logo
blue band <-
  JOURNAL "NP" ISSUES

"Nauchnoe Priborostroenie", 2024, Vol. 34, no. 2. ISSN 2312-2951

"NP" 2024 year Vol. 34 no. 2.,   ABSTRACTS

ABSTRACTS, REFERENCES

A. S. Berdnikov, S. V. Masyukevich, Yu. I. Khasin, M. I. Yavor

HAMILTONIAN EQUATIONS OF MOTION AS APPLIED
TO CHARGED PARTICLE OPTICS

"Nauchnoe priborostroenie", 2024, vol. 34, no. 2, pp. 3—16.
 

The article discusses the features of the Hamiltonian form of the dynamic equations as applied to problems of charged particles optics. Some non-obvious consequences arising from the Poincaré — Cartan integral invariant are analyzed. It is shown that Hamiltonian equations of motion can be used to describe the motion of charged particles in a local coordinate system accompanying the central trajectory, including the case where the length of the base trajectory is used as an independent variable.
 

Keywords: hamiltonian equations of motion, general problems of charged particle optics, aberration coefficients,
symplectic relations, analytical dynamics

Author affiliations:

Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia

 
Contacts: Berdnikov Aleksandr Sergeevich, asberd@yandex.ru
Article received by the editorial office on 24.10.2023

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Aizerman M.A. Klassicheskaya mekhanika [Classical mechanics]. Moscow, Nauka Publ., 1980. 294 p. (In Russ.).
  2. Gantmakher F.R. Lektsii po analiticheskoi mekhanike: uchebnoe posobie. 3-e izd [Lectures on analytical mechanics: textbook. 3rd ed.]. Moscow, Fizmatlit Publ., 2001. 263 p. (In Russ.).
  3. Whittaker E.T. A Treatise on the Analytical Dynamics of Particles and Rigid Bodies. 2nd ed. Cambridge University Press, 1917. 456 p. (Russ. ed.: Uitteker Eh. Analiticheskaya dinamika. 2-e izd. Translate I.G. Malkin. Moscow, URSS, 2004. 500 p.).
  4. Vilasi G. Hamiltonian Dynamics. World Scientific Publishing Company, 2001. 456 p. (Russ. ed.: Vilazi G. Gamil'tonova dinamika. Translate from eng. Moscow, IKI i RKhD, 2006. 432 p.).
  5. Wollnik H. Optics of Charged Particles. 2nd ed. Academic Press, 2022. 303 p.
  6. Yavor M.I. Optics of Charged Particle Analyzers. (Ser. Advances of Imaging and Electron Physics, Vol. 157). Elsevier, 2009. 398 p.
  7. Yavorskii B.M., Detlaf A.A., Lebedev A.K. Spravochnik po fizike dlya inzhenerov i studentov. 8-e izd, pererab. i ispr [Handbook of Physics for Engineers and Students. 8th ed., revised]. Moscow, Mir i obrazovanie Publ., 2022. 1056 p. (In Russ.).
  8. Landau L.D., Lifshits E.M. Teoriya polya (Ser. "Teoreticheskaya fizika"). 7-e izd., ispr. [Field Theory (Ser. "Theoretical Physics"). 7th ed., revised]. Moscow, Nauka, Gl. red. fiz.-mat. lit. Publ., 1988. 512 p. (In Russ.).
  9. Puankare A. Izbrannye trudy. T. 3 [Poincaré H. Selected Work]. Moscow, Nauka Publ., 1974. 772 p.
  10. Cartan E. Lecons sur les invariants integraux. Paris, Librairie scientifique A. Hermann & Fils, 1922. 210 p. (Russ. ed.: Kartan Eh. Integral'nye invarianty. Moscow, Leningrad, Gostekhizdat Publ., 1940. 216 p.).
  11. Kartan E., Kozlov V.V. Integral invariants. Integral invariants after Poincaré and Cartan. Izd. 2, stereot. [Integral invariants. Integral invariants after Poincaré and Cartan. Ed. 2, stereot]. Moscow, URSS, 2005. 264 p. (In Russ.).
  12. Efimov N.V. Vvedenie v teoriyu vneshnikh form [Introduction to the theory of external forms]. Moscow, Nauka Publ., 1977. 88 p. (In Russ.).
  13. Finikov S.P. Metod vneshnikh form Kartana v differentsial'noi geometrii [Cartan's method of external forms in diffeomorphic geometry]. Moscow, Leningrad, OGIZ-GITTL Publ., 1948. 432 p. (In Russ.).
  14. Fikhtengol'ts G.M. Kurs differentsial'nogo i integral'nogo ischisleniya. T. 1. 9-e izd. ster. [Course of differential and integral calculus. T. 1. 9th ed. ster.]. Saint Petersburg, Lan’ Publ., 2009. 607 p. (In Russ.).
  15. Dragt A.J. Personal page by Prof., Department of Physics University of Maryland. URL: https://umdphysics.umd.edu/people/faculty/emeritus/item/125-dragt.html
  16. Dragt A.J. Lie Methods for Nonlinear Dynamics with Applications to Accelerator Physics. URL: http://www.physics.umd.edu/dsat/
  17. Trikomi F. Lektsii po uravneniyam v chastnykh proizvodnykh. B.M. Levitan, editor [Tricomi F. Differential equations]. Moscow, Inostrannaya literatura Publ., 1957. 444 p.). (In Russ.).
  18. Gyunter N.M. Integrirovanie uravnenii pervogo poryadka v chastnykh proizvodnykh [Integration of first order partial derivative equations]. Leningrad, Moscow, ONTI-GTTI Publ., 1934. 359 p. (In Russ.).
  19. Korn G., Korn T. Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov. Izd. 5-e [Korn G.A., Korn T.M. Mathematical Handbook for Scientists and Engineers]. Moscow, Nauka Publ., 1984. 835 p. (In Russ.).
  20. Wolfram Mathematica: the system for modern technical computing. URL: http://wolfram.com/mathematica/
 

V. A. Lomovskoy, Y. V. Chugunov, S. A. Shatokhina

METHODOLOGY FOR THE STUDY OF INTERNAL FRICTION
IN THE MODE OF FREE DAMPED OSCILLATORY PROCESS.
PART 3. INTERNAL FRICTION MECHANISMS

"Nauchnoe Priborostroenie", 2024, vol. 34, no. 2, pp. 17—29.
 

The technique of investigation of internal friction spectra and temperature dependences of the frequency of free damped oscillatory process excited in samples of materials of different chemical nature, structure and structure is considered. On the basis of model representations of the generalized Maxwell's model the occurrence of local on temperature intervals peaks of dissipative losses, caused by the manifestation of mobility of elements of various structural-kinetic subsystems, forming in aggregate the whole system under study, is substantiated. Theoretical analysis and calculations of physical-chemical and physical-mechanical characteristics for each dissipative loss peak detected on the spectrum in a wide temperature range of studies are given.
 

Keywords: internal friction spectra, dissipative loss mechanisms, shear modulus defect, free damped oscillations,
phenomenological models

Author affiliation:

Frumkin Institute of Physical Chemistry and Electrochemistry of RAS, Moscow, Russia

 
Contacts: Shatokhina Svetlana Aleksandrovna, svetlanka.mazurina@mail.ru
Article received by the editorial office on 10.10.2023

Full text (In Russ./In Eng.) >>

REFERENCES

  1.   Lomovskoy V.A., Chugunov Y.V., Shatokhina S.A. [Methodology for the study of internal friction in the mode of free damped oscillatory process (part 1)]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2023, vol. 33, no. 4, pp. 60—71. (In Russ.). URL: http://iairas.ru/mag/2023/full4/Art6.pdf
  2. Lomovskoy V.A., Chugunov Y.V., Shatokhina S.A. [Methodology for the study of internal friction in the mode of free damped oscillatory process. Part 2. Theoretical analysis of experimental results]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2024, vol. 34, no. 1, pp. 3—18. URL: http://iairas.ru/mag/2024/full1/Art1.pdf (In Russ.).
  3. Buraya I.V. Osnovy tekhnologii neftekhimicheskogo sinteza: ucheb.-metod. kompleks dlya studentov spetsial'nosti 1-48 01 03 "Khimicheskaya tekhnologiya prirodnykh ehnergonositelei i uglerodnykh materialov" [Fundamentals of petrochemical synthesis technology: educational-methodical complex for students of specialty 1-48 01 03 "Chemical technology of natural energy carriers and carbon materials"]. Novopolotsk: PGU Publ., 2013. 184 p. (In Russ.).
  4. Schultz J.M. Microstructural aspects of failure in semicrystalline polymers. Polym Eng Sci., 1984, vol. 24, no. 10, pp. 770—785. DOI: 10.1002/pen.760241007
  5. Khanna Ya.P., Turi E.A., Taylor T.J., Vickroy V.V., Abbott R.F. Dynamic mechanical relaxations in polyethylene. Macromolecules, 1985, vol. 18, no. 6, pp. 1302—1309. DOI: 10.1021/ma00148a045
  6. Lomovskoy V.A., Shatokhina S.A., Chalykh A.E., Matveev V.V. Spectra of Internal Friction in Polyethylene. Polymers (Basel), 2022, vol. 14, no. 4, Id. 675. DOI: 10.3390/polym14040675
  7. Bartenev G.M., Shut N.I., Kasperskii A.V. [Relaxation transitions in polyethylene from structural and mechanical relaxation data]. Vysokomolekulyarnye soedineniya (B) [High-molecular compounds (B)], 1988, vol. 30, no. 5, pp. 328—332. URL: http://polymsci.ru/static/Archive/1988/VMS_1988_T30ks_5/VMS_1988_T30ks_5_328-332.pdf
  8. Boier R., ed. Perekhody i relaksatsionnye yavleniya v polimerakh [Transitions and relaxation phenomena in polymers]. Moscow, Mir Publ., 1968. 380 p. (In Russ.).
  9. Slutsker A.I., PolikarpovYu.I., Vasil’eva K.V. On the determination of the energy of activation of relaxation transitions in polymers by differential scanning calorimetry. Technical Physics, 2002, vol. 47, no. 7, pp. 880—885. DOI: 10.1134/1.1495052
  10. Marichin V.A., Bershtein V.A., Yegorov V.M., Myasnikov L.P. [Thermodynamic characteristics of lamellas and their surface in bulk polyethylene from the data of differential scanning calorimetry]. Vysokomolekulyarnye soedineniya (A) [High-molecular-weight compounds (A)], 1986, vol. 28, no. 9, pp. 1983—1989. URL: http://polymsci.ru/static/Archive/1986/VMS_1986_T28_9/VMS_1986_T28_9_1983-1990.pdf
  11. Bartenev G.M., Aliguliev G.M., Khiteeva D.M. [Relaxational transitions in polyethylene]. Vysokomolekulyarnye soedineniya (A) [High-molecular-weight compounds (A)], 1981, vol. 23, no. 9, pp. 2003—2011. URL: http://polymsci.ru/static/Archive/1981/VMS_1981_T23_9/VMS_1981_T23_9_2003-2012.pdf
  12. Landau L.D., Lifshits E.M. Course of Theoretical Physics, Vol. 7: Theory of Elasticity. Pergamon Press, Oxford, UK, 1989. 187 p.
  13. Aslamazova T.R., Zolotarevskii V.I., Lomovskaya N.Yu., Lomovskoi V.A., Kotenev V.A., Tsivadze A.Yu. Relaxation Behavior of a Styrene—Acryl Latex Polymer in the Freezing—Thawing Regime. Protection of Metals and Physical Chemistry of Surfaces, 2018, vol. 54, no. 1. pp. 85—91. DOI: 10.1134/S2070205118010021
  14. Prokhorov A.M., ed. Fizicheskaya ehntsiklopediya [Physics Encyclopedia]. Moscow, Bol'shaya Rossiiskaya ehntsiklopediya Publ., 1992. (In Russ.).
  15. Gridnev S.A. Mekhanizmy vnutrennego treniya v segnetoehlektrikakh i segnetoehlastikakh [Mechanisms of internal friction in segnetoelectrics and segnetoelastics]. Voronezh, 1983. 360 p. (In Russ.).
  16. Landau L.D., Khalatnikov I.M. [On anomalous absorption of a link near the points of phase transition of the second kind]. Doklady AN SSSR. Fizika [Reports of the USSR Academy of Sciences. Physics], 1954, vol. 96, pp. 469—473. (In Russ.).
  17. Postnikov V.S. Vnutrennee trenie v metallakh [Internal friction in metals]. Moscow, Metallurgiya Publ., 1969. 330 p. (In Russ.).
  18. Krishtal M.A., Golovin S.A. Vnutrennee trenie i struktura metallov [Internal friction and structure of metals]. Moscow, Metallurgiya Publ., 1976. 376 p. (In Russ.).
  19. Levanyuk A.P. [Toward a phenomenological theory of sound absorption near the points of phase transitions
    of the second kind]. ZhEhTF [Journal of Experimental and Theoretical Physics], 1965, vol. 49, no. 4, pp. 1304—1312. (In Russ.).
 

S. V. Biryukov

DOUBLE SPHERICAL ELECTRIC FIELD STRENGTH SENSORS
WITH SUPPLIED, COMPOSITE AND SEPARATE SENSITIVE
ELEMENTS AND THEIR COMPARATIVE ANALYSIS

"Nauchnoe Priborostroenie", 2024, vol. 34, no. 2, pp. 30—43.
 

Electric field strength sensors are an integral part of measuring instruments and systems. Their correct choice determines the creation of devices and systems with high metrological characteristics. This paper examines a comparative analysis of known dual electric field strength sensors with overhead, composite and separate sensitive elements based on the phenomenon of electrostatic induction. The comparison involves technological and design parameters of dual sensors and their metrological characteristics. The complexity of the sensor measuring devices is also compared. All analyzed dual sensors have almost identical technological and design parameters. Dual sensors with attached sensitive elements have little complexity in terms of technological and design parameters. Dual sensors with composite sensing elements have slightly complex measuring devices. The strong difference between the analyzed dual sensors can be seen in their metrological characteristics. It has been established that dual sensors with separate SEs of the second version have the best metrological characteristics. Such sensors provide an error from field inhomogeneity not exceeding δ = ±0.9% and a maximum spatial measurement range of 0 < α < 1 with angular dimensions of the sensitive elements Θ11 = 35.6°, Θ21 = 90°, Θ12 = 0, Θ22  = 35.5°. Dual sensors with separate sensitive elements of the first design have an error not exceeding d  = ±2% and a maximum spatial measurement range of 0 < a < 1 with angular dimensions of the sensitive elements Θ11 = 40°, Θ21 = 90°, Θ12 = 0, Θ22 = 35.5°. Dual sensors with surface-mounted SEs of the first design and with composite SEs of the first design have almost identical parameters. Such sensors have a positive error from field inhomogeneity not exceeding δ = 4.6% and a maximum spatial measurement range of 0 < α < 0.92. It is noted that the metrological superiority of dual sensors with separate sensitive elements of the second version over other analyzed dual sensors, first of all, they should be given preference in use.
 

Keywords: electric field, electric field strength, electric field strength sensor, dual sensor, comparative analysis, error due to field inhomogeneity

Author affiliations:

Omsk State Technical University, Omsk, Russia

 
Contacts: Biryukov Sergey Vladimirovich, sbiryukov154@mail.ru
Article received by the editorial office on 28.01.2024

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Prokhorov A.M., editor. [Gilbert William]. Bol'shaya sovetskaya ehntsiklopediya: v 30 t. 3-e izd. [Great Soviet Encyclopedia in 30 vol., 3rd ed.], Moscow, Sovetskaya ehntsiklopediya Publ., 1969. (In Russ.).
  2. Lozhnikov V.Ya. [About classification of measuring transducers based on physical effects]. Mezhvuzovskii sbornik nauchnykh trudov "Izmeritel'nye preobrazovateli" [Interunivers. coll. of sci. proc. "Measuring transducers"], Omsk, OMPI Publ., 1975, pp. 146-161. (In Russ.).
  3. Dyakov E.P., Lozhnikov V.Ya., Rozhkov N.F. [Measuring transducers of electric field strength of industrial frequency: Review]. Mezhvuzovskii sbornik nauchnykh trudov "Izmeritel'nye preobrazovateli" [Interunivers. coll. of sci. proc. "Measuring transducers"], Omsk: OMPI Publ., 1975, pp. 162-166. (In Russ.).
  4. Des J., Pirrot P. [Calculation and measurement of electric field strength near high voltage devices]. Shkarin Yu.P., editor. Trudy mezhdunarodnoi konferentsii po bol'shim ehlektricheskim sistemam (SIGREh-76) "Vliyanie ehlektroustanovok vysokogo napryazheniya na okruzhayushchuyu sredu" [Proc. of the Int. Conf. on Large Electric Systems (CIGRE-76) "Environmental Impact of High Voltage Electrical Installations"], Transl. Moscow, Ehnergiya Publ., 1979, pp. 10-19. (In Russ.).
  5. Lozhnikov V.Ya. [Digital meter of electric field strength of industrial frequency]. Pribory i tekhnika eksperimenta [Instruments and Experimental Techniques], 1981, vol. 24, no. 1, pp. 275. (In Russ.).
  6. Gutmann S. [Double electric field meter with protection]. Pribory dlya nauchnykh issledovanii [Instruments for scientific research], 1968, no. 1, pp. 45—49. (In Russ.).
  7. Berent G.N., Place E.R. [Electric Field Sensor]. Pribory dlya nauchnykh issledovanii [Instruments for scientific research], 1971, no. 6, pp. 141—142. (In Russ.).
  8. Misakian M., Kotter F.R., Kahler R.L. Miniature ELF Electric Field Probe. Rev. Sci. Instrum., 1978, vol. 49, no. 7, pp. 933—935. DOI: 10.1063/1.1135497
  9. Biryukov S.V., Kaidanov F.G., Kats R.A., Lozhnikov V.Ya. Calculation and measurement of fields on EHV and UHV substations and near transmission lines. CIGRE-86 ( International Conference on Large High Voltage Electric Systems, Report 36-06, Session 27th August-4th September. Paris), 1986. 5 p.
  10. Biryukov S.V., Tyukina L.V., Dan'shina V.V. Ustroistvo dlya izmereniya napryazhennosti ehlektricheskogo polya so sdvoennym datchikom. Patent RF no. 207465 U1 [Device for measuring electric field strength with dual sensor]. Prioritet 28.10.2021, Byul. 31. (In Russ.). URL: https://yandex.ru/patents/doc/RU207465U1_20211028
  11. Biryukov S.V., Tyukina L.V. Sdvoennyi datchik dlya izmereniya napryazhennosti ehlektricheskogo polya s nakladnymi chuvstvitel'nymi ehlementam. Patent RF no. 210427 U1 [Dual sensor for measuring electric field strength with clamp-on sensing elements]. Prioritet 15.04.2022, Byul. 11. (In Russ.). URL: https://yandex.ru/patents/doc/RU210427U1_20220415
  12. Biryukov S.V. [Investigation of a double spherical electric field strength sensor with overhead sensing elements]. Pribory [Instruments], 2022, no. 7 (265), pp. 28—36. URL: https://www.elibrary.ru/item.asp?id=49450884 (In Russ.).
  13. Biryukov S.V., Tyukin A.V., Tyukina L.V. [Dual type of electric field sensors of increased accuracy]. Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta [Bulletin of Voronezh State Technical University], 2022, vol. 18, no. 2, pp. 86—93. (In Russ.). URL: https://www.elibrary.ru/item.asp?id=48315805
  14. Biryukov S.V., Tyukina L.V., Ehismont N.G. Ustroistvo dlya izmereniya napryazhennosti ehlektricheskogo polya so sdvoennym datchikom. Patent RF no. 207464 [Device for measuring electric field strength with dual sensor]. Prioritet 28.10.2021, Byul. 31. (In Russ.). URL: https://yandex.ru/patents/doc/RU207464U1_20211028
  15. Biryukov S.V., Tyukina L.V. Sdvoennyi datchik dlya izmereniya napryazhennosti ehlektricheskogo polya s sostavnymi chuvstvitel'nymi ehlementami. Patent RF no. 210806 U1 [Dual sensor for measuring electric field strength with composite sensing elements]. Prioritet 05.05.2022, Byul. 13. (In Russ.). URL: https://patents.google.com/patent/RU210806U1/ru
  16. Biryukov S.V., Tyukin A.V., Tyukina L.V. [Investigation of a dual spherical electric field strength sensor with composite sensitive elements]. Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta [Bulletin of Voronezh State Technical University], 2022, vol. 18, no. 5, pp. 113—123. (In Russ.). URL: https://www.elibrary.ru/item.asp?id=49606560
  17. Biryukov S.V., Tyukin A.V. Sdvoennyi datchik dlya izmereniya napryazhennosti ehlektricheskogo polya. Patent RF no. 211166 U1 [Dual sensor for measuring the electric field strength]. Prioritet 24.05.2022, Byul. 15. (In Russ.). URL: https://patents.google.com/patent/RU211166U1/ru
  18. Biryukov S.V., Tyukin A.V. Sposob izmereniya napryazhennosti ehlektricheskogo polya datchikom sdvoennogo tipa. Patent RF no. 211936 U1 [Method of measuring electric field strength by a dual-type sensor]. Prioritet 29.06.2022, Byul. 19. (In Russ.). URL: https://patents.google.com/patent/RU211936U1/ru
  19. Chernoutsan A. [Conducting ball in a homogeneous field]. Kvant [Quantum], 2001, no. 1, pp. 39—43. (In Russ.).
  20. Mirolyubov N.N., Kostenko M.V., Levinshtein M.L., et al. Metody rascheta ehlektricheskikh polei [Methods of calculation of electric fields]. Moscow, Vysshaya shkola Publ., 1963. 415 p. (In Russ.).
  21. Gutnikov V.S. Integral'naya ehlektronika v izmeri-tel'nykh ustroistvakh [Integrated electronics in measuring devices]. Leningrad, Ehnergoatomizdat Publ., 1988. 304 p. (In Russ.).
  22. Biryukov S.V., Glukhoverya E.G. Sposob izmereniya napryazhennosti ehlektricheskogo polya. Patent RF no. 2733100 C1 [Method of measuring electric field strength]. Prioritet 29.09.2020, Byul. 28. (In Russ.). URL: https://patents.google.com/patent/RU2733100C1/ru
  23. Biryukov S.V., Tyukina L.V. [An upgraded method for measuring the electric field strength by the average value of dual sensors and devices for its implementation]. Dinamika sistem, mekhanizmov i mashin [Dynamics of Systems, Mechanisms and Machines], 2021, vol. 9, no. 3, pp. 64—72. (In Russ.).
  24. Kolmogorova S.S., Biryukov S.V. Proektirovanie ehlektroinduktsionnykh datchikov i sredstv izmerenii ehlektricheskikh polei [Design of electric induction sensors and electric field measuring instruments]. Saint Petersburg, OOO "Renome", 2022. 180 p. (In Russ.).
 

D. V. Fomin, I. O. Sholygin, E. I. Zubko

STUDYING THE PHENOMENON OF CONTAMINATION
ON SMALL SPACECRAFT

"Nauchnoe Priborostroenie", 2024, vol. 34, no. 2, pp. 44—53.
 

The paper considers the negative impact of the spacecraft's own atmosphere on its external devices and the manifestation of a less studied contamination phenomenon, which has no less harmful effects on the spacecraft's internal components and devices. The formed layers of contaminants with a thickness of only a few nanometers can significantly worsen the transmission characteristics of optical devices. Research the phenomenon of contamination, it is very important to determine the thickness of films of sublimated substances over time. The authors propose a device for studying the phenomenon of internal contamination. The operation of the proposed device is based on measuring the resonant oscillation frequencies of a crystal resonator acting as a sensor responding to changes in the mass of an increasing film of contaminants. The proposed device is promising for spacecraft, since the quartz resonators used in its base are resistant to vibration, and the module itself has small dimensions and weight, which makes it possible to place it on CubeSat standard spacecraft.
 

Keywords: internal contamination, films of contaminants, spacecraft, own external atmosphere, deposition of volatile compounds

Author affiliations:

Amur State University, Blagoveshchensk, Russia

 
Contacts: Fomin Dmitriy Vladimirovich, e-office@yandex.ru
Article received by the editorial office on 17.02.2024

Full text (In Russ./In Eng.) >>

REFERENCES

  1.   Akishin A.I. [Impact of own external atmosphere of spacecraft on their materials and equipment]. Perspektivnye materialy [Inorganic Materials: Applied Research], 2007, no. 2, pp. 14—22. (In Russ.). URL: https://www.elibrary.ru/item.asp?id=12968252
  2. Nadiradze A.B., Shapospnikov V.V., Smirnov V.A. et al. [Criterion choice and taking into account the contamination films composition at the estimation of the joint contaminating influence of the own external atmosphere and stationary plasma thrasters]. Vestnik Sibirskogo gosudarstvennogo aehrokosmicheskogo universiteta im. M.F. Reshetneva [The Siberian Aerospace Journal], 2007, no. 4, pp. 91—94. URL: https://www.elibrary.ru/item.asp?id=10206363 (In Russ.).
  3. Nadiradze A.B., Kochura S.G., Maximov I.A. et al. [Influence of plasma jets of electric jet engines on spacecraft functional characteristics]. Sibirskii zhurnal nauki i tekhnologii [Siberian journal of science and technology], 2020, vol. 21, no. 4, pp. 524—534. DOI: 10.31772/2587-6066-2020-21-4-524-534
  4. Nadiradze A.B., Smirnov V.A., Maksimov I.A. et al. [The experimental research of the contamination influence of the own outside atmosphere on the stage of spacecraft orbital operation Vestnik Sibirskogo gosudarstvennogo aehrokosmicheskogo universiteta im. M.F. Reshetneva [The Siberian Aerospace Journal], 2006, no. 1, pp. 91—95. URL: https://www.elibrary.ru/item.asp?id=9169660 (In Russ.).
  5. Akishin A.I., Novikov L.S., Chernik V.N. [Impact of vacuum, ionospheric plasma particles and solar ultraviolet radiation on spacecraft materials and equipment elements]. K.S. Kasaev, editor. Novye naukoemkie tekhnologii v tekhnike: Ehntsiklopediya [New knowledge-intensive technologies in engineering: Encyclopaedia], 2000, vol. 17, pp. 100—138. (In Russ.).
  6. Akishin A.I., Dunayev N.M., Konstantinova V.V., Rastorguev V.A. et al. [Spacecraft Atmosphere and Its Influence on the Performance of On-Board Equipment]. S.N. Vernov, editor. Model' kosmicheskogo prostranstva
    [A model of outer space], 1983, vol. 2, pp. 244—309. (In Russ.).
  7. Danilkin V.A. [Own external atmosphere of space vehicles and its influence on parameters of radio signals of on-board radio systems]. Teplofizika i aehromekhanika [Thermophysics and Aeromechanics], 2008, vol. 15, no. 1, pp. 75—78. (In Russ.). URL: https://www.sibran.ru/upload/iblock/dd0/dd08caebd34044b9921ac63cc508f000.pdf
  8. Akishin A.I. Rabotosposobnost' kosmicheskogo oborudovaniya pri vozdeistvii sobstvennoi vneshnei atmosfery apparata [Operability of space equipment when exposed to the spacecraft's own external atmosphere]. Skobeltsyn institute of nuclear physics Lomonosov MSU, 2007. 5 p. (In Russ.). URL: https://studylib.ru/doc/2107444/akishin-a.i.-rabotosposobnost._-kosmicheskogo-oborudovaniya-pri
  9. Chirov A.A. [Effect of thin condensate films of a metal working fluid of an electric propulsion engine on the integral optical coefficients of a spacecraft's thermal control coating]. Kosmicheskie issledovaniya [Cosmic Research], 2014, vol. 52, no. 3, pp. 248—256. (In Russ.). DOI: 10.7868/S0023420614030030
  10. Kalashnikov E.V., Kalashnikova S.N. [Methods for estimating the precipitate thickness on the surface of cooled optical elements in vacuum with contamination sources]. Zhurnal tekhnicheskoi fiziki [Technical Physics], 2012, vol. 82, no. 11, pp. 111—115. (In Russ.). URL: https://journals.ioffe.ru/articles/10754
  11. Khasanshin R.Kh., Nadiradze A.B. [Changes in optical properties of functional surfaces of spacecraft under the combined effect of electrons and ultraviolet light]. Po-verkhnost'. Rentgenovskie, sinkhrotronnye i neitronnye issledovaniya [Journal of Surface Investigation: X-Ray, Synchrotron and Neutron Techniques], 2013, no. 3, pp. 73—78. DOI: 10.7868/S0207352813030128 (In Russ.).
  12. Akishin A.I., Dunayev N.M., Konstantinova V.V. [Spacecraft Own Atmosphere and Its Influence on Onboard Instruments and Technology in Space]. Kosmicheskoe materialovedenie i tekhnologiya [Space materials science and technology]. Moscow, Nauka Publ., 1977. P. 65—77. (In Russ.).
  13. Khasanshin R.Kh., Novikov L.S. [Effect of electron radiation on contamination of k-208 glass surface by high-molecular compounds]. Perspektivnye materialy [Inorganic Materials: Applied Research], 2014, no. 8, pp. 13—21. URL: https://www.elibrary.ru/item.asp?id=21844823 (In Russ.).
  14. Kalashnikov E.V., Kalashnikova S.N., Tomeev K.A. [Properties of a surface contaminated by gaseous products of polymer composition materials under vacuum conditions]. Zhurnal tekhnicheskoi fiziki [Technical Physics], 2014, vol. 84, no. 2, pp. 83—91. (In Russ.). URL: https://journals.ioffe.ru/articles/27151
  15. Chirov A.A., Belyakova N.G. [Changes in transparency of thin films of cesium on the glass surface of spacecraft optical devices]. Poverkhnost'. Rentgenovskie, sinkhrotronnye i neitronnye issledovaniya [Journal of Surface Investigation: X-Ray, Synchrotron and Neutron Techniques], 2013, no. 12, pp. 98—103. (In Russ.). DOI: 10.7868/S0207352813120056
  16. Gavryushin A.V., Nadiradze A.B., Egorov V.K. [Efect of ion bombardment on transparency of solar battery shielding glasses]. Perspektivnye materialy [Inorganic Materials: Applied Research], 2003, no. 3, pp. 18—23. URL: https://www.elibrary.ru/item.asp?id=21260425 (In Russ.).
  17. Grishin V.K., Nusinov A.A., Semkin N.D. [Engineering model of the space environment for the range of orbits 300-1000 km and solar activity F10,7 = 70—370]. Raketno-kosmicheskaya tekhnika. Trudy. Seriya XII. Vyp. 1. Raschet, proektirovanie, konstruirovanie i ispytaniya kosmicheskikh sistem [Rocket and space technology. Proc. Part XII. No. 1. "Calculation, design, construction and testing of space systems"]. RKK "Ehnergiya" Publ., 2001. 146 p. (In Russ.).
  18. Grishin V.K. Sobstvennaya vneshnyaya atmosfera vysokotemperaturnykh kosmicheskikh apparatov [Own external atmosphere of high-temperature spacecraft]. NTO P27126: RKK "Ehnergiya" Publ. 1989. 110 p. (In Russ.).
  19. Semkin N.D. [Calculation of the spacecraft contamination level]. Yu.F. Shirokov, editor. Aktual'nye problemy radio-ehlektroniki [Actual problems of radio electronics]. Samara: SSAU Publ., 1999, no. 2, pp. 65—69. (In Russ.).
  20. Kuzin S.V., Bogachev S.A., Kirichenko A.S., Pertsov A.A. [Specific aspects of design and use of instruments for space EUV experiments]. Poverkhnost'. Rentgenovskie, sinkhrotronnye i neitronnye issledovaniya [Journal of Surface Investigation: X-Ray, Synchrotron and Neutron Techniques], 2023, no. 12, pp. 31—38. URL: https://elibrary.ru/item.asp?edn=ajqpmd (In Russ.).
  21. Karusenko P.M., Nesov S.N., Poleshchenko K.N. et al. Sposob opredeleniya tolshchiny tonkikh plenok. Patent RF no. RU 2727762 C1 [Method for determining the thickness of thin films]. Prioritet 23.07.2020. Byul. no. 21. URL: https://patents.google.com/patent/RU2727762C1/ru (In Russ.).
  22. Kiselov I.V., Sysoev V.V., Kiselov E.I. et al. Sposob izmereniya tolshchiny tonkoi plenki i kartirovaniya topografii ee poverkhnosti s pomoshch'yu interferometra bologo sveta. Patent RF no. RU 2641639, G01B 9/02 [Method for measuring the thickness of a thin film and mapping its surface topography using a bolo light interferometer]. Prioritet 16.05.2016. Byul. no. 2. (In Russ.). URL: https://patenton.ru/patent/RU2641639C2
  23. Kastro A.R.A., Konov A.A. Sposob otsenki tolshchiny tonkikh polimernykh plenok. Patent RF no. RU 72820 C1, G01N 25/02 [Method for estimating the thickness of thin polymer films]. Prioritet 26.10.2017. Byul. no. 32. (In Russ.). URL: https://patents.google.com/patent/RU2672820C1/ru
  24. Fomin D.V., Strukov D.O., German A.S. [Universal payload platform for small satellites of the CubeSat standard]. Izvestiya vysshikh uchebnykh zavedenii. Priborostroenie [Journal of instrument engineering], 2018, vol. 61, no. 5, pp. 446—449. DOI: 10.17586/0021-3454-2018-61-5-446-449 (In Russ.).
  25. Golykh A.E., Fomin D.V. [Rotary complex for dynamic vibration testing of nanosatellites]. Izvestiya vysshikh uchebnykh zavedenii. Priborostroenie [Journal of instrument engineering], 2023, vol. 66, no. 6, pp. 472—482. URL: https://pribor.ifmo.ru/ru/article/22116/ povorotnyy_kompleksdlya_provedeniya_vibrodinamicheskih_ispytaniy_nanosputnikov.htm (In Russ.).
  26. Fomin D.V., Strukov D.O., German A.S. Universal'nyi blok poleznoi nagruzki dlya nanosputnikov formata CubeSat. Patent RF no. RU 2764047 C1 [Universal payload unit for CubeSat nanosatellites]. Prioritet 10.12.2020. URL: https://patents.google.com/patent/RU2764047C1/ru (In Russ.).
  27. L. Maissel, R. Glang, editors. Handbook Of Thin Film Technology. McGrow-Hill, 1970. 800 p. (Russ. ed.: Maisell L., Glehng R. Tekhnologiya tonkikh plenok (spravochnik). T. 2. Translate M.I. Elinson, G.G. Smolko.). Moscow, Sovetskoe radio Publ., 1977. 768 p. (In Russ.).
  28. Dubov V.L., Fomin D.V. [BaSi2 is a promising material for photovoltaic cells]. Uspekhi prikladnoi fiziki [Advances in applied physics], 2016, vol. 4, no. 6, pp. 599—605. (In Russ.).
  29. Galkin N.G., Galkin K.N., Fomin D.V. et al. Comparison of crystal and phonon structures for polycrystalline BaSi2 films grown by SPE method on Si(111) substrate. Defect and Diffusion Forum DDF, 2018, vol. 386, pp. 48—54. DOI: 10.4028/www.scientific.net/DDF.386.48
  30. Galkin N.G., Goroshko D.L., Galkin K.N. et al. SPE grown BaSi2 on Si(111) substrates: Optical and photoelectric properties of films and diode heterostructures on their base. Japanese Journal of Applied Physics, 2020, vol. 59, no. SF, Id. SFFA11. DOI: 10.35848/1347-4065/ab6b76
 

S. A. Kazakov1, M. A. Grevtsev1, I. E. Jagatspanyan2, A. O. Volchek2

KINETICS OF CONDUCTIVITY OF N-TYPE SEMICONDUCTOR
METAL OXIDE FILMS DURING CHEMOSORPTION
OF REDUCING GASES
(short message)

"Nauchnoe Priborostroenie", 2024, vol. 34, no. 2, pp. 54—57.
 

The article examines the kinetics of adsorption of reducing gases on the surface of metal oxide semiconductor gas-sensitive films of n-type conductivity. It is shown that their sensitivity is, to a first approximation, proportional to the concentration of the detected impurity. This work is a continuation of a previously published study that examined the chemisorption of oxidizing gases on the surface of an n-type semiconductor of conductivity.
 

Keywords: adsorption, surface, electrical conductivity, metal oxide semiconductor, concentration, defective structure

Author affiliations:

1Ioffe Physical Technical Institute of the RAS, Saint Petersburg, Russia
2Scientific and Production Association PRIBOR, JSC, Saint Petersburg, Russia

 
Contacts: Kazakov Sergey Alekseevich, kazakov59@mail.ioffe.ru
Article received by the editorial office on 11.03.2024

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Myasnikov I.A., Sukharev V.Ya., Kupriyanov L.Yu., Zav'yalov S.A. Poluprovodnikovye sensory v fiziko-khimicheskikh issledovaniyakh [Semiconductor sensors in physicochemical research]. Moscow, Nauka Publ., 1991. 327 p. (In Russ.).
  2. Kiselev V.F., Krylov O.V. Adsorbtsionnye protsessy na poverkhnosti poluprovodnikov i diehlektrikov [Adsorption processes on the surface of semiconductors and dielectrics]. Moscow, Nauka Publ., 1978. 317 p. (In Russ.).
  3. Gaman V.I. Fizika poluprovodnikovykh gazovykh sensorov [Physics of semiconductor gas sensors]. Tomsk, NTL Publ., 2012. 112 p. (In Russ.).
  4. Vol'kenshtein F.F. Ehlektronnye protsessy na poverkhnosti poluprovodnikov pri khemosorbtsii [Electronic processes on the surface of semiconductors during chemisorption]. Moscow, Nauka Publ., 1987. 345 p. (In Russ.).
  5. Kazakov S.A., Grevtsev M.A., Jagatspanyan I.E., Volchek A.O. [Kinetics of conductivity of n-type semiconductor metal oxide films during chemosorption of oxidizing gases (short message)]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2024, vol. 34, no. 1, pp. 26—29. URL: http://iairas.ru/mag/2024/abst1.php#abst3 (In Russ.).
  6. Gas'kov A.M., Rumyantseva M.N., Vasil'ev R.B., Chizhov A.S. Sposob izgotovleniya materiala gazovogo sensora dlya detektirovaniya monooksida ugleroda CO bez nagrevaniya. Patent RF no. RU 2544272C2 [Method of manufacturing gas sensor material for detection of carbon monoxide CO without heating]. 17.06.2013. URL: https://patents.google.com/patent/RU2544272C2/ru (In Russ.).
  7. Seiyama T., Kagawa S. Study on a detector for gaseous components using semiconductive thin films. Analytical Chemistry, 1966, vol. 38, no. 8, pp. 1069—l073. DOI: 10.1021/ac60240a031
  8. Heiland G. Homogeneous semiconducting gas sensors. Sensors and Actuators, 1981, vol. 2, pp. 343—361. DOI: 10.1016/0250-6874(81)80055-8
  9. Duykova M.V., Shkonda S.E., Kazakov S.A., Grevtsev M.A. [Manufacturing and research of metal oxide semiconductor gas sensors for ammonia]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2020, vol. 30, no. 4, pp. 52—62. DOI: 10.18358/np-30-4-i5262 (In Russ.).
 

D. A. Sandulyak, I. A. Solovev, V. A. Ershova, A. V. Sandulyak, A. A. Sandulyak

DISPERSE FERROMAGNETIC: A CONTROL OF MAGNETIC
PROPERTIES OF SAMPLE AND ITS MATERIAL (QUASICONTINUOUS).
CRITERION OF SAMPLE’ RELATIVE LENGTH

"Nauchnoe Priborostroenie", 2024, vol. 34, no. 2, pp. 58—66.
 

For a specially obtained family dependencies (with different values of magnetizing field intensity H) of magnetic induction B in a dispersed (granulated) sample on its relative length λ in the range of λ = 1÷13, according to the methodology tested earlier, the criterion values of λ = [λ] were established. At this criterion the dependence B on λ reaches the automodel area ("plateau"), and therefore, the magnetic properties of the sample correspond to those of its material at λ ≥ [λ], when the sample demagnetizing factor is minimized. In the studied range of H = 14÷131 kA/m criterion value [λ] = 7.8÷4.9 and the obtained decreasing H-dependence of [λ] obeys the inverse power function with a power equals 0.2. According to data B (at λ ≥ [λ]) values of magnetic permeability μ of quasicontinious material of samples were obtained, as well as H-dependence of μ partially located (from H = 14 kA/m to H = 30÷35 kA/m) was obtained in the vicinity of extremum μ = 6 and then decreasing to μ = 3.5. Due to this dependence, including its established functional type (exponential at H ≥ 35 kA/m), the μ-dependence of [λ] was found – with variants of its functional legalization: first – on the basis of the mentioned power H-function of [λ] and second – by exponential function.
 

Keywords: ferromagnetic disperse material, relative length of sample, magnetic induction, automodel section, accommodate piecewise approximation

Author affiliations:

MIREA — Russian technological university, Moscow, Russia

 
Contacts: Sandulyak Darya Alexandrovna, d.sandulyak@mail.ru
Article received by the editorial office on 12.12.2023

Full text (In Russ./In Eng.) >>

REFERENCES

  1.   Sandulyak D.A., Solovev I.A., Sandulyak A.V., Sandulyak A.A., Ershova V.A. [Determination of magnetic properties of ferromagnetic material based on diagnostic data of the cylinder sample against the criterion of its length]. Pribory i sistemy. Upravlenie, kontrol', diagnostika [Instruments and Systems: Monitoring, Control, and Diagnostics], 2023, no. 11, pp. 1—9. (In Russ.). URL: https://www.elibrary.ru/item.asp?id=56446188
  2. Livshits B.G., Kraposhin V.S., Linetskii Ya.L. Fizicheskie svoistva metallov i splavov [Physical properties of metals and alloys]. Moscow, Metallurgiya Publ., 1980. 320 p. (In Russ.).
  3. Blazhkin A.T., Besekerskii V.A., Frolov B.V., et al. Obshchaya ehlektrotekhnika: Uchebnoe posobie dlya vuzov, 3-e izd. [General Electrical Engineering: Textbook for Universities, 3rd ed.]. Leningrad, Energiya Publ., 1979. 472 p. (In Russ.).
  4. Sandomirskii C.G. Raschet i analiz razmagnichivayu-shchego faktora ferromagnitnykh tel [Calculation and analysis of demagnetizing factor of ferromagnetic bodies]. Minsk, Belaruskaya navuka Publ., 2015. 243 p. (In Russ.).
  5. Popov G.M. Sposob izmereniya namagnichennosti ferromagnitnykh materialov sterzhnevykh obraztsov. Patent RF no. 2022292 [Method of measuring the magnetization of ferromagnetic materials of rod samples]. Prioritet 30.10.1994. (In Russ.).
  6. Gudoshnikov S.A., Kozlov A.N., Skomarovskii V.S. Vibratsionnyi magnitometr. Patent RF no. 2279689 [Vibration magnetometer]. Prioritet 28.07.2004. (In Russ.).
  7. Velikanov D.A. Sposob izmereniya magnitnogo momenta obraztsov na SKVID-magnitometre. Patent RF no. 2530463 [Method of measuring magnetic moment of samples on SCVID-magnetometer]. Prioritet 19.12.2012. (In Russ.).
  8. Kifer I.I. Ispytaniya ferromagnitnykh materialov [Ferromagnetic materials testing]. Moscow, Energiya Publ., 1969. 360 p. (In Russ.).
  9. Zakharov V.A., Zembekov N.S. Sposob opredeleniya krivoi namagnichivaniya ferromagnitnogo materiala. Patent RF no. 2293344 [Method for determining the magnetization curve of ferromagnetic material]. Prioritet 14.11.2005. (In Russ.).
  10. Sandulyak A.V., Tkachenko R.Yu., Sandulyak D.A., Sandulyak A.A., Polismakova M.N., Ershova V.A. Remarks on Selecting Length of Cylindrical Sample to Determine Magnetic Properties of its Material. Vestnik MGTU
    im. N.E. Baumana. Seriya "Priborostroenie"
    [Herald of the Bauman Moscow State Technical University. Series Instrument Engineering], 2021, no. 2 (135), pp. 147—159. DOI: 10.18698/0236-3933-2021-2-147-159 (In Russ.).
  11. Sandulyak A.V., Sandulyak D.A., Tkachenko R.Yu., Sandulyak A.A., Polismakova M.N., Kiselev D.O. Magnetic Properties of Ferromagnetic Samples of Various Lengths, Approximation of the Demagnetizing Factor. Inorganic Materials: Applied Research, 2021, vol. 12, pp. 1076—1082. DOI: 10.1134/S2075113321040365
  12. Sandulyak A.A., Sandulyak A.V., Shkatov P.N., Tkachenko R.Yu., Sandulyak D.A., Ermolaev A.A. On the requirements for determining the magnetic properties of a material based on the results of diagnostics of its rod sample. AIP Advances, 2021, vol. 11, no. 9, Id. 095206. DOI: 10.1063/5.0063287
  13. Sandulyak A.V., Tkachenko R.Yu., Sandulyak A.A., Ershova V.A. [Research of the properties of magnetic fillers of cylindrical shape]. Obogashchenie rud [Ore enrichment], 2020, no. 6, pp. 26—32. URL: https://www.elibrary.ru/item.asp?id=54476395
  14. Sandulyak A.V., Tkachenko R.Yu., Sandulyak D.A., Polismakova M.N., Sandulyak A.A., Ershova V.A. Analysis of the dependence of the magnetic properties of granular ferromagnetic samples of the ratio of their length to diameter. Measurement Techniques, 2020, vol. 63, no. 6, pp. 469—475. DOI 10.1007/s11018-020-01811-2
  15. Sandulyak A.A., Sandulyak A.V, Shitikova M.V., Tkachenko R.Yu., Sandulyak D.A., Gorpinenko Yu.O. Concentrated dispersed magnet with different relative lengths: Basic properties and characteristics (on the example of a polyspherical structure). Mechanics of Advanced Materials and Structures, 2022, vol. 29, iss. 26, pp. 4972—4978. DOI: 10.1080/15376494.2021.1943575
 

E. V. Voloshchenko

THE NONLINEAR ACOUSTICS APPLICATION
FOR THE INCREASING OF SONAR’S EFFICIENCY ON SHELF

"Nauchnoe Priborostroenie", 2024, vol. 34, no. 2, pp. 67—76.
 

It is proposed to ensure the seaboard structure’s safeness by conducting the water volume’s multi-position monitoring of the coastal protective zone using hydroacoustic means, when the effects of nonlinear acoustics for designing antennas are used, in particular, self-action and interaction of ultrasonic pump waves.An analysis has been made of the use of hydroacoustic active location systems with receiver-emitting antenna devices of an original design, which are placed on the bottom of a shallow water area and used to detect surface and underwater objects, as well as remotely obtain information about hydro conditions at various points in the shelf’s water area. Calculated results of the hydroacoustic active location system’s energy range estimation in the parametric radiation mode and an analysis of the spatial characteristics of the considered antenna device’s modelare presented, which confirm the possibility of obtaining the claimed result.
 

Keywords: ultrasonic monitoring of shallow water volume, coastal protective zone, parametric transmitting array

Author affiliations:

Southern Federal University, Taganrog, Russia

 
Contacts: Voloshchenko Elizaveta Vadimovna, voloshchenko.liza@mail.ru
Article received by the editorial office on 06.12.2023

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Skhema organizatsii okhrany gorodka VIP-person so storony akvatorii [Scheme of organization of security of VIP-persons' camp from the water area side]. URL: http://www.bnti.ru/dbtexts/ipks/old/analmat/1_2002/tepr/10.htm (accessed 27.11. 2023 ã.). (In Russ.).
  2. Skhema organizatsii okhrany neftenalivnogo tankera so storony akvatorii [Scheme of organization of oil tanker security from the water area side]. URL: http://www.bnti.ru/dbtexts/ipks/old/analmat/1_2002/tepr/7.htm (accessed 27.11. 2023 ã.). (In Russ.).
  3. Skhema organizatsii okhrany mosta strategicheskogo naznacheniya so storony akvatorii [Scheme of strategic bridge security organization from the water area side]. URL: http://www.bnti.ru/dbtexts/ipks/old/analmat/1_2002/tepr/6.htm (accessed 27.11.2023 ã.). (In Russ.).
  4. GOST R 57557-2017 Sredstva i sistemy okhrannye gidroakusticheskie [Hydroacoustic security equipment and systems]. Moscow, FGUP "STANDARTINFORM", 2017. 23 p. (In Russ.).
  5. Solov'ev V.G., Afrutkin G.I., Strelkov I.M., et al. Sposob obnaruzheniya podvodnykh ob"ektov na morskom rubezhe v melkom more. Patent RF RU2161319C1 [Method of detecting underwater objects on the offshore boundary in
    a shallow sea]. Prioritet 21.12.2000. (In Russ.).
  6. Kadykov I.F. Metod i sistema obnaruzheniya tselei pri gidrolokatsii. Patent RF no. RU2383899C1 [Method and system of target detection in sonar]. Prioritet 10.03.10. (In Russ.).
  7. Sidorov V.V. Sistema parametricheskoi gidrolokatsii s funktsiei polucheniya akusticheskogo izobrazheniya tselei . Patent RF no. RU 2488845C1 [Parametric sonar system with acoustic target imaging function]. Prioritet 27.07.12. (In Russ.).
  8. Platform carried bistatic sonar. Patent USA no. US005237541 A. GTE Government Systems Corporation. 17.08.93.
  9. Bistatic/monostatic sonar fence. Patent USA -no. US5305286A. Sonetech Corporation. 19.04.94.
  10. Voloshchenko V.Yu., Voloshchenko A.P., Li V.G. Sposob podgotovki letnogo basseina gidroaehrodroma dlya vypolneniya vzleta i privodneniya gidrosamoleta. Patent RF no. RU2464205C1 [Method of preparation of a seaplane flight basin for seaplane takeoff and landing]. Prio-ritet 20.10.2012. (In Russ.).
  11. Voloshchenko V.Yu., Voloshchenko A.P. Mnogochastotnoe gidroakusticheskoe priemoizluchayu-shchee antennoe ustroistvo. Patent RF no. RU104732C1 [Multi-frequency hydroacoustic receiving and emitting antenna device]. Prioritet 20.05.2011. (In Russ.).
  12. Tarasov S.P., Voloshchenko E.V., et al. Akusticheskii sposob i ustroistvo izmereniya parametrov morskogo volneniya. Patent RF no. RU2721307C1 [Acoustic method and device for measuring sea swell parameters]. Prioritet 18.05.2020. (In Russ.).
  13. Voloshchenko E.V., Tarasov S.P. [Measurement of sea wave characteristics based on the application of nonlinear acoustic effects]. Materialy VI Vserossiiskoi konf. molodykh uchenykh i spets. "Akustika sredy obitaniya (ASO-2021)" [Proc. 6th All-Russ. Conf. young scientists and specialist "Habitat Acoustics (ASO-2021)"]. Moscow, MSTU named after N.E. Bauman, 2021. P. 70—75. (In Russ.).
  14. Novikov B.K., Rudenko O.V., Timoshenko V.I. Neli-neinaya gidroakustika [Nonlinear hydroacoustics]. Leningrad, Sudostroenie Publ., 1981. 264 p. (In Russ.).
  15. Tyurin A.M., Stashkevich A.P., Taranov Eh.S. Osnovy gidroakustiki [Fundamentals of hydroacoustics]. Leningrad, Sudostroenie Publ., 1968. 296 p. (In Russ.).
  16. Yakovlev A.N., Kablov G.P. Gidrolokatory blizhnego deistviya [Short-range sonars]. Leningrad, Sudostroenie Publ., 1983. 200 p. (In Russ.).
 

N. A. Levdarovich1, Yu. S. Grechanaya2, A. S. Ivanov2, M. O. Gryaznova3,
E. A. Skverchinskaya
3, I. V. Mindukshev3, A. S. Bukatin1,4

MICROFLUIDIC DEVICE FOR ANALYSIS
OF RED BLOOD CELLS OF LABORATORY ANIMALS

"Nauchnoe Priborostroenie", 2024, vol. 34, no. 2, pp. 77—94.
 

Laboratory rats are the preferred model for studying many socially significant diseases such as cardiovascular diseases (heart attack and hypertension), diabetes, and cancer. Considering red blood cells (RBCs) pathological processes lead to disturbances in their deformability, which causedeterioration in gas transport and changes in blood microreology. Recently, microfluidic devices have begun to be used to study the behavior of human RBCs in microcirculation conditions in vitro, which makes it possible to record, sort and study healthy and damaged cells. By microfluidic analysis pathological changes at the molecular and membrane levels were linked with modifications of cell shape and motion in fluid flow. In such devices it is possible to directly simulate the transport of RBCs in microcapillaries under blood microcirculation conditions and quantitatively analyze how different drugs affect it. In this work, we investigated how the topology and geometrical dimensions of the channels of a microfluidic device influence on the possibility to determin the average velocity of rat and human RBCs. This allowed us to quantitatively extimete the influence of oxidative stress on the RBCs transport and biophysical properties. Results obtained showed that the optimal design of a microfluidic device contained 16 parallel microchannels with dimensions of 2.2 × 8 × 200 micrometers. In such microchannels we accurately determined the speed of single RBCs of laboratory rats and humans, which moved under the microcirculation conditions, and identified the number of slow cells damaged by induced oxidative stress. The proposed method of simulation of blood microcirculation condition in a microfluidic device has a broad number of application, aimed to study the effects of oxidative stress on red blood cells of laboratory animals and humans, as well as to monitor the biophysical and functional properties of these cells in preclinical and clinical trials.
 

Keywords: microfluidic device, oxidative stress, red blood cells, blood microcirculation, microcapillar, laboratory rat

Author affiliations:

1Alferov National Research Academic University of the RAS, Saint Petersburg, Russia
2Institute of Biomedical Systems and Biotechnologies, Higher School of Biomedical Systems and Technologies, Peter the Great St. Petersburg Polytechnic University,
Saint Petersburg, Russia

3Sechenov Institute of Evolutionary Physiology and Biochemistry of the RAS, Saint Petersburg, Russia
4Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia

 
Contacts: Bukatin Anton Sergeevich, antbuk.fiztek@gmail.com
Article received by the editorial office on 11.12.2023

Full text (In Russ.) >>

REFERENCES

  1. Ciuffreda M.C., Tolva V., Casana R., Gnecchi M., et al. Rat experimental model of myocardial ischemia/reperfusion injury: an ethical approach to set up the analgesic management of acute post-surgical pain. PLoS One, 2014, Id. 95913. DOI: 10.1371/journal.pone.0095913
  2. O'Connell K.E, Mikkola A.M., Stepanek A.M., Vernet  A., et al. Practical murine hematopathology:
    a comparative review and implications for research. Comp Med., 2015, vol. 65, no. 2, pp. 96—113. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4408895
  3. Delwatta Sh.L., Gunatilake M., Baumans V., Seneviratne  M.D., et al. Reference values for selected hematological, biochemical and physiological parameters of Sprague-Dawley rats at the Animal House, Faculty of Medicine, University of Colombo, Sri Lanka. Animal Model Exp Med, 2018, vol. 1, no. 4, pp. 250—254. DOI: 10.1002/ame2.12041
  4. Wang J., Zhang W., Wu G. Intestinal ischemic reperfusion injury: Recommended rats model and comprehensive review for protective strategies. Biomed Pharmacother, 2021, vol. 138, Id. 111482. DOI: 10.1016/j.biopha.2021.111482
  5. Blais E., Rawls K., Dougherty B., et al. Reconciled rat and human metabolic networks for comparative toxicogenomics and biomarker predictions. Nature Communications, 2017, vol. 8, Id. 14250. DOI: 10.1038/ncomms14250
  6. Romanova, E.V., Sweedler J.V. Animal Model Systems in Neuroscience. ACS Chem Neurosci, 2018, vol. 9, iss. 8, pp. 1869—1870. DOI: 10.1021/acschemneuro.8b00380
  7. Kohnken R., Porcu P., Mishra A. Overview of the Use of Murine Models in Leukemia and Lymphoma Research. Front Oncol, 2017, vol. 7, Id 22. DOI: 10.3389/fonc.2017.00022
  8. Soares R.O.S., Losada D.M., Jordani M.C., et al. Ischemia/Reperfusion Injury Revisited: An Overview
    of the Latest Pharmacological Strategies. Int. J. Mol. Sci., 2019, vol. 20, iss. 20, Id. 5034. DOI: 10.3390/ijms20205034
  9. Kuhn V., Diederich L., Kramer Ch.M., et al. Red Blood Cell Function and Dysfunction: Redox Regulation, Nitric Oxide Metabolism, Anemia. Antioxid Redox Signal, 2017, vol. 26, iss. 13, pp. 718—742. DOI: 10.1089/ars.2016.6954
  10. Nader E., Skinner S., Romana M., Fort R., et al. Blood Rheology: Key Parameters, Impact on Blood Flow, Role in Sickle Cell Disease and Effects of Exercise. Front Physiol, 2019, vol. 10, Id. 1329. DOI: 10.3389/fphys.2019.01329
  11. Chen Y., Li D., Li Y., et al. Margination of Stiffened Red Blood Cells Regulated By Vessel Geometry. Sci Rep., 2017, vol. 7, Id. 15253. DOI: 10.1038/s41598-017-15524-0
  12. Cheng X., Caruso Ch., Lam W.A., Graham M.D. Marginated aberrant red blood cells induce pathologic vascular stress fluctuations in a computational model of hematologic disorders. bioRxiv, 2023, Id 541016. DOI: 10.1101/2023.05.16.541016
  13. Sebastian B., Dittrich P.S. Microfluidics to Mimic Blood Flow in Health and Disease. Annual Review of Fluid Mechanics, 2018, vol. 50, iss. 1, pp. 483—504. DOI: 10.1146/annurev-fluid-010816-060246
  14. Besedina N.A., Skverchinskaya E.A., Shmakov S.V., et al. Persistent red blood cells retain their ability to move in microcapillaries under high levels of oxidative stress. Commun Biol., 2022, vol. 5, Id. 659. DOI: 10.1038/s42003-022-03620-5
  15. Terekhov S.S., Smirnov I.V., Stepanova A.V., Altman S. Microfluidic droplet platform for ultrahigh-throughput single-cell screening of biodiversity. Proc. Natl. Acad. Sci. USA, 2017, vol. 114, iss. 10, pp. 2550—2555. DOI: 10.1073/pnas.1621226114
  16. Gladkov A., Pigareva Y., Kutyina D. et al. Design of Cultured Neuron Networks in vitro with Predefined Connectivity Using Asymmetric Microfluidic Channels. Sci Rep., 2017, vol. 7, Id. 15625. DOI: 10.1038/s41598-017-15506-2
  17. Nejad A.E., Najafgholian S., Rostami A., Sistani A., Shojaeifar S. et al. The role of hypoxia in the tumor microenvironment and development of cancer stem cell: a novel approach to developing treatment. Cancer Cell Int., 2021, vol. 21, Id. 62. DOI: 10.1186/s12935-020-01719-5
  18. Barshtein G., Pajic-Lijakovic I., Gural A. Deformability of Stored Red Blood Cells. Front Physiol., 2021, vol. 12, Id. 722896. DOI: 10.3389/fphys.2021.722896
  19. Urbanska M., Muñoz H.E., Shaw Bagnall J., et al. A comparison of microfluidic methods for high-throughput cell deformability measurements. Nat Methods, 2020, vol. 17, pp. 587—593. DOI: 10.1038/s41592-020-0818-8
  20. Pizzino G., Irrera N., Cucinotta M., et al. Oxidative Stress: Harms and Benefits for Human Health. Oxid Med Cell Longev., 2017, vol. 2017, Id. 8416763. DOI: 10.1155/2017/8416763
  21. Sudnitsyna J., Skverchinskaya E., Dobrylk I., Nikitina E., et al. Microvesicle Formation Induced by Oxidative Stress in Human Erythrocytes. Antioxidants (Basel), 2020, vol. 9, no. 10, Id. 929. DOI:10.3390/antiox9100929
  22. Skverchinskaya E.A., Mindukshev I.V., Tapinova O.D., Filatov N.A., Besedina N.A., Bukatin A.S. [Investigation of Erythrocyte Transport through Microchannels After the Induction of Oxidative Stress with Tert-Butyl Peroxide]. Zhurnal tekhnicheskoi fiziki [Technical Physics], 2020, vol. 90, no. 9, pp. 1553—1559. (In Russ.). DOI: 10.21883/JTF.2020.09.49689.403-19
  23. Arashiki N., Otsuka Y., Ito D., Yang M., Komatsu T., Sato K., Inaba M. The Covalent Modification of Spectrin in Red Cell Membranes by the Lipid Peroxidation Product 4-Hydroxy-2-Nonenal. Biochem Biophys Res Commun., 2010, vol. 391, iss. 3, pp. 1543—1547. DOI: 10.1016/j.bbrc.2009.12.121
  24. Jones C.N., Hoang A.N., Martel J.M., Dimisko L., et al. Microfluidic Assay for Precise Measurements of Mouse, Rat, and Human Neutrophil Chemotaxis in Whole-Blood Droplets. J. Leukoc Biol., 2016, vol. 100, no. 1, pp. 241—247. DOI: 10.1189/jlb.5TA0715-310RR
  25. Yeom E., Kim H.M., Park J.H., Choi W., Doh J., Lee S.J. Microfluidic system for monitoring temporal variations of hemorheological properties and platelet adhesion in LPS-injected rats. Sci Rep., 2017, vol. 7, Id. 1801. DOI: 10.1038/s41598-017-01985-w
  26. Nagy M., van Geffen J.P., Stegner D., Adams D.J., et al. Comparative Analysis of Microfluidics Thrombus Formation in Multiple Genetically Modified Mice: Link to Thrombosis and Hemostasis. Front Cardiovasc Med., 2019, vol. 6, Id. 99. DOI: 10.3389/fcvm.2019.00099
  27. Kanias T., Acker J.P. Mechanism of hemoglobin-induced cellular injury in desiccated red blood cells. Free Radic. Biol. Med., 2010, vol. 49, iss. 4, pp. 539—547. DOI: 10.1016/j.freeradbiomed.2010.04.024
  28. Qin D., Xia Y., Whitesides G.M. Soft lithography for micro- and nanoscale patterning. Nat Protoc., 2010, vol. 5, pp. 491—502. DOI: 10.1038/nprot.2009.234
  29. Bukatin A.S., Mukhin I.S., Malyshev E.I., Kukhtevich I.V., Evstrapov A.A., Dubina M.V. Fabrication of High Aspect-RatioMicrostructures in Polymer Microfluid Chips for in VitroSingle-Cell Analysis. Tech. Phys., 2016, vol. 61, pp. 1566—1571. DOI: 10.1134/S106378421610008X
  30. Mebius R.E., Kraal G. Structure and function of the spleen. Nat Rev Immunol., 2005, vol. 5, iss. 8, pp. 606—616. DOI: 10.1038/nri1669
  31. Pivkin I.V., Peng Z., Karniadakis G.E., Buffet P.A., Dao M., Suresh S. Biomechanics of red blood cells in human spleen and consequences for physiology and disease. Proc Natl Acad Sci USA, 2016, vol. 113, iss. 28, pp. 7804—7809. DOI: 10.1073/pnas.1606751113
  32. Deplaine G., Safeukui I., Jeddi F., Lacoste F., et al. The sensing of poorly deformable red blood cells by the human spleen can be mimicked in vitro. Blood, 2011, vol. 117, iss. 8, pp. e88—e95. DOI: 10.1182/blood-2010-10-312801
  33. Hochmuth R.M. Micropipette aspiration of living cells. J Biomech., 2000, vol. 33, iss. 1, pp. 15—22. DOI: 10.1016/s0021-9290(99)00175-x
  34. Asaro R.J., Zhu Q., MacDonald I.C. Tethering, evagination, and vesiculation via cell-cell interactions in microvascular flow. Biomech Model Mechanobiol ., 2021, vol. 20, pp. 31—53. DOI: 10.1007/s10237-020-01366-9
  35. Klei T.R., Meinderts S.M., van den Berg T.K., van Bruggen R. From the Cradle to the Grave: The Role of Macrophages in Erythropoiesis and Erythrophagocytosis. Front Immunol., 2017, vol. 8, Id 73. DOI: 10.3389/fimmu.2017.00073
  36. Dylan Tsai C.-H., Sakuma S., Arai F., Taniguchi T., Ohtani T., Sakata Y., Kaneko M. Geometrical alignment for improving cell evaluation in a microchannel with application on multiple myeloma red blood cells. RSC Advances, 2014, Iss. 85. DOI: 10.1039/c4ra08276a
  37. Huisjes R., Bogdanova A., van Solinge W.W., Schiffelers R.M., Kaestner L., van Wijk R. Squeezing for Life - Properties of Red Blood Cell Deformability. Front Physiol., 2018, vol. 9, Id. 656. DOI: 10.3389/fphys.2018.00656
  38. Namvar A., Blanch A.J., Dixon M.W., Carmo O.M.S., et al. Surface area-to-volume ratio, not cellular viscoelasticity, is the major determinant of red blood cell traversal through small channels. Cell Microbiol., 2021, vol. 23, iss. 1, Id. e13270. DOI: 10.1111/cmi.13270
  39. Mohandas N., Evans E. Mechanical properties of the red cell membrane in relation to molecular structure and genetic defects. Annu Rev Biophys Biomol Struct., 1994, vol. 23, pp. 787—818. DOI: 10.1146/annurev.bb.23.060194.004035
  40. Diez-Silva M., Dao M., Han J., Lim C.T., Suresh S. Shape and Biomechanical Characteristics of Human Red Blood Cells in Health and Disease. MRS Bull., 2010, vol. 35, iss. 5, pp. 382—388. DOI: 10.1557/mrs2010.571
  41. Renoux C., Faivre M., Bessaa A. et al. Impact of surface-area-to-volume ratio, internal viscosity and membrane viscoelasticity on red blood cell deformability measured in isotonic condition. Sci Rep., 2019, vol. 9, Id. 6771. DOI: 10.1038/s41598-019-43200-y
  42. Alexy T., Detterich J., Connes P., Toth K., Nader E., et al. Physical Properties of Blood and their Relationship to Clinical Conditions. Front Physiol., 2022, vol. 13, Id 906768. DOI: 10.3389/fphys.2022.906768
  43. Skverchinskaya E., Levdarovich N., Ivanov A., Mindukshev I., Bukatin A. Anticancer Drugs Paclitaxel, Carboplatin, Doxorubicin, and Cyclophosphamide Alter the Biophysical Characteristics of Red Blood Cells, In Vitro. Biology (Basel), 2023, vol. 12, iss. 2, Id. 230. DOI: 10.3390/biology12020230
  44. Besedina N.A., Skverchinskaya E.A., Ivanov A.S., Kotlyar K.P., Morozov I.A., Filatov N.A., Mindukshev I.V., Bukatin A.S. Microfluidic Characterization of Red Blood Cells Microcirculation under Oxidative Stress. Cells, 2021, vol. 10, iss. 12, Id. 3552. DOI: 10.3390/cells10123552
 

D. V. Lisin

THE METHOD OF COMBINING THE MAIN AND BACKUP
SETS OF SPACE EXPERIMENT CONTROL EQUIPMENT

"Nauchnoe Priborostroenie", 2024, vol. 34, no. 2, pp. 95—101.
 

One of the non-classical methods developed in IZMIRAN for combining the main and backup sets of control equipment on board the spacecraft, which provides the possibility of both autonomous and controlled by an additional external input system of the backup set, is considered. The main feature of the method is the possibility of direct electrical connection of the circuits of the main and backup sets of control equipment, that is, the absence of mechanical and electronic switching while maintaining a sufficiently high level of reliability of the system as a whole. The proposed approach has a main field of application in the creation of highly reliable control equipment for scientific and special purposes with non-standard interfaces for operation in outer space.
 

Keywords: space experiment, backup set

Author affiliations:

Pushkov Institute of terrestrial magnetism, ionosphere and radio wave propagation (IZMIRAN),
Troitsk, Moscow, Russia

 
Contacts: Lisin Dmitrij Valer'evich, lisindv@izmiran.ru
Article received by the editorial office on 26.01.2024

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Stepanov A.I., Lisin D.V., Kuznetsov V.D., Afanasyev A.N., Osin A.I., Schwartz J. [Onboard and ground control complexes of scientific equipment of the CORONAS-F satellite]. Kuznetsov V.D., editor. Solnechno-zemnaya fizika: rezul'taty ehksperimentov na sputnike KORONAS-F [Solar-terrestrial physics: results of experiments on the CORONAS-F satellite], Moscow, FIZMATLIT Publ., 2009, pp. 469—476. (In Russ.). URL: https://www.elibrary.ru/item.asp?id=28866900
  2. Kuznetsov V.D., Lisin D.V. [Possibilities of usage of IZMIRAN ground station for telemetry and control of geophysical monitoring satellites]. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa [Current problems in remote sensing of the Earth from space], 2010, vol. 7, no. 4, pp. 232—234. (In Russ.). URL: http://jr.rse.cosmos.ru/article.aspx?id=806
  3. Stepanov A.I., Lisin D.V., Kuznetsov V.D., Afanas'ev A.N., Osin A.I., Schwarz J. On-board and ground-based complexes for operating the science payload of the CORONAS-F Space Mission. Kuznetsov V.D., editor. The Coronas-F Space Mission, Springer-Verlag, Berlin, Heidelberg, 2014, pp. 457—464. DOI: 10.1007/978-3-642-39268-9_18
 

E. V. Voloshchenko

THE MULTI-COMPONENT PUMP SIGNAL’S PARAMETRIC
TRANSMITTING ANTENNA FOR SHALLOW WATER
HYDROACOUSTIC MONITORING

"Nauchnoe Priborostroenie", 2024, vol. 34, no. 2, pp. 102—111.
 

The possibility of the operational characteristics changing for the multicomponent pump signal’s parametric transmitting array (PTA), in particular, to increasing the energy potential on the emerging low-frequency signals of multiple frequencies with a constant width of the main lobe of the directivity pattern (DP), are considered. This is achieved by using phased spectral components located in the passband of the emitting electroacoustic transducer as a pumping signal, and the difference in their frequencies determines the composition of the polyharmonic low-frequency signal generated in the aquatic medium. This method of generating PTA makes it possible to increase the efficiency of generating probe signals specifically in the long-wavelength range, which is important when measuring the parameters of the movement of a layered marine medium. Features of the formation for the difference frequency wave’s (DFW) broadband radiation allows the use of "virtual" PTA in a new ability – as a tool for indirect estimation of the sea surface’s roughness degree for the sea surface when measuring hydroconditions in coastal waters.
 

Keywords: parametric transmitting array, hydroacoustic monitoring

Author affiliations:

Southern Federal University, Taganrog, Russia

 
Contacts: Voloshchenko Elizaveta Vadimovna, voloshchenko.liza@mail.ru
Article received by the editorial office on 03.03.2024

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Zagrai N.P. Nelineinye vzaimodeistviya v sloistykh i neodnorodnykh sredakh [Nonlinear interactions in layered and inhomogeneous media]. Taganrog, TRTU Publ., 1998. 433 p. (In Russ.).
  2. Ruffa A.A. High efficiency parametric sonar. Patent US no. US 6704247B1. Prioritet 09.03.2004. URL: https://worldwide.espacenet.com/publicationDetails/originalDocument?CC=US&NR=6704247B1&KC=B1& FT=D&ND=3&date=20040309&DB=&locale=en_EP
  3. Novikov B.K., Rudenko O.V., Timoshenko V.I. Nelineinaya gidroakustika [Nonlinear hydroacoustics]. Leningrad, Sudostroenie Publ., 1981. 264 p. (In Russ.).
  4. Infrasonic wave directional emission system and method based on phase-controlled parametric array. Patent CN 113630687 A. Prioritet 09.11.2021. URL: https://worldwide.espacenet.com/publicationDetails/originalDocument?CC=CN&NR=113630687A&KC=A& FT=D&ND=3&date=20211109&DB=&locale=en_EP
  5. Ruffa A.A. Multiple frequency parametric sonar. Patent US 9523770B1. 20.12.2016. URL: https://worldwide.espacenet.com/publicationDetails/originalDocument?CC=US&NR=9523770B1&KC=B1& FT=D&ND=3&date=20161220&DB=&locale=en_EP
  6. Parametric transmission for echo sounding and underwater communications involves maximising electroacoustic efficiency of transmission using switched power amplifiers. Patent DE 19931387A1. 01.02.2001. URL: https://worldwide.espacenet.com/publicationDetails/originalDocument?CC=DE&NR=19931387A1&KC=A1& FT=D&ND=3&date=20010201&DB=&locale=en_EP
  7. Myuir T.Dzh. [Nonlinear acoustics and its role in marine sediment geophysics]. Yu.Yu. Zhitkovskii, editor. Akustika morskikh osadkov [Acoustics of marine sediments], translate from eng., Moscow, Mir Publ., 1977,
    pp. 227—273. (In Russ.).
  8. Voronin V.A., Tarasov S.P., Timoshenko V.I. Gidroakusticheskie parametricheskie sistemy [Hydro-acoustic parametric systems]. Rostov-on-Don, Rostizdat Publ., 2004. 400 p. (In Russ.).
  9. Manassewitsch V. Frequency Synthesizers: Theory and Design. (Russ ed.: Manassevich V. Sintezatory chastot. Teoriya i proektirovanie. Translate and eds. A.S. Galin. Moscow, Svyaz' Publ., 1979. 384 p.).
  10. Voloshchenko V.Yu. et al. Method and Device for Increasing the Efficiency of an Emitting Antenna. Patent US 2022/0123842A1. 21.04.2022. URL: https://worldwide.espacenet.com/publicationDetails/originalDocument?CC=US&NR=2022123842A1&KC=A1& FT=D&ND=3&date=20220421&DB=&locale=en_EP
  11. Golyamin I.P., editor. Ul'trazvuk. Malen'kaya ehntsiklo-pediya [A little encyclopaedia]. Moscow: Sovetskaya Ehntsiklopediya Publ., 1979. 400 p. (In Russ.).
  12. Novikov B.K., Timoshenko V.I. Parametricheskie antenny v gidrolokatsii [Parametric antennas in sonar]. Leningrad, Sudostroenie Publ., 1989. 256 p. (In Russ.).
  13. Kudryavtsev V.I. Promyslovaya gidroakustika i rybolokatsiya [Fishing hydroacoustics and fish locators]. Moscow, Pishchevaya promyshlennost' Publ., 1978. 312 p. (In Russ.).
  14. Garrett G.S., Tjotta J.N., Tjotta S. Nearfield of a large acoustic transducer. Pt. 2. Parametric radiation. J. Acoust. Soc. Amer., 1983, vol. 74, iss. 3, pp. 1013—1020. DOI: 10.1121/1.389933
  15. Voloshchenko E.V., Tarasov S.P. et al. Akusticheskii sposob i ustroistvo izmereniya parametrov morskogo volneniya. Patent RF no. RU 2721307C1 [Acoustic method and device for measuring sea swell parameters]. Prioritet 18.05.2020. URL: https://yandex.ru/patents/doc/RU2721307C1_20200518
  16. Voloshchenko E.V., Tarasov S.P. [Measurement of sea wave characteristics based on the application of nonlinear acoustic effects]. Materialy 6 Vserossiiskoi konf. molodykh uchenykh i spetsialistov: "Akustika sredy obitaniya (ASO-2021)" [Proc. 6th All-Russ. Conf. for young sci. and spec. "Habitat Acoustics (ASO-2021)"], Moscow, Bauman Moscow State Technical University Publ., 2021. P. 70—75. (In Russ.). URL: http://mhts.ru/data/ckfiles/files/ASO2021_%D0%A1%D0%B1%D0%BE%D1%80%D0%BD% D0%B8%D0%BA_%D0%90%D0%A1%D0%9E-2021.pdf
  17. Voloshchenko V.Yu., Voloshchenko E.V. Mnogo-chastotnyi doplerovskii sposob izmerenii skorosti techenii v vodnoi srede. Patent RF no. RU 2795579 C 1 [Multi-frequency Doppler method of current velocity measurements in aquatic environment]. 05.05.2023. (In Russ.). URL: https://patents.google.com/patent/RU2795579C1/ru
 

A. A. Gavrishev1, D. L. Osipov2

ANALYSIS OF THE PROPERTIES OF ULTRA-WIDEBAND
SIGNALS AFFECTING THE SECRECY AND RELIABILITY
OF DATA TRANSMISSION IN RADIO COMMUNICATION SYSTEMS

"Nauchnoe Priborostroenie", 2024, vol. 34, no. 2, pp. 112—120.
 

The analysis of the use of sequences of ultra-wideband signals (UWB) formed on the basis of BPSK modulation to ensure the secrecy and reliability of data transmission in radio communication systems is carried out. Their properties were evaluated using BDS-statistics and peak factor indicators. As a result of the conducted research, it was found that for the selected research conditions, the UWB sequences based on the solution of the Euler — Lagrange equation, characterized by greater the secrecy from an outside observer than other studied UWB sequences, are generally suitable. It is also shown that all the studied UWB sequences have an acceptable peak factor value. It is noted that the UWB sequences based on widely used pulses, for example, Gauss monocycles, as well as standardized radio communication systems, do not fully ensure the secrecy of data transmission in radio communication systems, therefore it is impractical to use them in UWB radio communication systems with high requirements for ensuring the secrecyof data transmission. The conducted research has made it possible to supplement knowledge about the UWB sequences to ensure covert and reliable data transmission in radio communication systems.
 

Keywords: UWB, communication systems, secrecy, reliability

Author affiliations:

1NRNU MEPhI, Moscow, Russia
2NCFU, Stavropol, Russia

 
Contacts: Gavrishev Aleksej Andreevich, alexxx.2008@inbox.ru
Article received by the editorial office on 21.02.2024

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Abdrakhmanova G.I. Povyshenie ehffektivnosti sverkhshirokopolosnykh sistem svyazi na osnove optimizatsii formy impul'sov. Avtoref. diss. kand. techn. nauk [abstr. cand. techn. sci. diss. Improving the efficiency of ultra-wideband communication systems based on pulse shape optimization.]. Ufa, 2013. 19 p. (In Russ.).
  2. Grakhova E.P., Meshkov I.K., Bagmanov V.Kh., Vinogradova I.L. [UWB radio pulses design based on the derivative Gaussian and Rayleigh pulses relevant to the spectral mask of radiofrequencies committee]. Ehlektrotekhnicheskie i informatsionnye kompleksy i sistemy [Electrical engineering and information complexes and systems], 2014, vol. 10, no. 3, pp. 62—69. (In Russ.).
  3. Kargashin V.L. [Problems of detection and identification of radio signals of means of tacit information control]. Spetsial'naya tekhnika [Special machinery], 2000, no. 4, pp. 45—53. (In Russ.).
  4. Kornienko A.V., Bye L.N. [Comparison of models ultrawideband signals on several parameters of quality]. Vestnik Ryazanskoi gosudarstvennoi radiotekhnicheskoi akademii [Bulletin of the Ryazan State Radio Engineering Academy], 2005, no. 16, pp. 109—111. (In Russ.).
  5. Kirillov S.N., Kornienko A.V., Bye L.N. [Influence of the propagation medium on the form of ultra-wideband signals in information transmission systems]. Materialy XIV Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii "Problemy peredachi i obrabotki informatsii v setyakh i sistemakh telekommunikatsii" [Proc. 14th Int. Conf. "Problems of information transmission and processing in telecommunication networks and systems"], 2005, Ryazan, RSREU named after V.F. Utkin. pp. 61—62. (In Russ.).
  6. Bye L.N. [Energy losses during direction finding of ultra-wideband signals]. Vestnik Ryazanskogo gosudarstvennogo radiotekhnicheskogo universiteta [Vestnik of Ryazan State Radio Engineering University], 2007, no. 20, pp. 117—120. (In Russ.).
  7. Kalinin V.I., Radchenko D.E., Cherepenin V.A. [Numerical modelling of a noise information transmission system with spectrum expansion]. Zhurnal radioehlektroniki [Journal of radio electronics], 2014, no. 10. (18 p.). URL: http://jre.cplire.ru/jre/oct14/8/text.pdf (In Russ.).
  8. Shibaev A.A. [About application of ultra-wideband radio line in the organisational structure of the robotic complex]. Sbornik trudov Pervoi mezhdunarodnoi nauchnoi konferentsii "The 2017 Symposiumon Cybersecurity of the Digital Economy (CDE'17)" [Proc. 1th Int. Conf. "The 2017 Symposiumon Cybersecurity of the Digital Economy (CDE'17)"]. Saint Petersburg, Afina Publ., 2017. pp. 392—394. (In Russ.).
  9. Singh M., Leu P., Capkun S. UWB with Pulse Reordering: Securing Ranging against Relay and Physical-Layer Attacks. Network and Distributed Systems Security (NDSS) Symposium, 2019. (16 p.). DOI: 10.14722/ndss.2019.23109
  10. Senkov M.A., Kiselev K.V., Bykov A.A. [Development of a mathematical modelan indicator of the uniformity of the radio frequency spectrum of an ultra-wideband signal]. Sovremennye naukoemkie tekhnologii [Modern science-intensive technologies], 2020, no. 12-1, pp. 107—112. (In Russ.).
  11. Gavrishev A.A. [Modeling and quantitative and qualitative analysis of common secure communication systems]. Prikladnaya informatika [Journal of applied informatics], 2018, vol. 13, no. 5 (77), pp. 84—122. (In Russ.).
  12. Osipov D.L., Gavrishev A.A. [Analysis of the use of chaotic signals filtered with a bandpass filter for data transfer operation in radio communication systems]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2021, vol. 31, no. 2, pp. 93—104. DOI: 10.18358/np-31-2-i93104 (In Russ.).
  13. Vasyuta K.S. [Classification of processes in info-communication radio-technical systems with application of BDS-statistics]. Problemy telekommunikatsii [The problems of telecommunications], 2012, no. 4 (9), pp. 63—71. (In Russ.).
  14. Loginov S.S. Tsifrovye radioehlektronnye ustroistva i sistemy s dinamicheskim khaosom i variatsiei shaga vremennoi setki. Diss. dokt. techn. nauk [Digital radio electronic devices and systems with dynamic chaos and time grid step variation. Doct. techn. sci. diss.]. Kazan, 2015. 228 p. (In Russ.).
  15. Gavrishev A.A., Gavrishev A.N. [To the question of calculating the crest factor values of signals generated by common hidden communication systems]. Vestnik NTSBZHD [Bulletin of the NCBWC], 2020, no. 3 (45), pp. 149—157. (In Russ.).
  16. Kozel V.M., Podvornaya D.A., Kovalev K.A. Peal factor of signals of 5G mobile service systems. Doklady BGUIR [BSUIR reports], 2020, vol. 18, no. 6, pp. 5—10. DOI: 10.35596/1729-7648-2020-18-6-5-10 (In Russ.).
  17. Dvornikov S.V., Markov E.V., Manoshi A.A. [Ncreasing immunity of decameter radio channel transmissions under unintended interference]. T-Comm: Telekommunikatsii i transport [T-COMM], 2021, vol. 15, no. 6, pp. 4—9. DOI: 10.36724/2072-8735-2021-15-6-4-9 (In Russ.).
  18. Corral C.A., Emami Sh. Peak Power and Implementation Considerationsfor UWB. IEEE802, 2005. (4 p.). URL: https://www.ieee802.org/15/pub/05/15-05-0236-00-004a-peak-power-and-implementation-considerations-uwb.pdf
  19. Recommendation ITU-R SM.1755-0: Characteristics of ultra-wideband technology. 2006. URL: https://www.itu.int/rec/R-REC-SM.1755/en
  20. Immoreev I.Ya. [Ultra-wideband radars: New opportunities, unusual problems, system peculiarities]. Vestnik MGTU. Seriya Priborostroenie [Herald of the Bauman Moscow State Technical University. Series instrument engineering], 1998, no. 4, pp. 25—56. (In Russ.).
  21. Dvornikov S.V., Pshenichnikov A.V., Dvornikov S.S., Borisov V.V., Potapov G.S. [Ultra-wideband ultra-short pulse communication system]. Radiopromyshlennost' [Radio industry], 2021, vol. 31, no. 1, pp. 16—27. URL: https://www.elibrary.ru/item.asp?id=45540851 (In Russ.).
  22. Kunilov A.L., Ivoilova M.M. Sposob priema sverkh-korotkoimpul'snogo signala v vide monotsikla Gaussa. Patent RF no. RU2737005C1 [Method of receiving ultra-short pulse signal in the form of Gauss monocycle]. Prioritet 24.11.2020. (In Russ.). URL: https://patents.google.com/patent/RU2737005C1/ru
  23. Tsai Ch.-Y., Jeng Sh.-K. Design of a Legendre-polynominail-based orthogonal pulse generator for ultra-wideband communication. IEEE Conference: Antennas and propagation Society International Symposium, 2005, vol. 2B, pp. 680—683. DOI: 10.1109/APS.2005.1552105
  24. M’foubat A.O., Elbahhar F., Tatkeu Ch. Novel ultra-wideband multi-user receiver for transportation systems communication. IET Networks, 2014, vol. 3, iss. 3, pp. 169—175. DOI: 10.1049/iet-net.2012.0081
  25. Dmitriev A.S., Kletsov A.V., Laktyushkin A.M., Panas A.I., Starkov S.O. [Ultrawideband wireless communications based on dynamic chaos]. Radiotehnika i elektronika [Journal of Communications Technology and Electronics], 2006, vol. 51, no. 10, pp. 1193—1209. (In Russ.).
  26. Kuzmin L.V., Efremova E.V., Itskov V.V. Modulation, Shaping and Replicability of UWB Chaotic Radiopulses for Wireless Sensor Applications. Sensors, 2023, vol. 23, iss. 15, Id. 6864. DOI: 10.3390/s23156864
  27. Coppens D., Shahid A., Lemey S., Herbruggen B., Marshall Ch., Poorter E. An Overview of UWB Standards and Organizations (IEEE 802.15.4, FiRa, Apple): Interoperability Aspects and Future Research Directions. IEEE Access, 2022. URL: https://arxiv.org/pdf/2202.02190.pdf
  28. Nosov V.I., Kalinin V.O. Issledovanie metodov povysheniya pomekhoustoichivosti korotkoimpul'snykh sverkhshirokopolosnykh sistem radiosvyazi [Investigation of methods to improve noise immunity of short-pulse
    ultra-wideband radio communication systems]. Novosibirsk, STUTIS, 2017. 244 p. (In Russ.).
  29. Belichenko V.P., Buyanov YU.I., Koshelev V.I. Sverkh-shirokopolosnye impul'snye radiosistemy [Ultra-wideband pulse radio systems]. Novosibirsk, Nauka Publ., 2015. 473 p. (In Russ.).
  30. Muhr E., Vauche R., Bourdel S., Gaubert J. et al. High Output Dynamic UWB Pulse Generator for BPSK Modulations. IEEE International Conference on Ultra Wideband (IC UWB), Sydney, Australia, 2013, pp.170—174. DOI: 10.1109/ICUWB.2013.6663842
 

Ulitsa Ivana Chernykh, 31-33, lit. A, St. Petersburg, Russia, 198095, P.O.B. 140
tel: (812) 3630719, fax: (812) 3630720, mail: iap@ianin.spb.su

content: Valery D. Belenkov design: Banu S. Kuspanova layout: Anton V. Manoilov