logo
blue band <-
  JOURNAL "NP" ISSUES

"Nauchnoe Priborostroenie", 2022, Vol. 32, no. 1. ISSN 2312-2951, DOI: 10.18358/np-32-1-e107

"NP" 2022 year Vol. 32 no. 1.,   ABSTRACTS

ABSTRACTS, REFERENCES

A. G. Borodinov, V. V. Manoilov, I. V. Zarutskiy, A. I. Petrov, V. E. Kurochkin

METHODOLOGY FOR ASSESSING THE QUALITY OF GENOMIC ASSEMBLY BASED ON THE ANALYSIS
OF THE FREQUENCY OF K-MERS IN A PARALLEL SEQUENCING SEQUENCER

"Nauchnoe priborostroenie", 2022, vol. 32, no. 1, pp. 3—10.
doi: 10.18358/np-32-1-i310
 

Counting the occurrence of different k-mers often causes problems of genome assembly. Analysis of the frequency distribution of k-mers makes it possible to find assembly errors in already formed contigs. Currently, in connection with the development of instrumentation for genetic analysis, there is an urgent need to develop methods for assessing the quality of genomic assembly. Such techniques will make it possible to assess the reliability of genetic analysis in existing and newly developed devices. In this work, based on the analysis of various software tools, selected programs allow assessing the quality of genomic assembly in parallel sequencing sequencers. Using the selected programs, the data obtained on the domestic sequencer for parallel sequencing Nanofor SPS were processed. Based on the results of processing these data, the quality of the genomic assembly was assessed by the method of analysis of k-mers and recommendations were given for improving the hardware and software of the Nanofor SPS device.
 

Keywords: k-mers, NGS, bioinformatics, genome assembly

Author affiliations:

Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia

 
Contacts: Borodinov Andrey Gennad'evich, borodinov@gmail.com
Article received by the editorial office on 30.12.2021

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Romanenkov K.V. [A new method of evaluating genome assemblies based on kmers frequencies]. Preprinty Instituta prikladnoi matematiki im. M.V. Keldysha RAN [Preprints of the Keldysh Institute of Applied Mathematics], 2017, no. 11, 24 p. DOI: 10.20948/prepr-2017-11 (In Russ.).
  2. Marcais G., Kingsford C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers . Bioinformatics, 2011, vol. 27, is. 6, pp. 764—770. DOI: 10.1093/bioinformatics/btr011
  3. Deorowicz S., Kokot M., Grabowski S., Debudaj-Grabysz A. KMC 2: fast and resource-frugal k-mer counting . Bioinformatics, 2015, vol. 31, is. 10, pp. 1569—1576. DOI: 10.1093/bioinformatics/btv022
  4. Erbert M., Rechner S., Müller-Hannemann M. Gerbil: a fast and memory-efficient k-mer counter with GPU-support . Algorithms for Molecular Biology, 2017, vol. 12, art. num. 9. DOI: 10.1186/s13015-017-0097-9
  5. Mapleson D., Accinelli G.G., Kettleborough G., Wright J., Clavijo B.J. KAT: a K-mer analysis toolkit to quality control NGS datasets and genome assemblies . Bioinformatics, 2017, vol. 33, is. 4, pp. 574—576. DOI: 10.1093/bioinformatics/btw663
  6. Alexandrov A.V., Shalyto A.A. [Error correction method for sequencing data with insertions and deletions]. Nauchno-tekhnicheskii vestnik informatsionnykh tekhnologii, mekhaniki i optiki [Scientific and Technical Journal of Information Technologies, Mechanics and Optics], 2016, vol. 16, no. 1, pp. 108—114. DOI: 10.17586/2226-1494-2016-16-1-108-114 (In Russ.).
 

I. B. Ptitsyna

SCIENTIFIC DEVICES AND INSTRUMENTS
AS A SPECIAL KIND OF ARTIFACTS

"Nauchnoe Priborostroenie", 2022, vol. 32, no. 1, pp. 11—20.
doi: 10.18358/np-32-1-i1120
 

The history of artifacts (human-made objects) is as great as the history of mankind. Among the wide variety of artifacts, tools occupied an important place from the very beginning and, somewhat later, instruments. The development of society has always been accompanied by the need to increase the capabilities of these artifacts and their complications. All artifacts of this kind are extrasomatic organs – addition to bodily and mental organs – are tools created to increase the ability to solve certain problems. With the development of technology, their capabilities have become so great that the question has arisen whether they exceed the capabilities of the human brain. This question is especially relevant for these kinds of tools that are created to assist the brain – self-learning computer programs of artificial intelligence. To understand this, one needs to turn to the origins of science, back to the day when the foundations of methodology and general principles for obtaining a mental product were laid. This result has a peculiarity: it is often perceived anthropomorphically, transferring the properties of the experimenter to the result of his activity. This is especially true for complex devices and instruments. The article shows the nature of the relationship between a person and an instrument as his artificial extrasomatic organ.
 

Keywords: device, instrument, artifact, extrasomatic organ, artificial intelligence, methodology, model, anthropomorphism, mythologization of science

Author affiliation:

Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia

 
Contacts: Ptitsyna Irina Borisovna, ptiirina@yandex.ru
Article received by the editorial office on 23.12.2021

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Hilpinen R. Artifact. The Stanford Encyclopedia of Philosophy, Summer, 2018 Edition. E.N. Zalta (ed.).
    URL: https://plato.stanford.edu/archives/sum2018/entries/artifact/
  2. Kaplan B.Yu. Priborostroenie. Vvedenie v spetsial'nost' [Instrument making. Introduction to Specialty]. Moscow, NITS INFRA-M, 2014. 112 p. DOI: 10.12737/827 (In Russ.).
  3. Podpletennaya A.A. [History of the instrument-making and current state of the industry]. GIAB [Mining informational and analytical bulletin], 2013, no. 12, pp. 353—356. (In Russ.). URL: https://cyberleninka.ru/article/n/istoriya-razvitiya-priborostroeniya-i-sovremennoe-sostoyanie-otrasli
  4. Vinogradova G.N. Istoriya nauki i priborostroeniya [History of science and instrument making]. Saint-Petersburg, NIU ITMO Publ, 2012. 157 p. (In Russ.). URL: https://books.ifmo.ru/file/pdf/860.pdf
  5. Zemlyakov V.L., Nagaenko A.V. Istoriya i metodologiya priborostroeniya [History and methodology of instrument making]. Rostov-on-Don, YuFU Publ., 2012. 110 p. URL: https://studfile.net/preview/1811484/ (In Russ.).
  6. Shukhardin S.V., Laman N.K., Fedorov A.S. Tekhnika v ee istoricheskom razvitii [Technology in its historical development]. Moscow, Nauka Publ., 1979. 416 p. URL: http://nplit.ru/books/item/f00/s00/z0000055/index.shtml (In Russ.).
  7. Gaidenko P.P. Istoriya novoevropeiskoi filosofii v ee svyazi s naukoi [History of new european philosophy in its connection with science]. Saint-Petersburg, Universitetskaya kniga Publ., 2000. 456 p. (In Russ.).
    URL: https://www.studmed.ru/gaydenko-pp-istoriya-novoevropeyskoy-filosofii-v-ee-svyazi-s-naukoy_d0a897016b9.html
  8. Read J. From Alchemy to Chemistry . NY, Dover Publications Inc., 1884. URL: https://archive.org/details/AlchemyToChemistry/page/n1/mode/2up
  9. Principe L.M. The aspiring adept: Robert Boyle and his alchemical quest. Princeton, Princeton University Press, 1998. 340 p. DOI: 10.1515/9780691186283
  10. Dobbs B.J.T. The Foundations of Newton's Alchemy. Cambridge, Cambridge University Press, 1975. 300 p.
  11. Descartes R. Discours de la méthode pour bien conduire sa raison, et chercher la vérité dans les sciences. Ley, 1637. (Russ. Ed.: Dekart R. Rassuzhdenie o metode (1637). Sochineniya v 2 tomakh. Vol. 1. Moscow, Mysl' Publ., 1989. 654 p.) URL: https://vlab.fandom.com/ru/wiki/%D0%94%D0%B5%D0%BA%D0%B0%D1%80%D1%82_%D0%A0._% 22%D0%A0%D0%B0%D1%81%D1%81%D1%83%D0%B6%D0%B4%D0%B5%D0%BD%D0%B8%D0% B5_%D0%BE_%D0%BC%D0%B5%D1%82%D0%BE%D0%B4%D0%B5%22_(1637)
  12. MacGregor K. If every neuron in a human was accurately simulated in a computer, would it result in human consciousness? 2018. URL: https://www.researchgate.net/post/If-every-neuron-in-a-human-was-accurately-simulated-in-a-computer-would-it-result-in-human-consciousness#view=6117be28909d0b100d1cc978
  13. Korzybski A. Science and Sanity : An Introduction to Non-Aristotelian Systems and General Semantics. NY, Institute of General Semantics , 1994 [1933]. 806 p. URL: https://archive.org/details/sciencesanityint0000korz
  14. Waismann F. The many-level-structure of language. Synthese, 1946, vol. 5, no. 5-6, pp. 221—229. DOI: 10.1007/BF02274383
  15. Penrose R. The Emperor's New Mind: Concerning Computers, Minds and The Laws of Physics. Oxford, Oxford University Press, 1989. 480 p. (Russ. Ed.: Penrouz R. Novyi um korolya. Moscow, Editorial URSS, 2003.
    339 p.) (In Russ.).
  16. Graziano M.S.A. Rethinking Consciousness: A Scientific Theory of Subjective Experience. NY, W.W. Norton, 2019. 256 p.
  17. von Uexküll J. Umwelt und Innenwelt der Tiere. 2te vermehrte und verbesserte Auflage. Berlin, Heidelberg, Springer, 1921 [1909]. URL: https://archive.org/details/umweltundinnenwe00uexk
  18. von Uexküll J., Kriszat G. Streifzüge durch die Umwelten von Tieren und Menschen. Berlin, Heidelberg, Springer, 1934. DOI: 10.1007/978-3-642-98976-6
  19. Mahler M., Pine F., Bergman A. The psychological birth of the human infant: symbiosis and individuation. NY, Basic Books Inc., 1975. 308 p. (Russ. Ed.: Maler M.., Pain F., Bergman A. Psikhologicheskoe rozhdenie chelovecheskogo mladentsa: simbioz i individuatsiya. Moscow, Kogito, 2011. 413 p.) (In Russ.).
  20. Vygotskii L.S. Instrument i znak v razvitii rebenka. Sobranie sochinenii L.S. Vygotskogo. T. 6, Nauchnoe nasledie. [Tool and sign in child development. Collected works of L.S. Vygotsky. Vol. 6. Scientific heritage], 1930. (In Russ.). URL: https://www.marxists.org/archive/vygotsky/collected-works.htm
  21. Vygotskii L.S. Myshlenie i rech'. Sobranie sochinenii L.S. Vygotskogo, T. 1, Problemy obshchei psikhologii [Thinking and speech. Collected works of L.S. Vygotsky, Vol. 1, Problems of general psychology], 1934, pp. 39—285. (In Russ.).
    URL: https://www.marxists.org/archive/vygotsky/works/words/Thinking-and-Speech.pdf
 

D. N. Spirjakin, A. M. Baranov

IDENTIFICATION OF COMBUSTIBLE GASES
BY CATALYTIC SENSORS

"Nauchnoe Priborostroenie", 2022, vol. 32, no. 1, pp. 21—34.
doi: 10.18358/np-32-1-i2134
 

Catalytic gas sensors are among the most widely used for measuring concentrations of combustible gases. However, in spite of the variety of advantages of this type of sensors, there are disadvantages. One of them is a low selectivity to target combustible gases. This paper presents results of a machine learning methods application to identification of combustible gases in air by catalytic gas sensors. Sensor signal measurements were performed using the multistage measuring pulse method, which was described in our previous papers. To enrich the sensor signal with information about environment gas composition, the number of stages of the method were drastically increased. The target gases used were methane and vapors of acetone, ethanol and gasoline. The multivariable data was processed with the support vector machine method. The results show, that the proposed method is able to identify gases using single catalytic gas sensor. The method can be used in development of highly selective gas detectors respond only to target gases.
 

Keywords: combustible gases and vapors, gas sensors, catalytic sensor, gases identification

Author affiliations:

Moscow Aviation Institute, Russia

 
Contacts: Spirjakin Denis Nikolaevich, denis.spirjakin@gmail.com
Article received by the editorial office on 07.12.2021

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Baranov A.M., Osipova T.V. [Recent trends in the development of sensors for pre-explosive concentrations of flammable gases and vapors of flammable liquids (review)]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2021, vol. 31, no. 4, pp. 3—29. DOI: 10.18358/np-31-4-i329 (In Russ.).
  2. Spirjakin D., Baranov A.M., Somov A., Sleptsov V. Investigation of heating profiles and optimization of power consumption of gas sensors for wireless sensor networks. Sensors and Actuators A: Physical, 2016, vol. 247, pp. 247—253. DOI: 10.1016/j.sna.2016.05.049
  3. Samotaev N., Oblov K., Ivanova A., Pershenkov V. Low power thermocatalytic sensors with nanostructured gas sensitive materials. 2019. URL: http://repository.utm.md/handle/5014/5753
  4. Karpov E.E., Karpov E.F., Suchkov A., Mironov S., Baranov A., Sleptsov V., Calliari L. Energy efficient planar catalytic sensor for methane measurement. Sensors and Actuators A: Physical, 2013, vol. 194, pp. 176—180. DOI: 10.1016/j.sna.2013.01.057
  5. Korotcenkov G., Cho B.K. Engineering approaches for the improvement of conductometric gas sensor parameters: Part 1. Improvement of sensor sensitivity and selectivity (short survey). Sensors and Actuators B: Chemical, 2013, vol. 188, pp. 709—728. DOI: 10.1016/j.snb.2013.07.101
  6. Hiranaka Y., Abe T., Murata H. Gas-dependent response in the temperature transient of SnO2 gas sensors. Sensors and Actuators B: Chemical, 1992, vol. 9, no. 3, pp. 177—182.
    DOI: 10.1016/0925-4005(92)80213-H
  7. Cavicchi R.E., Suehle J.S., Kreider K.G., Gaitan M., Chaparala P. Fast temperature programmed sensing for micro-hotplate gas sensors. IEEE Electron Device Letters, 1995, vol. 16, no. 6, pp. 286—288.
    DOI: 10.1109/55.790737
  8. Parret F., Ménini Ph., Martinez A., Soulantica K., Maisonnat A., Chaudret B. Improvement of micromachined SnO2 gas sensors selectivity by optimised dynamic temperature operating mode. Sensors and Actuators B: Chemical, 2006, vol. 118, is. 1-2, pp. 276—282. DOI: 10.1016/j.snb.2006.04.055
  9. Brauns E., Morsbach E., Kunz S., Baeumer M., Lang W. Temperature modulation of a catalytic gas sensor. Sensors, 2014, vol. 14, is. 11, pp. 20372—20381. DOI: 10.3390/s141120372
  10. Kalinowski P. Woźniak L., Strzelczyk A., Jasinski P., Jasiński G. Efficiency of linear and non-linear classifiers for gas identification from electrocatalytic gas sensor. Metrology and Measurement Systems, 2013, vol. 20, no. 3. pp. 501—512. DOI: 10.2478/mms-2013-0043
  11. Ben-Hur A., Weston J. A user’s guide to support vector machines. In: Carugo O., Eisenhaber F., (eds.) Data mining techniques for the life sciences, USA, New Jersey, Humana Press, 2010, pp. 223—239. DOI: 10.1007/978-1-60327-241-4_13
  12. Scikit-learn: machine learning in Python. URL: https://scikit-learn.org
  13. Jolliffe I.T., Cadima J. Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, vol. 374, no. 2065, Id. 20150202. DOI: 10.1098/rsta.2015.0202
  14. Yi W.Y., Lo K.M., Mak T., Leung K.S., Leung Y., Meng M.L. A survey of wireless sensor network based air pollution monitoring systems. Sensors, 2015, vol. 15, no. 12, pp. 31392—31427.
    DOI: 10.3390/s151229859   
  15. Arroyo P., Herrero J.L., Suárez J.I., Lozano J. Wireless sensor network combined with cloud computing for air quality monitoring. Sensors. 2019, vol. 19, no. 3, Id. 691. DOI: 10.3390/s19030691
 

V. A. Talipov1, A. M. Baranov2, I. I. Ivanov2, S. M. Mironov1

LOW TEMPERATURE METHODS FOR SELECTIVE
DETERMINATION OF HYDROGEN CONCENTRATION
IN GAS ANALYTICAL TECHNOLOGY

"Nauchnoe Priborostroenie", 2022, vol. 32, no. 1, pp. 35—47.
doi: 10.18358/np-32-1-i 3547
 

The adaptation of known measurement techniques for selective low-temperature measurement of hydrogen concentration in the composition of multicomponent combustible gas mixtures and their practical application in gas analytical technology has been carried out. The proposed approach makes it possible to measure the hydrogen concentration in both hydrogen-hydrocarbon mixtures and hydrogen-air mixtures in a wide temperature range from 20 to 200 °C. The method of measuring the amount of heat released during the combustion of a known volume of hydrogen has been proved to be more accurate than the traditional method of detecting hydrogen concentration by measuring the response of a catalytic sensor.
 

Keywords: measurement of hydrogen concentration, catalytic sensor, selectivity, sensitivity, thermocatalysis, combustible gases

Author affiliations:

1Scientific and Technical Center for Gas Sensing Sensors named after E.F. Karpov, Lyubertsy, Russia
2Moscow Aviation Institute, Russia

 
Contacts: Talipov Vladislav Andreevich, vt174@mail.ru
Article received by the editorial office on 17.11.2021

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Furat D., Martin A., Shafiullah G.M. Hydrogen production for energy. An overview. International Journal of Hydrogen Energy, 2020, vol. 45, is. 7, pp. 3847—3869. DOI: 10.1016/j.ijhydene.2019.12.059
  2. GOST R 51673-2000. Gosudarstvennyy standart RF. Vodorod gazoobraznyy chistyy [State standard of the Russian Federation. Hydrogen gas pure], 01.01.2002. (In Russ.).
  3. Kalyakin A.S., Fadeev G.I., Volkov A.N., Gorbova E.V., Demin A.K. [Electrodes for potentiometric solid-electrolyte sensors with nonseparated gas spaces for measuring the contents of combustible CO and H2 gases in gas mixtures]. Elektrokhimiya [Russian Journal of Electrochemistry], 2015, vol. 51, no. 2, pp. 162—170. DOI: 10.1134/S1023193515020068 (In Russ.).
  4. Shaposhnik A.V., Moskalev P.V., Chegereva K.L., Zviagin A.A., Vasiliev A.A. Selective gas detection of H2 and CO by a single MOX-sensor. Sensors and Actuators, B: Chemical, 2021, vol. 334, Id. 129376. DOI: 10.1016/j.snb.2020.129376
  5. Ivanov I.I., Baranov A.M., Talipov V.A., Mironov S.M., Kolesnik I.V., Napolskii K.S. [Development of effective sensors for detecting pre-explosive H2 concentrations]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2021, vol. 31, no. 3, pp. 25—36. DOI: 10.18358/np-31-3-i2536 (In Russ.).
  6. Del Orbe D.V., Yang H., Cho I., Park J., Choi J., Woo Hang S., Park I. Low-power thermocatalytic hydrogen sensor based on electrodeposited cauliflower-like nanostructured Pt black. Sens. Actuators B: Chem, 2021, vol. 329, Id 129129. DOI: 10.1016/j.snb.2020.129129
  7. Arutyunov V.S., Belyaev A.A., Troshin K.Ya., Arutyunov A.V., Tsarenko A.A., Nikitin A.V. [On the use of methane-hydrogen mixtures in internal combustion engines]. Neftegazokhimiya [Oil & gas chemistry], 2019, no. 3-4, pp. 5—17. (In Russ.).
  8. Hao L., Ruijie W., Huabin L., Liying H., Wenjing Y., Zhongqiu H., Shurui F., Yi W. A novel catalytic-type gas sensor based on alumina ceramic substrates loaded with catalysts and printed electrodes. Chinese Journal of Analytical Chemistry, 2021, vol. 49, pp. 93—101. DOI: 10.1016/j.cjac.2021.09.002
  9. Roslyakov I.V., Kolesnik I.V., Evdokimov P.V., Garshev A.V., Skryabina O.V., Mironov S.M., Baranchikov A.E., Karpov E.E., Napolskii K.S. Microhotplate catalytic sensors based on anodic alumina: operando study of methane sensitivity hysteresis. Sensors and Actuators B: Chemical, 2021, vol. 330, Id 129137. DOI: 10.1016/j.snb.2020.129307
  10. Karpov-Sensor. Proizvodstvo termokataliticheskikh sensorov goryuchikh gazov [Production of thermocatalytic flammable gas sensors]. URL: http://karpov-sensor.com/ (accessed 14.11.2021). (In Russ.).
  11. Somov A., Baranov A., Spirjakin D., Passerone R. Circuit design and power consumption analysis of wireless gas sensor nodes: one-sensor versus two-sensor approach. IEEE Sensors, 2014, vol. 14. DOI: 10.1109/JSEN.2014.2309001
  12. Tianyu Z., Yuchen Z., Pengzhan L., Junhui H. A novel strategy to identify gases by a single catalytic combustible sensor working in its linear range. Sensors and Actuators B: Chemical, 2020, vol. 321, Id 128514. DOI: 10.1016/j.snb.2020.128514
  13. Karpov E.F., Basovskii B.I. Kontrol' provetrivaniya i degazatsii v ugol'nykh shakhtakh: Spravochnoe posobie [Ventilation control and degassing in coal mines: Reference Manual]. Moscow, Nedra Publ., 1994. 336 p. (In Russ.).
  14. Korotcenkov G., Cho B.K. Engineering approaches for the improvement of conductometric gas sensor parameters: Part 1. Improvement of sensor sensitivity and selectivity (short survey). Sensors and Actuators B: Chemical, 2013, vol. 188, pp. 709—728. DOI: 10.1016/j.snb.2013.07.101
  15. Ivanov I.I., Baranov A.M., Akbari S., Mironov S., Karpova E. Methodology for estimating potential explosion hazard of hydrocarbon with hydrogen mixtures without identifying gas composition. Sensors and Actuators B: Chemical, 2019, vol. 293, pp. 273—280. DOI: 10.1016/j.snb.2019.05.001
  16. Ivanov I., Baranov M.A., Spirjakin D., Akbari S., Mironov S., Talipov V. Advanced Data Processing for Monitoring the Explosiveness of Combustible Gas Mixtures. 10th Mediterranean Conference on Embedded Computing (MECO), 2021, pp. 1—5. DOI: 10.1109/MECO52532.2021.9460264
  17. L’vov B.V., Galwey A.K. Catalytic oxidation of hydrogen on platinum. J Therm Anal Calorim, 2013, vol. 112, pp. 815—822. DOI: 10.1007/s10973-012-2567-0
 

D. A . Goryachkin, A . Yu. Rodionov, E . N. Sosnov, V. I. Kuprenyuk

SOLID STATE LASER FOR SCIENTIFIC INVESTIGATIONS
WITH COMPENSATION OF A THERMAL LENS IN THE CAVITY.
I. EXPERIMENTAL RESULTS

"Nauchnoe Priborostroenie", 2022, vol. 32, no. 1, pp. 48—55.
doi: 10.18358/np-32-1-i4855
 

The most important parameters of a solid state laser for scientific and technological applications are the high brightness and small angular divergence of the output radiation. This series of two papers highlights the method of numerical optimization of the laser resonator based on a commercial head with compensation of the induced thermal lens. Experimental verification of the method was carried out. In a 1500 mm long resonator, compensation is achieved by inserting negative and positive correcting lenses into the resonator, resulting in output radiation in the form of a Gaussian beam with a small angular divergence, suitable for scientific research.
 

Keywords: laserhead, induced thermallens, Gaussian beam, correcting lens, aperture diaphragm

Author affiliations:

The Russian State Scientific Center for Robotics and Technical Cybernetics (RTC), Saint Petersburg, Russia

 
Contacts: Goryachkin Dmitry Alekseevich, d.goryachkin@rtc.ru
Article received by the editorial office on 17.11.2021

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Products Cutting Edge Optronics [site]. URL: https://cuttingedgeoptronics.com/laser-gain-modules/
  2. High power diode lasers & DPSS lasers [site]. URL: http://www.sino-laser.com/dpssamplifier.html
  3. Grechin S.G., Nikolaev P.P. [Quantum solid state lasers with transverse semiconductor pumping]. Kvantovaya elektronika [Quantum electronics], 2009, vol. 39, no. 1, pp. 1—17. URL: https://www.elibrary.ru/item.asp?id=23451700 (In Russ.).
  4. Gluchich I.V., Dimakov S.A., Kurunov R.F., Polikarpov S.S., Frolov S.V. [Powerful solid state lasers on Nd: YAG with transverse diode pumping and improved radiation quality]. Zhurnal technicheskoy fiziki [Journal of Technical Physics], 2011, vol. 81, is. 8, pp. 70—75. URL: https://journals.ioffe.ru/articles/10386 (In Russ.).
  5. Vdovin G.V., Chetkin S.A. [Active correction of solid-state laser thermal lens. II. Using a Controlled Configuration Resonator]. Kvantovaya elektronika [Quantum electronics], 1993, vol. 20, no. 2, pp. 167—171. URL: http://mi.mathnet.ru/qe2958 (In Russ.).
  6. Gryaznov N.A., Sosnov E.N., Goryachkin D.A., Nikitina V.M., Rodionov A.Yu. [Active phase synchronization of modes in a resonator with a Michelson interferometer]. Opticheskiy zhurnal [Optical magazine], 2019, vol. 86, no. 4, pp. 3—10. (In Russ.). URL: http://opticjourn.ru/vipuski/1836-opticheskij-zhurnal-tom-86-04-2019.html
  7. Donin V.I., Yakovin D.V., Gribanov A.V., Yakovin M.D. [ New method of Q-switching with mode locking in solid-state lasers ]. Opticheskiy zhurnal [Optical magazine], 2018, vol. 85, no. 4, pp. 8—11. (In Russ.). URL: http://opticjourn.ru/vipuski/1679-opticheskij-zhurnal-tom-85-04-2018.html
  8. Rodionov A.Yu., Goryachkin D.A., Sosnov E.N., Kupre-nyuk V.I. [Solid state laser for scientific investigations with compensation of a thermal lens in the cavity. II. Method and results of numerical calculations]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2022, vol. 32, no. 1, pp. 56—67. (In Russ.).
 

A. Yu. Rodionov, D. A . Goryachkin, E. N. Sosnov, V. I. Kuprenyuk

SOLID STATE LASER FOR SCIENTIFIC INVESTIGATIONS
WITH COMPENSATION OF A THERMAL LENS IN THE CAVITY.
II. METHOD AND RESULTS OF NUMERICAL CALCULATIONS

"Nauchnoe Priborostroenie", 2022, vol. 32, no. 1, pp. 56—67.
doi: 10.18358/np-32-1-i5667
 

The most important parameters of a solid state laser for scientific and technological applications are the high brightness and small angular divergence of the output radiation. This series of two papers concerns the method of numerical optimization of the laser resonator based on a commercial head with compensation of the induced internal thermal lens. Experimentation is also used to verify optimization. The method uses quasigeometrical optics to calculate focal lenghts of correcting lenses and their position in the resonator based on the measured parameters of the thermal lens and the required parameters of the output laser beam, with subsequent diffraction refining.
 

Keywords: laser head, induced thermal lens, Gaussian beam, correcting lens, aperture stop

Author affiliations:

The Russian State Scientific Center for Robotics and Technical Cybernetics (RTC), Saint Petersburg, Russia

 
Contacts: Goryachkin Dmitry Alekseevich, d.goryachkin@rtc.ru
Article received by the editorial office on 17.11.2021

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Goryachkin D.A., Rodionov A.Yu., Sosnov E.N., Kuprenyuk V.I. [Solid state laser for scientific investigations with compensation of a thermal lens in the cavity. I. Experimental results]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2022, vol. 32, no. 1, pp. 48—55. (In Russ.).
  2. Bykov V.P., Silichev O.O. Lazernye rezonatory [Laser resonators]. Moscow, Fizmatlit Publ,, 2004. 320 p. (In Russ.).
  3. Anan'ev Yu.A. Opticheskie rezonatory i lazernye puchki [Optical resonators and laser beams]. Moscow, Nauka Publ., 1990. 264 p. (In Russ.).
  4. Siegman A.E., Szikclas E.A. Laser Resonators with Polarizing Elements. Appl. Optics, 1974, vol. 13, no. 12, pp. 2775—2782. ·
 

I. F. Spivak-Lavrov1, O. A. B aisanov2, S. U. S haripov1, T. Zh. Shugaeva1

DYNAMICS OF CHARGED PARTICLES BEAM

"Nauchnoe Priborostroenie", 2022, vol. 32, no. 1, pp. 68—76.
doi: 10.18358/np-32-1-i6876
 

The behavior of a beam of charged particles formed by a point source located in the middle plane of the mirror is considered. The calculation of the trajectories of particles was carried out by numerical integration of dimensionless Newton equations. The electrostatic field of the three-electrode mirror was described by an analytical expression for the potential with good accuracy. It is shown that as a result of reflection in a three-electrode transaxial mirror, it is possible to achieve both spatial and energy time-of-flight focusing. Two modes of vertical beam focusing are considered.
 

Keywords: charged particle, transaxial electrostatic mirror, dimensionless Newton equations, telescopic system, scalar potential, trajectory of particles

Author affiliations:

1K. Zhubanov Aktobe Regional University, Aktobe, Republic of Kazakhstan
2T. Begeldinov Military Institute of the Air Defence Forces, Aktobe, Republic of Kazakhstan

 
Contacts: Spivak-Lavrov Igor' Feliksovich, spivakif@rambler.ru
Article received by the editorial office on 16.11.2021

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Glikman L.G., Karezkaya S.P., Kel'man V.M., Yakushev E.M. [Electron-optical parameters of threeelectrode transaxial cylindrical lenses]. Zhurnal tekhnicheskoj fiziki [Journal of Applied Physics], 1971, vol. 41, no. 2, pp. 330—335. (In Russ.).
  2. Kel'man V.M., Karetskaya S.P., Fedulina L.V., Yakushev E.M. Ehlektronno-opticheskie ehlementy prizmennykh spektrometrov zaryazhennykh chastits [Electron-optical elements of prism spectrometers of charged particles]. Alma-Ata, Nauka publ., KazSSR, 1979. 232 p. (In Russ.).
  3. Tikhonov A.N., Samarskiy A.A. Uravneniya matematicheskoi fiziki [Equations of mathematical physics]. Moscow, Nauka Publ., 1977. 736 p. (In Russ.).
  4. Spivak-Lavrov I.F. Analytical methods for the calculation and simulation of new schemes of static and time-of-flight mass spectrometers. Advances in Imaging and Electron Physics, 2016, vol. 193, pp. 45—128. DOI: 10.1016/bs.aiep.2015.10.001
  5. Spivak-Lavrov I.F., Baisanov O.A., Nurmukhanova A.A. Ways of developing analyzers for static mass spectrometers. Bulletin of the Russian Academy of Sciences: Physics, 2018, vol. 82, no. 10, pp. 1353—1358. DOI: 10.3103/S1062873818100210
  6. Spivak-Lavrov I.F., Nurmukhanov A.A., Shukaev T.Zh. [Prismatic mass spectrograph with a conical achromatic prism and transaxial lenses]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2019, vol. 29, no. 1, pp. 116—125. DOI: 10.18358/np-29-1-i116125 (In Russ.).
  7. Spivak-Lavrov I.F., Shugaeva T.Zh., Kalimatov T.S. Mass analyzer with conic achromatic prism and transaxial lenses. International Journal of Mass Spectrometry, 2019, vol. 444, id. 116180. DOI: 10.1016/j.ijms.2019.116180
  8. Spivak-Lavrov I.F., Sharipov S.U., Shugaeva T.Zh. [ Solutions of the Laplace equation in cylindrical coordinates, driven to two-dimensional harmonic potentials ]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2020, vol. 30, no. 2, pp. 51—60. (In Russ.). DOI: 10.18358/np-30-2-i5160
  9. Spivak-Lavrov I.F., Shugaeva T.Zh., Sharipov S.U. Solutions of the Laplace equation in cylindrical coordinates, driven to 2D harmonic potentials. Advances in Imaging and Electron Physics, 2021, vol. 215, pp. 181—193. DOI: 10.1016/bs.aiep.2020.06.006
  10. Lavrent'ev M.A., Shabat B.V. Metody teorii funktsii kompleksnogo peremennogo [Methods of complex variable function theory]. Moscow: Nauka Publ., 1976. 716 p. (In Russ.).
 

T. V. Osipova, A. M. Baranov, I. I. Ivanov

PRINCIPAL COMPONENT ANALYSIS AS AN ALTERNATIVE
ALGORITHM FOR PROCESSING DATA
OF THERMOCATALYTIC SENSOR

"Nauchnoe Priborostroenie", 2022, vol. 32, no. 1, pp. 77—92.
doi: 10.18358/np-32-1-i7792
 

In this article the study of the possibility and evaluation of the use of the principal component analisys as an alternative algorithm for processing data of thermocatalytic sensors is carried out. Based on the obtained results it was found that the effect of the sensor's operating temperature on the response is minimal, which makes it possible to combine them into a single system. At the same time the different concentration of the supplied gas is uniquely determined. The research methodology is defined and the results are presented, showing that the principal component analysis makes it possible to distinguish sensor responses at different concentrations without using additional mathematical operations to prepare the obtained data.
 

Keywords: thermocatalytic sensor, methane, data processing, principal component analisys, gas detection

Author affiliations:

Moscow Aviation Institute (National Research University), Moscow, Russia

 
Contacts: Osipova Tatiana Vladislavovna, t.osipova.95@mail.ru
Article received by the editorial office on 02.02.2022

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Baranov A.M., Osipova T.V. [Recent trends in the deve-lopment of sensors for pre-explosive concentrations of flammable gases and vapors of flammable liquids (review)]. Nauchnoe Priborostroenie [Scientific Instru­mentation], 2021, vol. 31, no. 4, pp. 3—29. DOI: 10.18358/np-31-4-i329 (In Russ.).
  2. Williams D.E. Electrochemical sensors for environmental gas analysis. Current Opinion in Electrochemistry, 2020, vol. 22, pp. 145—153. DOI: 10.1016/j.coelec.2020.06.006
  3. Singh D., Dahiya M., Kumar R., Nanda C. Sensors and systems for air quality assessment monitoring and management: A review. Journal of environmental management, 2021, vol. 289, art. 112510. DOI: 10.1016/j.jenvman.2021.112510
  4. Ma Y., Kaczynski J., Ranacher C., Roshanghias A., Zauner M., Abasahl B. Nano-porous aluminum oxide membrane as filtration interface for optical gas sensor packaging. Microelectronic Engineering, 2018, vol. 198, pp. 29—34. DOI: 10.1016/j.mee.2018.06.013
  5.   Sysoev V.V., Zyuryukin Yu.A. [Electronic Nose Multi-Sensor Gas Recognition Systems: review]. Vestnik SGTU [Bulletin of Saratov state technical university], 2007, vol. 2, no. 1, pp. 111—119. (In Russ.). URL: https://elibrary.ru/item.asp?id=12793666
  6.   Suleimanov A.M. [Analysis of experimental data by principal component method]. Izvestiya KGASU [News of the Kazan State University of Architecture and Engineering], 2005, no. 1 (3), pp. 81—83. URL: https://izvestija.kgasu.ru/files/N1(3)2005/Sulejmanov_81-83.pdf (In Russ.).
  7. Kravchenko E.I., Petrov V.V., Varezhnikov A.S. [The development of gas recognition technique using multysensor system for air monitoring]. Inzhenernyi vestnik Dona (setevoe izdanie) [Electronic scientific journal "Engineering Journal of Don"], 2012, vol. 23, no. 4, part 2. URL: http://www.ivdon.ru/ru/magazine/archive/n4p2y2012/1346 (In Russ.).
  8. Belozertsev A.I., Cheremisina O.V., El-Salim S.Z., Manoylov V.V., Zarutskiy I.V. [Algorithms for data processing in gas analytical complexes with semiconductor sensors for detecting contaminants in rocket fuel components]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2018, vol. 28, no. 1, pp. 18—29. DOI: 10.18358/np-28-1-i1829 (In Russ.).
  9. Karpov-sensors. Proizvodstvo termokataliticheskikh sensorov goryuchikh gazov [Production of thermocatalytic flammable gas sensors]. URL: http://karpov-sensor.com/ (accessed 10.01.2022). (In Russ.).
  10. Ivanov I.I., Baranov A.M., Talipov V.A., Mironov S.M., Kolesnik I.V., Napolskii K.S. [Development of effective sensors for detecting pre-explosive H2 concentrations]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2021, vol. 31, no. 3, pp. 25—36. DOI: 10.1016/j.snb.2015.07.082 (In Russ.).
  11. Somov A., Baranov A., Suchkov A., Karelin A., Mironov S., Karpova E. Improving interoperability of catalytic sensors // Sensors and Actuators B. 2015. Vol. 221. P. 1156—1161. DOI: 10.1016/j.snb.2015.07.082
  12. Moroz G., Lyashevskaya O., Shchurov I. Lektsiya: Metod glavnykh komponent [Lecture: Principal Component Method]. URL: http://math-info.hse.ru/f/2015-16/ling-mag-quant/lecture-pca.html (accessed 04.12.2021). (In Russ.).
  13. Baimuratov I.R. Metody avtomatizatsii mashinnogo obucheniya [Methods of machine learning automation]. Saint-Petersburg: Universitet ITMO, 2020. 40 p. (In Russ.).
 

Ulitsa Ivana Chernykh, 31-33, lit. A, St. Petersburg, Russia, 198095, P.O.B. 140
tel: (812) 3630719, fax: (812) 3630720, mail: iap@ianin.spb.su

content: Valery D. Belenkov design: Banu S. Kuspanova layout: Anton V. Manoilov