.1099/00222615-46-3-188
  16. Hedman J., Rådström P. Overcoming inhibition in real-time diagnostic PCR. Meth. Mol. Biol., 2013, vol. 943, pp. 17—48. DOI: 10.1007/978-1-60327-353-4_2 
  17. Schrader C., Schielke A., Ellerbroek L., Johne R. PCR inhibitors – occurrence, properties and removal. J. Appl. Microbiol., 2012, vol. 113, pp. 1014—1026. DOI: 10.1111/j.1365-2672.2012.05384.x
  18. Wilson I.G. Inhibition and facilitation of nucleic acid amplification. Appl. Environ. Microbiology, 1997, vol. 63, no. 10, pp. 3741—3751. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC168683/
  19. Rådström P., Knutsson R., Wolffs P., et al. Pre-PCR processing: Strategies to generate PCR-compatible samples. Mol. Biotechnol., 2004, vol. 26, pp. 133—146. DOI: 10.1385/MB:26:2:133
  20. Bessetti J. An introduction to PCR inhibitors. Promega Corporation. Profiles in DNA, 2007, vol. 10, is. 1, pp. 9—10. URL: https://www.promega.es/-/media/files/resources/profiles-in-dna/1001/an-introduction-to-pcr-inhibitors.pdf?la=es-es
  21. Matheson C.D., Gurney C., Esau N., Lehto R. Assessing PCR inhibition from humic substances. The open enzyme inhibition J., 2010, vol. 3, pp. 38—45. DOI: 10.2174/1874940201003010038
  22. Demeke T., Jenkins G.R. Influence of DNA extraction methods, PCR inhibitors and quantification methods on real-time PCR assay of biotechnology-derived traits. Anal. Bioanal. Chem., 2010, vol. 396, pp. 1977—1990. DOI: 10.1007/s00216-009-3150-9 
  23. Hu Q, Liu Y, Yi S, Huang D. The effect of six common PCR inhibitors on DNA polymerase and DNA template. Int. J. Forensic Sci. Pathol., 2014, vol. 2, no. 8, pp. 1—4. DOI: 10.19070/2332-287X-1400017
  24. Sidstedt M., Jansson L., Nilsson E. et al. Humic substances cause fluorescence inhibition in real-time polymerase chain reaction. Anal. Biochem., 2015, vol. 487, pp. 30—37. DOI: 10.1016/j.ab.2015.07.002
  25. Sidstedt M., Hedman J., Romsos E.L. et al. Inhibition mechanisms of hemoglobin, immunoglobulin G, and whole blood in digital and real-time PCR. Anal. Bioanal. Chem., 2018, vol. 410, is. 10, pp. 2569—2583. DOI: 10.1007/s00216-018-0931-z
  26. Moore D.D., Chory J., Ribaudo R.K. Isolation and purification of large DNA restriction fragments from agarose gels. Current Protocols in Immunology, 1993, vol. 8, is. 1, pp. 10.5.1—10.5.12. DOI: 10.1002/0471142735.im1005s08
  27. Moore E., Arnscheidt A., Krüger A., et al. Simplified protocols for the preparation of genomic DNA from bacterial cultures. Molecular Microbial Ecology Manual, 2nd Ed., 2004, pp. 3—18.
  28. Tan S.C., Yiap B.C. DNA, RNA, and protein extraction: The past and the present. J. Biomed. Biotechnol., 2009, vol. 2009, 574398. DOI: 10.1155/2009/574398
  29. Antonova O.S., Korneva N.A., Belov Yu.V., Kurochkin V.E. Methods of nucleic acids purification and separation in molecular biology (review). Nauchnoe Priborostroenie [Scientific Instrumentation], 2010, vol. 20, no. 1, pp. 3—9. (In Russ.). URL: http://iairas.ru/en/mag/2010/full/Art1.pdf
  30. Palomo F.S., Celle Rivero M.G., Quiles M.G., et al. Comparison of DNA extraction protocols and molecular targets to diagnose tuberculous meningitis. Tuberculosis Res. Treat., 2017, vol. 2017. 5089046. DOI: 10.1155/2017/5089046
  31. Purdy K.J. Nucleic acid recovery from complex environmental samples. Method Enzymol., 2005, vol. 39, pp. 271—292. DOI: URL: 10.1016/S0076-6879(05)97016-X
  32. Ali N., de Cássia Pontello Rampazzo R., Costa A.D.T., Krieger M.A. Current nucleic acid extraction methods and their implications to point-of-care diagnostics. BioMed Research Int., 2017, vol. 2017, 9306564. DOI: 10.1155/2017/9306564
  33. Chacon-Cortes D., Griffiths L. Methods for extracting genomic DNA from whole blood samples: current perspectives. J. Biorepository Science for Applied Medicine, 2014, vol. 2, pp. 1—9. DOI: 10.2147/BSAM.S46573
  34. Barbosa C., Nogueira S., Gadanho M., Chaves S. DNA extraction: finding the most suitable method. Molecular Microbial Diagnostic Methods: Pathways to Implementation for the Food and Water Industries, Chapter 7, Elsevier Inc., 2016, pp. 135—154.
  35. Zaveri P., Patel R., Patel M. Patel M ., Sarodia D ., Munshi N.S . Modification of extraction method for community DNA isolation from salt affected compact wasterland soil samples. MethodsX, 2017, vol. 4, pp. 63—67. DOI: 10.1016/j.mex.2017.01.002
  36. Lee S.B., Shewale J.G. DNA Extraction methods in forensic analysis. Encyclopedia of Analytical Chemistry, John Wiley & Sons, 2017, pp. 1—18. DOI: 10.1002/9780470027318.a1104m
  37. Cheng H.-R., Jiang N. Extremely rapid extraction of DNA from bacteria and yeasts. Biotechnol. Lett., 2006,
    vol. 28, no. 1, pp. 55—59. DOI: 10.1007/s10529-005-4688-z
  38. Zhang R., Gong H.-Q., Zeng X. et al. A Microfluidic liquid phase nucleic acid purification chip to selectively isolate DNA or RNA from low copy/single bacterial cells in minute sample volume followed by direct on-chip quantitative PCR assay. Anal. Chem., 2013, vol. 85, no. 3, pp. 1484—1491. DOI: 10.1021/ac3026509
  39. Chomczynski P., Mackey K., Drews R., Wilfinger W. DNAzol: A reagent for the rapid isolation of Genomic DNA. BioTechniques, 1997, vol. 22, no. 3, pp. 550—553. DOI: 10.2144/97223pf01
  40. Rodriguez-Garcia A., Mares R.E., Muñoz P.L.A., et al. DNA extraction with DNAzol and LAMP, performed in a heating block as a simple procedure for detection of Mycobacterium tuberculosis in sputum specimens. Methods and Protoc., 2018, vol. 1, is. 4, 37. DOI: 10.3390/mps1040037
  41. Ligozzi M., Fontana R. Isolation of total DNA from bacteria and yeast. Afr. J. Biotechnol., 2003, vol. 2, no. 8,
    pp. 251—253. DOI: 10.5897/AJB2003.000-1052
  42. Kissoudi M., Samanidou V. Recent Advances in applications of ionic liquids in miniaturized microextraction techniques. Molecules, 2018, vol. 23, is. 6, 1437. DOI: 10.3390/molecules23061437  
  43. Fuchs-Telka S., Fister S., Mester P-J., et al. Hydrophobic ionic liquids for quantitative bacterial cell lysis with subsequent DNA quantification. Anal. Bioanal. Chem., 2017, vol. 409, no. 6, pp. 1503—1511. DOI: 10.1007/s00216-016-0112-x
  44. Vedernikov V.E. Comparative characteristics of nucleic acid extraction methods. Laboratoriya [Laboratory], 2012, no. 4, pp. 14—15. (In Russ.).
  45. Aukenov N.E., Masabaeva M.R., Hasanova U.U. Isolation and purification of nucleic acids. State of the problem at the present stage. Nauka i zdravoohranenie [Science and healthcare], 2014, no. 1, pp. 51—53. (In Russ.).
  46. Madhad V.J., Sentheil K.P. The rapid & non-enzymatic isolation of DNA from the human peripheral whole blood suitable for genotyping. Eur. J. Biotechnol. Biosci., 2014, vol. 1, is. 3, pp. 1—16. URL: http://www.biosciencejournals.com/vol1/issue3/26.html
  47. Sakyi S.A., Kumi B., Ephraim R.D. et al. Modified DNA extraction technique for use in resource-limiting settingth: Comparison of salting out methods versus QIAamp blood mini kit. Ann. Med. Health Sci. Res., 2017, vol. 7, is. 3, pp. 131—136. URL: https://www.amhsr.org/articles/modified-dna-extraction-technique-for-use-in-resourcelimited-settings-comparison-of-salting-out-methods-versus-qiaamp-bl.pdf
  48. Al-Shuhaib M.B.S. A minimum requirements method to isolate large quantities of highly purified DNA from one drop of poultry blood. J. Genetics, 2018, vol. 97, pp. 87—94. DOI: 10.1007/s12041-018-0983-z
  49. Wells D.A., Herron L.L. Automation of sample preparation for genomics. LC·GC Europe, 2002, vol. 15, no. 11, pp. 712—720.
  50. Boom R., Sol C.J., Salimans M.M. et al. Rapid and simple method for purification of nucleic acids. J. Clin. Microbiol., 1990, vol. 28, no. 3, pp. 495—503. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC269651/pdf/jcm00051-0103.pdf
  51. Zähringer H. Don’t lose the thread. Product survey: Manual DNA extraction kits. Lab Times, 2012, no. 6, pp. 52—56. URL: https://docplayer.net/53735876-Pure-dna-devoid-of-impurities-from.html
  52. Li J.-F., Li L., Sheen J. Protocol: a rapid and economical procedure for purification of plasmid or plant LNA with diverse applications in plant biology. Plant Methods, 2010, vol. 6, 1. DOI: 10.1186/1746-4811-6-1
  53. Huanca-Mamani W., Rivera-Cabello D., Maita-Maita J. A simple, fast and inexpensive CTAB-PVP-silica based method for genomic DNA isolation from single, small insect larvae and pupae. Genetics and Molecular Res., 2015, vol. 14, no. 3, pp. 8001—8007. DOI: 10.4238/2015.July.17.8
  54. Rohland N., Hofreiter M. Comparison and optimization of ancient DNA extraction. BioTechniques, 2007, vol. 42, pp. 343—352. DOI: 10.2144/000112383
  55. Devi S.G., Fathima A.A., Radha S. et al. A rapid and economical method for efficient DNA extraction from divers soils suitable for metagenomic applications. PLoS ONE, 2015, vol. 10, no. 7, e0132441. DOI: 10.1371/journal.pone.0132441
  56. Wang X., Xing L., Shu Y., et al. Novel polymeric ionic liquid microspheres with high exchange capacity for fast extraction of plasmid DNA. Anal. Chim. Acta, 2014,
    vol. 837, pp. 64—69. DOI: 10.1016/j.aca.2014.06.002
  57. Shakhmaeva I.I., Bulatov E.R., Bondar O.V., et al. Binding and purification of plasmid DNA using multilayered carbon nanotubes. J. Biotechnol., 2011, vol. 152, no. 3, pp. 102—107. DOI: 10.1016/j.jbiotec.2011.01.022
  58. Topҫu A.A., Aȿir S., Türkmen D. DNA purification by solid phase extraction (SPE) methods. Hacettepe J. Biol. & Chem., 2016, vol. 44, is. 3, pp. 259—266. URL: http://www.hjbc.hacettepe.edu.tr/site/assets/files/4121/08-259-266.pdf
  59. Nacham O., Clark K.D., Anderson J.L. Extraction and purification of DNA from complex biological sample matrices using solid-phase microextraction coupled with real-time PCR. Anal. Chem., 2016, vol. 88, pp. 7813—7820. URL: https://pdfs.semanticscholar.org/093b/da2eddf068f83212b7517dcabe796d8c25f9.pdf
  60. Holmberg R.C., Gindlesperger A., Stokes T., et al. Akonni TruTip® and Qiagen® methods for extraction of fetal circulating DNA – evaluation by real-time and digital PCR. PLoS One, 2013, vol. 8, no. 8, e73068. DOI: 10.1371/journal.pone.0073068
  61. Frickmann H., Hinz R., Hagen R.M. Comparison of an automated nucleic acid extraction system with the column-based procedure. Eur. J. Microbiol. Immunol., 2015, vol. 5, no. 1, pp. 94—102. DOI: 10.1556/EUJMI-D-14-00040
  62. Mandal G., Das S., Padmanabhan S. Development of a membrane-based method for isolation of genomic DNA from human blood. J. Biomol. Techniques, 2018, vol. 29, is. 3, pp. 46—53. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5865945/
  63. Beall S.G., Cantera J., Diaz M.H., et al. Performance and workflow assessment of six nucleic acid extraction technologies for use in resource limited settings. PLoS ONE, 2019, vol. 14, no. 4, e0215753. URL: 10.1371/journal.pone.0215753
  64. Thakore N., Garber S., Bueno A. et al. A bench-top automated workstation for nucleic acid isolation from clinical sample types. J. Microbiol. Methods, 2018, vol. 148, pp. 174—180. P. 174—180. DOI: 10.1016/j.mimet.2018.03.021
  65. Holmberg R.C., Gindlesperger A., Stokes T., et al. High-throughput, automated extraction of DNA and RNA from clinical samples using TruTip technology on common liquid handling robots. J. Vis. Exp., 2013, vol. 76, e50356. DOI: 10.3791/50356
  66. Bag S., Saha B., Mehta O., et al. An improved method for high quality metagenomics DNA extraction from human and environmental samples. Sci. Rep., 2016, vol. 6, 26775. DOI: 10.1038/srep26775
  67. Zhou Y., Zhang Y., He W., et al. Rapid regeneration and reuse of silica columns from PCR purification and gel extraction kits. Sci. Rep., 2018, vol. 8, 12870.
  68. Shi R., Lewis R.S., Panthee D.R. Filter paper-based spin column method for cost-efficient DNA or RNA purification. PLoS ONE, 2018, vol. 13, no 12, e0203011. DOI: 10.1371/journal.pone.0203011
  69. Shipley M.A., Koehler J.W., Kulesh D.A., Minogue T.D. Comparison of nucleic acid extraction platforms for detection of select biothreat agents for use in clinical resource limited settings. J. Microbiol. Methods, 2012, vol. 91, no. 1, pp. 179—183. DOI: 10.1016/j.mimet.2012.06.008
  70. UNITAID. Tuberculosis. Diagnostics technology landscape. 5th edition, Geneva, 2017. 90 p. URL: http://unitaid.org/assets/2017-Unitaid-TB-Diagnostics-Technology-Landscape.pdf
  71. Thakore N., Norville R., Franke M., et al. Automated TruTip nucleic acid extraction and purification from raw sputum. PLoS ONE, 2018, vol. 13, no. 7, e0199869. DOI: 10.1371/journal.pone.0199869
  72. Akonni Biosistems. Inc.TruTip® Automated Workstation. URL: https://akonni.com/technology/sample-prep/
  73. Poh J.-J., Gan K.-E. The determination of factors involved in column-based nucleic acid extraction and purification. J. Bioproces. Biotechniq., 2014, vol. 4, no. 3, 1000157. DOI: 10.4172/2155-9821.1000157
  74. Katevatis C., Fan A., Klapperich C.M. Low concentration DNA extraction and recovery using a silica solid phase. PLOS One, 2017, vol. 12, no. 5, e0176848. DOI: 10.1371/journal.pone.0176848
  75. Petrov D.G., Makarova E.D., Korneva N.A., Aldekeeva A.S., Knyazkov N.N. The effect of fields of different nature on the yield of DNA upon separation from model solutions on silicon dioxide. 1. Effect of temperature. Nauchnoe Priborostroenie [Scientific Instrumentation], 2015, vol. 25, no. 2, pp. 91—101. (In Russ.). DOI: 10.18358/np-25-2-i91101
  76. Petrov D.G., Makarova E. D., Antifeev I. E., Brodskaya A. V., Konstantinova N. N., Malyshin S. N. The effect of fields of different nature on the yield of DNA upon separation from model solutions on silicon dioxide. The effect of ultrasound. Nauchnoe Priborostroenie [Scientific Instrumentation], 2017, vol. 27, no. 4, pp. 40—55. (In Russ.). DOI: 10.18358/np-27-4-i4055
  77. Kathiravan M.N., Gim G.H., Ryu J., et al. Enhanced method for microbial community DNA extraction and purification from agricultural yellow loess soil. J. Microbiol., 2015, vol. 53, no. 11, pp. 767—775. DOI: 10.1007/s12275-015-5454-0
  78. Tan S.C., Ong C.E., Hay Y.K., Yiap B.C. Cellulose and its application in biomolecules purification. Intl. Res. J. Appl. Basic Sci., 2013, vol. 7, no. 5, pp. 267—276.
  79. Zou Y., Mason M.G., Wang Y., et al. Nucleic acid purification from plants, animals and microbes in under 30 seconds. PLoS Biology, 2017, vol. 15, no. 11, e2003916. DOI: 10.1371/journal.pbio.2003916
  80. Bangs Laboratories, Inc. Magnetic microspheres. TechNote 102. URL: https://www.bangslabs.com/sites/default/files/imce/docs/TechNote%20102%20Web.pdf
  81. Rudi K., Kroken M., Dahlberg O.J., et al. Rapid, universal method to isolate PCR-ready DNA using magnetic beads. Bio Techniques, 1997, vol. 22, no. 3, pp. 506—511. DOI: 10.2144/97223rr01
  82. Deggerdal A., Larsen F. Rapid isolation of PCR-ready DNA from blood, bone marrow and cultured cells, based on paramagnetic beads. BioTechniques, 1997, vol. 22, no. 3, pp. 554—557. DOI: 10.2144/97223pf02
  83. Stemmer C., Beau-Faller M., Pencreach E., et al. Use of magnetic beads for plasma cell-free DNA extraction: Toward automation of plasma DNA analysis for molecular diagnostics. Clin. Chem., 2003, vol. 49, no 11, pp. 1953—1955.
  84. Romeika J.M., Yan F. Recent Advances in Forensic DNA Analysis. J. Forensic Res., 2013, S12, 001, 13 p. DOI: 10.4172/2157-7145.S12-001
  85. Gong R., Li S. Extraction of human genomic DNA from whole blood using a magnetic microsphere method. Int. J. Nanomed, 2014, vol. 9, pp. 3781—3789. DOI:   10.2147/IJN.S59545
  86. Haddad Y., Xhaxhiu K., Kopel P., et al. The isolation of DNA by polycharged magnetic particles: an analysis of the interaction by Zeta potential and particle size. Int. J. Mol. Sci., 2016, vol. 17, is. 4, pp. 550—561. DOI: 10.3390/ijms17040550
  87. Saiyed Z.M., Ramchand C.N., Telang S.D. Isolation of genomic DNA using magnetic nanoparticles as a solid-phase support. J. Phys. Condens. Matter, 2008, vol. 20, no. 20, 204153. DOI: 10.1088/0953-8984/20/20/204153
  88. Niemirowicz K., Wilczewska A.Z., Car G. Magnetic nanoparticles as separators of nucleic acids. Chemik, 2013, vol. 67, no. 10, pp. 836—841.
  89. Yi L., Huang Y., Wu T., Wu J. A magnetic nanoparticles-based method for DNA extraction from the saliva of stroke patients. Neural Regeneration Research, 2013, vol. 8, no. 32, pp. 3036—3046. DOI: 10.3969/j.issn.1673-5374.2013.32.007
  90. Sirdah M.M. Superparamagnetic—bead based method: An effective DNA extraction from dried blood spots (DBS) for diagnostic PCR. J. Clin. Diagn. Res., 2014, vol. 8, no. 4, pp. FC01—FC04. DOI: 10.7860/JCDR/2014/8171.4226
  91. Sawant D.V., Bohara R.A., Patil R.S., Pawar S.H. Detection of Mycobacterium tuberculosis from pulmonary sputum sample using SPION mediated DNA extraction method. Res. J. Life Sci., Bioinformatics, Pharm. Chem. Sci. (RJLBPCS), 2018, vol. 4, no. 1, pp. 91—105. DOI: 10.26479/2018.0401.08
  92. Chiang C.L., Sung C.S., Wu T.F., et al. Application of superparamagnetic nanoparticles in purification of plasmid DNA from bacterial cells. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci., 2005, vol. 822, no. 1-2, pp. 54—60. DOI: 10.1016/j.jchromb.2005.05.017
  93. Danthanarayana A.N., Manatunga D.C., de Silva R.M. et al. Magnetofection and isolation of DNA using polyethylenimine functionalized magnetic iron oxide nanoparticles. R. Soc. Open. Sci., 2018, vol. 5, is. 12, 181369. DOI: 10.1098/rsos.181369
  94. Volkova N.N., Derjabin O.N., Yanishpolskii V.V., Dudchenko N.O. Isolation of ultrapure plasmid DNA from bacterial cells with silica-magnetite nanoparticles. Annales, Universitatis Mariae Curie-Skłodowska, Lublin — Polonia, Sectio AA, 2007, vol. LXII, no. 22, pp. 250—260. URL: http://dlibra.umcs.lublin.pl/Content/24167/czas4051_62_2007_22.pdf
  95. Quy D.V., Hieu N.M., Tra P.T., et al. Synthesis of silica-coated magnetic nanoparticles and application in the detection of pathogenic viruses. J. Nanomaterials, 2013, vol. 2013, 603940. (6 p.) DOI: 10.1155/2013/603940
  96. Liu Q., Li J., Liu H., et al. Rapid, cost-effective DNA quantification via a visually-detectable aggregation of superparamagnetic silica-magnetite nanoparticles. Nano Research, 2014, vol. 7, no. 5, pp. 755—784. DOI: 10.1007/s12274-014-0436-9
  97. Oberacker P., Stepper P., Bond D.M., et al. Bio-on-magnetic-beads (BOMB): Open platform for high-throughput nucleic acid extraction and manipulation. PLoS Biol., 2019, vol. 17, no. 1, e3000107. DOI: 10.1371/journal.pbio.3000107
  98. Sur K., McFall S.M., Yeh E.T., et al. Immiscible phase nucleic acid purification eliminates PCR inhibitors with a single pass of paramagnetic particles through a hydrophobic liquid. J. Mol. Diagnostics, 2010, vol. 12, no. 5,
    pp. 620—628. DOI: 10.2353/jmoldx.2010.090190
  99. Berry S.M., Alarid E.T., Beebe D.J. One-step purification of nucleic acid for gene expression analysis via immiscible filtration assisted by surface tension (IFAST). Lab. Chip, 2011, vol. 11, no. 10, pp. 1747—1753. DOI: 10.1039/c1lc00004g
  100. Bordelon H., Russ P.K., Wright D.W., Haselton F.R. A magnetic bead-based method for concentrating DNA from human urine for downstream detection. PLOS ONE, 2013, vol. 8, no. 7, e68369.
  101. Scherr T.F., Ryskoski H.B., Doyle A.B., Haselton F.R. A two-magnet strategy for improved mixing and capture from biofluids. Biomicrofluidics, 2016, vol. 10, pp. 024118-1—024118-15. DOI: 10.1063/1.4946014
  102. Dzhenloda R.Kh, Petrov D.G., Shkinev V.M., Spivakov B.Yu. DNA recovery from environmental samples on suspension columns under a combined action of ultrasound and magnetic fields followed by polymerase chain reaction detection. Mendeleev Commun., 2017, vol. 27, is. 3, pp. 302—303. DOI: 10.1016/j.mencom.2017.05.029
  103. Kulmamabetova G. Probopodgotovka. Metody vydeleniya DNK/RNK [Sample preparation. DNA / RNA isolation methods.]. Astana, ENU, 2012. (In Russ.).
  104. Chircov C., Grumezescu A.M., Holban A.M. Magnetic particles for advanced molecular diagnosis. Materials, 2019, vol. 12, is. 13, 2158. (17 p.) DOI: 10.3390/ma12132158
  105. Walsh P.S., Metzger D.A., Higuchi R. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. BioTechniques, 1991, vol. 10, no. 4, pp. 506—513.
  106. Sepp R., Szabó I., Uda H., Sakamoto H. Rapid techniques for DNA extraction from routinely processed archival tissue for use in PCR. J. Clin. Pathol., 1994, vol. 47, is. 4, pp. 318-323. DOI: 10.1136/jcp.47.4.318
  107. Polski J.M., Kimzey S., Percival R.W., Grosso L.E. Rapid and effective processing of blood specimens for diagnostic PCR using filter paper and Chelex-100. Mol. Pathol., 1998, vol. 51, is. 4, pp. 215—217. DOI: 10.1136/mp.51.4.215
  108. Phillips K., McCallum N., Welch L. A comparison of methods for forensic DNA extraction: Chelex® 100 and the QIAGEN DNA Investigator Kit (manual and automated). Forensic Sci. Int. Genet., 2012, vol. 6, no 2, pp. 282—285. DOI: 10.1016/j.fsigen.2011.04.018
  109. Idris B., Goodwin W. Comparison of Chelex®—100 with two solid phase DNA extraction techniques. Forens. Sci. Int. Gen. Suppl. Ser., 2015, vol. 5, pp. e274—e275. DOI:  10.1016/j.fsigss.2015.09.109
  110. Ip S.C., Lin S.W., Lai K.M. An evaluation of the performance of five extraction methods: Chelex® 100, QIAamp® DNA Blood Mini Kit, QIAamp® DNA Investigator Kit, QIAsymphony® DNA Investigator® Kit and DNA IQ™. Sci. Justice, 2015, vol. 55, no. 3, pp. 200—208. DOI: 10.1016/j.scijus.2015.01.005
  111. Aygan A. Nucleic Acid extraction from clinical specimens for PCR applications. Turk. J. Biol., 2006, vol. 30, is. 2, pp. 107—120.
  112. Fukui Y., Sawabe T. Rapid detection of vibrio harveyiin seawater by real-time PCR. Microbes Environ., 2008, vol. 23, no. 2, pp. 172—176. DOI: 10.1264/jsme2.23.173
  113. Musapa M., Kumwenda T., Mkulama M., et al. A simple Chelex protocol for DNA extraction from Anopheles spp. J. Vis. Exp., 2013, vol. 71, e3281. DOI: 10.3791/3281
  114. Al-Griw H.H., Zraba Z.A., Al-Muntaser S.K., et al. Effects of storage temperature on the quantity and integrity of genomic DNA extracted from mice tissues: A comparison of recovery methods. Open Veterinary J., 2017, vol. 7, no. 3, pp. 239—243. DOI: 10.4314/ovj.v7i3.7
  115. Ruiz- Fuentes J.L., Diaz A., Entenza A.E., et al. Comparison of four DNA extraction methods for the detection of Mycobacterium leprae from Ziehl-Neelsen-stained microscopic slides. Int. J. Mycobacteriology, 2015, vol. 4,
    is. 4, pp. 284—289. DOI: 10.1016/j.ijmyco.2015.06.005
  116. Kolia-Diafouka P., Godreuil S., Bourdin A., et al. Optimized lysis-extraction method combined with IS6110-amplification for detection of Mycobacterium tuberculosis in paucibacillary sputum specimens. Front. Microbiol., 2018, vol. 9, 2224. DOI: 10.3389/fmicb.2018.02224
  117. Leung E.T., Zheng L., Wong R.Y., et al. Rapid and simultaneous detection of Mycobacterium tuberculosis complex and Beijing/W genotype in sputum by an optimized DNA extraction protocol and a novel multiplex real-time PCR. J. Clin. Microbiol., 2011, vol. 49, no. 7, pp. 2509—2515. DOI: 10.1128/JCM.00108-11
  118. Reyes-Escogido L., Balam-Chi M., Rodriguez-Buenfil I.,
    et al. Purification of bacterial genomic DNA in less than 20 min using chelex-100 microwave: examples from strains of lactic acid bacteria isolated from soil samples. Antonie van Leeuwenhoek, 2010, vol. 98, no. 4, pp. 465—474. DOI: 10.1007/s10482-010-9462-0
  119. Martin-Platero A.M., Peralta-Sánchez J.M., Soler J.J., Martinez-Bueno M. Chelex-based DNA isolation procedure for the identification of microbial communities of eggshell surfaces. Anal. Biochem., 2010, vol. 397, is. 2, pp. 253—255. DOI: 10.1016/j.ab.2009.10.041
  120. Singh U.A., Kumari M., Iyengar S. Method for improving the quality of genomic DNA obtained from minute quantities of tissue and blood samples using Chelex 100 resin. Biological Procedures Online, 2018, vol. 20, 12. DOI: 10.1186/s12575-018-0077-6
  121. Lienhard A., Schäffer S. Extracting the invisible: obtaining high quality DNA is a challenging task in small arthropods. Peer J., 2019, vol. 7, e6753. DOI: 10.7717/peerj.6753
  122. Kapustin D.V., Prostyakova A.I., Alexeev Ya.I., et al. High-throughput method of one-step DNA isolation for PCR diagnostics of Mycobacterium tuberculosis. Acta Naturae, 2014, vol. 6, no. 2 (21), pp. 48—52. URL: http://actanaturae.ru/catalog/225.aspx
 

A. S. Yakimov1, E. D. Osipova1, A. V. Morgun1,
E. B. Boytsova1, P. I. Belobrov2, V. V. Salmin1, A. B. Salmina1

MEASURING MICROFLUIDIC SYSTEM
FOR THE MAMMALIAN BRAIN CELLS CULTIVATION

"Nauchnoe Priborostroenie", 2019, vol. 29, no. 4, pp. 51—56.
doi: 10.18358/np-29-4-i5156
 

Prototyping and development of microfluidic systems for many non-specialized biomedical research laboratories are not available due to the high cost of the necessary equipment. One of the interesting directions of using microfluidic platforms is the modelling of the blood-brain barrier and the neurogenic niche of the brain in vitro. The solution of technological problems within this area will ensure progress in the development of new diagnostic and therapeutic technologies for diseases of the central nervous system. Given that the cells of the neurovascular unit of the brain (cerebral endotheliocytes, perivascular astrocytes, neurons, pericytes) are very sensitive to culturing conditions, the requirements for the micro-stream system for their survival, development and functioning are quite high.
Purpose of work: to conduct a full cycle of manufacturing a microfluidic flow chamber for culturing cells available for biomedical measurements, and to coordinate the microfluidic platform with a sufficient set of peripheral equipment. We have developed a method for transferring a positive pattern formed by milling from the surface of polymethylmethacrylate to the surface of polydimethylsiloxane. It was found that dental silicone mass for duplication Zhermack Elite double 22 models has poor adhesion at the interface between the long-frozen layer and the freezing layer. This made it possible to double take a replica from the canalized surface and obtain a copy of the milled canalized surface on the elastic material. We have shown that the microfluidic chip obtained by our method can be useful for cell cultivation.
 

Keywords: lab-on-a-chip, polydimethylsiloxane, milling, master-form, flow-through cultivation

Fig. 1. The simulation results of the process of filling chambers of various shapes and with different flow dividers. The flow is directed from left to right. On a, á, â, ã, ä: 1 — filling liquid, 2 — air displaced by the liquid. Bubbles are formed: a, á — in the corners of the chamber; â, ã — beyond the flow separator. On e is the magnitude of the steady-state flow rate in the chip chamber without obstacles (color 3 corresponds to the maximum speed, 4 — to the minimum)

Fig. 2. Drawing of the chip plate (a) and the fabricated chip with a semipermeable membrane after sealing (á)

Fig. 3. Microfluidic chip for cultivating brain cells in a CO2 incubator connected to a nutrient perfusion system

Fig. 4. Micrograph of astrocytes stained with DAPI stain.
a – in the channel of the microfluidic chip with superposition of phase contrast and autofluorescence, á – in the chamber of the microfluidic chip after cultivation, magnification × 175

Author affiliations:

1Krasnoyarsk State Medical University named after prof. V.F. Voyno-Yasenetsky, Krasnoyarsk, Russia
2Siberian Federal University, Krasnoyarsk, Russia

 
Contacts: Yakimov Anton Sergeevitch, asyakimov@gmail.com
Article received by the editorial office on 12.10.2019
Full text (In Russ.) >>

REFERENCES

  1. Evstrapov A.A., Belobrov P. I., Bulyanica A. L., Belousov K. I., Bukatin A. S., Denisov I. A., Esimbekova E. N., Kuhtevich I. V., Luk'yanenko K. A., Posmitnaya YA.S., Sorokin V. V., YAkimov A.S. Mikroflyuidnye tekhnologii biologicheskogo analiza prirodnyh i promyshlennyh vod [Microfluidic technologies for biological analysis of natural and industrial waters]. Novosibirsk, SF RAS Publ, 2017. 176 p. (In Russ.).
  2. Bates K., Jiang S., Chaudhary S., Jackson-Holmes E., Jue M.L., McCaskey E., Goldman D.I., Lu H. Fast, versatile and quantitative annotation of complex images. BioTechniques, 2019, vol. 66, no. 6, pp. 269—275. DOI: 10.2144/btn-2019-0010
  3. Agrawal G., Aung A., Varghese S. Skeletal muscle-on-a-chip: An in vitro model to evaluate tissue formation and injury. Lab on a Chip, 2017, vol. 17, no. 20, pp. 3447—3461. DOI: 10.1039/c7lc00512a
  4. Isenberg B.C., Williams C., Tranquillo R.T. Small-diameter artificial arteries engineered in vitro. Circulation research, 2006, vol. 98, no 1, pp. 25—35. DOI: 10.1161/01.RES.0000196867.12470.84
  5. Juskova P., Ollitrault A., Serra M., Viovy J.L., Malaquin L. Resolution improvement of 3D stereo-lithography through the direct laser trajectory programming: Application to microfluidic deterministic lateral displacement device. Analytica chimica acta, 2018. vol. 1000, pp. 239—247. DOI: 10.1016/j.aca.2017.11.062
  6. Palmiotti C.A., Prasad S., Naik P., Abul K.M., Sajja R.K., Achyuta A.H., Cucullo L. In vitro cerebrovascular modeling in the 21st century: current and prospective technologies. Pharmaceutical research, 2014, vol. 31, no. 12. pp. 3229—3250. DOI: 10.1007/s11095-014-1464-6
  7. Guckenberger D.J., de Groot T.E., Wan A.M., Beebe D.J., Young E.W. Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices. Lab on a Chip, 2015, vol. 15, no. 11, pp. 2364—2378. DOI: 10.1039/c5lc00234f
  8. Khilazheva E. D., Boytsova E. B., Pozhilenkova E. A., Solonchuk Yu. R., Salmina A. B. The model of neurovascular unit in vitro consisting of three cells types. Cytology [Citologiya], 2015, vol. 57, no. 10, pp. 710—713. (In Russ.).
  9. Posmitnaya Y.S., Bukatin A.S., Makarov D.A., Yudin K.V., Evstrapov A.A. Alternative solutions of master molds creation for fabrication microfluidic chips by "soft" lithography. Nauchnoe priborostroenie [Scientific instrumentation], 2017, vol. 27, no. 2, pp. 13—20. DOI: 10.18358/np-27-2-i1320 (In Russ.).
  10. Booth R., Kim H. Characterization of a microfluidic in vitro model of the blood-brain barrier (μBBB). Lab on a Chip, 2012, vol. 12, no. 10, pp. 1784—1792. DOI: 10.1039/c2lc40094d
  11. Griep L.M., Wolbers F., de Wagenaar B., ter Braak P.M., Weksler B.B., Romero I.A., Couraud P.O., Vermes I., van der Meer A.D., van den Berg A. BBB on chip: microfluidic platform to mechanically and biochemically modulate blood-brain barrier function. Biomedical microdevices, 2013, vol. 15, no. 1, pp. 145—150. DOI: 10.1007/s10544-012-9699-7
 

D. V. Lebedev1,2, A. M. Mozharov3, F. E. Komissarenko4, V. A. Shkoldin4,
A. O. Golubok2, A. S. Bukatin2,3, A. A. Evstrapov2, I. S. Muhin3,4

CREATION OF MICRO-AND NANOCHANNELS
ON THE SURFACE OF SILICON CHIPS
BY OPTICAL AND ION LITHOGRAPHY METHODS

"Nauchnoe Priborostroenie", 2019, vol. 29, no. 4, pp. 57—61.
doi: 10.18358/np-29-4-i5761
 

Today microfluidic technologies are of interest both for fundamental science and in connection with possible practical applications in the field of biomedicine and genetic engineering. Lithography methods based on the use of charged electron and ion beams open up wide possibilities for the creation of micro- and nanochannels, nanoscale pores, as well as functional nanostructures of a more complex shape embedded in them. In the framework of this study, a technique was developed and tested to create microfluidic chips with two flow cells (cameras) of no more than 0.05 cm3 in volume, interconnected by a system of nanochannels ~ 90 nm wide. This technique allows you to create arrays of channels with a given width and depth. Systems with micro- and nano­scale and nanopores can be used in studies of the transport properties of both ions and various molecules as they move through nanochannels. In addition, such structures can be successfully used in the development of highly sensitive biosensor systems and in lab-on-a-chip systems.
 

Keywords: micro and nanochannels, optical lithography, ion lithography, silicon substrate, polydimethylsiloxane, microfluidic chip

Fig. 1. Schematic illustration of microfluidic chip formation steps with nanochannel system

Fig. 2. Images of microfluidic channels obtained using scanning electron microscope

Fig 3. A – image of the surface of the nanochannels obtained with the use of scanning electron microscope; á – surface profile of a single nanochannel obtained using an atomic force microscope; â – dependence of the channel width on time of ion etching

Author affiliations:

1St Petersburg  University, Saint Petersburg, Russia
2Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia
3Saint Petersburg national research Academic University, Saint Petersburg, Russia
4ITMO University, Saint Petersburg, Russia

 
Contacts: Lebedev Denis Vladimirovich, denis.v.lebedev@gmail.com
Article received by the editorial office on 15.10.2019
Full text (In Russ.) >>

REFERENCES

  1. Strathmann H. Ion-Exchange membrane separation processes. Elsevier, Amsterdam, 2004. 360 p.
  2. Volkov V.V., Mchedlishvili B.V., Roldugin V.I., Ivanchev S.S., Yaroslavcev A.B. Membranes and nanotechnology. Rossijskie nanotekhnologii [Russian nanotechnologies], 2008. vol. 3, no. 11—12, pp. 67—99.
  3. Yaroslavcev A.B., Nikonenko V.V. Ion-exchange membrane materials: properties, modification and practical application. Rossijskie nanotekhnologii [Russian nanotechnologies], 2009, vol. 4, no. 3—4, pp. 137—159.
  4. Cipollina A., Micale G. Sustainable energy from salinity gradients. Elsevier/Woodhead Publishing, 2016. 362 p.
  5. Pourcelly G., Nikonenko V.V., Pismenskaya N.D., Yaroslavtsev A.B. Applications of charged membranes in separation, fuel cells and emerging processes. Ionic interactions in natural and synthetic macromolecules, Eds. A. Ciferri, A. Perico. John Wiley & Sons, 2012, pp. 761—815.
  6. Banica F.G. Chemical sensors and biosensors: fundamentals and applications. John Wiley & Sons, 2012. 576 p.
  7. Zhu Z., Wang D., Tian Y., Jiang L. Ion/molecule transportation in nanopores and nanochannels: from critical principles to diverse functions. J. Am. Chem. Soc, 2019, vol. 141, no. 22, pp. 8658—8669. DOI: 10.1021/jacs.9b00086
  8. Favre I., Moczydlowski E., Schild L. On the structural basis for ionic selectivity among Na+, K+, and Ca2+ in the voltage-gated sodium channel. Biophysical journal, 1996, vol. 71, no. 6, pp. 3110—3125. DOI: 10.1016/S0006-3495(96)79505-X
  9. Payandeh J., Gamal El-Din T.M., Scheuer T., Zheng N., Catterall W.A. Crystal structure of a voltage-gated sodium channel in two potentially inactivated states. Nature, 2012, vol. 486, no. 7401, pp. 135—139.
  10. Malmivuo J., Plonsey R. Bioelectromagnetism – principles and applications of bioelectric and biomagnetic fields. New York, Oxford University Press, 1995. 641 p. URL: http://www.bem.fi/book/book.pdf
  11. Tagliazucchi M., Szleifer I. Transport mechanisms in nanopores and nanochannels: can we mimic nature? Mater. Today, 2015, vol. 18, is. 3, pp. 131—142. DOI: 10.1016/j.mattod.2014.10.020
  12. Ouyang W., Han J. Universal amplification-free molecular diagnostics by billion-fold hierarchical nanofluidic concentration. Proceedings of the National Academy of Sciences, 2019, vol. 116, no. 33, pp. 16240—16249. DOI: 10.1073/pnas.1904513116
  13. Branton D., Deamer D. The development of nanopore sequencing. Nanopore sequencing: an introduction. World Scientific Publishing Company, 2019, pp. 1—16.
  14. Sparreboom W., Van den Berg A., Eijkel J.C.T. Principles and applications of nanofluidic transport. Nature nanotech, 2009, vol. 4, pp. 713—720. DOI: 10.1038/NNANO.2009.332
  15. Picallo C.B., Gravelle S., Joly L., Charlaix E., Bocquet L. Nanofluidic osmotic diodes: theory and molecular dynamic simulation. Phys.Rev.Lett., 2013, vol. 111, pp. 244501. DOI: 10.1103/PhysRevLett.111.244501
  16. Siria A., Poncharal P., Biance A.L., Fulcrand R., Blasé X., Purcell S.T., Bocquer L. Giant osmotic energy conversion measured in a single transmembrane boron nanotube. Nature, 2013, vol. 494, pp. 455—458. DOI: 10.1038/nature11876
  17. Bobacka J., Ivaska A., Lewenstam A. Potentiometric ion sensors. Chem. Rev., 2008, vol. 108, pp. 329—351. DOI: 10.1021/cr068100w
  18. Evstrapov A.A., Mukhin I.S., Kukhtevich I.V., Bukatin A.S. Using focused ion beam for nanosized structure formation in microfluidic chips. Technical physics letters, 2011, vol. 37, no. 10, pp. 956—959. DOI: 10.1134/S1063785011100191
  19. Evstrapov A.A., Mukhin I.S., Bukatin A.S., Kukhtevich I.V. Ion and electron beam assisted fabrication of nanostructures integrated in microfluidic chips. Nuclear instruments and methods in physics research B, 2012, vol. 282, pp. 145—148. DOI: 10.1016/j.nimb.2011.08.035
 

A. Yu. Portnoy, M. Yu. Portnoy

ORIGIN OF CONTINUOUS SPECTRUM
OF THE DETECTOR IN A CASE OF ELECTRONS
OR BETA PARTICLES BREMSSTRAHLUNG REGISTRATION

"Nauchnoe Priborostroenie", 2019, vol. 29, no. 4, pp. 62—72.
doi: 10.18358/np-29-4-i6272
 

The processes of interaction of an electron flux with an energy of up to 500 keV with the target material (anode of an X-ray tube) and the subsequent interaction of X-ray radiation with semiconductor Si and Ge detectors are considered. The dependences of the photon detection probability on the photon energy by Si and Ge detectors are calculated. Presented graphically. The calculated spectral distributions of the radiation pulses of an X-ray tube with a copper anode at anode voltage of 50, 100, and 500 kV recorded by Si and Ge detectors are presented.
In the case of registration with a Si detector, it’s shown that in the low-energy region of the detected radiation, the registration processes in the Compton plateau of radiation losses with a sufficiently high energy arising in the target cannot be neglected. In the case of a Ge detector, the registration of bremsstrahlung at the peak of photo loss cannot be neglected in the low energy region of the detected radiation.
 

Keywords: electron beam bremsstrahlung , detector response function, Compton escape plateau, photo escape peak

Fig. 1. The overall calculation process

Fig. 2. Response functions of Si and Ge detectors. a – Si detector; á – Ge detector.
Peak total absorption (continuous line); peak K photo loss for the Si detector (a), K and L photo loss for the Ge detector (á) (dash-dotted line); Compton loss plateau (dashed line), electronic loss tail (dotted line)

Fig. 3. Calculated dependences of photon detection probabilities for Si detectors on the photon energy with a central beam incidence normal to the detector surface.
Probabilities: continuous line – total absorption of photon energy in the detector; dashed line – registration of a photon in the "hump of losses"; dash-dotted line – photon registration
at the peak K photo loss; dotted line – registration of a photon in the "tail" due to the release of high-energy electrons. The thickness of the detector is 5 mm

Fig. 4. Calculated dependences of photon detection probabilities for Ge detectors on the photon energy with a central incident beam normal to the detector surface.
Probabilities: continuous line – total absorption of photon energy in the detector; dashed line – registration of a photon in the "hump of losses"; dash-dotted line – registration of a photon at the peaks of K photo loss; dotted line – registration of a photon in the "tail" due to the release of high-energy electrons. The thickness of the detector is 5 mm

Fig. 5. Spectrum of an X-ray tube with a copper anode at voltages of 50 kV (continuous thick line), 100 kV (continuous thin line), 500 kV (dashed line). Resolution 0.1 keV on K copper lines

Supplement

Fig. Ï1. The spectral distribution (calculation) of the radiation pulses of an x-ray tube with a copper anode recorded by a Si detector at an anode voltage of 50 kV.
X-ray tube spectrum – dash-dotted line (for reference); the tube spectrum recorded at the peak of total absorption of the detector – a thin continuous line, coincides with the dashed line in the energy range up to 10 keV and the thick line in the rest of the energy range; the tube spectrum recorded by the detector in the Compton loss plateau – a short dashed line; general detector spectrum – thick continuous line

Fig. Ï2. The spectral distribution (calculation) of radiation pulses of an x-ray tube with a copper anode recorded by a Si-detector at anode voltage of 100 kV.
X-ray tube spectrum – dash-dotted line (for reference); the tube spectrum recorded at the peak of total absorption of the detector – a thin continuous line, coincides with the dashed line in the energy range up to 10 keV and the thick line in the rest of the energy range; the tube spectrum recorded by the detector in the Compton loss plateau – a short dashed line; general detector spectrum – thick continuous line

Fig. Ï3. The spectral distribution (calculation) of radiation pulses of an x-ray tube with a copper anode recorded by a Si detector at an anode voltage of 500 kV.
X-ray tube spectrum – dash-dotted line (for reference); the tube spectrum recorded at the peak of the total absorption of the detector – a thin continuous line; the tube spectrum recorded by the detector in the Compton loss plateau – a short dash line; general detector spectrum – thick continuous line

Fig. Ï4. The spectral distribution (calculation) of the radiation pulses of an x-ray tube with a copper anode recorded by a Ge detector at an anode voltage of 50 kV.
X-ray tube spectrum – dash-dotted line (for reference); the tube spectrum recorded at the peak of total absorption of the detector – a thin continuous line, coincides with the dashed line in the energy range up to 10 keV and the thick line in the rest of the energy range; the general spectrum of the detector – a thick continuous line; recording spectrum of the tube radiation registered by the detector at the peak of photo loss – dashed line

Fig. Ï5. The spectral distribution (calculation) of the radiation pulses of an x-ray tube with a copper anode recorded by a Ge detector at an anode voltage of 100 kV.
X-ray tube spectrum – dash-dotted line (for reference); the tube spectrum recorded at the peak of the total absorption of the detector – a thin continuous line, coincides with the dashed-dotted line in the energy range up to 10 keV and with a thick line in the energy range above 20 keV; the general spectrum of the detector – a thick continuous line; recording spectrum of the tube radiation registered by the detector at the peak of photo loss – dashed line

Fig. Ï6. The spectral distribution (calculation) of the radiation pulses of a X-ray tube with a copper anode recorded by a Ge detector at an anode voltage of 500 kV.
X-ray tube spectrum – dash-dotted line (for reference); the tube spectrum recorded at the peak of the total absorption of the detector – a thin continuous line; the tube spectrum recorded by the detector in the Compton loss plateau – a short dash line; the general spectrum of the detector – a thick continuous line; recording spectrum of the tube radiation registered by the detector at the peak of photo loss – dashed line

Author affiliations:

Irkutsk state university of transport, Irkutsk, Russia

 
Contacts: Portnoy Alexander Yuryevich, portnoyalex@yandex.ru
Article received by the editorial office on 10.10.2019
Full text (In Russ.) >>

REFERENCES

  1. Kramers H.A. On the theory of X-ray absorption and of the continuous X-ray spectrum. Phil. Mag., Ser. 6, 1923, vol. 46, is. 275, pp. 836—871.
  2. Bethe H. Zur Teorie des durchgang schneller korpusskularstrahlen durch materie. Annalen der Physik (Leipzig), 1930, vol. 397, no. 3, pp. 325—400. DOI: 10.1002/andp.19303970303
  3. Sommerfeld A. Atomic Structure and Spectral Lines (Atombau und Spektrallinien). Methuen & Co. Ltd. 1923, 626 p. (Russ. ed.: Zommerfeld A. Stroenie atoma i spektry. Translate K.P. Gurov, ads. I.B. Borovskoy. Moscow, GITIL Publ., 1956, vol. 1, 591 p., vol. 2, 694 p.).
  4. Loomis T.C., Keith H.D. Spectral distribution of x-rays produced by a General electric EA 75 Cr/W tube at various applied constant voltages. X-ray spectrometry, 1976, vol. 5, is. 2, pp. 104—114. DOI: 10.1002/xrs.1300050211
  5. Arai T., Shoji T., Omote K. Measurement of the spectral distribution emitted from spectrographic tubes. Advances in X-ray analysis, 1985, vol. 29, pp. 413—422. DOI: 10.1154/S0376030800010521
  6. Finkelshtein A.L., Pavlova T.O. Calculation of X-ray tube distribution. X-ray spectrometry, 1999, vol. 28, is. 1, pp. 27—32. DOI: 10.1002/(SICI)1097-4539(199901/02)28:1<27::AID-XRS302>3.0.CO;2-R
  7. Kirkpatrik P., Wiedman L. Theoretical continuous X-ray energy and polarization. Physical Review, 1945, vol. 67, no. 11-12, pp. 321—329. DOI: 10.1103/PhysRev.67.321
  8. Reed S.J.B. The shape of the continuous x-ray spectrum and background correction for energy-dispersive electron microprobe analysis. X-ray spectrometry, 1975, vol. 4, is. 1, pp. 14—17. DOI: 10.1002/xrs.1300040105
  9. Statham P.J. The generation, absorption and anisotropy of thick target bremsstrahlung and implication for quantitative energy disperse analysis. X-ray spectrometry, 1976, vol. 5, is. 3, pp. 154—168. DOI: 10.1002/xrs.1300050310
  10. Philibert J. A method for calculating the absorption corrections in electron probe microanalysis. X-ray optics and X-ray microanalysis. N.Y.: Acad. Press, 1963, pp. 379—392. DOI: 10.1016/B978-1-4832-3322-2.50039-1
  11. Reed S.J.B. Electron microprobe analysis . Cambridge [Eng], New York, Cambridge University Press, 1975. 400 p. (Russ. ed.: Rid S. Elektronno-zondovyj mikroanaliz. Moscow, Mir Publ., 1979. 423 p.).
  12. Green M., Crosslet V.E. The efficiency of production of characteristic X-radiation in thick targets of a pure element. Proc. Phys. Soc., 1961, vol. 78, no. 6, pp. 1206—1214. DOI: 10.1088/0370-1328/78/6/315
  13. Green M. The target absorption correction in X-ray microanalysis. X-ray optics and X-ray microanalysis, N.Y., Acad. Press, 1963, pp. 361—377.
  14. Dearnaley G., Northrop D.C. Semiconductor counters for nuclear radiations. New York, Wiley, 1963. 331 p. (Russ ed.: Dirnli G., Nortrop D. Poluprovodnikovye schetchiki yadernyh izluchenij. Moscow, Mir Publ., 1966. 260 p.).
  15. Keith H.D., Loomis T.C. Calibration and use of a lithium drifted silicon detector for accurate analysis of X-ray spectra. X-ray spectrometry, 1976, vol. 5, is. 4, pp. 93—103. DOI: 10.1002/xrs.1300050210
  16. Felsteiner J., Kahane S., Rosner B. Effect of the electron momentum distribution on the shape of the Compton edge of Si(Li) detectors. Nuclear instruments and methods, 1973, vol. 118, is. 1, pp. 253—255.
  17. Serebryakov A.S. Vychislitelnye modeli detektorov yadernogo i rentgenovskogo izlucheniya. Diss. kand. fiz.-mat. nauk. [Computational models of nuclear and X-ray detectors. cand. phys.-math. sci. diss.]. Leningrad, 1983. (In Russ.).
  18. Portnoy A.Yu. [An estimation method of energetic and spatial parameters of x-ray and gamma detectors]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2009, vol. 19, no. 4, pp. 13—23. (In Russ.). URL: http://iairas.ru/en/mag/2009/abst4.php#abst2
  19. Portnoy A.Yu., Pavlinsky G.V., Gorbunov M.S. An estimation of the signal to background ratio limited by photon and electron transport in EDXRF. X-ray spectrometry, 2010, vol. 39, no. 1, pp. 41—51. DOI: 10.1002/xrs.1220
  20. Portnoy A.Yu., Pavlinsky G.V., Gorbunov M.S., Sidorova Yu.I. An estimation of EDXRF spectrometer properties, based on a two-layer composite Si-Ge detector. X-ray spectrometry, 2012, vol. 41, is. 1, pp. 298—303. DOI: 10.1002/xrs.2396
  21. Can C. Escape of photoelectrons and Compton-scattered photons from an HPGe detector. X-ray spectrometry, 2003, vol. 32, is. 4, pp. 280—284. DOI: 10.1002/xrs.650
  22. Pekoz R., Can C. Components of detector response function: Monte Carlo simulations and experiment. X-ray spectrometry, 2006, vol. 35, is. 6, pp. 347—351. DOI: 10.1002/xrs.917
  23. Tinh T.P., Leroux J. New basic empirical equation for computing of X-ray mass attenuation coefficients. X-ray spectrometry, 1979, vol. 9, no. 2, pp. 85—91. DOI: 10.1002/xrs.1300080211
  24. Hubbell J.H., Veigele Wm.J., Braggs E.A., Brown R.T., Cromer D.T., Howerton R.J. Atomic form factors, incoherent scattering functions, and photon scattering cross sections. J. Phys. Chem. Ref. Data, 1975, vol. 4, is. 3, pp. 471—538. DOI: 10.1063/1.555523
  25. Reed W.A., Eisenberger P. Gamma ray Compton profiles of diamond, silicon and germanium. Phys. Rev. B, 1972, vol. 6, is. 12, pp. 4596—4604. DOI: 10.1103/PhysRevB.6.4596
  26. Papp T., Maxwell J.A., Papp A., Nejedly Z., Campbell J.L. On the role of the signal processing electronics in X-ray analytical measurements. Nuclear instruments and methods in physics research B, 2004, vol. 219-220, pp. 503—507. DOI: 10.1016/j.nimb.2004.01.111
 

I. V. Kurnin, N. V. Krasnov

PRELIMINARY SEPARATION OF CHARGED PARTICLES
IN AN ION SOURCE AT ATMOSPHERIC PRESSURE

"Nauchnoe Priborostroenie", 2019, vol. 29, no. 4, pp. 73—79.
doi: 10.18358/np-29-4-i7379
 

A comparative analysis of the types of ions obtained in ion sources at atmospheric pressure, such as ESI, FIAD, APCI, is carried out. The possibility of preliminary separation of the ions under consideration from non-informative ions and charged particles (microdrops) affecting the quality of the ion beam entering the analyzer is considered. A method is proposed for eliminating light ions, such as H+, (H2O)H+, He+, N+ from a beam of heavy ions of interest.
The solution to the problem of separation of light ions at atmospheric pressure from the total flow of charged particles is that behind the counter electrode creates a region of constant pulling electric field along the axis of particle transportation. Inside the region, electrodes are arranged parallel to the axis of transportation, to which a pulsed transverse electric field is supplied with an amplitude and for a time sufficient to remove light ions from the total flow of charged particles. In this case, the displacement of the ions of the target substance does not affect their loss when moving in the flow of charged particles to the interface. Next is another area of a constant pulling electric field along the particle transportation axis. Inside the region, electrodes are arranged parallel to the axis of transportation, to which a pulsed transverse electric field of reverse polarity is supplied with an amplitude and for a time sufficient to shift the ions of the target substance to the initial motion paths in the stream of charged particles along the axis of their transportation to the opening of the input diaphragm of the interface. Due to the high mobility of protons and light ions, a preliminary extraction of light ions from the flow of charged particles, accordingly, a decrease in the effect of the space charge of the flow on the movement of ions of the target substance. Since the mobility coefficient of light ions is more than that of heavy ions, light ions will be faster ejected onto the electrodes, while heavy ions will only shift from the axis.
The efficiency of the proposed method is shown by means of a theoretical model.
 

Keywords: ion mobility, ion-molecular reactions, resolution of ion mobility spectrometer

Fig. 1. The superimposed mobility spectra of Human serum albumin 10–5 M Apoferritin 10–5 M in a water-acenitrile eluent (50 / 50 %) [7]

Fig. 2. Typical trajectories in the considered configuration of electrodes under the pulsed influence of a transverse electric field (equipotential lines of the pushing electric field are shown)

Fig. 3. Model dependences of the displacement of ions with masses of 1, 10 and 100 Da in a pulsed transverse field of 500 V / cm on time

Fig. 4. Dependences of the time of ion departure out of the transport channel with a radius of 15 mm on the amplitude of the pulsed transverse electric field for ion masses of 1, 10 and 100 Da

Author affiliations:

Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia

 
Contacts: Kurnin Igor' Vasil'evich, igor.kurnin@gmail.com
Article received by the editorial office on 23.09.2019
Full text (In Russ.) >>

REFERENCES

  1. Alexandrov M.L., Gall L.N., Krasnov N.V., Nikolaev V.I., Pavlenko V.A., Shkurov V.A. Extraction of ions from solutions under atmospheric pressure as a method for mass spectrometric analysis of bioorganic compounds. Rapid communications in mass spectrometry, 2008, vol. 22, pp. 267—270. DOI: 10.1002/rcm.3113.
  2. Polyakova A.A., Revel'skij I.A., Tokarev M.I., Kogan L.O., Tal'roze V.L. Mass-spektrometricheskij analiz smesej s primeneniem ion-molekulyarnyh reakcij []Mass spectrometric analysis of mixtures using ion-molecular reactions]. Moscow, Himiya Publ., 1989. 240 p. (In Russ.).
  3. Revel'skij I.A., YAshin YU.S., Voznesenskij V.N., Kurochkin V.K., Kostyanovskij R.G. Method for mass spectrometric analysis of a gas mixture. Patent SU 1159412. 1985. (In Russ.).
  4. Shanin M.M. Mass-spectrometric studies of corona discharge in air at atmospheric pressures. J.Chem.Phys,. 1966, vol. 45, no 7, pp. 2600—2605.
  5. Arseniev A. N., Alekseev D. N., Belchenko G. V., Gavrik M. A., Krasnov N. V., Koryakin P. S., Krasnov I. A., Kurnin I. V., Myaldzin Sh. U., Muradymov M. Z., Monakov A. G., Pavlov V. G., Zvereva A. V., Nikitina S. N., Podolskaya E. P., Prisyach S. S., Semenov S. Yu., Krasnov M. N., Samokish A. V. [Spectroscopy of peptides, proteins and oligonukleotides from solutions by ion mobility]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2015, vol. 25, no 1, pp. 17—26. URL: http://iairas.ru/en/mag/2015/full1/Art2.pdf (In Russ.).
  6. Arseniev A.N., Muradymov M.Z., Krasnov N.V. Investigation of electrospray stability with dynamic liquid flow splitter. Anal. Chem., 2014, vol. 69, no. 14, pp. 30—32. DOI: 10.1134/ S1061934814140020
  7. Al-Tavil E.E., Krasnov N.V., Muradymov M.Z., Kurnin I.V., Krasnov M.N. Dropless ESI for IMS at ambient conditions. Int. J. Ion Mobil. Spec., 2019. DOI: 10.1007/s12127-019-00250-2
  8. Kurnin I.V. [Influence of ion-molecular reactions on a resolving power of ion mobility spectrometer with Bradbury–Nielsen gate]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2017, vol. 27, no. 3, pp. 90—98. DOI: 10.18358/np-27-3-i9098 (In Russ.).
  9. Arsiniev A.N., Kurnin I.V., Muradymov M.Z., Krasnov N.V., Yavor M.I., Krasnov M.N., Pomozov T.V. Optimization of ion transport from atmospheric pressure ion sources. Int. J. Ion Mobil. Spec., 2019, vol. 22, no. 1, pp. 31—38. DOI 10.1007/s12127-018-02420-2
  10. Introducing Shimadzu. URL: www.Shimadzu.com
  11. Conquer Scientific. URL: https://conquerscientific.com/product/waters-micromass-q-tof-micro-mass-specrometer/
  12. Appelhans A.D., Dahl D.A. SIMION ion optics simulations at atmospheric pressure. Int. J. Mass Spectrom., 2005, vol. 244, pp. 1—14.
  13. Kurnin I.V., Yavor M.I. [Model of motion in a viscous media with a statistic diffusion for calculation of ion dynamics in a dense gas and strong electric fields]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2015, vol. 25, no. 3, pp. 29—34. DOI: 10.18358/np-25-3-i2934 (In Russ.).
 

S. A. Kazakov, M. A. Grevtsev, A. V. Sokolov, V. V. Kaminsky, M. M. Kazanin

SEMICONDUCTOR GAS SENSORS
OF GASOLINE AND SOLVENT VAPORS CONCENTRATIONS
BASED ON SMS POLYCRYSTALLINE FILMS

"Nauchnoe Priborostroenie", 2019, vol. 29, no. 4, pp. 80—83.
doi: 10.18358/np-29-4-i8083
 

The paper presents experimental data obtained on a prototype portable semiconductor analyzer when detecting mixtures of volatile hydrocarbons: solvent and gasoline vapors. The semiconductor gas sensitive layers of the sensors are made using the sol-gel technology. Samarium sulfide (SmS) is used as the working material of the sensors. The optimal gas detection temperatures were determined, and calibration concentration dependences were obtained.
In the course of work, a semiconductor gas sensor based on SmS was calibrated. The obtained temperature dependences have characteristic maxima, while the optimal temperature for detecting gasoline is 526 °C, and the solvent is 474 °C. The characteristic single peak in both curves can be explained by the similarity of the properties of volatile hydrocarbons which are part of the analyzed mixtures. Thus, these results confirm that the selectivity of gas detection (gasoline vapor and solvent) can be achieved by changing the detection temperature.
 

Keywords: samarium sulfide, gas sensors, gasoline, solvent, sol-gel process

Fig. 1. Container with sensor in the TO-8 housing (in explosion-proof version) in thermostat

Fig. 2. Temperature dependences of change of electrical conductivity of gas sensor resistor on the basis of SmS in comparison with electrical conductivity values in air with the fixed minimum concentration of the detected impurity at various concentrations:
a: of gasoline vapors (1 – 0.906 vol. %, 2 – 0.544 vol. %, 3 – 0.363 vol. %),
á: and solvent vapors (1 – 0.423 vol. %, 2 – 0.303 vol. %, 3 – 0.182 vol. %)

Fig 3. Calibration curves for gasoline vapor (1) and solvent vapor (2)

Author affiliations:

Ioffe Physical Technical Institute of the RAS, Saint Petersburg, Russia

 
Contacts: Kazakov Sergey Alekseevich, Kazakov59@mail.ioffe.ru
Article received by the editorial office on 04.10.2019
Full text (In Russ.) >>

REFERENCES

  1. Kaminskij V.V., Kazakov S.A. Poluprovodnikovyy datchik kisloroda [Semiconductor oxygen sensor]. Patent of the Russian Federation ¹ 2546849, 05.07.2013. (In Russ.).
  2. Myasnikov I.A., Suharev V.Ya., Kupriyanov L.Yu., Zav'yalov S.A. Poluprovodnikovye sensory v fiziko-himicheskih issledovaniyah [Semiconductor sensors in physical and chemical research]. Moscow, Nauka Publ., 1991. 327 p. (In Russ.).
  3. Kazakov S.A., Kaminskij V.V., Solov'ev S.M., Sharenkova N.V. [Semiconductor gas sensors of methane and propane based on polycrystalline SmS films]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2018,
    vol. 28, no. 3, pp. 137—140. (In Russ.). DOI: 10.18358/np-28-3-i137140
  4. Kazakov S.A., Kaminskij V.V., Solov'ev S.M., Sharenkova N.V. [Semiconductor gas oxygen sensors based on polycrystalline films of samarium sulfide]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2015,vol. 25, no. 3, pp. 116—123. (In Russ.). DOI: 10.18358/np-25-3-i116123
 

A. S. Berdnikov1, N. K. Krasnova2, K. V. Solovyev1,2, A. G. Kuzmin1,
S. V. Masyukevich1, Yu. A. Titov1, Yu. K. Golikov1,2

CROSSED HARMONIC POTENTIALS WHICH ARE HOMOGENEOUS IN EULER’ TERMS

"Nauchnoe Priborostroenie", 2019, vol. 29, no. 4, pp. 84—95.
doi: 10.18358/np-29-4-i8495
 

This publication is a continuation of a series of works devoted to investigation of the properties of electron and ion optical systems and devices that use electric and magnetic fields uniform in Euler terms. For this type of electric and magnetic fields, the principle of similarity of the trajectories of Yu.K. Golikov is fulfilled. With the help of this principle it is possible to synthesize electron and ion optical systems with a priori specified unique properties. However, the effective use and optimization of such systems is hindered by the fact that the class of electric and magnetic fields homogeneous in Euler terms is not too large, and the analytical formulas for the scalar potentials of homogeneous fields are not numerous. In this paper, we consider a special class of fields, for which three-dimensional homogeneous and harmonic scalar potentials are decomposed into the sum of several two-dimensional functions, which individually do not have to be either formulas harmonic or homogeneous (the so-called "crossed potentials", also called in some cases potentials of difference type). Such potentials are a useful tool in the synthesis of electron and ion optical systems, since they allow us to divide the motion of charged particles in the meridional plane into two disjoint motions along two independent coordinates.As a result of the study, all possible analytical potentials for crossed homogeneous harmonic fields are obtained. In particular, it is shown that nontrivial solutions other than a superposition of the planar homogeneous harmonic functions are possible only for degrees of homogeneity equal to zero and one.
 

Keywords: electric fields; harmonic functions; functions homogeneous in Euler’ terms; similarity principle for charged particle trajectories; analytical solutions of Laplace equation

Author affiliations:

1Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia
2Peter The Great Saint-Petersburg Polytechnic University, Russia

 
Contacts: Berdnikov Aleksandr Sergeevich, asberd@yandex.ru
Article received by the editorial office on 10.09.2019
Full text (In Russ.) >>

REFERENCES

  1. Gabdullin P.G., Golikov Yu.K., Krasnova N.K., Davydov S.N. [The use of Donkin’s formula in the theory of energy analyzers. I]. Zhurnal tekhnicheskoj fiziki [Journal of Applied Physics], 2000, vol. 70, no. 2, pp. 91—94. (In Russ.).
  2. Gabdullin P.G., Golikov Yu.K., Krasnova N.K., Davydov S.N. [The use of Donkin’s formula in the theory of energy analyzers. II]. Zhurnal tekhnicheskoj fiziki [Journal of Applied Physics], 2000, vol. 70, no. 3, pp. 44—47. (In Russ.).
  3. Golikov Yu.K., Krasnova N.K. Teoriya sinteza ehlektrostaticheskih ehnergoanalizatorov [Theory of synthesis of electrostatic power analyzers]. Saint Petersburg, Polytechnical university, 2010. 409 p. (In Russ.).
  4. Golikov Yu.K., Krasnova N.K. [Application of electric fields uniform in the Euler sense in electron spectrography]. Zhurnal tekhnicheskoj fiziki [Journal of Applied Physics], 2011, vol. 81, no. 2, pp. 9—15. (In Russ.).
  5. Krasnova N.K. Teoriya i sintez dispergiruyushchih i fokusiruyushchih ehlektronno-opticheskih sred. Diss. dokt. fiz.-mat. nauk [The theory and synthesis of the dispersing and focusing electron-optical environments. Dr. phys. and math. sci. diss.]. Saint Petersburg, 2013. 259 p. (In Russ.).
  6. Golikov Yu.K., Krasnova N.K. [Analytical structures of electric spectrographs the fields of which are expressed in a uniform generalized form]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2014, vol. 24, no. 1, pp. 50—58. URL: http://iairas.ru/en/mag/2014/abst1.php#abst6 (In Russ.).
  7. Golikov Yu.K., Krasnova N.K. [The generalized principle of similarity and its application in electronic spectrography]. Prikladnaya fizika [Applied physics], 2007, no. 2, pp. 5—11. (In Russ.).
  8. Averin I.A., Berdnikov A.S., Gall N.R. [The principle of similarity of trajectories for the motion of charged particles with different masses in electric and magnetic fields that are homogeneous in Euler terms]. Pis'ma v ZhTF [Letters in ZhTF], 2017, vol. 43, no. 3, pp. 39—43. DOI: 10.1134/S106378501702002X (In Russ.).
  9. Berdnikov A.S., Gall L.N., Antonov A.S., Soloviev K.V. [Synthesis of Fringing Magnetic Fields for Static Mass Analyzers of the Spectrographic Type]. Mass-spektrometriya [Mass-spectrometry], 2018, vol. 15, no. 1, pp. 26—43. (In Russ.).
  10. Golikov Yu.K., Berdnikov A.S., Antonov A.S., Krasnova N.K., Solov’ev K.V. [Synthesis of Electrode Configurations that Conserve Fringing Electric Field Homogeneity in Euler Terms]. Zhurnal tekhnicheskoj fiziki [Journal of Applied Physics], 2018, vol. 88, no. 4, pp. 609—613. (In Russ.). DOI: 10.21883/JTF.2018.04.45732.2483
  11. Golikov Yu.K., Berdnikov A.S., Antonov A.S., Krasnova N.K., Solov’ev K.V. [Application of the Donkin Formula in the Theory of Electrostatic Prisms]. Zhurnal tekhnicheskoj fiziki [Journal of Applied Physics], 2018, vol. 88, no. 11, pp. 1711—1719. (In Russ.). DOI: 10.21883/JTF.2018.11.46635.2498
  12. Golikov Yu.K., Berdnikov A.S., Antonov A.S., Krasnova N.K., Solovyev K.V. [Applications of Donkin formula in the theory of reflecting and turning devices]. Zhurnal tekhnicheskoj fiziki [Journal of Applied Physics], 2019, vol. 89, no. 12, pp. 1946—1963. (In Russ.). DOI:   10.21883/JTF.2019.12.48496.201-18
  13. Berdnikov A.S., Averin I.A. [About impossibility of double focusing in the combined electric and magnetic fields uniform in Euler]. Mass-spektrometriya [Mass-spectrometry], 2016, vol. 13, no. 1, pp. 67—70. (In Russ.).
  14. Berdnikov A.S., Averin I.A., Golikov Yu.K. [The static mass spectrogaphs of new type using the electric and magnetic fields uniform in Euler. I]. Mass-spektrometriya [Mass-spectrometry], 2015, vol. 12, no. 4, pp. 272—281. (In Russ.).
  15. Berdnikov A.S., Averin I.A., Golikov Yu.K. [The static mass spectrogaphs of new type using the electric and magnetic fields uniform in Euler. II. Conditions of high-order double focusing for two-cascade schemes]. Mass-spektrometriya [Mass-spectrometry], 2016, vol. 13, no. 1, pp. 11—20. (In Russ.).
  16. Berdnikov A.S., Averin I.A. [New approach to development of ion-optical schemes of static mass spectrographs on the basis of the non-uniform magnetic fields uniform in Euler]. Uspekhi prikladnoj fiziki [Achievements of applied physics], 2016, vol. 4, no. 1, pp. 89—95. (In Russ.).
  17. Averin I.A., Berdnikov A.S. [Fringing fields of gridless electron spectrographs with electrostatic fields homogeneous in Euler terms]. Uspekhi prikladnoj fiziki [Achievements of applied physics], 2016, vol. 4, no. 1,
    pp. 5—8 (In Russ.).
  18. Golikov Yu.K., Utkin K.G., Cheparuhin V.V. Raschet elementov elektrostaticheskich elektronno-opticheskich system. Uchebnoe posobie [Calculation of elements of electrostatic electron-optical systems. Education book]. Leningrad, LPI Publ., 1984. 79 p. (In Russ.).
  19. Golikov Yu.K., Solovyov K.V. Elektrostaticheskie ionnye lovushki [Electrostatic ion traps]. Saint-Petersburg, Saint-Petersburg Polytechnic University Publ., 2008. 152 p. (In Russ.).
  20. Berdnikov A.S., Averin I.A., Krasnova N.K., Solovyev K.V. [The elementary analytical electric and magnetic potentials uniform in Euler]. Vestnik Aktyubinskogo regional'nogo gosudarstvennogo universiteta im. K. Zhubanova. Fiziko-matematicheskie nauki [Bulletin of the Aktyubinsk regional state university of K. Zhubanov. Physical and mathematical sciences], 2016, no. 2, pp. 17—32. (In Russ.).
  21. Berdnikov A.S., Averin I.A., Krasnova N.K., Solovyev K.V. [Three-dimensional electric and magnetic potentials uniform in Euler]. Vestnik Aktyubinskogo regional'nogo gosudarstvennogo universiteta im. K. Zhubanova. Fiziko-matematicheskie nauki [Bulletin of the Aktyubinsk regional state university of K. Zhubanov. Physical and mathematical sciences], 2016, no. 2, pp. 147—165. (In Russ.).
  22. Berdnikov A.S., Averin I.A., Krasnova N.K., Solovyev K.V. [Universal expressions for 3D electric and magnetic potentials which are uniform in Euler terms]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2016, vol. 26, no. 4, pp. 13—30. DOI: 10.18358/np-26-4-i1330 (In Russ.).
  23. Berdnikov A.S., Averin I.A., Krasnova N.K., Solovyev K.V. [Integral expressions for 3D electric and magnetic potentials which are uniform in Euler terms and have non-integer orders of uniformity]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2016, vol. 26, no. 4, pp. 31—42. DOI: 10.18358/np-26-4-i3142 (In Russ.).
  24. Berdnikov A.S., Averin I.A., Krasnova N.K., Solovyev K.V. [Quasi-polynomial 3D electric and magnetic potentials homogeneous in Euler Terms]. Nauchno-tekhnicheskie vedomosti SPbGPU. Fiziko-matematicheskie nauki [Scientific and technical sheets SPbGPU. Physical and mathematical sciences], 2017, vol. 10, no. 1, pp. 71—80. (In Russ.).
  25. Krasnova N.K., Berdnikov A.S., Solovyev K.V., Averin I.A. [On the Quasi-Polynomial 3D Potentials of Electric and Magnetic Fields]. Nauchno-tekhnicheskie vedomosti SPbGPU. Fiziko-matematicheskie nauki [Scientific and technical sheets SPbGPU. Physical and mathematical sciences], 2017, vol. 10, no. 1, pp. 81—92. (In Russ.).
  26. Berdnikov A.S., Krasnova N.K., Solovyev K.V. [Analysis of the general Whittaker’ formula for 3D electric and magnetic potentials homogeneous in Euler terms]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2017, vol. 27, no. ¹ 4, pp. 63—71. DOI: 10.18358/np-27-4-i6371 (In Russ.).
  27. Berdnikov A.S., Krasnova N.K., Solovyev K.V. [Whittaker’ formula for 3D electric and magnetic potentials with a zero order of homogeneity and its consequencies]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2017, vol. 27, no. 4, pp. 72—89. DOI: 10.18358/np-27-4-i7289 (In Russ.).
  28. Golikov Yu.K. [Analytical ways of describing harmonic functions]. Vestnik Aktyubinskogo regional'nogo gosudarstvennogo universiteta im. K. Zhubanova. Fiziko-matematicheskie nauki [Bulletin of the Aktyubinsk regional state university of K. Zhubanov. Physical and mathematical sciences], 2016, no. 2, pp. 165—181. (In Russ.).
  29. Berdnikov A.S., Gall L.N., Gall N.R., Solovyev K.V. [Generalization of the Thomson formula for general harmonic functions]. Nauchno-tekhnicheskie vedomosti SPbGPU. Fiziko-matematicheskie nauki [Scientific and technical sheets SPbGPU. Physical and mathematical sciences], 2019, vol. 12, no. 2, pp. 32—48. (In Russ.). DOI: 10.18721/JPM.12203
  30. Berdnikov A.S., Gall L.N., Gall N.R., Solovyev K.V. [Generalization of the Thomson formula for homogeneous harmonic functions]. Nauchno-tekhnicheskie vedomosti SPbGPU. Fiziko-matematicheskie nauki [Scientific and technical sheets SPbGPU. Physical and mathematical sciences], 2019, vol. 12, no. 2, pp. 49—62. (In Russ.). DOI: 10.18721/JPM.12204
  31. Berdnikov A.S., Gall L.N., Gall N.R., Solovyev K.V. [Basic Donkin's differential operators for homogeneous harmonic functions]. Nauchno-tekhnicheskie vedomosti SPbGPU. Fiziko-matematicheskie nauki [Scientific and technical sheets SPbGPU. Physical and mathematical sciences], 2019, vol. 12, no. 3, pp. 26—44. (In Russ.). DOI: 10.18721/JPM.12303
  32. Berdnikov A.S., Gall L.N., Gall N.R., Solovyev K.V. [Donkin's differential operators for homogeneous harmonic functions]. Nauchno-tekhnicheskie vedomosti SPbGPU. Fiziko-matematicheskie nauki [Scientific and technical sheets SPbGPU. Physical and mathematical sciences], 2019, vol. 12, no. 3, pp. 45—62. (In Russ.). DOI: 10.18721/JPM.12304
  33. Berdnikov A.S., Krasnova N.K., Solovyev K.V. [Theorem on integration and differentiation of 3D electric and magnetic potentials which are homogeneous in Euler terms]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2017, vol. 27, no. 3, pp. 107—119. DOI: 10.18358/np-27-3-i107119 (In Russ.).
  34. Fihtengolc G.M. Kurs differencial'nogo i integral'nogo ischisleniya. T. 1. [Course of differential and integral calculus. Vol. 1], Moscow, Fizmatlit Publ., 2001. 616 p. (In Russ.).
  35. Smirnov V.I. Kurs vysshej matematiki. T. 1 [Course of the higher mathematics. Vol. 1], Moscow, Nauka Publ., 1974. 480 p. (In Russ.).
  36. Berdnikov A.S., Averin I.A., Krasnova N.K., Solovyev K.V. [On homogeneity of scalar and vector potentials of electric and magnetic fields, homogeneous in Euler terms]. Uspekhi prikladnoj fiziki [Achievements of applied physics], 2017, vol. 5, no. 1, pp. 10—27. (In Russ.).
  37. Gall L.N., Golikov Yu.K. [Achromatic electrostatic conveying systems with a plane of symmetry]. Sb. trudov NTO AN SSSR "Nauchnoe priborostroenie. Pribory i sredstva avtomatizacii dlya nauchnyh issledovanij" [Proc. of the NTO AN of the USSR "Scientific instrumentation. Instruments and Automation Tools for Scientific Research"]. Leningrad, Nauka Publ., 1987, pp. 11—15. URL: http://iairas.ru/mag/abst_90s.php?y=87&n=2#abst2 (In Russ.).
  38. Gall L.N., Golikov Yu.K. [Achromatic electrostatic conveying systems with a plane of symmetry]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2014, vol. 24, no. 1, pp. 11—17. (In Russ.).
  39. Golikov Yu.K., Cheparukhin V.V. [Elementary approximations of meridional trajectories in a difference type electrostatic field]. Tezisy dokl. VI Vsesoyuznogo seminara po chislennym metodam resheniya zadach elektronnoj optiki [Abstracts of VI All-USSR seminar on numerical methods for solving problems of electron optics]. Ryazan, 1978. (In Russ.).
  40. Golikov Yu.K., Cheparukhin V.V., Utkin K.G. [On focusing the meridional flow in a difference type field]. Pis'ma v ZhTF [Letters in ZhTF], 1979. vol. 5, iss. 21, pp. 1294—1296. (In Russ.).
 

A. S. Berdnikov1, N. K. Krasnova2, K. V. Solovyev1,2, A. G. Kuzmin1,
S. V. Masyukevich1, Yu. A. Titov1, Yu. K. Golikov1,2

HYPERGEOMETRIC BASIS FOR THREE-DIMENSIONAL
HARMONIC FUNCTIONS WHICH ARE HOMOGENEOUS
IN EULER TERMS WITH A NON-INTEGER
POWER OF HOMOGENEITY

"Nauchnoe Priborostroenie", 2019, vol. 29, no. 4, pp. 96—109.
doi: 10.18358/np-29-4-i96109
 

Electric and magnetic fields which are homogeneous in Euler terms, are a convenient tool for the synthesis of electron and ion optical systems with special properties. It is known that the scalar potentials of such fields are three-dimensional scalar harmonic functions which are homogeneous in Euler terms with a given power of homogeneity. The problem of the exhaustive parameterization of three-dimensional homogeneous harmonic functions with integer powers of homogeneity is already solved using the Donkin formulas for homogeneous harmonic functions with powers of homogeneity 0 and —1, the theorem on the differentiation of three-dimensional homogeneous harmonic functions and Thomson's formula for homogeneous harmonic functions. However, the number of analytical formulas that can be used to describe three-dimensional scalar harmonic functions with non-integer powers of homogeneity is, unfortunately, not very large at the moment, and the problem of an exhaustive description of such functions is very far from its final solution. At the same time, the usage of three-dimensional homogeneous harmonic potentials with non-integer powers of homogeneity significantly expands the toolkit of developers of electron and ion optical systems. The goal of this work is to construct a hypergeometric basis composed of basic homogeneous harmonic functions with non-integer powers of homogeneity, with the help of which any three-dimensional homogeneous harmonic function without singular points exept the line x = y = 0, z ≤ 0 can be represented as an infinite series like the Fourier series. It seems that this result partially solves the problem of an exhaustive description of three-dimensional scalar homogeneous harmonic functions with non-integer powers of homogeneity.
 

Keywords: electric fields; harmonic functions; functions homogeneous in Euler’ terms; similarity principle for charged particle trajectories; Donkin formula; analytical solutions of Laplace equation

Author affiliations:

1Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia
2Peter The Great Saint Petersburg Polytechnic University, Russia

 
Contacts: Berdnikov Aleksandr Sergeevich, asberd@yandex.ru
Article received by the editorial office on 23.09.2019
Full text (In Russ.) >>

REFERENCES

  1. Berdnikov A.S., Krasnova N.K., Solovyev K.V., Kuzmin A.G., Masyukevich S.V., Titov Yu.A. [Crossed harmonic potentials which are homogeneous in Euler’ terms]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2019, vol. 29, no. 4, pp. 84—95 (In Russ.).
  2. Gabdullin P.G., Golikov Yu.K., Krasnova N.K., Davydov S.N. [The use of Donkin’s formula in the theory of energy analyzers. I]. Zhurnal tekhnicheskoj fiziki [Journal of Applied Physics], 2000, vol. 70, no. 2, pp. 91—94. (In Russ.).
  3. Gabdullin P.G., Golikov Yu.K., Krasnova N.K., Davydov S.N. [The use of Donkin’s formula in the theory of energy analyzers. II]. Zhurnal tekhnicheskoj fiziki [Journal of Applied Physics], 2000, vol. 70, no. 3, pp. 44—47. (In Russ.).
  4. Golikov Yu.K., Krasnova N.K. Teoriya sinteza ehlektrostaticheskih ehnergoanalizatorov [Theory of synthesis of electrostatic power analyzers]. Saint Petersburg, Polytechnical university Publ., 2010. 409 p. (In Russ.).
  5. Golikov Yu.K., Krasnova N.K. [Application of electric fields uniform in the Euler sense in electron spectrography]. Zhurnal tekhnicheskoj fiziki [Journal of Applied Physics], 2011, vol. 81, no. 2, pp. 9—15. (In Russ.).
  6. Krasnova N.K. Teoriya i sintez dispergiruyushchih i fokusiruyushchih ehlektronno-opticheskih sred. Diss. dokt. fiz.-mat. nauk [The theory and synthesis of the dispersing and focusing electron-optical environments. Dr. phys. and math. sci. diss.]. Saint Petersburg, 2013. 259 p. (In Russ.).
  7. Golikov Yu.K., Krasnova N.K. [Analytical structures of electric spectrographs the fields of which are expressed in a uniform generalized form]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2014, vol. 24, no. 1, pp. 50—58. (In Russ.). URL: http://iairas.ru/en/mag/2014/abst1.php#abst6
  8. Golikov Yu.K., Krasnova N.K. [The generalized principle of similarity and its application in electronic spectrography]. Prikladnaya fizika [Applied physics], 2007, no. 2, pp. 5—11. (In Russ.).
  9. Averin I.A., Berdnikov A.S., Gall N.R. [The principle of similarity of trajectories for the motion of charged particles with different masses in electric and magnetic fields that are homogeneous in Euler terms]. Pis'ma v ZhTF [Letters in ZhTF], 2017, vol. 43, no. 3, pp. 39—43. DOI: 10.1134/S106378501702002X (In Russ.).
  10. Berdnikov A.S., Gall L.N., Antonov A.S., Soloviev K.V. [Synthesis of Fringing Magnetic Fields for Static Mass Analyzers of the Spectrographic Type]. Mass-spektrometriya [Mass-spectrometry], 2018, vol. 15, no. 1, pp. 26—43. (In Russ.).
  11. Golikov Yu.K., Berdnikov A.S., Antonov A.S., Krasnova N.K., Solov’ev K.V. [Synthesis of Electrode Configurations that Conserve Fringing Electric Field Homogeneity in Euler Terms]. Zhurnal tekhnicheskoj fiziki [Journal of Applied Physics], 2018, vol. 88, no. 4, pp. 609—613. (In Russ.). DOI: 10.21883/JTF.2018.04.45732.2483
  12. Golikov Yu.K., Berdnikov A.S., Antonov A.S., Krasnova N.K., Solov’ev K.V. [Application of the Donkin Formula in the Theory of Electrostatic Prisms]. Zhurnal tekhnicheskoj fiziki [Journal of Applied Physics], 2018, vol. 88, no. 11, pp. 1711—1719. (In Russ.). DOI: 10.21883/JTF.2018.11.46635.2498
  13. Golikov Yu.K., Berdnikov A.S., Antonov A.S., Krasnova N.K., Solovyev K.V. [Applications of Donkin formula in the theory of reflecting and turning devices]. Zhurnal tekhnicheskoj fiziki [Journal of Applied Physics], 2019, vol. 89, no. 12, pp. 1946—1963. (In Russ.). DOI:   10.21883/JTF.2019.12.48496.201-18
  14. Berdnikov A.S., Averin I.A. [About impossibility of double focusing in the combined electric and magnetic fields uniform in Euler]. Mass-spektrometriya [Mass-spectrometry], 2016, vol. 13, no. 1, pp. 67—70. (In Russ.).
  15. Berdnikov A.S., Averin I.A., Golikov Yu.K. [The static mass spectrogaphs of new type using the electric and magnetic fields uniform in Euler. I]. Mass-spektrometriya [Mass-spectrometry], 2015, vol. 12, no. 4, pp. 272—281. (In Russ.).
  16. Berdnikov A.S., Averin I.A., Golikov Yu.K. [The static mass spectrogaphs of new type using the electric and magnetic fields uniform in Euler. II. Conditions of high-order double focusing for two-cascade schemes]. Mass-spektrometriya [Mass-spectrometry], 2016, vol. 13, no. 1, pp. 11—20. (In Russ.).
  17. Berdnikov A.S., Averin I.A. [New approach to development of ion-optical schemes of static mass spectrographs on the basis of the non-uniform magnetic fields uniform in Euler]. Uspekhi prikladnoj fiziki [Achievements of applied physics], 2016, vol. 4, no. 1, pp. 89—95. (In Russ.).
  18. Averin I.A., Berdnikov A.S. [Fringing fields of gridless electron spectrographs with electrostatic fields homogeneous in Euler terms]. Uspekhi prikladnoj fiziki [Achievements of applied physics], 2016, vol. 4, no. 1,
    pp. 5—8 (In Russ.).
  19. Fihtengolc G.M. Kurs differencial'nogo i integral'nogo ischisleniya [Course of differential and integral calculus], vol. 1. Moscow, Fizmatlit Publ., 2001. 616 p. (In Russ.).
  20. Smirnov V.I. Kurs vysshej matematiki [Course of the higher mathematics], vol. 1. Moscow, Nauka Publ., 1974. 480 p. (In Russ.).
  21. Berdnikov A.S., Averin I.A., Krasnova N.K., Solovyev K.V. [On homogeneity of scalar and vector potentials of electric and magnetic fields, homogeneous in Euler terms]. Uspekhi prikladnoj fiziki [Achievements of applied physics], 2017, vol. 5, no. 1, pp. 10—27. (In Russ.).
  22. Golikov Yu.K., Utkin K.G., Cheparuhin V.V. Raschet elementov elektrostaticheskich elektronno-opticheskich system. Uchebnoe posobie [Calculation of elements of electrostatic electron-optical systems. Education book]. Leningrad, LPI Publ., 1984. 79 p. (In Russ.).
  23. Golikov Yu.K., Solovyov K.V. Elektrostaticheskie ionnye lovushki [Electrostatic ion traps]. Saint Petersburg, Saint-Petersburg Polytechnic University Publ., 2008. 152 p. (In Russ.).
  24. Berdnikov A.S., Averin I.A., Krasnova N.K., Solovyev K.V. [Universal expressions for 3d electric and magnetic potentials which are uniform in Euler terms]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2016, vol. 26, no. 4, pp. 13—30. DOI: 10.18358/np-26-4-i1330 (In Russ.).
  25. Donkin W.F. On the Equation of Laplace‘s Functions &c. Philosophical Transactions of the Royal Society of London, 1857, vol. 147, pp. 43—57. DOI: 10.1098/rstl.1857.0005
  26. Donkin W.F. On the Equation of Laplace‘s Functions &c. Proceedings of the Royal Society of London, 1856—1857, vol. 8, pp. 307—310. DOI: 10.1098/rspl.1856.0075
  27. Gobson E.V. Teoriya sfericheskih i ellipsoidal'nyh funkcij [Theory of spherical and ellipsoidal functions]. Moscow, Inostrannaya literatura Publ., 1952. 476 p. (In Russ.).
  28. Whittaker E.T., Watson G.N. A course of modern analysis. Cambridge , University Press , 1920. 608 p. (Russ ed.: Uitteker E.T., Vatson G. Kurs sovremennogo analiza. Chast 2. Transcendentnye funkcii. Moscow, GIFML Publ., 1963. 516 p.). (In Russ.).
  29. Thomson W. Extraits de deux Lettres adressées à M. Liouville. Journal de mathématiques pures et appliquées, 1847, tome XII, pp. 256—264.
  30. Thomson W, (later Lord Kelvin), Tait P.G. Treatise on Natural Philosophy. Oxford University Press , 1867. (Russ. Ed.: Tomson U. (Lord Kelvin), Tet P.G. Traktat po natural'noj filosofii. Part. I. Moscow-Izhevsk, NIC "Regulyarnaya i haoticheskaya dinamika", 2010. 572 p.). (In Russ.).
  31. Thomson W, (later Lord Kelvin), Tait P.G. Treatise on Natural Philosophy. Oxford University Press , 1867. (Russ. Ed.: Tomson U. (Lord Kelvin), Tet P.G. Traktat po natural'noj filosofii. Part. II. Moscow-Izhevsk, NIC "Regulyarnaya i haoticheskaya dinamika", 2011. 560 p.). (In Russ.).
  32. Sretenskiy L.N. Teoriya nyutonovskogo potenciala [Theory of Newtonian potential]. Moscow-Leningrad, OGIZ-GITTL Publ., 1946. 318 p. (In Russ.).
  33. Smirnov V.I. Kurs vysshej matematiki [Course of the higher mathematics], vol. 4, part 2. Moscow, Nauka Publ., 1981. 297 p. (In Russ.).
  34. Vladimirov V.S. Uravneniya matematicheskoj fiziki [Equations of mathematical physics]. Moscow, Nauka Publ., 1981. 512 p. (In Russ.).
  35. Kellogg O.D. Foundations of Potential Theory. Springer-Verlag, Berlin, Heidelberg, New-York, 1967. 386 p.
  36. Wermer J. Potential theory. Second edition. Ser. "Lecture Notes in Mathematics", vol. 408. Springer-Verlag, Berlin, Heidelberg, New-York, 1981. 166 p. (Russ. Ed.: Uermler G. Teoriya potenciala. Moscow, Mir Publ., 1980. 134 p.). (In Russ.).
  37. Helms L.L. Potential Theory. Second Edition. Springer, London, Heidelberg, New-York, Dordrecht, 2014. 485 p.
  38. Golikov Yu.K. [Analytical ways of describing harmonic functions]. Vestnik Aktyubinskogo regional'nogo gosudarstvennogo universiteta im. K. Zhubanova. Fiziko-matematicheskie nauki [Bulletin of the Aktyubinsk regional state university of K. Zhubanov. Physical and mathematical sciences], 2016, no. 2, pp. 165—181. (In Russ.).
  39. Berdnikov A.S., Gall L.N., Gall N.R., Solovyev K.V. [Generalization of the Thomson formula for general harmonic functions]. Nauchno-tekhnicheskie vedomosti SPbGPU. Fiziko-matematicheskie nauki [Scientific and technical sheets SPbGPU. Physical and mathematical sciences], 2019, vol. 12, no. 2, pp. 32—48. DOI: 10.18721/JPM.12203 (In Russ.).
  40. Berdnikov A.S., Gall L.N., Gall N.R., Solovyev K.V. [Generalization of the Thomson formula for homogeneous harmonic functions]. Nauchno-tekhnicheskie vedomosti SPbGPU. Fiziko-matematicheskie nauki [Scientific and technical sheets SPbGPU. Physical and mathematical sciences], 2019, vol. 12, no. 2, pp. 49—62. DOI: 10.18721/JPM.12204 (In Russ.).
  41. Berdnikov A.S., Gall L.N., Gall N.R., Solovyev K.V. [Basic Donkin's differential operators for homogeneous harmonic functions]. Nauchno-tekhnicheskie vedomosti SPbGPU. Fiziko-matematicheskie nauki [Scientific and technical sheets SPbGPU. Physical and mathematical sciences], 2019, vol. 12, no. 3, pp. 26—44. (In Russ.). DOI: 10.18721/JPM.12303
  42. Berdnikov A.S., Gall L.N., Gall N.R., Solovyev K.V. [Donkin's differential operators for homogeneous harmonic functions]. Nauchno-tekhnicheskie vedomosti SPbGPU. Fiziko-matematicheskie nauki [Scientific and technical sheets SPbGPU. Physical and mathematical sciences], 2019, vol. 12, no. 3, pp. 45—62. (In Russ.). DOI: 10.18721/JPM.12304
  43. Berdnikov A.S., Averin I.A., Krasnova N.K., Solovyev K.V. [The elementary analytical electric and magnetic potentials uniform in Euler]. Vestnik Aktyubinskogo regional'nogo gosudarstvennogo universiteta im. K. Zhubanova. Fiziko-matematicheskie nauki [Bulletin of the Aktyubinsk regional state university of K. Zhubanov. Physical and mathematical sciences], 2016, no. 2, pp. 17—32. (In Russ.).
  44. Berdnikov A.S., Averin I.A., Krasnova N.K., Solovyev K.V. [Three-dimensional electric and magnetic potentials uniform in Euler]. Vestnik Aktyubinskogo regional'nogo gosudarstvennogo universiteta im. K. Zhubanova. Fiziko-matematicheskie nauki [Bulletin of the Aktyubinsk regional state university of K. Zhubanov. Physical and mathematical sciences], 2016, no. 2, pp. 147—165. (In Russ.).
  45. Berdnikov A.S., Averin I.A., Krasnova N.K., Solovyev K.V. [Integral expressions for 3D electric and magnetic potentials which are uniform in Euler terms and have non-integer orders of uniformity]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2016, vol. 26, no. 4, pp. 31—42. DOI: 10.18358/np-26-4-i3142 (In Russ.).
  46. Berdnikov A.S., Averin I.A., Krasnova N.K., Solovyev K.V. [Quasi-Polynomial 3D Electric and Magnetic Potentials Homogeneous in Euler Terms]. Nauchno-tekhnicheskie vedomosti SPbGPU. Fiziko-matematicheskie nauki [Scientific and technical sheets SPbGPU. Physical and mathematical sciences], 2017, vol. 10, no. 1, pp. 71—80. (In Russ.). DOI: 10.18721/JPM.10107
  47. Krasnova N.K., Berdnikov A.S., Solovyev K.V., Averin I.A. [On the Quasi-Polynomial 3D Potentials of Electric and Magnetic Fields]. Nauchno-tekhnicheskie vedomosti SPbGPU. Fiziko-matematicheskie nauki [Scientific and technical sheets SPbGPU. Physical and mathematical sciences], 2017, vol. 10, no. 1, pp. 81—92. (In Russ.). DOI: 10.18721/JPM.10108
  48. Berdnikov A.S., Krasnova N.K., Solovyev K.V. [Analysis of the general whittaker’ formula for 3D electric and magnetic potentials homogeneous in Euler terms]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2017, vol. 27, no. ¹ 4, pp. 63—71. DOI: 10.18358/np-27-4-i6371 (In Russ.).
  49. Berdnikov A.S., Krasnova N.K., Solovyev K.V. [Whittaker’ formula for 3D electric and magnetic potentials with a zero order of homogeneity and its consequencies]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2017, vol. 27, no. 4, pp. 72—89. DOI: 10.18358/np-27-4-i7289 (In Russ.).
  50. Abramowitz M., Stegun I. A. (eds.) Handbook on Mathematical Functions With Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series, vol. 55, 10th ed. USA National Bureau of Standards, 1972. 1046 p. (Russ. Ed.: Abramovic M., Stigan I. (red.). Spravochnik po specialnym funkciyam s formulami, grafikami i matematicheskimi tablicami. Moscow, Nauka Publ., 1979. 832 p.). (In Russ.).
  51. Bateman H., Erdélyi A. Higher Transcendental Functions, vol. I. New York, Toronto, London, McGraw-Hill Book Company, 1953. 302 p. (Russ. Ed.: Beytmen G., Erdeji A. Vysshie transcendentnye funkcii. T. 1. Izd. 2. Moscow, Nauka Publ., 1973. 296 p.). (In Russ.).
  52. Aomoto K., Kita M. Theory of Hypergeometric Functions. Springer Monographs in Mathematics Series, vol. 305. Springer, 2011. 317 p. DOI: 10.1007/978-4-431-53938-4
  53. Lavrentev M.A., Shabat B.V. Metody teorii funkcij kompleksnogo peremennogo [Methods of complex variable function theory]. Moscow, Nauka Publ., 1965. 716 p. (In Russ.).
  54. Markushevich A.I. Teoriya analiticheskih funkcij. T. 1, 2. [Theory of analytical functions. V. 1, 2]. Moscow, Nauka Publ., 1968. 486 p., 624 p. (In Russ.).
  55. Evgrafov M.A. Analiticheskie funkcii. 3-e izd. pererab., dop [Analytical functions. 3rd ed.]. Moscow, Nauka Publ., 1991. 448 p. (In Russ.).
  56. Gurvic A., Kurant P. Teoriya funkcij [Theory of functions]. Moscow, Nauka Publ., 1968. 646 p. (In Russ.).
  57. Berdnikov A.S., Krasnova N.K., Solovyev K.V. [Theorem on integration and differentiation of 3D electric and magnetic potentials which are homogeneous in Euler terms]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2017, vol. 27, no. 3, pp. 107—119. DOI: 10.18358/np-27-3-i107119 (In Russ.).
 

A. S. Berdnikov1, N. K. Krasnova2, K. V. Solovyev1,2, A. G. Kuzmin1,
S. V. Masyukevich1, Yu. A. Titov1

ON NON-RELATIVISTIC ISOTRAJECTORY ELECTRON
AND ION OPTICAL SYSTEMS

"Nauchnoe Priborostroenie", 2019, vol. 29, no. 4, pp. 110—118.
doi: 10.18358/np-29-4-i110118
 

Electric and magnetic fields, providing the movement of charged particles with a priori known useful properties, are a useful tool to create electron-optical and ion-optical systems of a special type. In this paper, we study simple ways of generalizing isotrajectory systems developed by A.A. Matyshev where the motion of charged particles in a changing in time electric and/or magnetic field produces the trajectory which does not depend on initial velocity modulus specified at initial time moment t = 0. The main result is a generalization of the principle of isotrajectivity which should include the trajectories of charged particles independent of the initial energy, and the trajectories of charged particles independent of the initial momentum modulus. It is shown that dependence from the initial kinetic energy is ensured by an electrostatic field, a magnetic field linearly increasing in time, or by their superposition. Similarly, dependence from the initial momentum modulus is provided by a magnetostatic magnetic field, an electric field varying in time according to the law E ~ 1/t, or or by their superposition. Additionally, it is shown that the motion of charged particles in electric fields that change in time like E ~ 1/t2, and / or magnetic fields that change in time like B ~ 1/t (that is, for classical isotrajectory systems) in the presence of a neutral gas which provides effective gas friction corresponding to ion scattering following a hard spheres collision cross section, is also an isotrajectory system.
 

Keywords: electric fields, magnetic fields, isotrajectory systems, similarity principles in charged particle optics

Author affiliations:

1Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia
2Peter The Great Saint Petersburg Polytechnic University, Russia

 
Contacts: Berdnikov Aleksandr Sergeevich, asberd@yandex.ru
Article received by the editorial office on 10.09.2019
Full text (In Russ.) >>

REFERENCES

  1. Brüche E., Scherzer O. Geometrische Elektronenoptik: Grundlagen und Anwendungen. Springer, 1934. 332 p. (Russ. ed.: Brueche E., Scherzer O. Geometricheskaya elektronnaya optika. Leningrad, Lenizdat Publ., 1943. 496 p.).
  2. Rusterholz A. Elektronenoptik. I. Grundzüge der theoretischen Elektronenoptik. Un vol. in-8o. Verlag Birkhäuser, Basel, 1950. 249 p. (Russ. ed.: Rusterholz A. Elektronnaya optika. Osnovy teoreticheskoj elektronnoj optiki. Moscow, Inostrannaya literatura Publ., 1952. 263 p.).
  3. Strashkevich A.M. Elektronnaya optika elektrostaticheskih polej, ne obladayushchih osevoj simmetriej [Electronic optics of electrostatic fields without axial symmetry]. Moscow, Fizmatgiz Publ., 1959. 251 p. (In Russ.).
  4. Zinchenko N.S. Kurs lekcij po elektronnoj optike. 2-e izd [Lecture course in electron optics. 2nd ed.]. Kharkov, KhGU Publ., 1961. 362 p. (In Russ.).
  5. Strashkevich A.M. Elektronnaya optika elektrostaticheskih sistem [Electron optics of electrostatic systems]. Moscow–Leningrad, Energy Publ., 1966. 328 p. (In Russ.).
  6. Kel'man V.M., Yavor S.Ya. Elektronnaya optika. 3-e izd. [Electron optics. 3rd ed.]. Leningrad, Nauka Publ., 1968. 486 p. (In Russ.).
  7. Wollnik H. Optics of Charged Particles. Orlando, Elsevier, Academic Press, 1987. 293 p. (Russ ed.: Volnik G. Optika zaryazhennyh chastic. St. Petersburg, Energoatom­izdat Publ., 1992. 280 p.).
  8. Szilágyi M. Electron and ion optics. New York, Plenum Press, 1988. 539 p. (Russ ed.: Siladyi M.N. Elektronnaya i ionnaya optika. Moscow, Mir Publ., 1990. 639 p.). DOI: 10.1007/978-1-4613-0923-9
  9. Hawkes P.W., Kasper E. Principles of Electron Optics. Vol. 1. Elsevier, Academic Press, 1989. 551 p. (Russ ed.: Hoks P., Kasper E. Osnovy elektronnoj optiki. Tom 1: Osnovy geometricheskoj optiki. St. Petersburg, Moscow, Mir Publ., 1993. 552 p.).
  10. Yavor M.I. Optics of charged particle analyzers. Elsevier, 2009. 373 p.
  11. Golikov Yu.K., Krasnova N.K. [Generalized similarity principle and its application in electronic spectrography]. Prikladnaya fizika [Applied Physics], 2007, no. 2, pp. 5—11. (In Russ.).
  12. Averin I.A., Berdnikov A.S., Gall N.R. [The principle of similarity of trajectories for the motion of charged particles with different masses in electric and magnetic fields that are homogeneous in Euler terms]. Pisma v Zhurnal tekhnicheskoj fiziki [Technical Physics Letters], 2017, vol. 43, no. 2, pp. 156—158. DOI: 10.1134/S106378501702002X (In Russ.).
  13. Golikov Yu.K., Krasnova N.K. Teoriya sinteza elektrostaticheskih energoanalizatorov [Theory of designing of electrostatic energy analyzers]. Saint Petersburg, Saint Petersburg Polytechnic University Publ., 2010. 409 p. (In Russ.).
  14. Golikov Yu.K., Krasnova N.K. [Application of electric fields uniform in the Euler sense in electron spectrography]. Zhurnal tekhnicheskoj fiziki [Technical Physics], 2011, vol. 81, no. 2, pp. 9—15. (In Russ.).
  15. Krasnova N.K. Teoriya i sintez dispergiruyushchih i fokusiruyushchih elektronno-opticheskih sred. Diss. dr. techn. nauk [Theory and synthesis of disperging and focusing electron optical media. Dr. Sci. diss.]. St. Petersburg, 2013. 259 p. (In Russ.).
  16. Berdnikov A.S., Averin I.A. [A new approach to development of ion-optical systems for static mass spectrographs on the basis of the non-uniform Euler’s homogeneous magnetic fields]. Uspekhi Prikladnoi Fiziki [Advances in Applied Physics], 2016, vol. 4, no. 1, pp. 89—95. (In Russ.).
  17. Berdnikov A.S., Averin I.A., Golikov Yu.K. [Static mass spectrometers of new type, using Euler’s homogeneous electric and magnetic fields. I. General principle and single-stage systems]. Mass-spektrometriya [Mass spectrometry], 2015, vol. 12, no. 4, pp. 272—281. (In Russ.).
  18. Berdnikov A.S., Averin I.A., Golikov Yu.K. [Static mass spectrographs of a new type using Euler’s homogeneous electric and magnetic Fields. II: conditions of high-order double focusing for two-cascade schemes]. Mass-spektrometriya [Mass spectrometry], 2016, vol. 13, no. 1, pp. 11—20. (In Russ.).
  19. Matyshev A.A. Korpuskulyarnaya optika izotraektornyh system. Diss. dr. fiz-mat. nauk [Corpuscular optics of isotrajectory systems. Dr. Sc. diss.]. St. Petersburg, 1997. 321 p. (In Russ.).
  20. Matyshev A.A. Izotraektornaya korpuskulyarnaya optika [Isotrajectory charged particle optics]. St. Petersburg, Nauka Publ., 2000. 375 p. (In Russ.).
  21. Oron M., Paiss Ye. A dynamic mass spectrometer for the study of laser-produced plasmas. Review of Scientific Instruments, 1973, vol. 44, no. 9, pp. 1293—1296. DOI: 10.1063/1.1686373
  22. Chowdhury S.S., Clement R.M., Miles H.T. Ion energy analyzer for laser-produced plasma. Journal of Physics E: Scientific Instruments, 1980, vol. 13, no. 10, pp. 1099—1105. DOI: 10.1088/0022-3735/13/10/014
  23. Paiss Ye., Oron M. The mass separation and collection of ions having large angular and energy spreads emitted from pulsed plasma sources. Nuclear Instruments and Methods in Physics Research, 1981, vol. 185, pp. 7—11. DOI: 10.1016/0029-554X(81)91187-3
  24. Tsui Y.Y., Fedosejevs R., Offenberger A.A. Single shot charge analyzer for laser-produced plasma studies. Review of Scientific Instruments, 1995, vol. 66, no. 1, pp. 148—153. DOI: 10.1063/1.1145248
  25. Belov M.E., Bykovskii Yu.A., Gruzinov A.E., Lagoda V.B. [Electrodynamic mass spectrometer for multichannel analysis of a laser plasma]. PTE [Instruments and Experimental Techniques], 1993, vol. 36, no. 2, pp. 113—119. (In Russ.).
  26. Eicher J., Rohr K., Weber H. An electrodynamic coaxial spectrometer for multichannel plasma pulse analysis. Journal of Physics E: Scientific Instruments, 1983, vol. 16, no. 9, pp. 903—908. DOI: 10.1088/0022-3735/16/9/019
  27. Matyshev A.A. [About one inverse task of particulate optics]. Tezisy dokladov IX Vsesoyuznogo seminara po metodam rascheta elektronno-opticheskih system [Abstracts of the IX All-USSR Seminar on Calculation Methods for Electron Optical Systems]. Tashkent, 1988, pp. 76. (In Russ.).
  28. Matyshev A.A. [Dynamics of flows of dipole particles in crossed fields with IFPS]. Sbornik nauchnyh trudov "Fizicheskie aspekty metodov kontrolya i upravleniya svojstvami poverhnosti tverdogo tela". Trudy LPI [Proceedings of the Leningrad State Technical University], no. 429. Leningrad, 1989. 67—69 pp. (In Russ.).
  29. Matyshev A.A. [Planar capacitor as an ideal deflecting system of impulse flows of charged particles]. Tezisy dokladov X Vsesoyuznogo seminara po metodam rascheta elektronno-opticheskih system [Abstracts of the X-th All-USSR Seminar on Calculation Methods for Electron-Optical Systems]. Lviv, 1990. 59 p. (In Russ.).
  30. Matyshev A.A. [On the possibility of ideal spatial focusing of pulsed flows of charged particles]. Sbornik nauchnyh trudov "Fizika i diagnostika komponentov i aktivnyh sred elektroniki". Trudy LGTU [Proceedings of the Leningrad State Technical University]. Leningrad, 1991, no. 436, pp. 61—63. (In Russ.).
  31. Grunze M., Matyshev A. Beschreibung eines Verfahrens zur Messung der Energie, Massen- und Vinkelverteilung von gepulsten strahlengeladenen Tilchen. Deutsches Patent DE 4317872AI. 1993.
  32. Matyshev A.A. [New method of pulsed mass spectrum analysis]. Zhurnal tekhnicheskoj fiziki [Technical Physics], 1997, vol. 67, no. 1, pp. 83—87. (In Russ.).
  33. Matyshev A.A. [Equal-path dynamics of pulsed ion streams]. Zhurnal tekhnicheskoj fiziki [Technical Physics], 1997, vol. 67, no. 5, pp. 99—102. (In Russ.).
  34. Matyshev A.A. Ion focusing properties of an isotrajectory quadrupole lens pair. Nuclear Instruments and Methods in Physics Research. Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1999, vol. 427, no. 1-2, pp. 288—291.
  35. Matyshev A.A. Isotrajectory dynamics as a new field of corpuscular optics. Fourth All-Russian Seminar on Problems of Theoretical and Applied Electron Optics. Proceedings of SPIE, 2000, vol. 4187, pp. 42—50. DOI: 10.1117/12.394160
  36. Matyshev A.A. A method to derive corpuscular optics identities as a consequence of the static character of fields. Nuclear Instruments and Methods in Physics Research. Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, vol. 558, no. 1, pp. 40—43. DOI: 10.1016/j.nima.2005.11.010
  37. Clement R.M., Miles H.T. Generation of t-2 voltage pulses for ion analysers. Journal of Physics E: Scientific Instruments, 1983, vol. 16, no. 5, pp. 377—381. DOI: 10.1088/0022-3735/16/5/004
  38. Aksim D.A. Izotraektornye korpuskulyarno-opticheskie sistemy s ustranennymi prostranstvenno-vremennoj i sfericheskoj aberraciyami [Isotrajectory corpuscular-optical systems with eliminated spatio-temporal and spherical aberrations]. URL: http://elib.spbstu.ru/dl/2/v18-1075.pdf/en/info (In Russ.).
  39. Lifshitz E.M., Pitaevskii L.P. Fizicheskaya kinetika. Seriya "Teoreticheskaya fizika", tom X, izd. 2-e [Physical kinetics. Ser. "Landau and Lifshitz Course of Theoretical Physics", vol. 10]. Moscow, Fizmatlit Publ., 2007. 536 p. (In Russ.).
  40. Levich V.G., Vdovin Yu.A., Myamlin V.A. Kurs teoreticheskoj fiziki. Tom 2. Kvantovaya mekhanika. Kvantovaya statistika i fizicheskaya kinetika [Theoretical physics course. Vol. 2. Quantum mechanics. Quantum statistics and physical kinetics]. Moscow, Nauka Publ., 1971. 936 p. (In Russ.).
  41. Kurnin I.V., Yavor M.I. [Ion beam transport in gas-filled radio-frequency quadrupoles at intermediate pressures]. Zhurnal tekhnicheskoj fiziki [Technical Physics], 2009, vol. 79, no. 9, pp. 112—119. (In Russ.).
  42. Kurnin I.V., Yavor M.I. [Model of motion in a viscous media with a statistic diffusion for calculation of ion dynamics in a dense gas and strong electric fields]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2015, vol. 25, no. 3, pp. 29—34. DOI: 10.18358/np-25-3-i2934 (In Russ.).
 

D. A. Kravchuk

METHOD FOR INCREASING NOISE IMMUNITY
IN AN OPTOACOUSTIC IMAGING SYSTEM

"Nauchnoe Priborostroenie", 2019, vol. 29, no. 4, pp. 119—123.
doi: 10.18358/np-29-4-i119123
 

In optoacoustic imaging, the object is illuminated by a short laser pulse, and the energy of the absorbed photon is converted into heat, which leads to a short-term local temperature increase. An increase in temperature causes thermoelastic expansion, which causes a local increase in pressure and emits acoustic waves. There are theories for describing the process of spatial coherence as a function of the distance between elements on a receiving acoustic antenna, which makes it possible to optimize an optoacoustic image. However, in this theory there is no noise model that introduces significant deviations in the measurements. Optoacoustic tomography is classified as a hybrid imaging technique based on the optoacoustic effect. Optoacoustic signals are inherently recorded in a noisy environment and are also affected by the noise of system components. Therefore, it is important to reduce noise in the signals in order to recover images with less error. The paper presents algorithms for processing an acoustic signal to obtain an image formed as a result of an optoacoustic effect.
 

Keywords: optoacoustic signal, erythrocytes, power spectral density, laser

Fig. 1. Algorithm for identifying "faulty" channels

Fig. 2. Horizontal strip removal algorithm

Fig. 3. Interface of visualization program for optoacoustic signal and image

Author affiliations:

Southern Federal University, Institute of Nanotechnologies,
Electronics and Equipment Engineering, Taganrog, Russia

 
Contacts: Kravchuk Denis Aleksandrovich, kravchukda@sfedu.ru, denik545@ya.ru
Article received by the editorial office on 10.10.2019
Full text (In Russ.) >>

REFERENCES

  1. Wang L.V., Hu S. Photoacoustic tomography: in vivo imaging from organelles to organs. Science, 2012, vol. 335, is. 6075, pp. 1458–1462. DOI: 10.1126/science.1216210
  2. Ermilov S.A., Khamapirad T., Conjusteau A., Leonard M.H., Lacewell R., Mehta K., Miller T., Oraevsky A.A. Laser optoacoustic imaging system for detection of breast cancer.J. Biomed. Opt., 2009, vol. 14, no. 2, 024007. DOI: 10.1117/1.3086616
  3. Ke H.,Liu C.,Wang L.V., Erpelding T.N., Jankovic L. Performance characterization of an integrated ultrasound, photoacoustic, and thermoacoustic imaging system. J. Biomed. Opt, 2012, vol. 17, no. 5, 056010. DOI: 10.1117/1.JBO.17.6.061208
  4. Yao D.-K., Maslov K., Shung K.K., Zhou Q., Wang L.V. In vivo label-free photoacoustic microscopy of cell nuclei by excitation of DNA and RNA. Opt. Lett., 2010, vol. 35, is. 24, pp.4139–4141. DOI: 10.1364/OL.35.004139
  5. Zhang C., Maslov K., Wang L.V. Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo.Opt. Lett., 2010, vol. 35, is. 19. pp. 3195–3197. DOI: 10.1364/OL.35.003195
  6. Wang L.V. Tutorial on photoacoustic microscopy and computed tomography. IEEE J. Sel. Topics Quant. Electron., 2008, vol. 14, is. 1, pp. 171–179. DOI: 10.1109/JSTQE.2007.913398
  7. Yao J., Maslov K., Zhang Y., Xia Y., Wang L.V. Label-free oxygen-metabolic photoacoustic microscopy in vivo.J. Biomed. Opt., 2011, vol. 16, no. 7, 076003. DOI: 10.1117/1.3594786
  8. Yeh C., Hu S., Maslov K., Wang L.V. Photoacoustic microscopy of blood pulse wave. J. Biomed. Opt., 2012, vol. 17, is. 7, 070504. DOI: 10.1117/1.JBO.17.7.070504
  9. Zharov V.P. Ultrasharp nonlinear photothermal and photoacoustic resonances and holes beyond the spectral limit. Nat. Photonics, 2011, vol. 5, is. 2, pp. 110–116.
  10. Zhu L., Danielli A. et al. Cross-beam nonlinear photoacoustic microscopy. Proceedings of SPIE, 2014. DOI: 10.1364/BIOMED.2014.BS2A.2
  11. Starchenko I.B., Kravchuk D.A., Kirichenko I.A. An optoacoustic laser cytometer prototype. Biomedical Engineering, 2018, vol. 51, no. 5, pp. 308–312. DOI: 10.1007/s10527-018-9737-8
  12. Kravchuk D.A., Starchenko I.B. [Theoretical model for diagnosing the effect of oxygen saturation of red blood cells using optoacoustic signals]. Prikladnaya fizika [The applied physics], 2018, no. 4, pp. 89–94. (In Russ.).
  13. Kravchuk D.A. [Mathematical model of detection of intraerythrocytic infections by optoacoustic method]. Biomedical photonics, 2018, vol. 7, no. 3, pp. 36-42. (In Russ.) DOI: 10.24931/2413-9432-2018-7-3-36-42
  14. Kravchuk D.A., Starchenko I.B. [Model of formation of an optoacoustic signal from erythrocytes for a laser cytometer]. Lazernaya medicina [Laser medicine], 2018, vol. 22, no 1, pp. 57–61. (In Russ.).
  15. Kravchuk D.A. [Modeling of acoustic signals during optoacoustic conversion for axisymmetric non-spherical forms of erythrocytes]. Nauchnoe priborostroenie [Scientific instrumentation], 2019, vol. 29, no. 2. pp. 83–89. (In Russ.). DOI: 10.18358/np-29-2-i8389
 

D. A. Kravchuk

SIMULATION OF AN ACOUSTIC SIGNAL
FROM SOURCES OF VARIOUS SHAPES
WITH AN OPTOACOUSTIC EFFECT IN A LIQUID

"Nauchnoe Priborostroenie", 2019, vol. 29, no. 4, pp. 124—128.
doi: 10.18358/np-29-4-i124128
 

In this work we simulated the formation of an acoustic signal with an optoacoustic effect by sources in a thin layer of liquid and a source in the form of a liquid cylinder with a diameter equal to the diameter of the laser beam. It is established that when an acoustic signal is generated as a result of the effect of a laser beam on a liquid thin layer, the shape and duration of the acoustic pulse have the shape and duration of the laser pulse. When an acoustic pulse is generated from the cylinder, a bipolar signal is formed in the liquid layer with a rising edge equal to the duration of the laser exposure and a relaxation zone, while the duration of the acoustic pulse increases.
The performed calculations allow us to approach a more complex process of modeling the formation of an acoustic signal in a liquid with an optoacoustic effect, when micron-sized sources can be present in a liquid cylindrical source, this will let to estimate the signal change depending on the number and size of these sources. The obtained results are in addition to the studies conducted for modeling the optoacoustic signal for detecting intra-erythrocyte infections in the blood and establishing the level of oxygen saturation and for flow cytometry.
 

Keywords: optoacoustic effect, acoustic signal, laser, absorption, microparticles

Fig. 1. Task layout

Fig. 2. Acoustic signal generated by sources in a liquid layer during optoacoustic interaction (a) and signal spectrum (á)

Fig. 3. Acoustic signal generated by a liquid cylinder

Table. Physical parameters used in modelling

Author affiliations:

Southern Federal University, Institute of Nanotechnologies, Electronics and Equipment Engineering,
Taganrog, Russia

Contacts: Kravchuk Denis Aleksandrovich,

 
Contacts: Kravchuk Denis Aleksandrovich, kravchukda@sfedu.ru, denik545@ya.ru
Article received by the editorial office on 10.10.2019
Full text (In Russ.) >>

REFERENCES

  1. Patel C.K.N., Tam A.C. Pulsed optoacoustic spectroscopy of condensed matter. Rev. Mod. Phys. APS, 1981. vol. 53, no. 3, pp. 517—550. DOI: 10.1103/RevModPhys.53.517
  2. Ke H.,  Liu C.,  Wang L.V.,  Erpelding T.N.,  Jankovic L. Performance characterization of an integrated ultrasound, photoacoustic, and thermoacoustic imaging system. J. Biomed. Opt., 2012, vol. 17, no. 5, 056010. DOI: 10.1117/1.JBO.17.6.061208
  3. Gusev V.E., Karabutov A.A. Lazernaya optoakustika [Laser optoacoustics]. Moscow: Nauka, 1991. 304 p. (In Russ.).
  4. Barnes P.A., Rieckhoff K.E. Laser induced underwater sparks. Appl. Phys. Lett., 1968, vol. 13, is. 8, pp. 282—284. DOI: 10.1063/1.1652611
  5. Roveri O.A., Bilmes G.M., Heihoff K., Braslavsky S.E. Laser-induced optoacoustic spectroscopy (LIOAS) of proteins: Spectrum of bovine serum albumin in the 532-670 nm region. Appl. Spectrosc., 1990, vol. 44, no. 10, pp. 1706—1710.
  6. Diebold G.J., Westervel P.J. The photoacoustic effect generated by a spherical droplet in a fluid. J. Acoust. Soc. Am., 1988, vol. 84, is. 6, pp. 2245—2251. DOI: 10.1121/1.397017
  7. Schmidt-Kloiber H., Paltauf G., Reichel E. Investigation of the probabilistic behavior of laser-induced breakdown in pure water and in aqueous solutions of different concentrations. J. Appl. Phys., 1989, vol. 66, is. 9, pp. 4149—4153. DOI: 10.1063/1.343999
  8. Morse P.M. Ingard K.U. Theoretical Acoustics. N.Y.: McGraw-Hill, 1968. 927 p.
  9. Westervelt P.J., Larson R.S. Laser-excited broadside array. J. Acoust. Soc. Am. ASA., 1973, vol. 54, no. 1, pp. 121—122.
  10. Morse P.M., Feshbach H. Methods of theoretical physics. Am. J. Phys., 1954, vol. 22, no. 6, pp. 410—413. DOI: 10.1119/1.1933765
  11. Starchenko I.B., Kravchuk D.A., Kirichenko I.A. An optoacoustic laser cytometer prototype. Biomedical Engineering, 2018, vol. 51, no. 5, pp. 308—312. DOI: 10.1007/s10527-018-9737-8
  12. Kravchuk D.A., Starchenko I.B. [Theoretical model for diagnostics of the oxygen saturation of erythrocytes with the use of optoacoustic signals]. Prikladnaya fizika [Applied physics], 2018, no. 4, pp. 89—94. (In Russ.).
  13. Shung K.K., Thieme G.A. Ultrasonic scattering in biological tissues. CRC press, 1992. 512 p.
  14. Starchenko I.B., Malyukov S.P., Orda-Zhigulina D.V. Saenko A.V. [Measuring system for the laser diagnostics of biological objects using nanoparticles based on LIMO complex]. Prikaspijskij zhurnal upravlenie i vysokie tekhnologii [Caspian journal: Management and high technologies], 2013, vol. 2, no. 2, pp. 166—173. (In Russ.).
  15. Kravchuk D.A. Experimental studies on the excitation and registration of an optoacoustic signal in a liquid. Proceedings of a meeting held 18-20 April 2019, Tomsk, Russia. 2019 International Siberian conference on control and communications (SIBCON 2019). Institute of electrical and electronics engineers Inc., 2019, pp. 115—117.
  16. Kravchuk D.A. [Modeling of acoustic signals during optoacoustic conversion for axisymmetric non-spherical forms of erythrocytes]. Nauchnoe priborostroenie [Scientific instrumentation], 2019, vol. 29, no. 2, pp. 83—89. (In Russ.). DOI: 10.18358/np-29-2-i8389 
  17. Starchenko I.B., Kravchuk D.A., Kirichenko I.A. [Optoacoustic laser cytometer prototype]. Medicinskaya tekhnika [Medical equipment], 2017, no. 5, pp. 4—7. (In Russ.).
 

CONTENTS OF VOLUME 29

"Nauchnoe Priborostroenie", 2019, vol. 29, no. 4, pp. 129–133.
doi: 10.18358/np-29-4-i129133
 
NUMBER 1 (156 p.)
Thematic issue: Works of participants of the 2nd All-Russian scientific and practical conference "SCIENTIFIC INSTRUMENT MAKING — THE CURRENT STATE AND THE PROSPECTS OF DEVELOPMENT",
June 4–7, 2018, Kazan

WORKS FROM THE CONFERENCE (pp. 5–98)
SYSTEM ANALYSIS OF MEASURING DEVICES AND METHODS (pp. 99–115)
MATHEMATICAL METHODS AND MODELLING IN INSTRUMENT MAKING (pp. 116–148)
INFORMATICS, COMPUTER TECHNICS AND CONTROL (pp. 149–156)
 
NUMBER 2 (120 p.)
INSTRUMENT MAKING FOR BIOLOGY AND MEDICINE (pp. 5–53)
PHYSICS OF INSTRUMENT MAKING (pp. 54–71)
DEVELOPMENT OF MEASURING DEVICES AND SYSTEMS (pp. 72–82)
MATHEMATICAL METHODS AND MODELLING IN INSTRUMENT MAKING (pp. 83–117)
PERSONNEL Zhores Ivanovich Alferov (pp. 118–120)
 
NUMBER 3 (92 p.)
PHYSICS OF INSTRUMENT MAKING (pp. 3–50)
MATHEMATICAL METHODS AND MODELLING IN INSTRUMENT MAKING (pp. 51–68)
PERSONNEL (pp. 69–72)
Anniversary of Lydia Nikolaevna Gall, doctor of physical and mathematical sciences, professor
FROM EDITORIAL BOARD (selected: monographs of IAI RAS researchers) (pp. 73–92)
 
NUMBER 4 (136 p.)
INSTRUMENT MAKING FOR BIOLOGY AND MEDICINE (pp. 3–27)
INSTRUMENT MAKING OF PHYSICAL AND CHEMICAL BIOLOGY (pp. 28–61)
PHYSICS OF INSTRUMENT MAKING (pp. 62–83)
MATHEMATICAL METHODS AND MODELLING IN INSTRUMENT MAKING (pp. 84–128)
 
Volume 29 table of contents (pp. 129–133)
The author's index of volume 29 (pp. 134–136)

Full text (In Eng.) >>
 

THE AUTHORS INDEX OF VOLUME 29

"Nauchnoe Priborostroenie", 2019, vol. 29, no. 4, pp. 134—136.
doi: 10.18358/np-29-4-i134136

Abiev R. Sh. — ¹ 3
Afonicheva P. K. — ¹ 4
Akhmedov I. R. — ¹ 2
Al'dekeeva A. S. — ¹ 2
Aliev A. R. — ¹ 2
Aliev Z. A. — ¹ 2
Alyackrinskiy O. N. — ¹ 1
Anikin A. N. — ¹ 1
Antifeev I. E. — ¹ 4
Anufriev A. V. — ¹ 3
Arkhipov D. B. — ¹ 3
Baigildin V. A.. — ¹ 3
Bardin B. V. — ¹ 3
Batazova M. A. — ¹ 1
Bayazitov A. A. — ¹ 1
Belobrov P. I. — ¹ 4
Belov D. A. — ¹ 2
Belov Yu. V. — ¹ 2
Berdnikov A. S. — ¹ 1, 4
Bolkhovityanov D. Yu. — ¹ 1
Boytsova E. B. — ¹ 4
Bublyaev R. A. — ¹ 2
Bukatin A. S. — ¹ 4
Bulyanitsa A. L. — ¹ 3, 4
Charlamov V. V. — ¹ 3
Cherniakov G. M. — ¹ 1
Chulkov D. P. — ¹ 1
Dolov S. M. — ¹ 1
Dyachenko S. V. — ¹ 1
D'yachkov M. V. — ¹ 2
Erofeev A. V. — ¹ 2
Ershov T. D. — ¹ 2
Evstrapov A. A. — ¹ 4
Fakhrutdinov A. R. — ¹ 1
Fattakhov Ya. V. — ¹ 1
Fazliakhmetova D. A. — ¹ 1
Feigin S. A. — ¹ 1
Fofanov Ya. A. — ¹ 3
Gall L. N. — ¹ 1, 3
Gavrilov D. A. — ¹ 1
Germash N. N. — ¹ 4
Gernovoy A. I. — ¹ 1, 2
Gilev A. G. — ¹ 2
Golikov Yu. K. — ¹ 4
Golubok A. O. — ¹ 4
Goryachkin D. À. — ¹ 3
Gravirov V. V. — ¹ 1
Grevtsev M. A. — ¹ 4
Gryaznov N. A. — ¹ 3
Gusev M. A. — ¹ 1
Imanaeva A. Ya. — ¹ 1
Ismagilov F. R. — ¹ 4
Kakagasanov M. G. — ¹ 2
Kalambet Yu. A. — ¹ 3
Kalinin S. I. — ¹ 2
Kaminsky V.V. — ¹ 4
Kazakov S. A. — ¹ 4
Kazanin M. M. — ¹ 4
Keltsiyeva O. A. — ¹ 2

Khabipov R. Sh. — ¹ 1
Khromov A. V. — ¹ 1
Khundiryakov V. E. — ¹ 1
Kislov K. V. — ¹ 1
Kolpakova Yu. D. — ¹ 2
Kolyasev V. A. — ¹ 1
Komissarenko F. E. — ¹ 4
Kompanets O. N. — ¹ 1
Konenkov N. V. — ¹ 1
Konovalov D. A. — ¹ 1
Kopytov A. G. — ¹ 1
Korochentsev V. I. — ¹ 1
Kosachev M. Yu. — ¹ 1
Kotelnikov G. V. — ¹ 2
Krasheninnikov V. N. — ¹ 1
Krasnov M. N. — ¹ 2
Krasnov N. V. — ¹ 2, 4
Krasnova N. K. — ¹ 4
Kravchuk D. A. — ¹ 2, 4
Krylatykh N. A. — ¹ 1
Kryzhanovskii S. P. — ¹ 1
Kuraptsev A. S. — ¹ 3
Kurnin I. V. — ¹ 4
Kuzmin A. G. — ¹ 1, 4
Kuzmin D. N. — ¹ 1
Lebedev D. V. — ¹ 4
Lebedev Y. A. — ¹ 1
Len’kov S. V. — ¹ 1
Likhodeev D. V. — ¹ 1
Lisin D. V. — ¹ 2
Logatchov P. V. — ¹ 1
Lomovskoy V. A. — ¹ 1
Makarova E. D. — ¹ 4
Maleev A. B. — ¹ 1
Malek A. V. — ¹ 1
Manoilov V. V. — ¹ 1, 3
Masyukevich S. V. — ¹ 1, 4
Matrosov I. I. — ¹ 1
Medvedev A. M. — ¹ 1
Mirgorodskaya Î. À. — ¹ 2
Mishchenko V. V. — ¹ 1
Moiseyeva S. P. — ¹ 2
Molin S. M. — ¹ 1
Morgun A. V. — ¹ 4
Mozharov A. M. — ¹ 4
Muhin I. S. — ¹ 4
Muradymov M. Z. — ¹ 2
Nichipuruk A. P. — ¹ 1
Nikulin À. V. — ¹ 1
Novikova L. N. — ¹ 2
Nurgalieva R. A. — ¹ 4
Nurmukhanova A. A. — ¹ 1
Osipova E. D. — ¹ 4
Petrov D. G. — ¹ 4
Petrov D. V. — ¹ 1
Petrova A. A. — ¹ 1
Pleshakov I. V. — ¹ 3
Podlaskin A. B. — ¹ 2
Podolskaya E. P. — ¹ 2


Popov Yu. A. — ¹ 2
Portnoy A. Yu. — ¹ 4
Portnoy M. Yu. — ¹ 4
Pripatinskaya E. A. — ¹ 1
Prokofieva Yu. P. — ¹ 3
Protasov A. V. — ¹ 2
Prozorov A. A. — ¹ 2
Prozorova I. V. — ¹ 2
Rybchenko A. A. — ¹ 1
Sabitova R. R. — ¹ 2
Salmin V. V. — ¹ 4
Salmina A. B. — ¹ 4
Samsonova N. S. — ¹ 1
Saprygin A. V. — ¹ 1
Savosin A. A. — ¹ 2
Schapova E. A. — ¹ 1
Semenov Yu. I. — ¹ 1
Shabanov G. A. — ¹ 1
Shagalov V. A. — ¹ 1
Sharfarets B. P. — ¹ 1, 2, 3
Shcherbakov A. P. — ¹ 3
Shevchenko N. N. — ¹ 3
Shevchenko S. I. — ¹ 2
Shirokorad A. L. — ¹ 2
Shkoldin V. A. — ¹ 4
Shmelev G. E. — ¹ 2
Shugaeva T. Zh. — ¹ 1
Sizov M. M. — ¹ 1
Smolenskii E. V. — ¹ 1
Sokolov A. V. — ¹ 4
Sokolov I. M. — ¹ 3
Solovyev K. V. — ¹ 1, 4
Sosnov Å. N. — ¹ 3
Spivak-Lavrov I. F.. — ¹ 1
Starostenko A. A. — ¹ 1
Stashkov A. N. — ¹ 1
Sukhodolov N. G. — ¹ 2
Svetlov S. D. — ¹ 3
Taraskin A. S. — ¹ 2
Temnikov A. N. — ¹ 1
Titov Yu. A. — ¹ 1, 4
Tsygunov A. S. — ¹ 1
Ulyanov V. A. — ¹ 2
Vainer Yu. G. — ¹ 1
Varekhov A. G. — ¹ 2
Vavilov V. E. — ¹ 4
Vereschagin F. V. — ¹ 1
Vinogradova M. V. — ¹ 1
Yakimov A. S. — ¹ 4
Zabrodskaya Ya. A. — ¹ 2
Zakharov V. A. — ¹ 1
Zalyalyutdinova L. N. — ¹ 1
Zaripov A. R. — ¹ 1
Zarutskiy I. V. — ¹ 1, 3
Zhuravel G. M. — ¹ 1
Zybin A. V. — ¹ 1

Full text (In Russ.) >>

Ulitsa Ivana Chernykh, 31-33, lit. A, St. Petersburg, Russia, 198095, P.O.B. 140
tel: (812) 3630719, fax: (812) 3630720, mail: iap@ianin.spb.su

content: Valery D. Belenkov design: Banu S. Kuspanova layout: Anton V. Manoilov