logo
blue band <-
  JOURNAL "NP" ISSUES

"Nauchnoe Priborostroenie", 2018, Vol. 28, no. 4. ISSN 2312-2951, DOI: 10.18358/np-28-4-2508

"NP" 2018 year Vol. 28 no. 4.,   ABSTRACTS

ABSTRACTS, REFERENCES

NIKOLAY IVANOVICH KOMYAK, ORGANIZER OF DOMESTIC X-RAY INSTRUMENT MAKING, SCIENTIST AND PERSON (TO 90-YEAR ANNIVERSARY)

"Nauchnoe Priborostroenie", 2018, vol. 28, no. 4, pp. 5—7.
doi: 10.18358/np-28-4-i57
 

NIKOLAY IVANOVICH KOMYAK

 
Author Contacts: Brytov Igor’ Aleksandrovich, vitlin62@mail.ru
Article received in edition 5.06.2018
Full text (In Russ.) >>

 

O. N. Alyackrinskiy1, K. V. Gubin3, M. Yu. Kosachev1, E. A. Kuper1, P. V. Logatchov1, A. M. Medvedev1,
V. K. Ovchar1, V. V. Repkov1, Yu. I. Semenov1, M. M. Sizov1, A. A. Starostenko1,2,
A. S. Tsygunov1, M. G. Fedotov1,2

PROTOTYPE OF SOURCE OF ELECTRON BEAM
WITH LASER HEATING OF THE CATHODE

"Nauchnoe Priborostroenie", 2018, vol. 28, no. 4, pp. 8—14.
doi: 10.18358/np-28-4-i814
 

A prototype of the electron beam source with laser cathode heating is presented. Application of the principle of its operation allows to control the current of the source electrons by modulating the power of the cathode heating laser. The power of the laser radiation is transmitted through a vacuum, which facilitates the electrical isolation of the laser from the cathode, which is under the high accelerating voltage of the gun. The main parameters of the prototype of the electron beam source with laser heating of the electron gun cathode are measured:

  • the dependence of the cathode current and the rise time of the cathode current from the level 0.1 to the level of 0.9 on the cathode heating power;
  • the size of the beam profile at its half-height;
  • size of the electron emission region from the cathode.

Keywords: laser heating of the cathode, the size of the place of emission of electrons from the cathode, deionized water, cooling of cathode nodes, electrical insulation, cathode heating time, electronic image

Author affiliations:

1Budker Institute of Nuclear Physics of Siberian BranchRussian Academy of Sciences
(BINP SB RAS), Novosibirsk, Russia

2Novosibirsk State University (NSU), Novosibirsk, Russia
3Institute of Laser Physics of Siberian Branch Russian Academy of Sciences (ILPSB RAS),
Novosibirsk, Russia

 
Contacts: Semenov Yuriy Ignat’evich, Yu.I.Semenov@inp.nsk.su
Article received in edition 26.06.2018
Full text (In Russ.) >>

REFERENCES

  1. Patent USA no. US 6,781,300 B1, 24.08.2004.
  2. Semenov Yu. I., Logatchev P.V. et al. 60 keV 30 kW electron beam facility for electron beam technology. Proceedings of EPAC08, Genoa, Italy, TUPP161.
 

I. R. Akhmedov, M. M. Gafurov, M. G. Kakagasanov,
D. A. Sveshnikova, J. I. Rabadanova

LABORATORY FURNACE WITH QUARTZ REACTOR

"Nauchnoe Priborostroenie", 2018, vol. 28, no. 4, pp. 15—19.
doi: 10.18358/np-28-4-i1519
 

The design of a laboratory furnace which used for obtaining carbon sorbents from natural raw materials, including raw materials modified with aggressive chemical compounds, is presented. The work of the furnace during heat treatment of raw materials is considered in a medium of various gases and in vacuum. Activated carbons have been prepared from the peach wood modified with zinc chloride. The results of the research of sorption characteristics of coals are presented.
 

Keywords: rotary furnace, sorbents, activation

Author affiliations:

Dagestan Scientific Centre, Russian Academy of Sciences, Analytical Center
of Collective Use. Makhachkala, Dagestan, Russia

 
Contacts: Akhmedov Isa Rasulovitch, analit0@mail.ru
Article received in edition 26.06.2018
Full text (In Russ.) >>

REFERENCES

  1. Muhin V.M. Klushin V.N. Proizvodstvo i primenenie uglerodnyh adsorbentov: uchebnoe posobie [Production and use of carbon adsorbents: manual]. Moscow, Dmitry Mendeleev University of Chemical Technology of Russia, 2012. 308 p. (In Russ.).
  2. Lygina T.Z., Mihailova O.A., Hacrinov A.I., Konyuhova T.P. Tekhnologii himicheskoj aktivacii neorganicheskih prirodnyh mineral'nyh sorbentov [Technologies of chemical activation of inorganic natural mineral sorbents]. Kazan, Kazan National Research Technological University, 2009. 120 p. (In Russ.).
  3. Kuznetsov B.N., Chesnokov N.V., Ivanov I.P., Veprikova E.V., Ivanchenko N.M. [Methods of Porous Materials Obtaining from Lignin and Wood Bark]. Zhurnal Sibirskogo Federal'nogo universiteta. Seriya: himiya [Journal of Siberian Federal University. Chemistry], 2015, vol. 8, no. 2, pp. 232—255. (In Russ.).
 

V. V. Voronenkov1, N. I. Bochkareva1, M. V. Virko2, R. I. Gorbunov1, A. S. Zubrilov1,
V. S. Kogotkov2, F. E. Latyshev2, Y. S. Lelikov1, A. A. Leonidov3, Y. G. Shreter1

HYDRIDE VAPOR PHASE EPITAXY SYSTEM

"Nauchnoe Priborostroenie", 2018, vol. 28, no. 4, pp. 20—22.
doi: 10.18358/np-28-4-i2022
 

Hydride Vapor Phase Epitaxy is a promising method for the industrial production of GaN substrates. However, no HVPE reactors for the GaN and AlN bulk layer deposition are available on the market. We have developed a HVPE reactor for mass production of bulk GaN and AlN epitaxial layers with thickness up to 10 mm and diameter of 50 mm. A load-lock vacuum chamber and dry in-situ cleaning of growth chamber and substrate holder were implemented to improve the process reproducibility. High-capacity precursor sources have been developed to implement non-stop growth of layers with total thickness of 10 mm and higher. Freestanding GaN crystals with thickness of 5 mm and diameter of 50 mm have been grown with the reactor.
 

Keywords: HVPE, reactor, GaN, substrate, III-nitrides

Author affiliations:

1The Ioffe Institute of the Russian Academy of Sciences, Saint-Petersburg, Russia
2JSC "Trinitri", Saint-Petersburg, Russia
3Peter the Great St. Petersburg Polytechnic University, Saint-Petersburg, Russia

 
Contacts: Voronenkov Vladislav Valerievitch, voronenkov@mail.ioffe.ru
Article received in edition 26.06.2018
Full text (In Russ.) >>

REFERENCES

  1. Miyoshi T., Masui S., Okada T.  et al. 510—515 nm InGaN-based green laser diodes on C-plane GaN substrate. Applied Physics Express, 2009, vol. 2, no. 6, 062201. Doi: 10.1143/APEX.2.062201.
  2. Cich M.J., Aldaz R.I., Chakraborty A. et al. Bulk GaN based violet light-emitting diodes with high efficiency at very high current density. Applied Physics Letters, 2012, vol. 101, no. 22, 223509. Doi: 10.1063/1.4769228.
  3. Nie H., Diduck Q., Alvarez B. et al. 1.5-kV and 2.2-mOhm-cm2 Vertical GaN Transistors on Bulk-GaN Substrates. IEEE Electron Device Letters, 2014, vol. 35, no 9, pp. 939—941.
  4. Fujikura H., Yoshida T., Shibata M., Otoki Y. Recent progress of high-quality GaN substrates by HVPE method. Proceedings of "Gallium Nitride Materials and Devices XII". International Society for Optics and Photonics, 2017, vol. 10104, 1010403. Doi: 10.1117/12.2257202.
  5. Mori Y., Imade M., Maruyama M, Yoshimura M. Growth of GaN crystals by Na flux method. ECS Journal of Solid State Science and Technology, 2013, vol. 2, no. 8, pp. N3068—N3071. Doi: 0.1149/2.015308jss.
  6. Kucharski R., Zając M., Doradziński R. et al. Non-polar and semi-polar ammonothermal GaN substrates. Semiconductor Science and Technology, 2012, vol. 27, no. 2, 024007. Doi: 10.1088/0268-1242/27/2/024007.
  7. Bockowski M., Iwinska M., Amilusik M. et al. Challenges and future perspectives in HVPE-GaN growth on ammonothermal GaN seeds. Semiconductor Science and Technology, 2016, vol. 31, no. 9, 093002. Doi: 10.1088/0268-1242/31/9/093002.
 

D. V. Krapukhin1,2, D. L. Gnatyuk1, A. V. Zuev1, P. P. Maltsev1,
O. S. Matveenko1, Yu. V. Fedorov1

SINGLE-CHIP RECEIVING MODULE WITH BUILT-IN ANTENNA
FOR THE FREQUENCY RANGE 66—67 GHZ FOR 5G COMMUNICATION SYSTEMS

"Nauchnoe Priborostroenie", 2018, vol. 28, no. 4, pp. 23—29.
doi: 10.18358/np-28-4-i2329
 

The work dedicated to design and research of a single-chip receiving module with an integrated antenna. Module is based on GaN HEMT technology on sapphire substrates. It is designed to work in the 66-67 GHz band and can be used for 5G communication systems. The measurements showed its operability in the range of 66-67 GHz, achievement output power more than 10 dBm and the tuning range of the VCO is more than 2 GHz.
 

Keywords: GaN, HEMT, transceiver, receiver, system-on-chip, oscillator, low-noise amplifier, antenna

Author affiliations:

1Institute of Ultra-High Frequency Semiconductor Electronics of the
Russian Academy of Sciences, Moscow, Russia

2LLC "Novelcom", Moscow, Russia

 
Contacts: Krapuchin Dmitriy Vladimirovitch, d.krapukhin@gmail.com
Article received in edition 28.06.2018
Full text (In Russ.) >>

REFERENCES

  1. Maltsev P.P. [The prospects of creation it is system-a-crystal for the microwave oven and KVCh of ranges of frequencies on gallium arsenide]. Nano- i mikrosistemnaya tekhnika [Nano- and microsystems technology], 2013, no. 4, pp. 40—48. (In Russ.).
  2. Fedorov Yu.V., Maltsev P.P., Matveenko O.S., Gnatyuk D.L., Krapuhin D.V., Putintsev B.G., Pavlov A.Yu., Zuev A.V. [MMIC amplifiers with built-in antennas based on nano-heterostructures]. Nanoindustriya [Nanoindustry], 2015, no. 3, pp. 44—51. (In Russ.).
  3. Maltsev P.P., Matveenko O.S., Fedorov Yu.V., Gnatyuk D.L., Krapuhin D.V., Zuev A.V., Bunegina S.L. [Monolithic integrated circuit of the amplifier with the built-in antenna for the five-millimetric range of lengths of waves]. Nano- i mikrosistemnaya tekhnika [Nano- and microsystems technology], 2014, no. 9, pp. 12—15. (In Russ.).
  4. Bugaev A.S., Enyushkina E.N., Arutyunyan S.S., Ivanova N.E., Glinskij I.A., Tomosh K.N. [Development of technology of formation of the general earth on the active surface of the monolithic integrated circuit of the amplifier of power on nitride heterostructures]. Fundamental'nye problemy radioehlektronnogo priborostroeniya [Fundamental problems of radioengineering and device construction], 2016, vol. 16, no. 4, pp. 45—48. (In Russ.).
  5. Tomosh K.N., Pavlov A.Yu., Pavlov V.Yu., Habibullin R.A., Arutyunyan S.S., Maltsev P.P. [Research of processes of production HEMT Al-GaN/AlN/GaN with passivation Si3N4 in situ]. Fizika i tekhnika poluprovodnikov [Physics and equipment of semiconductors], 2016, vol. 50, no. 10, pp. 1434—1438. (In Russ.).
  6. Maltsev P.P., Fedorov Yu.V., Gnatyuk D.L., Matveenko O.S., Zuev A.V. Integral'nyj antennyj ehlement so vstroennym usilitelem dlya diapazona 57—64 GHz [Integrated antenna element with the built-in amplifier for the range of 57—64 GHz]. Certificate on the state registration no. 2015630131. Moscow, 12.12.2015. (In Russ.).
  7. Krapuhin D.V. [Low-noise amplifiers of the range of 60 GHz. Review of world commercial developments]. Nano- i mikrosistemnaya tekhnika [Nano- and microsystems technology], 2016, no. 12, pp. 759—766. (In Russ.).
  8. Krapuhin D.V., Maltsev P.P. [Monolithic integrated circuit of the low-noise amplifier on gallium nitride for the range of 57—64 GHz]. Rossijskij tekhnologicheskij zhurnal [Russian technological journal], 2016, vol. 4, no. 4, pp. 42—53. (In Russ.).
  9. Krapuhin D.V. Monolitnaya integral'naya skhema maloshumyashchego usilitelya na nitride galliya dlya diapazona 57—64 GHz. Avtoref. diss. kand. techn. nauk [Monolithic integrated circuit of the low-noise amplifier on gallium nitride for the range of 57-64 GHz. Autoref. cand. techn. sci. diss.] Moscow, 2001. 27 p. (In Russ.).
  10. Muller J.-E., Grave T., Siweris H.J. A GaAs HEMT MMIC chip set for automotive radar systems fabricated by optical stepper lithography. IEEE Journal of solid-state circuits, 1997, vol. 32, no. 9, pp. 1342—1349. Doi: 10.1109/4.628737.
  11. Maltsev P.P., Fedorov Yu.V., Gnatyuk D.L., Matveenko O.S., Putintsev B.G., Zuev A.V. [V-range GUN monolithic integrated circuit]. Nano- i mikrosistemnaya tekhnika [Nano- and microsystems technology], 2016, no. 10, pp. 645—650. (In Russ.).
  12. Maltsev P.P., Fedorov Yu.V., Gnatyuk D.L., Matveenko O.S., Krapuhin D.V., Putintsev B.G. Integrirovannyj priemo-peredayushchij modul' dlya diapazona chastot 57—64 GHz [The integrated send-receive module for the range of the frequencies of 57-64 GHz]. Certificate on the state registration of topology of the integrated circuit no. 2016630080. Moscow, 12.07.2016. (In Russ.).
  13. Tomkins A., Aroca R.A., Yamamoto T., Nicolson S.T., Doi Y., Voinigescu S.P. A Zero-IF 60GHz Transceiver in 65 nm CMOS with > 3.5Gb/s Links. P roceedings of 2008 Custom Integrated Circuits Conference. USA, 2008, pp. 505—509.
  14. Siligaris A., Chaix F., Pelissier M. et al. A low power 60-GHz 2.2-Gbps UWB transceiver with integrated antennas for short range communications. Proceedings of 2013 IEEE Radio Frequency Integrated Circuits Symposium. USA, 2013, pp. 297—300.
  15. Yao T., Tchoketch-Kebir L., Yuryevich O. et al. 65GHz Doppler Sensor with On-Chip Antenna in 0.18µm SiGe BiCMOS. IEEE MTT-S International Microwave Symposium Digest, 2006, pp. 1493—1496.
    Doi: 10.1109/MWSYM.2006.249575.
  16. Chien M., Wicks B., Yang B., Mo Y. et al. Wireless Communications at 60 Ghz: A single-chip Solution on CMOS technology. Mobile and Wireless Communications: Network layer and circuit level design, 2010, pp. 281—303. Doi: 10.5772/7701.
  17. Mitomo T., Tsutsumi Y., Hoshino H. et al. A 2-Gb/s Throughput CMOS Transceiver Chipset With In-Package Antenna for 60-GHz Short-Range Wireless Communication. IEEE Journal of solid-state circuits, 2012, vol. 47, no. 12, pp. 3160—3171. Doi: 10.1109/JSSC.2013.2253424.
  18. Analog Devices, HMC6001LP711E, 60 GHz Rx with integrated antenna. Product Datasheet. URL: http://www.analog.com/en/products/rf-microwave/integrated-transceivers-transmitters-receivers/microwave-mmwave-tx-rx/hmc6001.html.
 

A. K. Nikitin1, V. V. Gerasimov2, B. A. Knyazev2, I. Sh. Khasanov1

DEVELOPMENT OF THE SURFACE PLASMON-POLARITONS
ABSORPTION SPECTROMETRY METHOD IN THE TERAHERTZ RANGE

"Nauchnoe Priborostroenie", 2018, vol. 28, no. 4, pp. 30—38.
doi: 10.18358/np-28-4-i3038
 

The article describes achievements in the development of devices for the generation of surface plasmon-polaritons (SPPs) of the terahertz (THz) range by radiation of the external source tunable in frequency, as well as for measuring the field of SPPs and determining their propagation length. The characteristic high signal-to-noise ratio scheme of the absorption SPP spectrometer with fixed radiation coupling elements and a mirror delay line for changing the SPP run distance is implemented.
 

Keywords: surface plasmon-polaritons, terahertz radiation, surface electromagnetic waves, absorption spectrometry, thin films

Author affiliations:

1Scientific and Technological Center of Unique Instrumentation of RAS, Moscow, Russia
2Budker Institute of Nuclear Physics of the Siberian Branch of RAS, Novosibirsk, Russia

 
Contacts: Nikitin Aleksey Kostantinovitch, alnikitin@mail.ru
Article received in edition 28.06.2018
Full text (In Russ.) >>

REFERENCES

  1. Bell R.J., Alexander R.W., Ward C.A., Tyler I.L.Introductory theory for surface electromagnetic wave spectroscopy.Surface Science, 1975,vol. 48, no. 1,pp. 253—287. Doi: 10.1016/0039-6028(75)90321-0.
  2. Agranovich V.M., Mills D.L., ed. Poverhnostnye polyaritony. Elektromagnitnye volny na poverhnostyah i granicah razdela sred [Superficial polaritons. Electromagnetic waves on surfaces and limits of the section of environments]. Moscow, Nauka Publ., 1985. 525 p.(In Russ.).
  3. Bhasin K., Bryan D., Alexander A.W., Bell A.J. Absorption in the infrared of surface electromagnetic waves by adsorbed molecules on a copper surface. J. Chem. Physics, 1976, vol. 64, no. 12, pp. 5019—5025. Doi: 10.1063/1.432174.
  4. Zhizhin G.N., Yakovlev V.A. Broad-band spectroscopy of surface electromagnetic waves. Physics Reports, 1990, vol. 194, no. 5/6, pp. 281—289. Doi: 10.1016/0370-1573(90)90027-Y.
  5. Peiponen K.-E., Zeitler J.A., Kuwata-Gonokami M., eds. Terahertz Spectroscopy and Imaging. Springer series in optical sciences, 2013, book 171. 644 p. Doi: 10.1007/978-3-642-29564-5.
  6. Gerasimov V.V., Knyazev B.A., Lemzyakov A.G., Nikitin A.K., Zhizhin G.N. Growth of terahertz surface plasmon propagation length due to thin-layer dielectric coating. JOSA (B), 2016, vol. 33, no. 11, pp. 2196—2203. Doi: 10.1364/JOSAB.33.002196.
  7. Zenneck J. Über die Fortpflanzung einer electromagnetischer Wellen längs einer ebenen Leiterfläche und ihre Beziehung zur drahtlosen Telegraphie. Ann. Physik, 1907, vol. 23, no. 5, pp. 846—866.
  8. Sommerfeld A. Ausbreitung der Wellen in der drahtlosen Telegraphie. Ann. Physik, 1909, vol. 28, no. 4, pp. 665—736.
  9. Fano U. The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces. JOSA, 1941, vol. 31, pp. 213—222.
  10. Kukushkin A.V., Rukhadze A.A. [On existence conditions for a fast surface wave]. Uspekhi Fizicheskikh Nauk [Advances in Physical Sciences], 2012, vol. 182, no. 11,
    pp. 1205—1215. Doi: 10.3367/UFNr.0182.201211f.1205. (In Russ.).
  11. Dragoman M., Dragoman D. Plasmonics: Applications to nanoscale optical devices. Progress in Quantum Electronics, 2008, vol. 32, pp. 1—41. Doi: 10.1016/j.pquantelec.2007.11.001.
  12. Ordal M.A., Bell R.J., Alexander R.W. et al. Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. Applied Optics, 1985, vol. 24, no. 24, pp. 4493—4499. Doi: 10.1364/AO.24.004493.
  13. Barnes W.L. Surface plasmon—polariton length scales: a route to sub-wavelength optics. J. Optics A, 2006, vol. 8, pp. S87—S93. Doi: 10.1088/1464-4258/8/4/S06.
  14. Zhizhin G.N., Moskaleva M.A., Shomina E.V., Yakovlev V.A. [Selective absorption of a surface electromagnetic wave propagating on a metal in the presence of a thin dielectric film]. Pis'ma v ZhETF [JETP Letters], 1976,
    vol. 24, no. 4, pp. 221—225. (In Russ.).
  15. Chabal Y.J. Surface infrared spectroscopy. Surface Science Reports, 1988, vol. 8, pp. 211—357. Doi: 10.1016/0167-5729(88)90011-8.
  16. Nazarov M., Garet F., Armand D., Shkurinov A.,Coutaz J.-L. Surface plasmon THz waves on gratings. Comptes Rendus Physique, 2008, vol. 9, no. 2, pp. 232—247.
  17. O’Hara J.F., Averitt R.D., Taylor A.J. Prism coupling to terahertz surface plasmon polaritons. Optics Express, 2005, vol. 13, no. 16, pp. 6117—6126.
  18. Zhizhin G.N., Nikitin A.K., Bogomolov G.D. et al. [Absorption of superficial plasmons of TGts of range in structure "metal - an integumentary layer - air"]. Optika i spektroskopiya [Optics and Spectroscopy], 2006, vol. 100, no. 5, pp. 798—802. (In Russ.).
  19. Gerasimov V.V., Knyazev B.A., Nikitin A.K., Nikitin V.V. [Way of indication of diffraction satellites of superficial plasmons of terahertz range]. Pis'ma v ZhETF [JETP Letters], 2010, vol. 36, no. 21, pp. 93—101. Doi: 10.1134/s1063785010110131.
  20. Stegeman G.I., Wallis R.F., Maradudin A.A. Excitation of surface polaritons by end-fire coupling. Optics Letters, 1983, vol. 8, no. 7, pp. 386—388.
  21. Gerasimov V.V., Knyazev B.A., Nikitin A.K., Zhizhin G.N. Experimental investigations into capability of terahertz surface plasmons to bridge macroscopic air gaps. Optics Express, 2015, vol. 23, no. 26, pp. 33448—33459. Doi: 10.1364/OE.23.033448.
  22. Gerasimov V.V., Knyazev B.A., Nikitin A.K. [Reflection of terahertz monochromatic surface plasmon-polaritons by a plane mirror]. Kvantovaya elektronika [Quantum Electronics], 2017, vol. 47, no.1, pp. 65—70. Doi: 10.1070/QEL16178. (In Russ.).
  23. Nikitin A.K., Knyazev B.A., Gerasimov V.V. Ustrojstvo dlya izmereniya dliny rasprostraneniya infrakrasnyh PEV. [The device for measurement of length of distribution of infrared PEV]. Patent RF, no. 2645008, Prioritet 15.02.2018. (In Russ.).
 

F. V. Vereshchagin1, V. M. Gusev1, O. N. Kompanets1, M. A. Pavlov1,
D. P. Chulkov2, Yu. M. Yevdokimov3, S. G. Skuridin3

MULTIFUNCTIONAL ANALYTICAL SYSTEM FOR DETERMINING
THE CHARACTERISTICS OF THE OPTICAL SIGNAL OF CIRCULAR DICHROISM OF A BIOLOGICALLY ACTIVE MATERIAL

"Nauchnoe Priborostroenie", 2018, vol. 28, no. 4, pp. 39—44.
doi: 10.18358/np-28-4-i3944
 

The possibility of creating a multifunctional analytical system (biosensor) based on nanoconstructions (NaC) of DNA (biosensing unit) and a portable dichrometer using light-emitting diodes is discussed. Such a system can work in modes of measuring the optical properties of DNA NaC and calibrating the characteristics of the circular dichroism signal of biologically active substance (BAS) interacting with the biosensing unit, as well as in the mode of measuring the diffusion rate of BAS into the biologically active material of the biosensing unit.
 

Keywords: biosensor, nanoconstructions DNA, circular dichroism, biologically active substance, diffusion rate

Author affiliations:

1Institute of Spectroscopy of the RAS, Moscow, Russia
2RMP "Medtechnika" UDP RF, Moscow, Russia
3Engelhardt Institute of Molecular Biology, RAS, Moscow, Russia

 
Contacts: Kompanets Oleg Nikolaevich, onkomp@isan.troitsk.ru
Article received in edition: 28.06.2018
Full text (In Russ.) >>

REFERENCES

  1. Evdokimov Yu.M., Salyanov V.I., Semenov S.V., Skuridin S.G. Zhidkokristallicheskie dispersii i nanokonstruk-zii DNK. Pod red. Yu.M. Evdokimova [Liquid crystal dispersions and nanodesigns of DNA. Yu.M. Evdokimov (eds.)]. Moscow, Radiotechnika Publ., 2008. 296 p. (In Russ.).
  2. Evdokimov Yu.M., Salyanov V.I., Skuridin S.G. Nanostruktury i nanokonstrukcii na osnove DNK [Nanostructures and nanodesigns on the basis of DNA]. Yu.M. Evdokimov (eds.). Moscow, SSAINS-PRESS Publ., 2010. 256 p. (In Russ.).
  3. Evdokimov Yu.M., Skuridin S.G., Vereshchagin F.V., Gusev V.M., Kompanets O.N., Chulkov D.P. [Nanodesigns on the basis of two-chained molecules DNA and their optical properties]. Sbornik tezisov XXV s’ezd po spektroskopii, Troitsk–Moskva, 3—7 oktyabrya 2016 g. [The XXV congress on spectroscopy, Troitsk – Moscow, on October 3—7, 2016. Collection of theses]. Moscow, MGPU Publ., 2016 (ISBN 978-5-4263-0368-3). pp. 219—220. (In Russ.).
  4. Vereshchagin F.V., Gusev V.M., Kompanets O.N., Chulkov D.P., Evdokimov Yu.M., Skuridin S.G. [Compact dvukhvolnovy dichrometr for the optical biotouch analytical system of medical appointment]. Sbornik tezisov XXV s’ezd po spektroskopii, Troitsk–Moskva, 3—7 oktyabrya 2016 g. [The XXV congress on spectroscopy, Troitsk – Moscow, on October 3-7, 2016. Collection of theses]. Moscow, MGPU Publ., 2016 (ISBN 978-5-4263-0368-3). pp. 284—285. (In Russ.).
  5. Gusev V.M., Kompanets O.N., Pavlov M.A., Chulkov D.P., Evdokimov Yu.M., Skuridin S.G. Mnogofunkcional'naya analiticheskaya sistema dlya opredeleniya harakteristik opticheskogo signala krugovogo dihroizma biologicheski aktivnogo materiala [ Multipurpose analytical system for definition of characteristics of an optical signal of circular dichroism of biologically active material]. Patent RF (for the device) no. 2 569 752. B.I. No. 36 (Prioritet 27.12.2014). (In Russ.).
 

A. V. Kalinin1, V. N. Titov2

CALIBRATION (REGRESSION) OF SPECTROMETERS
FOR DETERMINATION OF TRIGLYCERIDES OF FATTY
ACIDS IN FOODS AND SERUM

"Nauchnoe Priborostroenie", 2018, vol. 28, no. 4, pp. 45—48.
doi: 10.18358/np-28-4-i4548
 

Triglycerides of fatty acids (TGFA) form an important part of human nutrition. The spectrometry of TGFA has obvious advantages over conventional chromatography and is possible with at least three types of near-infrared spectrometers. The report presents the results of calibration of these spectrometers by the regression method on latent structures to determine the content of clinically significant TGFA in food, preparations and blood serum of cardiac patients.
 

Keywords: fatty acids, near infrared spectrometry, regression to latent structures

Author affiliations:

1Institute for Spectroscopy of the Russian Academy of Sciences, Moscow, Troitsk, Russia
2National Medical Research Cardiology Center of the Ministry of Health of the RF, Moscow, Russia

 
Contacts: Kalinin Andrey Valentinovich, kalinin@isan.troitsk.ru
Article received in edition 28.06.2018
Full text (In Russ.) >>

REFERENCES

  1. Titov V.N. Klinicheskaya biohimiya zhirnyh kislot, lipidov i lipoproteinov [Clinical biochemistry of fatty acids, lipids and lipoproteins]. Moscow, Tver, Triada Publ., 2008. 272 p. (In Russ.).
  2. Orlova T.I., Ukolov A.I., Savel’eva E.I., Radilov A.S. [GC-MS quantification of free and esterified fatty acids in blood plasma]. Analitika i kontrol [Analytics and control], 2015, vol. 19, no. 2, pp. 183—188. Doi: 10.15826/analitika.2015.19.2.002. (In Russ.).
  3. Wold S., Sjostrom M., Eriksson L. PLS regression: a basic tool of chemometrics. Chem. Intelligent. Lab. Syst., 2001, vol. 58, no. 2, pp. 109—130. Doi: 10.1016/S0169-7439(01)00155-1.
  4. Kalinin A.V., Krasheninnikov V.N. Detection of fatty product falsifications using a portable near Infrared spectrometer. EPJ Web of Conferences, 2017, vol. 132, no. 02009. Doi: 10.1051/epjconf/201713202009.
  5. Kalinin A.V., Krasheninnikov V.N., Sviridov A.P., Titov V.N. [The detection of content of diagnostically significant fatty acids and individual triglycerides in biological mediums based on infrared spectrometry]. Klinicheskaya Laboratornaya Diagnostika [Russian Clinical Laboratory Diagnostics], 2015, vol. 60, no. 11, pp. 13—20. (In Russ.).
  6. Westad F., Schmidt A. and Kermit M. Incorporating chemical band-assignment in near infrared spectroscopy regression models. J. Near Infrared Spectrosc., 2008, vol. 16, no. 3, pp. 265—273. Doi: 10.1255/jnirs.786.
  7. Titov V.N. Filogeneticheskaya teoriya obshchej patologii. Patogenez metabolicheskih pandemij. Saharnyj diabet [Phylogenetic theory of the general pathology. Pathogenesis of metabolic pandemics. Diabetes]. Moscow, INFRA-M Publ., 2014. 223 p. (In Russ.).
 

V. E. Pozhar, A. A. Balashov, M. F. Bulatov

MODERN SPECTRAL OPTICAL INSTRUMENTS
DEVELOPED IN SCIENTIFIC TECHNOLOGICAL CENTER
OF UNIQUE INSTRUMENTATION

"Nauchnoe Priborostroenie", 2018, vol. 28, no. 4, pp. 49—57.
doi: 10.18358/np-28-4-i4957
 

Review of modern spectral instruments, which are developed in STC UI RAS, is presented. They comprise Fourier-spectrometers and spectrometers based on acousto-optical tunable filters (AOTF): hyperspectrometers, stereo-spectrometers, endoscopic imaging spectrometers, as well as some other devices applicable to spectral optical investigations like lasers. All the instruments are classified in accordance with basic features and characteristics. They includes optical passive and active elements, devices and specialized systems, which totally cover spectral range from 0.25 µm to 3.2 mm and operates with optical and microwave radiation as well as with terahertz plasmon-polaritons. They implement various spectroscopic techniques: emission, absorption, fluorescent, Raman, differential, multi-wavelengths, correlation and modulation spectroscopy. These devices can be exploited in out-of-lab environment and are promising for industrial control, biomedical researches, monitoring of environments, material analyses, including high pressure and high temperature investigations.
 

Keywords: spectral instruments, Fourier-spectroscopy, acousto-optics

Author affiliations:

Scientific Technological Center of Unique Instrumentation of
Russian Academy of Sciences (STC UI RAS), Moscow, Russia

 
Contacts: Pozhar Vitold Eduardovitch, vitold@ntcup.ru
Article received in edition: 28.06.2018
Full text (In Russ.) >>

REFERENCES

  1. Agranovich V.M., MillsD.L. (eds.). Poverhnostnye polyaritony. Elektromagnitnye volny na poverhnostyah i granicah razdela sred [Superficial polaritons. Electromagnetic waves on surfaces and limits of the section of environments]. Moscow, "Nauka" Publ., 1985. 525 p. (In Russ.).
  2. Balashov A.A., Vagin V.A., Viskovatyh A.V., Zhizhin G.N., Pustovojt V.I., Horohorin A.I. [Analytical Fourier-spectrometer of AF-1 of broad application]. Pribory i tekhnika eksperimenta [Devices and technique of an experiment], 2003, no. 2, pp. 87—89. (In Russ.).
  3. Balashov A.A., Vagin V.A., Kotlov V.I., Moshkin B.E., Hitrov O.V., Horohorin A.I. [Portable infrared Fourier-spectrometer PACK-B]. Pribory i tekhnika eksperimenta [Devices and technique of an experiment], 2008, no. 1, pp. 179—179. (In Russ.).
  4. Balashov A.A., Vagin V.A., Horohorin A.I. [Infrared Fourier-spectrometer of FSV]. Pribory i tekhnika eksperimenta [Devices and technique of an experiment], 2016, no. 1, pp. 158—158.
  5. Balashov A.A., Vagin V.A., Horohorin A.I., Kradeckij V.V., Morozov A.N., Fufurin I.L., Shilov M.A. [Fourier-spektroradiometr FSR-03]. Pribory i tekhnika eksperimenta [Devices and technique of an experiment], 2013,
    no. 3, pp. 142—143. Doi: 10.7868/S0032816213020171. (In Russ.).
  6. Balashov A.A., Vagin V.A. [Development of Fourier-spektrokmetr in CDB of unique instrument making of Academy of Sciences of the USSR]. Komp'yuternaya optika [Computer optics], 1989, no.4, pp. 89—103. (In Russ.).
  7. Alatorcev E.I., Balashov A.A., Vagin V.A., Viskovatyh A.V., Kalinin L.L., Horohorin A.I., Chechkenev I.V. [The automated system of identification and quality control of fuel on the basis of AF-1 Fourier-spectrometer]. Opticheskij zhurnal [Journal of Optical Technology], 1999, no. 10, pp. 113—114. (In Russ.).
  8. Patent RF no. 2318192. Prioritet 27.02.2008. (In Russ.).
  9. Patent RF no. 2573617. Prioritet 20.01.2016. (In Russ.).
  10. Zhizhin G.N., Kir'yanov A.P., Nikitin A.K., Hitrov O.V. [Dispersive Fourier-spectroscopy of superficial plasmons of infrared range]. Optika i spektroskopiya [Optics and Spectroscopy], 2012, vol. 112, no. 4, pp. 597—602. (In Russ.).
  11. Patent RF no. 2477842. Prioritet 20.03.2013. (In Russ.).
  12. Pozhar V.E., Pustovoit V.I. [Optical-acoustic spectral technologies]. Izvestiya RAN. Seriya fizicheskaya [Bulletin of the Russian Academy of Sciences. Physics], 2015, vol. 79, no. 10, pp. 1375—1380. (In Russ.).
  13. Machikhin A.S., Pozhar V.E., Batshev V.I. [Optical-acoustic endoscopic video spectrometer]. Pribory i tekhnika eksperimenta [Devices and technique of an experiment], 2013, no. 4, pp. 117—121.
  14. Machikhin A.S., Batshev V.I., Zinin P.V. et al.[Optical-acoustic video spectrometer for measurement of spatial distribution of temperature of microobjects]. Pribory i tekhnika eksperimenta [Devices and technique of an experiment], 2017, no. 3, pp. 100—105. (In Russ.).
  15. Machikhin A.S., Pozhar V.E. [Method of correction of spectral distortions for a spectrometer of images]. Pribory i tekhnika eksperimenta [Devices and technique of an experiment], 2009, no. 6, pp. 92—98. (In Russ.).
  16. Machikhin A.S., Shurygin A.V., Pozhar V.E. [Spatial spectral calibration of an endoscopic optical-acoustic
    video spectrometer]. Pribory i tekhnika eksperimenta [Devices and technique of an experiment], 2016, no. 5, pp. 70—76. Doi: 10.7868/S003281621604025X. (In Russ.).
  17. Machikhin A.S., Pozhar V.E. [Spatial and spectral image distortions caused by diffraction of an ordinary polarised light beam by an ultrasonic wave]. Kvantovaya Elektronika [Quantum Electronics], 2015, vol. 45, no. 2, pp. 161—165.
  18. Viskovatyh A.V., Machikhin A.S., Pozhar V.E., Pustovoit V.I. [The multipurpose contactless profilometer on the basis of the reconstructed optical-acoustic filter of images]. Pribory i tekhnika eksperimenta [Devices and technique of an experiment], 2015, no. 1, pp. 117—121.
  19. Machikhin A.S., Batshev V.I., Pozhar V.E., Mazur M.M. [Acousto-optical full-field stereoscopic spectrometer for 3D reconstruction in an arbitrary spectral interval]. Komp'yuternaya optika [Computer optics], 2016, no. 6,
    pp. 871—877. Doi: 10.18287/2412-6179-2016-40-6-871-877. (In Russ.).
  20. Mazur M.M., Shorin V.N., Pustovoit V.I., Pozhar V.E., Fadeev A.V. [Gas-analytical optical-acoustic spectrometer]. Pribory i tekhnika eksperimenta [Devices and technique of an experiment], 2011, vol. 54, no. 2, pp. 140—146. (In Russ.).
 

A. S. Kaygorodov

UNIQUE SCIENTIFIC EQUIPMENT OF THE INSTITUTE
OF ELECTROPHYSICS UB RAS

"Nauchnoe Priborostroenie", 2018, vol. 28, no. 4, pp. 58—63.
doi: 10.18358/np-28-4-i5863
 

IEP’s perspective developments in the field of the creation of pulsed power equipment capable of generating picosecond fluxes of charged particles, a voltage with a peak power of 6 GW at a pulse duration of 7 ns, as well as X-ray radiation with a significantly reduced radiation dose are shown. With the help of the created equipment, such methods of powder synthesis as electrical explosion of the wires and laser evaporation, and also magnetic-pulsed pressing of such powders are realized.
 

Keywords: pulsed power equipment, nanomaterials, physical processes

Author affiliations:

Institute of Electrophysics UB RAS, Yekaterinburg, Russia

 
Contacts: Kaigorodov Anton Sergeevitch, kaigor@iep.uran.ru
Article received in edition 26.06.2018
Full text (In Russ.) >>

REFERENCES

  1. Mesyats G.A., Yalandin M.I., Reutova A.G., Sharypov K.A., Shpak V.G., Shunailov S.A. Picosecond runaway electron beams in air. Plasma Phys. Rep. 2012. Vol. 38, no 1. pp. 29—45.
  2. Gusev A.I., Pedos M.S., Rukin S.N., Timoshenkov S.P., Tsyranov S.N. A 6 GW nanosecond solid-state generator based on semiconductor opening switch. Review of Scientific Instruments, 2015, vol. 86, no. 11, 114706. Doi: 10.1063/1.4936295.
  3. Bessonova V.A., Gavrilov P.V., Komarskiy A.A., Korzhenevskiy S.R., Chepusov A.S. [Reduction of patient radiation dose during diagnostics with the digital pulsed nanosecond X-ray systems]. Medicinskaya radiologiya i radiacionnaya bezopasnost' [Medical radiology and radiation safety], 2016, no. 2, pp. 53—57. (In Russ.).
  4. Kotov Yu.A. Electric explosion of wires as a method for preparation of nanopowders. Journal of Nanoparticle Research. 2003. Vol. 5, ¹ 5-6. pp. 539-550. Doi: 10.1023/B:NANO.0000006069.45073.0b.
  5. Osipov V.V., Kotov Yu.A., Ivanov M.G., Samatov O.M., Smirnov P.B. [Use of the powerful pulse and periodic CO2 laser with high efficiency for receiving nano-dimensional powders]. Izvestiya Akademii Nauk. Seriya fizicheskaya [Bulletin of the Russian Academy of Sciences. Physics], 1999, vol. 63, no. 10, pp. 1968—1971. (In Russ.).
  6. Ivanov V.V., Kaygorodov A.S., Khrustov V.R., Paranin S.N. Fine Grained Alumina-Based Ceramics Produced Using Magnetic Pulsed Compaction. Ceramic Materials - Progress in Modern Ceramics. Croatia: InTech, 2012.
    228 p.
 

V. V. Gravirov1, 2, K. V. Kislov1, D. V. Likhodeev2, A. S. Numalov2

PRECISION AUTONOMOUS MODULAR
24-BITS GEOPHYSICAL DATA ACQUISITION SYSTEM

"Nauchnoe Priborostroenie", 2018, vol. 28, no. 4, pp. 64—72.
doi: 10.18358/np-28-4-i6472
 

The article is devoted to the details of the development of a new small-size modular low-power data acquisition system based on a 24-bit analog-to-digital converter chip. Modern geophysical observations are now impossible to imagine without using a wide variety of electronic systems for collecting information. Any parameter or phenomenon what we would like to register or measure everywhere will have the obligatory element - an analog-to-digital converter. However, unfortunately, it is often impossible to find an ideal system for solving any necessary task. In geophysical research, many tasks turn out to be a "piece goods" for which it is necessary to have its own data acquisition system, which has its own specific characteristics. This is one of the reasons for the development of all new versions of data acquisition systems up to the present. The article describes the development of such a specialized small-size modular data acquisition system. It is given the description of its main functional blocks; special attention is paying to the most important parameters that affect both the quality of the entire system as a whole and the improvement of the effective number of bits by minimizing the level of internal system self-noise.
 

Keywords: ADC, data acquisition system, monitoring

Author affiliations:

1Institute of Earthquake Prediction Theory and Mathematical Geophysics of
the Russian /em> Academy of Science, Moscow, Russia

2The Schmidt Institute of Physics of the Earth of
the Russian Academy of Sciences, Moscow, Russia

 
Contacts: Gravirov Valentin Valentinovich,gravirov@mail.ru
Article received in edition 28.06.2018
Full text (In Russ.) >>

REFERENCES

  1. Kolyasev V.A., Molin S.M. [Features of application ATsP sigma delta]. Sbornik materialov VII Vserossijskoj nauchno-tekhnicheskoj konferencii "Priborostroenie v XXI veke. Integraciya nauki, obrazovaniya i proizvodstva" [Proc. VII of the All-Russian scientific and technical conference "Instrument making in the 21st century. Integration of science, education and production"], 2012, 53—57 pp. (In Russ.).
  2. Zhmud V.A. [Application of TsAP and ATsP in control systems of the highest accuracy]. Avtomatika i programmnaya inzheneriya [Automatics & Software Enginery], 2013, vol. 6, no. 4, pp. 68—79. (In Russ.).
  3. Likhodeev D.V., Gravirov V.V., Kislov K.V. [Precision differential thermometers for studying thermal processes based on the geophysical observatory in northern caucasus]. Nauka i tekhnologicheskie razrabotki [Science and technological developments], 2018, vol. 97, no. 1, pp. 15—24. Doi: 10.21455/std2018.1-2. (In Russ.).
  4. Kislov K.V., Gravirov V.V. On the metrological support of the long-period seismology. Proceedings of the 10th Intl. Conf. "Problems of Geocosmos". Petrodvorets, St. Petersburg State University, 2014, pp. 18—19.
  5. Butkevich V., Nevzorov V. [Products L-Card: Domestic boards of ATsP/TsAP with the alarm processor]. Elektronika: Nauka, tekhnologiya, biznes [Electronics: STB], 1999, no. 3, pp. 32—33. (In Russ.).
  6. Ìîäóëü ÀÖÏ-ÖÀÏ ZET 220. URL: https://zetlab.com/shop/izmeritelnoe-oborudovanie/moduli-atsp-tsap/atsp-tsap-zet-220 (accessed: 25.05.2018). (In Russ.).
  7. Analogo-cifrovye preobrazovateli firmy Analog Devices [Analog-digital converters of Analog Devices]. URL: http://www.analog.com/ru/products/analogto-digital-converters.html (accessed: 25.05.2018). (In Russ.).
 

D. I. Kirgizov

MODERN HIGH-TECH HARDWARE SYSTEMS USED
IN GEOPHYSICAL STUDIES OF WELLS

"Nauchnoe Priborostroenie", 2018, vol. 28, no. 4, pp. 73—76.
doi: 10.18358/np-28-4-i7376
 

The report describes the technologies and equipment used in TNG Groups and demanded by customers in Russia and CIS. The experience of working with various geophysical instruments developed and manufactured in TNG Groups is described.
 

Keywords: geophysical instruments, TNG Groups, logging in drilling, nuclear magnetic resonance, neutron generators, core investigation, acoustic logging

Author affiliations:

OOO "TNG Groups", Tatarstan, Bugulma, Russia

 
Contacts: Kirgizov Dmitriy Ivanovich, kirgizov@tngf.tatneft.ru
Article received in edition 28.06.2018
Full text (In Russ.) >>

 

G. A. Kolotkov

RADIOMETRIC SYSTEM FOR REMOTE DETECTION
OF RAISED RADIOACTIVITY IN THE ATMOSPHERE
POLLUTED BY NFC ENTERPRISES

"Nauchnoe Priborostroenie", 2018, vol. 28, no. 4, pp. 77—81.
doi: 10.18358/np-28-4-i7781
 

The original method for remote monitoring of radioactive emission from nuclear fuel cycle enterprises by secondary effects in the atmosphere is proposed. New problems of remote monitoring of accidental atmospheric emissions of NFC enterprises are disclosed and identified. The technical parameters of radiometric system are presented.
 

Keywords: emission, radioactivity, monitoring, radiometer

Author affiliations:

Zuev Institute of Atmospheric Optics SB RAS, Tomsk, Russia

 
Contacts: Kolotkov Gennadiy Aleksandrovitch, kolotkov@iao.ru
Article received in edition 28.06.2018
Full text (In Russ.) >>

REFERENCES

  1. Wikipedia. Spisok radiacionnyh avarij [List of radiation accidents]. URL: http://ru.wikipedia.org/wiki/Ñïèñîê_ðàäèàöèîííûõ_àâàðèé (accessed: 29.03.2012). (In Russ.).
  2. Database of Radiological Incidents and Related Events compiled by Wm. Robert Johnston. Last modified 20 January 2014. URL: http://www.johnstonsarchive.net/nuclear/radevents/index.html (accessed: 28.03.2014).
  3. Nenot J.-C. Radiation accidents over the last 60 years. J. Radiol. Prot., 2009, vol. 29, no. 3, pp. 301–320. Doi: 10.1088/0952-4746/29/3/R01.
  4. Wikipedia. Mezhdunarodnaya shkala yadernyh sobytij [International scale of nuclear events]. URL: http://ru.wikipedia.org/wiki/Ìåæäóíàðîäíàÿ_øêàëà_ÿäåðíûõ_ñîáûòèé (accessed: 30.03.2013). (In Russ.).
  5. Atomnaya ehnergetika Tomskoj oblasti. Novosti. Oficial'nyj sajt Administracii Tomskoj oblasti. [Official site of Administration of the Tomsk region. News]. URL: http://www.aes.tomsk.ru/news-5758.html (accessed: 13.03.2014). (In Russ.).
  6. Atomnaya ehnergetika Tomskoj oblasti. Novosti. Oficial'nyj sajt Administracii Tomskoj oblasti. [Official site of Administration of the Tomsk region. News]. URL: http://www.aes.tomsk.ru/news-5637.html (accessed: 13.01.2014). (In Russ.).
  7. ROSATOM. SHK poluchil pervuyu partiyu oborudovaniya dlya modernizacii sistemy radiacionnogo kontrolya [SHK has received the first batch of the equipment for modernization of system of radiation control]. URL: http://www.rosatom.ru/journalist/news/skhk-poluchil-pervuyu-partiyu-oborudovaniya-dlya-modernizatsii-sistemy-radiatsionnogo-kontrolya-/ (accessed: 01.03.2018). (In Russ.).
  8. Dolgih S.O., Vlasov A.A., Malyshkin A.I. Avtomatizirovannaya sistema kontrolya radiacionnoj obstanovki sibirskogo himicheskogo kombinata [The automated control system of a radiation situation of Siberian Chemical Plant]. URL: http://conf.atomsib.ru/archive/conf2010/section2/7.doc (accessed: 1.04.2012). (In Russ.).
  9. Kolotkov G.A., Penin S.T. [Radiometer as perspective device of monitoring of radioactive emissions of the YaTTs enterprises]. Materialy V Vserossijskoj konferencii molodyh uchenyh "Materialovedenie, tekhnologii i ehkologiya v tret'em tysyacheletii" [Proceedings of V the All-Russian conference of young scientists "Materials science, technologies and ecology in the third millennium"], 2012, pp. 558–560. (In Russ.).
  10. Chistyakova L.K. [Techniques for remotely detecting radioactive anomalies in the near-ground atmosphere]. Optika atmosfery i okeana [Atmospheric and oceanic optics], 2001, vol. 14, no. 5, pp. 465−472. (In Russ.).
  11. Nabiev Sh.Sh. [Modern trends in the development of methods of remote detection of the radioactive and highly toxic substances]. Vestnik RAEN. Fizika [Bulletin of the Russian Academy of Natural Sciences], 2012, no. 1,
    pp. 14—25. (In Russ.).
  12. Boyarchuk K.A., Karelin A.V., Makridenko L.A. [The prospects of monitoring from space of radioactive pollution on the Earth's surface and in the lower layers of the atmosphere]. Voprosy ehlektromekhaniki [Electromechanical matters. VNIIEM studies], 2005, vol. 102, pp. 183—209. (In Russ.).
  13. Kolotkov G.A. [Comparison of perspective methods of monitoring of radioactive emissions of YaTTs]. Teoriya i praktika aktual'nyh issledovanij: Materialy III Mezhdunarodnoj nauchno-prakticheskoj konferencii 30 yanvarya 2013 g [Theory and practice of relevant researches: Proceedings III of the International scientific and practical conference on January 30, 2013], Krasnodar, 2013, pp. 282—284. (In Russ.).
  14. Kolotkov G.A., Penin S.T. Remote monitoring of emission activity level from NPP using radiofrequencies 1420, 1665, 1667 MHz in real time. JENR, 2013, vol. 115, pp. 69—72. Doi: 10.1016/j.jenvrad.2012.07.004.
  15. Kolotkov G.A. Radiometric complex for detection of increased radioactivity in gas-aerosol emission from enterprises of nuclear fuel cycle. Conference Proceedings: 17th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices, EDM 2016. Erlagol, Altai, 2016. ISBN 978-1- 5090-0785-1. art. no. 7538708, pp. 120—123. DOI: 10.1109/EDM.2016.7538708.
  16. Kolotkov G.A., Penin S.T. [Method of remote diagnostics of emergency radioactive emissions of the NPP in real time]. Izvestiya VUZov. Fizika [News of higher education institutions. Physics], 2012, vol. 55, no. 2/2, pp. 170–173. (In Russ.).
 

N. P. Krasnenko1,2

SODARS FOR SENSING OF THE ATMOSPHERIC
BOUNDARY LAYER

"Nauchnoe Priborostroenie", 2018, vol. 28, no. 4, pp. 82—89.
doi: 10.18358/np-28-4-i8289
 

The design is considered of acoustic radars (sodars) intended for sounding of the atmospheric boundary layer, including temperature stratification, wind velocity profiles, and turbulence characteristics. Results of measurements are presented. The possibilities of sodars and their applications are discussed.
 

Keywords: sodar, atmospheric boundary layer, wind velocity, characteristics of turbulence

Author affiliations:

1Institute of Monitoring of Climatic and Ecological Systems SB RAS, Tomsk, Russia
2Tomsk State University of Control Systems and Radioelectronics, Tomsk, Russia

 
Contacts: Krasnenko Nikolay Petrovitch, krasnenko@imces.ru
Article received in edition 28.06.2018
Full text (In Russ.) >>

REFERENCES

  1. Singal S.P., ed. Acoustic remote sensing applications. New Delhi, Narosa Publishing House, Springer-Verlag, Berlin, Heidelberg, 1997. 585 p.
  2. Kallistratova M.A., Kon A.I. Radioakusticheskoe zondirovanie atmosfery [Radio acoustic sounding of the atmosphere]. Moscow, Nauka Publ., 1992. 198 p. (In Russ.).
  3. Krasnenko N.P. Akusticheskoe zondirovanie atmosfery [Acoustic sounding of the atmosphere]. Novosibirsk, Nauka Publ., 1986. 167 p. (In Russ.).
  4. Kallistratova M.A. [Role of acoustic methods in modern researches of the atmosphere]. Sbornik trudov X sessii Rossijskogo akusticheskogo obshchestva [Proc. of the X session of the Russian acoustic society], Moscow, 2000, vol. 2. pp. 395—404. (In Russ.).
  5. Krasnenko N.P. Akusticheskoe zondirovanie atmosfernogo pogranichnogo sloya [Acoustic sounding of an atmospheric interface]. Tomsk, Vodoley Publ., 2001. 278 p. (In Russ.).
  6. Krasnenko N.P., Tikhomirov A.A. [Instrumentation and technologies for remote sensing of the atmosphere and underlying surface]. Optika atmosfery i okeana [Atmospheric and Oceanic Optics], 2002, vol. 15, no. 1, pp. 51—61. (In Russ.).
  7. Krasnenko N.P. [Results of development of atmospheric acoustics in Tomsk]. Sbornik trudov XVIII sessii Rossijskogo akusticheskogo obshchestva [Collection of works of the XVIII session of the Russian acoustic society], Moscow, 2006, vol. 2, pp. 132—136. (In Russ.).
  8. Bradley S. Atmospheric acoustic remote sensing: principles and applications. CRC Press, 2007. 296 p.
  9. Lokoschenko M.A. [Sodars and their use in meteorology]. Mir izmerenij [World of measurements], 2009, no. 6, pp. 21—29. (In Russ.).
  10. Krasnenko N.P., Shamanaeva L.G. Sodars and their application for investigation of the turbulent structure of the lower atmosphere. ENVIROMIS-2016, IOP Conference Series: Earth and Environmental Science, 2016, vol 48, no. 1, 012025. Doi: 10.1088/1755-1315/48/1/012025.
 

N. P. Krasnenko1,2, A. S. Rakov1,2, D. S. Rakov1,3

POWERFUL ACOUSTIC PHASED ARRAY
FOR ATMOSPHERIC APPLICATIONS

"Nauchnoe Priborostroenie", 2018, vol. 28, no. 4, pp. 90—97.
doi: 10.18358/np-28-4-i9097
 

Design of high-power radiative antenna arrays is described together with their use for various atmospheric applications, such as sound wave propagation, notification and broadcasting, acoustic impact on biological organisms, and acoustic sounding of the atmosphere. Characteristics of the most known foreign manufacturers are given. Domestic products and high-power acoustic antenna arrays are considered. Their characteristics are given.
 

Keywords: antenna array, directional pattern, sound pressure, range of action, sound broadcasting

Author affiliations:

1Institute of Monitoring of Climatic and Ecological Systems SB RAS, Tomsk, Russia
2Tomsk State University of Control Systems and Radioelectronics, Tomsk, Russia
3National Research Tomsk Polytechnic University, Tomsk, Russia

 
Contacts: Krasnenko Nikolay Petrovitch, krasnenko@imces.ru
Article received in edition 28.06.2018
Full text (In Russ.) >>

REFERENCES

  1. Krasnenko N.P. Akusticheskoe zondirovanie atmosfernogo pogranichnogo sloya [Acoustic sounding of an atmospheric interface]. Tomsk, Vodoley Publ., 2001. 278 p. (In Russ.).
  2. Krasnenko N.P., Rakov A.S., Rakov D.S., Sandukov C.D. [Powerful acoustic antenna lattices]. Pribory i tekhnika eksperimenta [Instruments and Experimental Techniques], 2012, no. 3, pp. 129—130. (In Russ.).
  3. Krasnenko N.P., Rakov A.S., Sandukov C.D. [The radiating acoustic antenna lattices for atmospheric applications]. Metody i ustrojstva peredachi i obrabotki informacii [Methods and devices of transfer and information processing]. Interuniversity collection of scientific works, Moscow, 2009, vol. 11, pp. 164—172. (InRuss.).
  4. Krasnenko N.P., Abramochkin V.N., Buhlova G.V. et al. [Sound broadcasting in the ground atmosphere and its forecasting]. Sbornik trudov XY sessii Rossijskogo akusticheskogo obshchestva "Akusticheskie izmereniya i standartizaciya. Ul'trazvuk i ul'trazvukovye tekhnologii. Atmosfernaya akustika. Akustika okeana", T. II [Proc. XY of a session of the Russian acoustic society "Acoustic measurements and standardization. Ultrasound and ultrasonic technologies. Atmospheric acoustics. Acoustics of the ocean", V. II], Moscow, 2004. pp. 110—113. (In Russ.).
  5. Krasnenko N.P. [Distant sound broadcasting: problems, results, opportunities]. Sverchshirokopolosnye signaly v radiolokazionnych i akusticheskich sistemach. Konspekty lekziy [Superbroadband signals in radar-tracking and speaker systems: abstracts of lectures], Murom, Publishing and printing center of MI VLGU, 2006. pp. 96—115.  (In Russ.).
  6. SODAR DSDPA.90-24. URL:
  7. Model VT-1 Specifications. URL:
  8. LRAD 1000 Specifications. URL:
  9. Most powerful electro-acoustic speaker. URL: http://www.guinnessworldrecords.com/world-records/most-powerful-electro-acoustic-speaker (accessed: 25.05.2018).
  10. Cyclone II FPGA Starter Development KitURL. URL: http://www.altera.com/products/devkits/altera/kit-cyc2-2C20N.html (accessed: 25.05.2018).
  11. AD5380 Evaluation Board. URL:
  12. Patent RF no. 2499302, 2013. Prioritet 2011. (In Russ.).
 

V. V. Gravirov1,2, K. V. Kislov1, D. V. Likhodeev2, A. N. Kotov2

INSTRUMENTAL COMPLEX
FOR MEASURING THE DEPTH OF SOIL FREEZING

"Nauchnoe Priborostroenie", 2018, vol. 28, no. 4, pp. 98—102.
doi: 10.18358/np-28-4-i98102
 

The electronic freezemeter has been developed for studying of influence of the frozen soil layer thickness on a seismic signal. While the effect of soil temperature on the speed of seismic waves is investigated quite fully, the wave attenuation is only subject for investigation. The electrical properties of frozen soils have also yet to be satisfactorily measured. This instrument allows to carry out monitoring of an average condition of territories or to reveal local features of the area. The measurements are carried out in an automatic mode, without disturbing the natural context of environmental. The various applications to which these instruments can be put makes them indispensable tools for work on weak, loose, swampy ground, for determination of possible loading in road maintenance, low-depth engineering networks, pipelines, etc. For the purposes of initial testing, two prototypes of the device were designed. The pilot registrations were conducted in the autumn-spring period of 2016 and 2017 in the territory of the Moscow region. The obtained results show that both the absolute thickness of the frozen soil layer and the dynamics of the freezing depth depend very much on the conditions of the thermal sensor location (soil type, moisture and density, thickness of the snow and vegetation cover, illumination and purging). Tests of these prototypes fully confirmed the efficiency of the proposed method of recording the value of the soil freezing thickness.
 

Keywords: freezemeter soil temperature, freezing depth, automation of observations seismic survey, monitoring

Author affiliations:

1Institute of Earthquake Prediction Theory and Mathematical Geophysics of the Russian
Academy of Sciences (IEPT RAS), Moscow, Russia
2The Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences
(IPE RAS), Moscow, Russia

 
Contacts: Gravirov Valentin Valentinovitch, gravirov@mail.ru
Article received in edition 28.06.2018
Full text (In Russ.) >>

REFERENCES

  1. Dzhurik V.I., Leshchikov F.N. [Experimental studies of seismic properties of frozen soil]. Mezhdunarodnaya konferenciya po merzlotovedeniyu. Doklady i soobshcheniya [International conference on permafrostology. Reports and messages], Yakutsk, 1973, vol. 6. (In Russ.).
  2. Kislov K.V., Gravirov V.V. [Seismic protection of extended objects]. Inzhenernaya zashchita [Engineering protection], 2015, vol. 6, no. 11, pp. 58—65. (In Russ.).
  3. Mel’nikov V.P., Skvortsov A.G., Malkova G.V., Drozdov D.S., Ponomareva O.E., Sadurtdinov M.R., Tsarev A.M., Dubrovin V.A. [Seismic studies of frozen ground in arctic areas]. Geologiya i geofizika [Geology and geophysics], 2010, vol. 51, no. 1, pp. 171—180.(In Russ.).
  4. Kislov K.V., Gravirov V.V. [Earthquake early warning for railways: perspectives, problems and solutions]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2017, vol. 27, no. 1, pp. 40—45. Doi: 10.18358/np-27-1-i4045. (In Russ.).
  5. GOST 24847-81 Soil. Methods of determination of depth of seasonal frost penetration. Moscow, Publishing house of standards, 1981. 12 p. (In Russ.).
  6. Klimaticheskij spravochnik goroda Sankt-Peterburga. Temperatura grunta (pochvy) i eyo raspredelenie po glubine v Sankt-Peterburg i Leningradskoj oblasti [Climatic reference book of St. Petersburg. Temperature of soil (soil) and its distribution on depth to St. Petersburg and the Leningrad Region]. http://www.atlas-yakutia.ru/weather/spravochnik/temp_grunt/climate_sprav-temp_grunt_260630687.php. (accessed 27.03.2018). (In Russ.).
  7. Gravirov V.V., Kislov K.V. An electronic freezemeter. 11th International Conference "Problems of Geocosmos", Book of Abstracts. St. Petersburg, Petrodvorets, St. Petersburg State University, 2016, pp. 209—210.
  8. Kislov K.V., Gravirov V.V. Issledovanie vliyaniya okruzhayushchej sredy na shum shirokopolosnoj sejsmicheskoj apparatury [Research of influence of the environment on noise of the broadband seismic equipment]. Series: Computing seismology, vol. 42, Moscow, Krasand Publ., 2013. 240 p. (In Russ.).
  9. Elektronnyj fond. SP 22.13330.2011 Osnovaniya zdanij i sooruzhenij. Aktualizirovannaya redakciya SNiP 2.02.01-83 [Joint venture 22.13330.2011 Foundations of buildings and constructions. The staticized editorial office Construction Norms and Regulations 2.02.01-83].
 

P. P. Geiko1,2, D. V. Petrov1,2, S. S. Smirnov1,2

IMPLEMENTATION OF THE METHOD OF DIFFERENTIAL
OPTICAL ABSORPTION SPECTROSCOPY FOR MEASUREMENTS OF VOLCANIC GAS EMISSIONS

"Nauchnoe Priborostroenie", 2018, vol. 28, no. 4, pp. 103—109.
doi: 10.18358/np-28-4-i103109
 

An active method of differential optical absorption spectroscopy (DOAS) is an effective tool for long-path measurements of atmospheric gases and impurity. A model of a portable non-volatile gas analyzer was developed, which can be used for remote trace measurements of degassing from volcanic emissions (sulfur dioxide, carbon disulfide and chlorine and bromine oxides). The gas analyzer includes ultraviolet LEDs emitting in the near UV region of the spectrum, fiber bundle, a receiving-transmitting telescope, a spectrometer and a processing system. The article describes the method and some results of field measurements of sulfur dioxide and chlorine and bromine oxides.
 

Keywords: differential optical absorption spectroscopy, ultraviolet LEDs, sulfur dioxide, chlorine dioxide, bromine oxide

Author affiliations:

1Institute of Monitoring of Climatic and Ecological Systems SB RAS, Tomsk, Russia
2Tomsk State University, Tomsk, Russia

 
Contacts: Geiko Pavel Panteleevitch, ppg11@yandex.ru
Article received in edition 26.06.2018
Full text (In Russ.) >>

REFERENCES

  1. Platt U. Differential optical absorbtion spectroscopy. Eds.: U. Platt, J. Stutz. Berlin, Heidelberg, Springer Verlag, 2008. 593 p.
  2. Stutz J., Hurlock S., Colosimo S., Tsai C., Cheung R., Festa J., Pikelnaya O., Alvarez S., Flynn J., Erickson M., Olaguer E. A novel dual-LED based long-path DOAS instrument for the measurement of aromatic hydrocarbons. Atmospheric Environent, 2016, vol. 147, no. 1, pp. 121—132. Doi: 10.1016/j.atmosenv.2016.09.054.
  3. Geiko P.P., Smirnov S.S., Samokhvalov I.V. Detection of concentration small gas components of atmosphere by DOAS method. Optical Memory and Neural Networks (Information Optics), 2015, vol. 24, no. 2, pp. 152—158.
  4. Smirnov S.S., Geiko P.P. [Multicomponent remote gas analysis of the atmosphere in the UF-area of a range]. Izvestiya VUZov. Fizika [News of higher education institutions. Physics], 2015, vol. 58, no. 8/3, pp. 218—221. (In Russ.).
  5. Kern C., Trick S., Rippel B., Platt U. Applicability of light-emitting diodes as light sources for active differential optical absorption spectroscopy measurements. Applied Opt., 2006, vol. 45, no. 9, pp. 2077—2068.
  6. Vita F., Kern C., Inguaggiato S. Development of a portable active long-path differential optical absorption spectroscopy system for volcanic gas measurements. J. Sens. Syst., 2014, vol. 3, no. 1, pp. 355—367. Doi: 10.5194/jsss-3-355-2014.
  7. Marquardt D.W. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Indust. Appl. Math., 1963, vol. 11, no. 2, pp. 431—441. Doi: 10.1137/0111030.
 

E. V Lutschekina

MATERIAL CAPACITY OF THE FUNDAMENTAL SCIENCE INSTITUTIONS:
ANALYSIS OF THE RESEARCH INFRASTRUCTURE CONDITION AND PROGRAMS OF THE MATERIAL AND TECHNICAL RESOURCES SUPPORT OF THE BASIC RESEARCHES SECTOR

"Nauchnoe Priborostroenie", 2018, vol. 28, no. 4, pp. 110—118.
doi: 10.18358/np-28-4-i110118
 

Definition of the material capacity role of the fundamental science institutions, assessment of his state, support form, development tendency. The changes which have happened in the sphere of fundamental science are reflected. The short analysis of the institutions conducting basic researches is carried out. On the basis of the state statistics data the analysis of the development tendencies of scientific institutions material and technical resources and organizations during 2014—2016 is carried out.
 

Keywords: fundamental science, material potential, scientific devices and equipment

Author affiliations:

Institute for study of science of RAS (ISS RAS) Moscow, Russia

 
Contacts: Lutschekina Elena Vasilievna, E.Lutschekina@issras.ru
Article received in edition 28.06.2018
Full text (In Russ.) >>

REFERENCES

  1. Ukaz Prezidenta Rossijskoj Federacii ¹ 642 ot 01 dekabrya 2016 g. "O Strategii nauchno tekhnologicheskogo razvitiya Rossijskoj Federacii" [Decree of the President of the Russian Federation No. 642 of December 01, 2016. "About the Strategy of scientifically technological development of the Russian Federation"]. URL: http://kremlin.ru/acts/bank/41449 (accessed 18.10.2018). (In Russ.).
  2. Ed. Mindeli L.E. Nauka, tekhnologii i innovacii Rossii [Science, technologies and innovations of Russia]. Moscow, IPRAN RAN, 2017. 116 p. (In Russ.).
  3. Ukaz Prezidenta Rossijskoj Federacii ¹ 208 ot 13 maya 2017 g. "O Strategii ehkonomicheskoj bezopasnosti Rossijskoj Federacii na period do 2030 goda" [Decree of the President of the Russian Federation No. 208 of May 13, 2017. "About the Strategy of economic security of the Russian Federation until 2030"]. URL: http://kremlin.ru/acts/bank/41921 (accessed 18.10.2018). (In Russ.).
  4. Reshenie nauchno-prakticheskoj konferencii "Nauchnoe priborostroenie – sovremennoe sostoyanie i perspektivy razvitiya" [Decision of the scientific and practical conference "Scientific Instrument Making – the Current State and the Prospects of Development"]. URL: https://fano.gov.ru/common/upload/library/2017/09/main/_-_.pdf. (In Russ.).
 

S. I. Dosko1, V. V. Kirenkov2, E. V. Yuganov3

SOLVING THE INVERSE PROBLEMS OF CONTROL OF TECHNICAL SYSTEMS BY DIRECT AND NUMERICAL METHODS

"Nauchnoe Priborostroenie", 2018, vol. 28, no. 4, pp. 119—122.
doi: 10.18358/np-28-4-i119122
 

The article is devoted to the comparison of numerical and direct methods for solving inverse problems of control of technical systems. Despite the great popularity of numerical methods for solving direct methods, it is not appropriate to reject direct methods of solution. A class of inverse problems is considered, in the solution of which the use of direct methods is expedient. To these problems are conditionally correct tasks in accordance with the terminology proposed by Academician M. Lavrentiev.
 

Keywords: inverse problems, conditionally correct inverse problems, essentially incorrect inverse problems

Author affiliations:

1IKTI RAS, Moscow, Russia
2RSC Energia named after S.P. Korolev, Korolev, Russia
3JSC "Rusatom Automated Control Systems", Moscow, Russia

 
Contacts: Dosko Sergey Ivanovich, dosko@mail.ru
Article received in edition 2.07.2018
Full text (In Russ.) >>

REFERENCES

  1. Tichonov A.N., Arsenin V.Ya. Metody resheniya nekorrektnych zadach [Methods of the solution of incorrect tasks]. Moscow, Nauka Publ., 1979. 286 p. (In Russ.).
  2. Tichonov A.N. Izbrannye trudy [Chosen works]. Moscow, MAKS Press Publ., 2001. 485 p. (In Russ.).
  3. Kabanichin S.I. Obratnye i nekorrektnye zadachi [Return and incorrect tasks]. Novosibirsk, 2009. 457 p. (In Russ.).
  4. Roytenberg Ya.I. Avtomaticheskoe upravlenie [Automatic control]. Moscow, Nauka Publ., 1978. 552 p. (In Russ.).
  5. Pontryagin L.S., Boltyanskiy V.G., Gamkrelidze R.V., Mischenko E.V. Matematicheskaya teoriya optimal'nych prozessov [Mathematical theory of optimum processes]. Moscow, Nauka Publ., 1983. 393 p. (In Russ.).
  6. Brayson A., Yu-Shi Cho. Prikladnaya teoriya optimal'nych prozessov [Applied theory of optimum processes]. Moscow, Mir Publ., 1972. 544 p. (In Russ.).
  7. Kirenkov V.V., Mikitenko V.G. [The solution of the return problems of assessment of tests of products of the missile and space equipment with use of methods of the theory of optimum control]. Kosmicheskaya technika i technologii [Space equipment and technologies]. RKK "Energiya" im. S.P. Koroleva, 2015, ¹ 4, pp. 50—57. (In Russ.).
  8. Dos'ko S.I., Kirenkov V.V., Mikitenko V.G. [Use of the principle of duality at the solution of the return problems of assessment of results of tests]. Vestnik BGTU [BGTU bulletin], 2017, no. 2, pp. 185—190. (In Russ.).
 

A. L. Bulyanitsa1, K. I. Belousov2, A. A. Evstrapov1

APPLICATION OF THE MODERNIZED JET FLOW MODEL
TO CALCULATE THE MOVEMENT
OF PHYSIOLOGICAL FLUIDS IN THE LIVING BODY

"Nauchnoe Priborostroenie", 2018, vol. 28, no. 4, pp. 123—126.
doi: 10.18358/np-28-4-i123126
 

To describe the movement of physiological fluids in the body, in some cases it is possible to use a jet flow model. For example, the movement of blood from the capillary into a vein or artery. The geometric scheme of motion is the Union of a small section channel with a camera of significantly larger dimensions. The paper considers the applicability of the flooded jet model. The results of the calculation of the velocities based on models that allow an analytical solution, namely, the first and second approximation of the jet flow, are compared with the results of the numerical solution of the Navier–Stokes equation by the finite element method using the COMSOL MULTIPHYSICS software package. The idea of adjusting the jet parameter based on the results of taking into account the additional component of the impulse flow is discussed.
 

Keywords: blood motion, jet flow, impulse flow, approximate analytical solution, COMSOL MULTIPHYSICS

Author affiliations:

1Institute for Analytical Instrumentation of RAS, Sankt-Petersburg, Russia
2ITMO University, Sankt-Petersburg, Russia

 
Contacts: Bulyanitsa Anton Leonidovitch, antbulyan@yandex.ru
Article received in edition 15.10.2018
Full text (In Russ.) >>

REFERENCES

  1. Bulyanitsa A.L., Belousov K.I., Evstrapov A.A. Applicability of submerged jet model to describe the liquid sample load into measuring chamber of micron and submillimeter sizes. Journal of Physics : Conf . Series, 2017, vol. 917, pp. 042021.
  2. Malikov Z.M., Stasenko A.L. [Asymptotics of the flooded stream and processes of transfer in it]. Trudy MFTI [Works of Moscow Institute of Physics and Technology], 2013, vol. 5, no. 2, pp. 59—68. (In Russ.).
  3. Berdnikov A.S., Averin I.A. [New approach to development of ion-optical schemes of static mass spectrographs on the basis of the non-uniform magnetic fields uniform in Euler]. Uspechi prikladnoy fiziki [Achievements of applied physics], 2016, vol. 4, no. 1, pp. 89—96. (In Russ.).
  4. Newtonian and non-Newtonian blood flow over a backward-facing step: steady-state simulation. URL: https://www.comsol.ru/paper/newtonian-and-non-newtonian-blood-flow-over-a-backward-facing-step-steady-state--6540 (accessed 17.08.2018).
  5. Numerical aspects of the implementation of artifical boundary. URL:
 

B. P. Sharfarets

APPLICATION OF THE SYSTEM OF ELECTROHYDRODYNAMICS
EQUATIONS FOR MATHEMATICAL MODELING OF A NEW METHOD OF ELECTRO-ACOUSTIC TRANSFORMATION

"Nauchnoe Priborostroenie", 2018, vol. 28, no. 4, pp. 127—134.
doi: 10.18358/np-28-4-i127134
 

An analysis of the system of EHD equations in the context of describing the physical processes occurring during the excitation of acoustic energy in an electroacoustic transducer of a new type is carried out. It is revealed that when implementing a converter device, it is necessary to adhere to a number of limitations and recommendations. To avoid excitation of multiple frequencies, it is necessary to apply a uniform electric field, the liquid medium must also be homogeneous and without impurities. The working fluid in the converter must have a low specific conductivity, otherwise it overheats, other parasitic phenomena occur. To increase the level of the applied electric field, it is necessary to increase the electrical strength of the working fluid. The use of mathematical modeling with the help of the system of EHD equations will allow us to optimize the device of an electroacoustic transducer of a new type.
 

Keywords: electrohydrodynamics, ponderomotive forces, electrodynamics, the Navier-Stokes equation, the equation of conservation of energy, equations of continuity, electric strength of working fluid

Author affiliations:

Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia

 
Contacts: Sharfarets Boris Pinkusovich, sharb@mail.ru
Article received in edition 28.06.2018
Full text (In Russ.) >>

REFERENCES

  1. Shishov S.V., Andrianov S.A., Dmitriev S.P., Ruchkin D.V. Method of converting electric signals into acoustics oscillations and an electric gas-kinetic transducer. United States Patent N US 8,085,957,B2. Dec. 27, 2011.
  2. Sergeev V.A., Sharfarets B.P. [About one new method of electroacoustic transformation. A theory based on electrokinetic phenomena. Part I. The hydrodynamic aspect]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2018, vol. 28, no. 2, pp. 25—35. Doi: 10.18358/np-28-2-i2535. (In Russ.).
  3. Sergeev V.A., Sharfarets B.P. [About one new method of electroacoustic transformation. A theory based on electrokinetic phenomena. Part II. The acoustic aspect]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2018, vol. 28, no. 2, pp. 36—44. Doi: 10.18358/np-28-2-i3644. (In Russ.).
  4. Prohorov A.M., ed. Fizicheskaya enziklopediya [Physical encyclopedia]. Vol. 2. Moscow, Soviet encyclopedia Publ., 1990. 703 p. (In Russ.).
  5. Sivuhin D.V. Obshchij kurs fiziki. T. 3. Elektrichestvo [General course of physics. Vol. 3. Electricity]. Moscow, Fizmatlit Publ., 2004. 656 p. (In Russ.).
  6. Newman J. Elektrochimicheskie sistemy [Electrochemical Systems]. Moscow, Mir Publ., 1977. 464 p. (In Russ.).
  7. Landau L.D., Lifshiz E.M. Teoreticheskaya fizika. T. VIII. Elektrodinamika sploshnyh sred [Theoretical physics. Vol. VIII. Electrodynamics of continuous environments]. Moscow, Nauka Publ., 1982. 621 p. (In Russ.).
  8. Ostroumov G.A. Vzaimodejstvie ehlektricheskih i gidrodinamicheskih polej: fizicheskie osnovy ehlektrogidrodinamiki [Interaction of electric and hydrodynamic fields: physical fundamentals of electrohydrodynamics]. Moscow, Nauka Publ., 1979. 320 p. (In Russ.).
  9. Prohorov A.M., ed. Fizicheskaya enziklopediya [Physical encyclopedia]. Vol. 4. Moscow, Soviet encyclopedia Publ., 1994. 703 p. (In Russ.).
  10. Stretton J.A. Teoriya elektromagnetizma [Theory of electromagnetism]. Moscow, GITTL Publ., 1948. 540 p. (In Russ.).
  11. Tamm I.E. Osnovy teorii elektrichestva [Bases of the theory of electricity]. Moscow, Nauka Publ., 1976. 616 p. (In Russ.).
  12. Gerasimov S.I., Erofeev V.I., Speranskij A.V., Totyshev K.V. Algoritmy opredeleniya parametrov skhem tenevogo fotografirovaniya [Algorithms of determination of parameters of schemes of shadow photography]. Sarov physics and technology institute of NIYaU MEPhI, 2013. 95 p. (In Russ.).
  13. Landau L.D., Lifshiz E.M. Teoreticheskaya fizika. T. 6. Gidrodinamika [Theoretical physics. Vol. 6. Hydrodyna­mics]. Moscow, Nauka Publ., 1988. 736 p. (In Russ.).
  14. Sharfarets B.P., Kurochkin V.E. [To the question about the definition of a stationary temperature field in the capillary during the passage of electric current and the change in water concentration of impurities in the temperature field]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2015, vol. 25, no. 2, pp. 53—60. Doi: 10.18358/np-25-2-i5360. (In Russ.).
  15. Zhakin A.I. [Electrohydrodynamics. Review]. Uspekhi Fizicheskikh Nauk [Achievements of physical sciences], 2012, vol. 182, no 5, pp. 495—520. Doi:
  16. Rubashov I.B., Bortnikov Yu.S. Elektrogazodinamika [Electrogas dynamics]. Moscow, Atomizdat Publ., 1971. 168 p. (In Russ.).
  17. Melcher G., Tejlor G. [Electrohydrodynamics: review of a role of interphase tangent tension]. Mekhanika: Sbornik perevodov [Mechanics: Collection of translations], 1971, no. 5, pp. 66—99. (In Russ.).
  18. Melcher G.R. [Electrohydrodynamics]. Magnitnaya gidrodinamika [Magnetohydrodynamics], 1974, vol. 2, pp. 3—30. (In Russ.).
  19. Gogosov V.V., Polyanskij V.A. [Electrohydrodynamics]. Itogi nauki i tekhniki: Mekhanika Zhidkosti i Gaza [Results of science and technology: Fluid Dynamics], 1976, vol. 10, pp. 5—85. (In Russ.).
  20. Bologa M.N., Grosu F.P., Kozhuhar' I.A. Elektrokonvekciya i teploobmen [Electroconvection and heat exchange]. Chisinau, Shtiintsa, 1977. 320 p. (In Russ.).
  21. Stishkov Yu.K., Ostapenko A.A. Elektro-gidrodinamicheskie techeniya v zhidkih diehlektrikah [Electro-hydrodynamic currents in liquid dielectrics]. Leningrad, LGU, 1989. 176 p. (In Russ.).
  22. Castellanos A., ed. Electrohydrodynamics. Vien: Springer-Verlag, 1998. 362 p.
  23. Ostroumov G.A. [To a question of hydrodynamics of electric discharges]. Zhurnal tekhnicheskoj fiziki [Journal of technical physics], 1954, vol. 24, no. 10, pp. 1915. (In Russ.).
  24. Ostroumov G.A. [Electric convection (review)]. Inzhenerno-Fizicheskii Zhurnal [Journal of Engineering Physics and Thermophysics], 1966, vol. 10, no. 5, pp. 683—695. (In Russ.).
  25. Yavorskij B.M., Detlaf A.A. Spravochnik po fizike dlya inzhenerov i studentov [The reference book on physics for engineers and students]. Moscow, Nauka Publ., 1971. 939 p. (In Russ.).
  26. Bogorodickij N.P., Pasynkov V.V., Tareev B.M. Elektrotekhnicheskie materialy. Uchebnik dlya vuzov [Electrotechnical materials. The textbook for higher education institutions]. Leningrad, Energoatomizdat Publ., 1985. 304 p. (In Russ.).
 

A. S. Berdnikov, A. G. Kuzmin, S. V. Masyukevich

ON THE USE OF STROBOSCOPIC SAMPLES IN THE ANALYSIS OF THE MOTION OF IONS IN QUADRUPOLE RADIO-FREQUENCY FIELDS .
II. CORRECTION OF THE CONCEPT

"Nauchnoe Priborostroenie", 2018, vol. 28, no. 4, pp. 135—145.
doi: 10.18358/np-28-4-i135145
 

The publication continues the study of a new concept of effective potential, proposed by M.Yu. Sudakov and M. Apatskaya. Methods for restoring the mathematical correctness of the authors' reasoning are considered, and more precise formulas are given.
 

Keywords: high-frequency electric fields, quadrupole mass filter, secular oscillations, pseudopotential

Author affiliations:

Institute for Analytical Instrumentation of RAS, Sankt-Petersburg, Russia

 
Contacts: Berdnikov Aleksandr Sergeevich, asberd@yandex.ru
Article received in edition 25.06.2018
Full text (In Russ.) >>

REFERENCES

  1. Berdnikov A.S., Kuzmin A.G., Masyukevich S.V. [On the use of stroboscopic samples in the analysis of the motion of ions in quadrupole radio-frequency fields. I. Critical analysis of the concept]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2018, vol. 28, no. 3, pp. 90—100. Doi: 10.18358/np-28-3-i90100. (In Russ.).
  2. Sudakov M.Yu., Apackaya M.V. [The concept of effective potential for the description of the movement of ions in the kvadrupolny filter of masses]. Zhurnal ehksperimental'noj i tekhnicheskoj fiziki [Journal of experimental and technical physics], 2012, vol. 142, pp. 222—229. URL: http://www.jetp.ac.ru/cgi-bin/dn/r_142_222.pdf. (In Russ.).
  3. Douglas D.J., Berdnikov A.S., Konenkov N.V. The effective potential for ion motion in a radio frequency quadrupole field revisited. International Journal of Mass Spectrometry, 2015, vol. 377, pp. 345—354. Doi: 10.1016/j.ijms.2014.08.009.
  4. Berdnikov A.S., Douglas D.J., Konenkov N.V. The pseudopotential for quadrupole fields up to q = 0.9080. International Journal of Mass Spectrometry, 2017, vol. 421, pp. 204—223. Doi: 10.1016/j.ijms.2017.04.003.
  5. Konenkov N.V., Sudakov M., Douglas D.J. Matrix methods to calculate stability diagrams in quadrupole mass spectrometry. Journal of American Society for Mass Spectrometry, 2002, vol. 13, pp. 597—613. Doi: 10.1016/S1044-0305(02)00365-3. Doi: 10.1016/j.phpro.2008.07.082.
  6. Verentchikov A., Berdnikov A., Yavor M. Stable ion beam transport through periodic electrostatic structures: linear and non-linear effects. Physics Procedia, 2008, vol. 1, pp. 87—97.
  7. Gantmaher F.R. Teoriya matric. Izd. 2-e, dop. [Theory of matrixes. The edition 2 added]. Moscow, Nauka Publ., 1966. 576 p. (In Russ.).
  8. Demidovich B.P. Lekcii po matematicheskoj teorii ustojchivosti [Lectures on the mathematical theory of stability]. Moscow, Nauka Publ., 1967. 472 p. (In Russ.).
  9. Erugin N.P. Metod Lappo-Danilevskogo v teorii linejnyh differencial'nyh uravnenij [Lappo-Danilevsky's method in the theory of the linear differential equations]. Leningrad, Leningradskij universitet, 1956. 109 p. (In Russ.).
  10. Erugin N.P. Linejnye sistemy obyknovennyh differencial'nyh uravnenij s periodicheskimi i kvaziperiodicheskimi koehfficientami [The linear systems of the ordinary differential equations with periodic and quasiperiodic coefficients]. Minsk, Akademiya nauk BSSR, 1963. 273 p. (In Russ.).
  11. Yakubovich V.A., Starzhinskij V.M. Linejnye differencial'nye uravneniya s periodicheskimi koehfficientami i ih prilozheniya [The linear differential equations with periodic coefficients and their applications]. Moscow, Nauka Publ., 1972. 720 p. (In Russ.).
  12. Dawson P.H., ed. Quadrupole Mass Spectrometry and Its Applications. American Institute of Physics, Woodbury, 1995. 349 p.
  13. Dawson P.H. Ion optical properties of quadrupole mass filters. Advances in Electronics and Electron Physics. Academic Press. Inc., 1980, vol. 53, pp. 153—208.
  14. March R.E., Hughes R.J. Quadrupole Storage Mass Spectrometry. New York, John Wiley and Sons, 1989. 471 p.
  15. Major F.G., Gheorghe V.N., Werth G. Charged Particle Traps: Physics and Techniques of Charged Particle Field Confinement. Berlin, Heidelberg, New York, Springer-Verlag, 2005. 354 p.
  16. Werth G., Gheorghe V.N., Major F.G. Charged Particle Traps II. Applications. Berlin, Heidelberg, Springer-Verlag, 2009. 275 p. Doi: 10.1007/978-3-540-92261-2.
  17. Sheretov E.P., Philippov I.V., Karnav T.B., Kolotilin B.I., Ivanov V.W. Spiking structure of amplitude characteristics for ion trajectories in hyperboloidal mass spectrometers: the theory. Rapid Communications in Mass Spectrometry, 2002, vol. 16, pp. 1652—1657. Doi: 10.1002/rcm.763.
  18. Monastyrskij M.A. Metody vozmushchenij v zadachah analiza i sinteza ehmissionnyh ehlektronno-opticheskih sistem. Autoref. diss. d-ra fiz.-mat. nauk. [Methods of indignations in tasks of the analysis and synthesis of issue electron-optical systems. Autoref. diss. physical and math. Drs. sciences]. Moscow, Scientific research institute of electronic devices, 1992. (In Russ.).
  19. Greenfield D., Monastyrskiy M., Hawkes P. ed. Selected Problems of Computational Charged Particle Optics. Ser. Advances in Imaging and Electron Physics, vol. 155. Amsterdam, Academic Press, 2009.
  20. Berdnikov A.S., Gall L.N., Gall N.R., Solov'ev K.V. [Generalization of a concept of a pseudopotential for radio-frequency quadrupole fields]. Nauchno-technicheskie vedomosti SPbGPU. Fiziko-matematicheskie nauki [St. Petersburg State Polytechnical University Journal. Physics and Mathematics], 2018. vol. 11, no. 3, pp. 52—64. DOI: 10.18721/JPM.11305. (In Russ.).
  21. Sudakov M.Yu., Mamontov E.V. [Research of the kvadrupolny filter of masses with kvadrupolny excitement by method of the equation of bending around]. Zhurnal tekhnicheskoj fiziki [Journal of Applied Physics], 2016, vol. 86, no. 11, pp. 112—120. (In Russ.). Doi:  10.21883/jtf.2016.11.43824.1783.
  22. Sudakov M. Nonlinear equations of the ion vibration envelope in quadrupole mass filters with cylindrical rods. International Journal of Mass Spectrometry, 2017, vol. 422, pp. 62—73. Doi: 10.1016/j.ijms.2017.08.017.
  23. Landau L.D., Lifshic E.M. Teoreticheskaya fizika. T. I. Mekhanika [Theoretical physics. Vol. I. Mechanics]. Moscow, Fizmatgiz Publ., 1958. 202 p. (In Russ.).
  24. Yakubovich V.A., Starzhinskij V.M. Parametricheskij rezonans v linejnyh sistemah [Parametrical resonance in linear systems]. Moscow, Nauka Publ., 1987. 328 p. (In Russ.).
 

N. V. Sukhanova1,2

DEVELOPMENT AND RESEARCH OF FLEXIBLE
PROGRAMMABLE ARCHITECTURE OF ELECTRONIC SCHEMES

"Nauchnoe Priborostroenie", 2018, vol. 28, no. 4, pp. 146—150.
doi: 10.18358/np-28-4-i146150
 

The goal is reduction of expenses on the tests and developing of electronic schemes. The solved tasks are those: modeling of electronic schemes, reliability control, search of fails, search and replacement of failed elements. Research method is modeling. The new flexible programmable architecture of electronic schemes (ES) is developed. The flexible architecture of the electronic scheme allows to program and change interconnection links between elements during the operation, without ES switching off. Additional elements — switchers are appended into the scheme. All ES elements inputs and outputs are connected to switchers. Switchers are connected with each other. Switchers have random access memory in which the information on the interconnection links of elements of the scheme is stored. The switching architecture is applied to the control of reliability of electronic schemes for the first time.
 

Keywords: flexible programmable architecture, fail, operating state, failed state, tests of the electronic scheme

Author affiliations:

1"MSTU OF "STANKIN", Moscow, Russia
2Institute of the design-technology information of RAS, Moscow, Russia

 
Contacts: Sukhanova Natalia Vyacheslavovna, n_v_sukhanova@mail.ru
Article received in edition 2.07.2018
Full text (In Russ.) >>

REFERENCES

  1. Kalyaev A.V. Mnogoprocessornye sistemy s programmiruemoj arhitekturoj [The multiprocessor systems with programmable architecture]. Moscow, Radio i svyaz' Publ., 1984. 240 p. (In Russ.).
  2. Kalyaev I.A., Levin I.I., Semernikov E.A., Shmojlov V.I. Rekonfiguriruemye mul'tikonvejernye vychislitel'nye struktury [Reconfigurable multiconveyor computing structures]. Rostov-on-Don, SSC RAS Publ., 2008. 392 p. (In Russ.).
  3. Knyazkov V.S., Vasin L.A. Mnogofunkcional'nyj kommutator [Multipurpose switchboard]. Patent RF no. 2139567. Prioritet 11.06.1997, publ. 10.10.1999. 3 p. (In Russ.).
  4. Sukhanova N.V. [Ensuring of fault tolerance of automated control system hardware]. Vestnik MSTU "STANKIN" [Bulletin of MSTU "STANKIN"], 2017, vol. 41, no. 2, pp. 79—83. (In Russ.).
  5. Sukhanova N.V. [Application of switching structure for ensuring fault tolerance of hardware of computing systems]. Vestnik MSTU "STANKIN" [Bulletin of MSTU "STANKIN"], 2017, vol. 42, no. 3, pp. 105—110. (In Russ.).
  6. Kabak I.S., Sukhanova N.V. et al. Sposob povysheniya otkazoustojchivosti skhemy i otkazoustojchivaya skhema dlya ego realizacii [Way of increase in fault tolerance of the scheme and the failure-safe scheme for his realization]. Patent RF no. 2631987. Prioritet 01.02.2016, publ. 29.09.2017, bull. no. 28. 3 p. (In Russ.).
 

B. S. Slepak1, K. B. Slepak2

THE INNOVATIVE DIRECTION OF THE DEVELOPMENT
OF SCIENTIFIC INSTRUMENTATION – TIME-OF-FLIGHT
MASS SPECTROMETERS

"Nauchnoe Priborostroenie", 2018, vol. 28, no. 4, pp. 151—160.
doi: 10.18358/np-28-4-i151160
 

The breakthrough scientific research in the field of development of analytical instrumentation, one of the areas of analytical instrumentation - time-of-flight mass spectrometry is being described. The creation of domestic time-of-flight mass spectrometers implements the task of import substitution of foreign equipment, and refers to significant, risky for state organizations financing. The scientific instruments that do not have domestic analogues and illustrate the development of one of the most promising areas of scientific instrumentation are being presented. Time-of-flight mass spectrometry makes it possible to create the most powerful in terms of sensitivity, informativity and speed small-sized analytical systems with modern software for qualitative and accurate quantitative analysis of the composition and structure of chemical compounds.
 

Keywords: mass spectrometry, ion source, electrospray fluid, ion flow, space charge

Author affiliations:

1Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia
2NRC "Kurchatov Institute" – CRISM "Prometey", Russia

 
Contacts: Slepak Boris Semyenovich, slepak@mail.ru
Article received in edition 17.08.2018
Full text (In Eng.) >>

REFERENCES

  1. Slepak K.B. Razvitie nauki, obrazovaniya i innovacionnyh tekhnologij v regionah Rossii kak faktor obespecheniya nacional'noj bezopasnosti: monografiya [The development of science, education and innovative technologies in the regions of Russia]. Saint Petersburg, Publishing house of Polytechnic University, 2014. 192 p. ISBN 978-5- 7422-4577-3. (In Russ.).
  2. Slepak K.B. [The development of the scientific and educational potential of Russia in the process of innovative import substitution]. Ekonomika i upravlenie [Economics and Management], 2015, no. 7, pp. 84—91. (In Russ.).
  3. Slepak B.S., Slepak K.B. [Management of Innovations in Scientific Instrumentation]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2017, vol. 27, no. 4, pp. 107—117. URL: http://iairas.ru/mag/2017/abst4.php#abst13. (In Russ.).
  4. Slepak B.S., Slepak K.B. [The innovative direction of scientific instrumentation is the Mössbauer spectroscopy as a factor in the improvement of the branches of the Russian economy. Part 1.Breakthrough scientific research in the field of Mossbauer spectroscopy]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2018, vol. 28, no. 1, pp. 79—92. URL: http://iairas.ru/mag/2018/abst1.php#abst10. (In Russ.).
  5. Slepak B.S., Slepak K.B. [The innovative direction of scientific instrumentation is Mössbauer spectroscopy as a factor in the improvement of the branches of the Russian economy. Part 2. Creation of the national research equipment in the field of Mössbauer spectroscopy]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2018, vol. 28, no. 2, pp. 75—88. URL: http://iairas.ru/mag/2018/abst2.php#abst11. (In Russ.).
  6. Polushin Y.S., Levshankov A.I., Lakhin R.E., Pashchinin A.N., Bezrukova E.V., Piskunovich A.L., Kostyuchek D.F., Belozerova A.K., Gaidukov S.N., Shapkayts V.A., Belozerova L.A., Krasnov N.V. [Prospects of using the antioxidant analyzer in clinical practice for assessing nonspecific resistance of the organism under various critical conditions and for forecasting obstetric complications]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2013, vol. 23, no. 3, pp. 5—12. URL: http://iairas.ru/mag/2013/abst3.php#abst1. (In Russ.).
  7. Bublyaev R.A. Golikov Y.K., Krasnov N.V. Time-of-flight Mass Spectrometer. Patent RF no. 2295797. Prioritet 6.06.2005. (In Russ.).
  8. Alekseev D.N., Gavrik M.A., Monakov A.G., Muradymov M.Z., Prisyach S.S., Yavor M.I., Krasnov N.V. Ustrojstvo vremyaproletnogo mass-spektrometra dlya razdeleniya i registracii ionov analiziruemyh veshchestv. Patent RF for useful model ¹ 137381. [The device of a time-of-flight mass spectrometer for separation and registration of ions of analytes]. Prioritet 10.02.2014. (In Russ.).
  9. Nazimov I.V., Muradymov M.Z., Bublyaev R.A., Gavrik M.A., Prisyach S.S., Krasnov N.V. Metod mass-spektrometricheskogo sekvenirovaniya peptidov i opredelenie ih aminokislotnyj posledovatel'nostej. Patent RF no. 2498443. [Method of mass-spectrometric sequencing of peptides and determination of their amino acid sequences]. Prioritet 10.11.2013. (In Russ.).
  10. Muradymov M.Z., Semenov S.Y., Krasnov N.V. Ustrojstvo nepreryvnogo stabil'nogo ehlektroraspyleniya rastvorov v istochnike ionov pri atmosfernom davlenii. Patent RF no. 2587679. [Device for continuous stable electrospray of solutions in the ion source at atmospheric pressure]. Prioritet 27.05.2016. (In Russ.).
  11. Krasnov M.N., Krasnov N.V. Ustrojstvo istochnika ionov-ehlektrosprej dlya polucheniya beskapel'nogo stabil'nogo ionnogo toka analiziruemyh veshchestv iz rastvorov v techenie dlitel'nogo vremeni. Patent RF for useful model no. 169146. [Device ion source-electrospray to obtain a steady-state stable ion current of analytes from solutions for a long time]. Prioritet 07.03.2017. (In Russ.).
  12. Arseniev A.N., Monakov A.G., Krasnov M.N., Krasnov N.V. Ustrojstvo dvuhpolyarnogo maloshumyashchego istochnika pitaniya. Patent RF for useful model
    no. 174218. [The device of a bipolar low-noise power source]. Prioritet 09.10.2017. (In Russ.).
  13. Krasnov M.N., Krasnov N.V. Sposob obrazovaniya beskapel'nogo ionnogo potoka pri ehlektroraspylenii analiziruemyh rastvorov v istochnikah ionov s atmosfernym davleniem. Patent RF no. 2613429. [Method for the formation of a dripless ionic stream during electrospraying of the solutions under analysis in ion sources with atmospheric pressure]. Prioritet 16.03.2017. (In Russ.).
  14. Krasnov M.N., Muradymov M.Z., Krasnov N.V. Sposob nepreryvnogo stabil'nogo ehlektroraspyleniya rastvorov v istochnike ionov pri atmosfernom davlenii. Patent RF no. 2612324. [Method for continuous stable electrospraying of solutions in a source of ions at atmospheric pressure]. Prioritet 07.03.2017. (In Russ.).
  15. Arseniev A.N., Monakov A.G., Krasnov M.N., Krasnov N.V. [Adjustable bipolar highly stable power supplies]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2017, vol. 27, no. 3, pp. 8—17. URL: http://iairas.ru/mag/2017/abst3.php#abst2. (In Russ.).
  16. Arseniev A.N., Monakov A.G., Krasnov M.N., Krasnov N.V. Ustrojstvo dvuhpolyarnogo maloshumyashchego istochnika pitaniya. Patent RF for useful model no. 174218. [The device of a bipolar low-noise power source]. Prioritet 09.10.2017. (In Russ.).
  17. Pomozov T.V., Yavor M.I. [A non-grid orthogonal accelerator for multireflection time-of-flight mass analyzers]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2012, vol. 22, no. 1, pp. 113—120. URL: http://iairas.ru/mag/2012/abst1.php#abst17. (In Russ.).
  18. Pomozov T.V., Yavor M.I., Verenchikov A.N. [Reflectrons with orthogonal ion acceleration on the basis of planar mesh mirrors]. Zhurnal tekhnicheskoj fiziki [Journal of Applied Physics], 2012, vol. 82, no. 4, pp. 130—136. (In Russ.).
  19. Samokish V.A., Muradymov M.Z., Krasnov N.V. Electrospray ion sourse with a dynamic liquid flow splitter. Rapid Commun. mass spectrometry, 2013, no. 27, vol. 8, pp. 904—908. Doi: 10.1002 / rcm 6524.
  20. Golikov Y.K., Krasnova N.K., Nikolaev V.I., Soloviev K.V. [Separation of ions in a combination of stationary fields – electric quadrupole and magnetic homogeneous]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2013, vol. 23, no. 1, pp. 52—60. URL: http://iairas.ru/mag/2013/abst1.php#abst6. (In Russ.).
  21. Krasnova N.K., Golikov Y.K. ,Elokhin V.A. , Nikolaev V.I. [A new dynamic mass spectrometer with an electric shock]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2013, vol. 23, no. 1, pp. 68—73. URL: http://iairas.ru/mag/2013/abst1.php#abst8. (In Russ.).
  22. Alekseev D.N., Arseniev A.N., Belchenko G.V., Gavrik M.A., Monakov A.G., Muradymov M.Z., Prisyach S.S., Yavor M.I., Zvereva A.V., Zinin A.V., Myaldzin Sh.U., Nikitina S.N., Pomozov T.V., Turtya S.B. [Analytical complex GC-MS on the basis of a time-of-flight mass spectrometer with a source of "electron impact" ions]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2013, vol. 23, no. 4, pp. 95—103. URL: http://iairas.ru/mag/2013/abst4.php#abst13. (In Russ.).
  23. Arseniev A.N., Muradymov M.Z., Krasnov N.V. [Field desorption of ions from the tip at the meniscus of liquid during EHD-sputtering]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2014, vol. 24, no. 3, pp. 3—8. URL: http://iairas.ru/mag/2014/abst3.php#abst1. (In Russ.).
  24. Koryakin P.S., Krasnov I.A., Krasnov N.V., Muradymov M.Z., Krasnov M.N. [Ion-drift spectrometer with an electrospray ion source as a liquid chromatograph detector]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2015, vol. 25, no. 2, pp. 34—39. URL: http://iairas.ru/mag/2015/abst2.php#abst3. (In Russ.).
  25. Pashkov O.V., Muradymov M.Z., Krasnov M.N., Krasnov N.V. [Characteristics of an electrospray torch with a dynamic division of the liquid flow at atmospheric pressure]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2015, vol. 25, no. 3, pp. 3—9. URL: http://iairas.ru/mag/2015/abst3.php#abst1. (In Russ.).
  26. Kuzmin D.A., Muradymov M.Z., Pomozov T.V., Arseniev A.N., Krasnov N.V. [Transportation of ions in sources with ionization at atmospheric pressure. I Substantive geometry]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2017, vol. 27, no. 4, pp. 8—16. URL: http://iairas.ru/mag/2017/abst4.php#abst2. (In Russ.).
  27. Arseniev A.N., Muradymov M.Z., Krasnov M.N., Kuzmin D.A., Pomozov T.V., Krasnov N.V. [Transportation of ions in sources with ionization at atmospheric pressure. II. Inverse geometry]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2017, vol. 27, no. 4, pp. 17—23. URL: http://iairas.ru/mag/2017/abst4.php#abst3. (In Russ.).
  28. Krasnov M.N., Krasnov N.V. Ustrojstvo obrazovaniya beskapel'nogo ionnogo potoka pri ehlektroraspylenii analiziruemyh rastvorov v istochnikah ionov s atmosfernym davleniem. Patent RF no. 2608361. [The device for the formation of a dripless ion flux during electrospraying of the solutions under analysis in ion sources with atmospheric pressure]. Prioritet 2015. (In Russ.).
  29. Muradymov M.Z., Pashkov O.V., Krasnov N.V. Ustrojstvo stabil'nogo ehlektroraspyleniya pri atmosfernom davlenii rastvorov veshchestv dlya istochnikov ionov. Patent RF no. 2608362. [Device of stable electrospray at atmospheric pressure of solutions of substances for ion sources]. Prioritet 2015. (In Russ.).
  30. Alexandrov M.L, Gall L.N. Krasnov N.V., Nikolaev V.I., Pavlenko V.A., Shkurov V.A. Extraction of ions from solutions under atmos-pheric pressure as a method for mass spec-trometric analysis of bioorganic compounds. Rapid communications in mass spectrometry, 2008, no. 22,
    pp. 267—270. Doi: 10.1002/rcm.3113.
  31. Polushin Y.S., Levshankov A.I., Lakhin R.E., Pashchinin A.N., Bezrukova E.V., Piskunovich A.L., Kostyuchek D.F., Belozerova A.K., Gaidukov S.N., Shapkayts V.A., Belozerova L.A., Krasnov N.V. [Prospects of the use of the antioxidant analyzer in clinical practice for assessing nonspecific resistance of the organism under various critical conditions and for forecasting obstetric complications]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2013, vol. 23, no. 3, pp. 5—12. URL: http://iairas.ru/mag/2013/abst3.php#abst1. (In Russ.).
  32. Al-Tawil E.A., Muradymov M.Z., Krasnov M.N., Krasnov N.V. [Electrospraying of conducting solutions under normal conditions over a wide range of volumetric velocities]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2017, vol. 27, no. 2, pp. 3—12. URL: http://iairas.ru/mag/2017/abst2.php#abst1.
  33. Muradymov M.Z., Krasnov N.V. Sposob stabil'nogo ehlektroraspyleniya rastvorov v istochnike pri atmosfernom davlenii. Patent RF no. 2608366. [A method of stable electrospraying of solutions in a source at atmospheric pressure]. Prioritet 10.01.2017. (In Russ.).
  34. Muradymov M.Z., Monakov A.G. Krasnov N.V. Ustrojstvo vremyaproletnogo mass-spektrometra s istochnikom ionov s ionizaciej pri atmosfernom davlenii dlya razdeleniya i registracii ionov analiziruemyh veshchestv. Patent RF no. 158343. [The device of the time-of-flight mass spectrometer with ion source with ionization at atmospheric pressure for separation and registration of ions of the analytes]. Prioritet 07.12.2015. (In Russ.).
  35. Muradymov M.Z., Krasnov N.V. Istochnik ionov s fotoionizaciej pri atmosfernom davlenii. Patent RF no. 2572358. [Source of ions with photoionization at atmospheric pressure]. Prioritet 08.12.2015. (In Russ.).
  36. Arseniev A.N., Muradymov M.Z., Krasnov N.V. Investigation of Electrospray Stability with Dynamic Liquid Flow Splitter. Analytical Chemistry, 2014, vol. 69, no. 14, pp. 30—32.
  37. Nazimov I.V., Novikov A.V., Bublyaev R.A., Fironov S.I., Prisyach S.S., Muradymov M.Z., Krasnov N.V. [Analytical complex for the determination of the amino acid sequence of peptides]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2011, vol. 21, no. 4, pp. 22—26. URL: http://iairas.ru/mag/2011/abst4.php#abst2. (In Russ.).
  38. Krasnov I.A., Bobkov D.E., Zaitseva M., Prisyach S.S., Krasnov N.V. [Development of HPLC-MS method for the analysis of ursodeoxycholic acid in the mode of registration of positively charged ions]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2013, vol. 23, no. 1, pp. 44—51. URL: http://iairas.ru/mag/2013/abst1.php#abst5. (In Russ.).
 

CONTENTS OF VOLUME 28

 
NUMBER 1 (92 c.)
MATHEMATICAL METHODS AND MODELLING IN INSTRUMENT MAKING (pp. 3–36)
PHYSICS OF INSTRUMENT MAKING (pp. 37–60)
EQUIPMENT AND SYSTEMS (pp. 61–92)
 
NUMBER 2 (88 c.)
INSTRUMENT MAKING OF PHYSICAL AND CHEMICAL BIOLOGY (pp. 3–24)
PHYSICS OF INSTRUMENT MAKING (pp. 25–61)
DEVELOPMENT OF MEASURING DEVICES AND SYSTEMS (pp. 62–88)
 
NUMBER 3 (140 c.)
Thematic issue: Works of participants of the 2nd All-Russian scientific and practical conference "SCIENTIFIC INSTRUMENT MAKING — THE CURRENT STATE AND THE PROSPECTS OF DEVELOPMENT", June 4–7, 2018, Kazan
WORKS FROM THE CONFERENCE (pp. 5–62)
INSTRUMENT MAKING OF PHYSICAL AND CHEMICAL BIOLOGY (pp. 63–83)
MATHEMATICAL METHODS AND MODELLING IN INSTRUMENT MAKING (pp. 84–129)
DEVELOPMENT OF MEASURING DEVICES AND SYSTEMS (pp. 130–140)
 
NUMBER 4 (160 c.)
Thematic issue: Works of participants of the 2nd All-Russian scientific and practical conference "SCIENTIFIC INSTRUMENT MAKING — THE CURRENT STATE AND THE PROSPECTS OF DEVELOPMENT", June 4–7, 2018, Kazan
Nikolay Ivanovich Komyak, organizer of domestic X-ray instrument making, scientist and person
(to 90-year anniversary) (pp. 5–7)
WORKS FROM THE CONFERENCE (pp. 8–118)
MATHEMATICAL METHODS AND MODELLING IN INSTRUMENT MAKING (pp. 119–145)
DEVELOPMENT OF MEASURING DEVICES AND SYSTEMS (pp. 146–160)
 

Volume 28 table of contents

161

The author's index of volume 28

167

Full text (In Eng.) >>
 

THE AUTHORS INDEX OF VOLUME 28

Agafonov O. C. — N 3
Akhmedov I. R. — N 4
Aleshin I. M. — N 3
Alyackrinskiy O. N. — N 4
Arkhipov S. N. — N 1
Balashov A.A. — N 4
Bardin B. V. — N 1, 2
Barulina M. A. — N 3
Belousov K. I. — N 4
Belov D. A. — N 1, 2
Belov Yu. V. — N 1, 2
Belozertsev A. I. — N 1
Berdnikov A. S. — N 3, 4
Bobkov D. E. — N 3
Bochkareva N. I. — N 4
Brytov I. A. — N 4
Bulatov M.F. — N 4
Bulyanitsa A. L. — N 4
Chekhova R. V. — N 1
Cheremisina O. V. — N 1
Chulkov D. P. — N 3, 4
Diachenko A. A. — N 3
Diachenko S. V. — N 1
Dmitriev S. P. — N 3
Dobrovolsky M. N. — N 3
Dosko S. I. — N 4
Dubakova P. S. — N 3
Efremov M. V. — N 3
El Salim S. Z. — N 1
Elokhin V. A. — N 1
Evstrapov A. A. — N 4
Fedorov Yu. V. — N 4
Fedotov M. G. — N 4
Felshtyn M. L. — N 3
Fofanov Ya. A. — N 1, 2
Fomkina M. G. — N 3
Gafurov M. M. — N 4
Gall L. N. — N 3
Gall N. R. — N 3
Geiko P. P. — N 4
Gerasimov V. I. — N 2
Gerasimov V. V. — N 4
Getmanov V. G. — N 3
Gladchuk A. S. — N 3
Gnatyuk D. L. — N 4
Golikov A. V. — N 3
Golubok A. O. — N 3
Gorbenko O. M. — N 3
Gorbunov R. I. — N 4
Grabelnykh O. I. — N 3
Gravirov V. V. — N 4
Grevtsev M. A. — N 3
Grudnev A. A. — N 3
Gubin K. V. — N 4
Guluev R. G. — N 3
Gurevich V. G. — N 1
Gusev V. M. — N 3, 4
Ibadullaeva S. Zh. — N 3
Ivanov S. D. — N 3

Kakagasanov M. G. — N 4
Kalinin A. V. — N 4
Kaminsky V. V. — N 3
Karpunin A. E. — N 2
Kaygorodov A. S. — N 4
Kazakov S. A. — N 3
Keltsieva O. A. — N 3
Khasanov I. Sh. — N 4
Kholodkov K. I. — N 3
Kirenkov V. V. — N 4
Kirgizov D. I. — N 4
Kislov K. V. — N 4
Knyazev B. A. — N 4
Kogotkov V. S. — N 4
Kolotkov G. A. — N 4
Kompanets O. N. — N 3, 4
Koryagin V. N. — N 3
Kosachev M. Yu. — N 4
Kotelnikov G. V. — N 3
Kotov A. N. — N 4
Krapukhin D. V. — N 4
Krasnenko N. P. — N 4
Krasnoperov R. I. — N 3
Krasnov N. V. — N 3
Kravchuk D. A. — N 1, 2
Kudin D. V. — N 3
Kuleshov D. O. — N 3
Kuleshova T. E. — N 3
Kuper E. A. — N 4
Kurnin I. V. — N 3
Kurochkin V. E. — N 1
Kuzmin A. G. — N 2, 3, 4
Kuzmin Yu. I. — N 2
Latyshev F. E. — N 4
Lelikov Y. S. — N 4
Leonidov A. A. — N 4
Likhodeev D. V. — N 4
Lisin D. V. — N 2
Logatchov P. V. — N 4
Lukashenko S. Yu. — N 3
Lutschekina E. V — N 4
Maltsev P. P. — N 4
Manoylov V. V — N 1, 2
Masyukevich S. V. — N 3, 4
Matveenko O. S. — N 4
Mazur A. S. — N 2
Medvedev A. M. — N 4
Mironov A. V. — N 3
Mironova Î. A. — N 3
Moiseyeva S. P. — N 3
Nepomnyashcy O. V. — N 1
Nikitin A. K. — N 4
Novikov D. V. — N 3
Novikov L. V. — N 3
Numalov A. S. — N 4
Ovchar V. K. — N 4
Pankratov V. M. — N 3
Pavlov A. V. — N 1
Pavlov M. A. — N 3, 4

Pavlova I. V. — N 1
Perederin F. V. — N 3
Perepelkin G. A. — N 3
Petrov A. V. — N 1
Petrov D. V. — N 4
Pleshakov I. V. — N 2
Pobezhimova T. P. — N 3
Podolskaya E. P. — N 3
Popov D. V. — N 1
Popov V. K. — N 3
PostnikovA. I. — N 1
Pozhar V.E. — N 4
Proskurina O. V. — N 2
Prudnikov S. M. — N 3
Pyankova L. A. — N 1
Pyshniy V. M. — N 1
Rabadanova J. I. — N 4
Rakov A. S. — N 4
Rakov D. S. — N 4
Repkov V. V. — N 4
Sapozhnikov I. D. — N 3
Semenov Yu. I. — N 4
Sergeev V. A. — N 2
Sharenkova N. V. — N 3
Sharfarets B. P. — N 1, 2, 3, 4
Shevchenko A. N. — N 2
Shirokorad A. L. — N 2
Shreter Y. G. — N 4
Silkis E. G. — N 3
Sizov M. M. — N 4
Skuridin S. G. — N 3, 4
Slepak B. S. — N 1, 2, 4
Slepak K. B. — N 1, 2, 4
Smirnov S. S. — N 4
Sokolov A. V. — N 3
Soloviev A. A. — N 3
Stankevich A. S. — N 3
Starchenko I. B. — N 1, 2
Starostenko A. A. — N 4
Sukhanova N. V. — N 4
Sveshnikova D. A. — N 4
Titov V. N. — N 4
Titov Yu. A. — N 2
Torubarov A. M. — N 3
Tsygunov A. S. — N 4
Ulashkevich Yu. V. — N 1
Varekhov A. G. — N 2
Verenchikov A. N. — N 3
Vereshchagin F. V. — N 3, 4
Virko M. V. — N 4
Voinikov V. K. — N 3
Voronenkov V. V. — N 4
Yavor M. I. — N 3
Yevdokimov Yu. M. — N 3, 4
Yuganov E. V. — N 4
Zarutskiy I. V. — N 1, 2
Zhernovoy A. I. — N 1, 2
Zubrilov A. S. — N 4
Zuev A. V. — N 4

Full text (In Eng.) >>

Address: ulitsa Ivana Chernykh, 31-33, lit. A, St. Petersburg, 198095, Russia
E-mail: iap@ianin.spb.su, kuroch@ianin.spb.su, Phone: +7-812-363-0719, Fax: +7-812-363-0720

content: Valery D. Belenkov design: Banu S. Kuspanova layout: Anton V. Manoilov