logo
blue band <-
  JOURNAL "NP" ISSUES

"Nauchnoe Priborostroenie", 2021, Vol. 31, no. 1. ISSN 2312-2951, DOI: 10.18358/np-31-1-e010

"NP" 2021 year Vol. 31 no. 1.,   ABSTRACTS

ABSTRACTS, REFERENCES

A. N. Zubik, G. E. Rudnitskaya, A. A. Evstrapov

LOOP-MEDIATED ISOTHERMAL AMPLIFICATION (LAMP)
TECHNIQUE IN MICRODEVICE FORMAT (REVIEW)

"Nauchnoe priborostroenie", 2021, vol. 31, no. 1, pp. 3—43.
DOI: 10.18358/np-31-1-i343
 

Loop-mediated isothermal amplification (LAMP) is widely used as a fast and sensitive diagnostic method and is most promising for analysis in conditions of limited time and resources, for example, in places of care. The paper discusses the basic principles of LAMP technique, methods for detecting reaction products, as well as some microfluidic devices and analytical systems based on LAMP, including those developed for express diagnostics in the context of the COVID-19 pandemic.
 

Keywords: microfluidic devices, Loop-mediated isothermal amplification, LAMP, point-of-care (POC), COVID-19

Author affiliations:

Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia

 
Contacts: Zubik Aleksandra Nikolaevna, tunix@yandex.ru
Article received by the editorial office on 06.11.2020

Full text (In Russ./ In Eng.) >>

REFERENCES

  1. Notomi T., Okayama H., Masubuchi H., Yonekawa T., Watanabe K., Amino N., Hase T. Loop-mediated isothermal amplification of DNA. Nucleic Acids. Res., 2000, vol. 28, no. 12,  e63 (7 p.). DOI: 10.1093/nar/28.12.e63
  2. BIORON GmbH. URL: https://www.bioron.net/product-category/polymerases/sd-polymerase/ (accessed 10.10.2020).
  3. Ignatov K.B., Barsova E.V., Fradkov A.F., Blagodatskikh K.A., Kramorova T.V., Kramorov V.M. A strong strand displacement activity of thermostable DNA polymerase markedly improves the results of DNA amplification. BioTechniques, 2014, vol. 57, no. 2, pp. 81—87. DOI: 10.2144/000114198
  4. Shevyakov A.G., Vetchinin S.S., Biketov S.F. [Loop isothermal amplification and immunomagnetic separation in microbial contamination diagnostics]. Sbornik statej Mezhdunarodnoj nauchno-prakticheskoj konferencii "Biotekhnologiya i obshchestvo v XXI v." [Collection of articles of the International Scientific and Practical Conference "Biotechnology and Society in the 21st Century"]. Barnaul, September 15—18, 2015. Altai State University Publ., pp. 93—96. (In Russ.).
  5. Hataoka Y., Zhang L., Mori Y., Tomita N., Notomi T., Baba Y. Analysis of specific gene by integration of isothermal amplification and electrophoresis on poly(methyl methacrylate) microchips. Anal. Chem., 2004, vol. 76, no. 13, pp. 3689—3693. DOI: 10.1021/ac035032u
  6. Mori Y., Kitao M., Tomita N., Notomi T. Real-time turbidimetry of LAMP reaction for quantifying template DNA. J. Biochem. Biophys. Methods, 2004, vol. 59, pp. 145—157.
  7. Nagamine K., Hase T., Notomi T. Accelerated reaction by loop-mediated isothermal amplification using loop primers . Mol. Cell. Probes, 2002, vol. 16, pp. 223—229. DOI: 10.1006/mcpr.2002.0415
  8. Eiken Chemical Co. URL: http://loopamp.eiken.co.jp/e/lamp/ loop.html (accessed 10.10.2020).
  9. Zhang X., Lowe S.B., Gooding J.J. Brief review of monitoring methods for loop-mediated isothermal amplification (LAMP). Biosens. Bioelectron., 2014, vol. 61, pp. 491—499. DOI: 10.1016/j.bios.2014.05.039
  10. Mori Y., Nagamine K., Tomita N., Notomi T. Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochem Biophys Res Commun., 2001, vol. 289, pp. 150—154. DOI: 10.1006/bbrc.2001.5921
  11. Abdul-Ghani R., Al-Mekhlafi A.M., Karanis P. Loop-mediated isothermal amplification (LAMP) for malarial parasites of humans: Would it come to clinical reality as a point-of-care test? Acta Trop., 2012, vol. 122, pp. 233—240. DOI: 10.1016/j.actatropica.2012.02.004
  12. Mori Y., Kitao M., Tomita N., Notomi T. Real-time turbidimetry of LAMP reaction for quantifying template DNA. J. Biochem. Biophys. Methods, 2004, vol. 59, pp. 145—157. DOI: 10.1016/j.jbbm.2003.12.005
  13. Mori Y., Notomi T. Loop-mediated isothermal amplification (LAMP): a rapid, accurate, and costeffective diagnostic method for infectious diseases. J. Infect. Chemother, 2009, vol. 15, pp. 62—69. DOI: 10.1007/s10156-009-0669-9
  14. Pourmand N., Karhanek M., Persson H.H.J., Webb C.D., Lee T.H., Zahradnikova A., Davis R.W. Direct electrical detection of DNA synthesis. Proc. Natl. Acad. Sci. USA, 2006, vol. 103, no. 17, pp. 6466—6470. DOI: 10.1073/pnas.0601184103
  15. Purushothaman S., Toumazou C., Ou C. Protons and single nucleotide polymorphism detection: a simple use for the ion sensitive field effect transistor. Sens. Actuators B Chem., 2006, vol. 114, pp. 964—968. DOI: 10.1016/j.snb.2005.06.069
  16. Rothberg J.M., Hinz W., Rearick T.M., et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature, 2011, vol. 475, pp. 348—352.
  17. Toumazou C., Shepherd L.M., Reed S.C., et al. Simultaneous DNA amplification and detection using a pH-sensing semiconductor system. Nat. Methods, 2013, vol. 10, pp. 641—646. DOI: 10.1038/nmeth.2520
  18. Tanner N.A., Zhang Y., Evans Jr. T.C. Visual detection of isothermal nucleic acid amplification using pH-sensitive dyes. BioTechniques, 2015, vol. 58, no. 2, pp. 59—68. DOI: 10.2144/000114253
  19. Le T.H., Nguyen N.T.B., Truong N.H., De N.V. Development of mitochondrial loop-mediated isothermal amplification for detection of the small liver fluke opisthorchis viverrini (opisthorchiidae; trematoda; platyhelminthes). J. Clin. Microbiol., 2012, vol. 50, pp. 1178—1184. DOI: 10.1128/JCM.06277-11
  20. Almasi M.A., Ojaghkandi M.A., Hemmatabadi A., Hamidi F., Aghaei S. Development of colorimetric loopmediated isothermal amplification assay for rapid detection of the Tomato Yellow Leaf Curl Virus. J Plant Pathol Microbiol., 2013, vol. 4, no. 1, article ID 153 (6 p.).
  21. Wastling S.L., Picozzi K., Kakembo A.S.L., Welburn S.C. LAMP for human african trypanosomiasis: a comparative study of detection formats. Plos. Negl. Trop. Dis., 2010, vol. 4, no. 11, e865 (6 p.). DOI: 10.1371/journal.pntd.0000865
  22. Tomita N., Mori Y., Kanda H., Notomi T. Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat. Protoc., 2008, vol. 3, no. 5, pp. 877—882. DOI: 10.1038/nprot.2008.57
  23. Goto M., Honda E., Ogura A., Nomoto A., Hanaki K. Colorimetric detection of loopmediated isothermal amplification reaction by using hydroxyl naphthol blue. BioTechniques, 2009, vol. 46, no. 3, pp. 167—172. DOI: 10.2144/000113072
  24. Safavieh M., Ahmed M.U., Sokullu E., Ng A., Braescu L., Zourob M. A simple cassette as point-of-care diagnostic device for naked-eye colorimetric bacteria detection. Analyst, 2013, vol. 139, pp. 482—487. DOI: 10.1039/C3AN01859H
  25. Wang X., Fu Z., Chen X., Peng C., Xu X., Wei W., Li F., Xu J. Use of a novel metal indicator to judge loop-mediated isothermal amplification for detecting the 35S promoter. Anal. Bioanal. Chem., 2017, vol. 409, no. 4, pp. 884—889. DOI: 10.1007/s00216-016-0084-x
  26. Oh S.J., Park B.H., Jung J.H., Choi G., Lee D.C., Kim D.H., Seo T.S. Centrifugal loop-mediated isothermal amplification microdevice for rapid, multiplex and colorimetric foodborne pathogen detection. Biosens. Bioelectron, 2016, vol. 75, pp. 293—300. DOI: 10.1016/j.bios.2015.08.052
  27. Gadkar, V.J., Goldfarb, D.M., Gantt, S. et al. Real-time detection and monitoring of loop mediated amplification (LAMP) reaction using self-quenching and de-quenching fluorogenic probes. Sci. Rep., 2018, vol. 8, article ID 5548. DOI: 10.1038/s41598-018-23930-1
  28. Biswas G., Sakai M. Loop-mediated isothermal amplification (LAMP) assays for detection and identification of aquaculture pathogens: current state and perspectives. Appl. Microbiol. Biotechnol., 2014, vol. 98, no. 7, pp. 2881—2895. DOI: 10.1007/s00253-014-5531-z
  29. Shang Y., Sun J., Ye Y., Zhang J., Zhang Y., Sun X. Loop-mediated isothermal amplification-based microfluidic chip for pathogen detection. Critical Reviewsin Food Science and Nutrition, 2020, vol. 60, no. 2, pp. 201—224. DOI: 10.1080/10408398.2018.1518897
  30. Lee S., Lee C., Mark H., Meldrum D.R., Lin C. Efficient, specific, compact hepatitis B diagnostic device: Optical detection of the hepatitis B virus by isothermal amplification. Sens. Actuators B Chem., 2007, vol. 127, no. 7, pp. 598—605. DOI: 10.1016/j.snb.2007.05.015
  31. Fang X., Liu Y., Kong J., Jiang X. Loop-mediated isothermal amplification integrated on microfluidic chips for point-of-care quantitative detection of pathogens. Anal. Chem., 2010, vol. 82, no. 7, pp. 3002—3006. DOI: 10.1021/ac1000652
  32. Santiago-Felipe S., Tortajada-Genaro L.A., Carrascosa J., Puchades R., Maquieira A. Real-time loop-mediated isothermal DNA amplification in compact disc micro-reactors. Biosens. Bioelectron., 2016, vol. 79, pp. 300—306. DOI: 1 0.1016/j.bios.2015.12.045
  33. Yan H., Zhu Y., Zhang Y., Wang L., Chen J., Lu Y., Xu Y., Xing W. Multiplex detection of bacteria on an integrated centrifugal disk using bead-beating lysis and loopmediated amplification. Scientific Reports, 2017, vol. 7, article ID 1460. DOI: 10.1038/s41598-017-01415-x
  34. Chen J., Xu Y., Yan H., Zhu Y., Wang L., Zhang Y., Lu Y., Xing W. Sensitive and rapid detection of pathogenic bacteria from urine samples using multiplex recombinase polymerase amplification. Lab Chip, 2018, vol. 18, pp. 2441—2452. DOI: 10.1039/C8LC00399H
  35. Kiatpathomchai W., Jaroenram W., Arunrut N., Jitrapakdee S., Flegel T.W. Shrimp Taura syndrome virus detection by reverse transcription loop-mediated isothermal amplification combined with a lateral flow dipstick. Journal of Virological Methods, 2008, vol. 153, pp. 214—217. DOI: 10.1016/j.jviromet.2008.06.025
  36. HybriDetect, Milenia Biotec GmbH. URL: https://www.milenia-biotec.com/en/product/hybridetect/ (accessed 10.10.2020).
  37. Jung J.H., Oh S.J., Kim Y.T., Kim S.Y., Kim W.-J., Jung J. Seo T.S. Combination of multiplex reverse-transcription loop-mediated isothermal amplification with an immunochromatographic strip for subtyping influenza A virus. Anal. Chim. Acta, 2015, vol. 853, pp. 541—547. DOI: 10.1016/j.aca.2014.10.020
  38. Jung J.H., Park B.H., Oh S.J., Choi G., Seo T.S. Integration of reverse transcriptase loop-mediated isothermal amplification with an immunochromatographic strip on a centrifugal microdevice for influenza A virus identification. Lab Chip, 2015, vol. 15, pp. 718—725. DOI: 10.1039/C4LC01033G
  39. Zhu H., Fohlerova Z., Pekarek J., Basova E., Neuzil P. Recent advances in lab-on-a-chip technologies for viral diagnosis. Biosens. Bioelectron., 2020, vol. 153, article ID 112041. DOI: 10.1016/j.bios.2020.112041
  40. Hsieh K., Patterson A.S., Ferguson B.S., Plaxco K.W., Soh H.T. Rapid, sensitive, and quantitative detection of pathogenic DNA at the point of care through microfluidic electrochemical quantitative loop-mediated isothermal amplification. Angew. Chem. Int. Ed. Engl., 2012, vol. 51, pp. 4896—4900. DOI: 10.1002/anie.201109115
  41. Ahmed M.U., Saito M., Hossain M.M., Rao S.R., Furui S., Hino A., Takamura Y., Takagi M., Tamiya E. Electrochemical genosensor for the rapid detection of GMO using loop-mediated isothermal amplification. Analyst, 2009, vol. 134, pp. 966—972. DOI: 10.1039/b812569d
  42. Ahmed M.U., Nahar S., Safavieh M., Zourob M. Real-time electrochemical detection of pathogen DNA using electrostatic interaction of a redox probe. Analyst, 2013, vol. 138, pp. 907—915. DOI: 10.1039/C2AN36153A
  43. Chuang T.L., Wei S.C., Lee S.Y., Lin C.W. A polycarbonate based surface plasmon resonance sensing cartridge for high sensitivity HBV loop-mediated isothermal amplification. Biosens. Bioelectron., 2012, vol. 32, pp. 89—95. DOI: 10.1016/j.bios.2011.11.037
  44. LaBarre P., Gerlach J., Wilmoth J., Beddoe A., Singleton J., Weigl B. Noninstrumented nucleic acid amplification (NINA): instrument-free molecular malaria diagnostics for low-resource settings. Conf Proc IEEE Eng Med Biol Soc., 2010, vol. 2010, pp. 1097—1099. DOI: 10.1109/IEMBS.2010.5627346
  45. LaBarre P., Hawkins K.R., Gerlach J., Wilmoth J., Beddoe A., Singleton J., Boyle D., Weigl B. A simple, inexpensive device for nucleic acid amplification without electricity – toward instrument-free molecular diagnostics in low-resource settings. PLos One, 2011, vol. 6, no. 5, article ID e19738 (8 p.). DOI: 10.1371/journal.pone.0019738
  46. Liu C., Mauk M.G., Hart R., Qiu X.B., Bau H.H. A self-heating cartridge for molecular diagnostics. Lab Chip, 2011, vol. 11, pp. 2686—2692. DOI: 10.1039/c1lc20345b
  47. Song J., Pandian V., Mauk M.G., Bau H.H., Cherry S., Tisi L.C., Liu C. Smartphone-based mobile detection platform for molecular diagnostics and spatiotemporal disease mapping. Anal. Chem., 2018, vol. 90, no. 7, pp. 4823—4831. DOI: 10.1021/acs.analchem.8b00283
  48. Wang J., Cai K., Zhang R. et al. Novel one-step single-tube nested quantitative real-time PCR assay for highly sensitive detection of SARS-CoV-2. Anal. Chem., 2020, vol. 92, no. 13, pp. 9399—9404. DOI: 10.1021/acs.analchem.0c01884
  49. Li Q., Guan X., Wu P., et al. Early transmission dynamics in Wuhan, China, of Novel Coronavirus – Infected Pneumonia. N Engl J Med, 2020, vol. 382, pp. 1199—1207.
  50. Guan W.J., Ni Z.Y., Hu Y. et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med., 2020, vol. 382, pp. 1708—1720.
  51. Carter L.J., Garner L.V., Smoot J.W., et al. Assay techniques and test development for COVID-19 diagnosis. ACS Cent. Sci., 2020, vol. 6, no. 5, pp. 591−605. DOI: 10.1021/acscentsci.0c00501
  52. Udugama B., Kadhiresan P., Kozlowski H.N., et al. Diagnosing COVID-19: the disease and tools for detection. ACS Nano, 2020, vol. 14, no. 4, pp. 3822−3835. DOI: 10.1021/acsnano.0c02624
  53. Feng W., Newbigging A.M., Le C. et al. molecular diagnosis of COVID-19: challenges and research needs. Anal. Chem., 2020, vol. 92, no. 15, pp. 10196—10209. DOI: 10.1021/acs.analchem.0c02060
  54. Corman V.M., Landt O., et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill, 2020, vol. 25, no. 3, article ID 2000045.
  55. Liu R., Han H., Liu F., Lv Z., Wu K., Liu Y., Feng Y., Zhu C. Positive rate of RT-PCR detection of SARS-CoV-2 infection in 4880 cases from one hospital in Wuhan, China, from Jan to Feb 2020. Clin. Chim. Acta, 2020, vol. 505, pp. 172—175. DOI: 10.1016/j.cca.2020.03.009
  56. Yan C., Cui J., Huang L., et al. Rapid and visual detection of 2019 novel coronavirus (SARS-CoV-2) by a reverse transcription loop-mediated isothermal amplification assay. Clin. Microbiol. Infect., 2020, vol. 26, no. 6, pp. 773—779. DOI: 10.1016/j.cmi.2020.04.001
  57. Yu L., Wu S., Hao X., et al. Rapid detection of COVID-19 coronavirus using a reverse transcriptional loop-mediated isothermal amplification (RT-LAMP) diagnostic platform. Clin. Chem., 2020, vol. 66, no. 7, pp. 975—977. DOI: 10.1093/clinchem/hvaa102
  58. Baek, Y.H., Um J., Antigua K.J. C., et al. Development of a reverse transcription-loop-mediated isothermal amplification as a rapid early-detection method for novel SARS-CoV-2. Emerg. Microbes Infect., 2020, vol. 9, no. 1, pp. 998—1007.
  59. Lu R., Wu X., Wan Z., et al. Development of a novel reverse transcription loop-mediated isothermal amplification method for rapid detection of SARS-CoV-2. Virologica Sinica, 2020, vol. 35, pp. 344—347. DOI: 10.1007/s12250-020-00218-1
  60. Kak proveryayut na koronavirus: obzor testov [How to check for coronavirus: a review of tests]. URL: https://ntinews.ru/in_progress/likbez/kak-proveryayut-na-koronavirus-obzor-testov.html (accessed 20.10.2020). (In Russ.).
  61. NABOR REAGENTOV "AmplIzo-SARS-CoV-2" ["AmplIzo-SARS-CoV-2" REAGENT KIT]. URL: http://www.syntol.ru/catalog/nabory-reagentov-dlya-ptsr-v-realnom-vremeni/amplizo-sars-cov-2.html (accessed 20.10.2020).
  62. Ganguli A., Mostafa A., Berger J., et. al. Rapid isothermal amplification and portable detection system for SARS-CoV-2. PNAS, 2020, vol. 117, no. 37, pp. 22727—22735. DOI: 10.1073/pnas.2014739117
  63. FMBA Rossii predstavilo test-sistemy na osnove chipov dlya diagnostiki novoj koronavirusnoj infekcii SARS-CoV-2 [FMBA of Russia has presented chip-based test systems for diagnosing a new coronavirus infection SARS-CoV-2]. URL: https://fmba.gov.ru/press-tsentr/novosti/detail/?ELEMENT_ID=38232&sphrase_id=12026 (accessed 20.10.2020). (In Russ.).
  64. "Indikator-BIO" ["Indicator BIO"]. URL: http://old.rsmu.ru/21025.html (accessed 20.10.2020). (In Russ.).
  65. Rateni G., Dario P., Cavallo F. Smartphone-based food diagnostic technologies: a review. Sensors, 2017, vol. 17, no. 6, article ID 1453 (22 p.). DOI: 10.3390/s17061453
  66. Theuns S., Vanmechelen B., Bernaert Q., Deboutte W., Vandenhole M., Beller L., Matthijnssens J., Maes P., Nauwynck H.J. Nanopore sequencing as a revolutionary diagnostic tool for porcine viral enteric disease complexes identifies porcine kobuvirus as an important enteric virus. Scientific Reports, 2018, vol. 8, no. 1, article ID 9830
    (13 p.). DOI: 10.1038/s41598-018-28180-9
 

A. Yu. Gorbunov1,4, I. M. Zorin2, S. K. Ilyushonok3,5, A. A. Bardin1,
O. A. Keltsieva4,5, N. V. Krasnov4, V. N. Babakov1, E. P. Podolskaya4,5

APPLICATION OF MALDI TARGET ELECTROPHORETICALLY
MODIFIED WITH TIO2 FOR MASS SPECTROMETRY
WITH SURFACE-ASSISTED LASER DESORPION / IONIZATION

"Nauchnoe Priborostroenie", 2021, vol. 31, no. 1, pp. 44—58.
DOI: 10.18358/np-31-1-i4458
 

In this investigation, parameters of electrophoretic deposition (EPO) of TiO2 nanoparticles on stainless steel substrate have been optimized. The obtained coating was used as ion emitter during surface-assisted laser desorpion/ionization (SALDI). Herein, we demonstrate the high efficiency of obtained coatings for SALDI of amiodarone with subsequent Fourier transform ion cyclotron resonance mass spectrometry. Additional modification of coatings with polydimethylsiloxane (PDMS) allowed to significantly improve the sensitivity of SALDI-MS analysis.
 

Keywords: SALDI-MS, TiO2, electrophoretic deposition, amiodarone

Author affiliations:

1Research Institute of Hygiene, Occupational Pathology and Human Ecology,
FMBA, Saint Petersburg, Russia

2Saint Petersburg University, Russia
3Institute of Biomedical Systems and Biotechnology,
Peter the Great St. Petersburg Polytechnic University, Russia

4Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia
5Institute of Toxicology FMBA, Saint Petersburg, Russia

 
Contacts: Gorbunov Alexander Yurievich, gorbunov-a@inbox.ru
Article received by the editorial office on 27.11.2020

Full text (In Russ./ In Eng.) >>

REFERENCES

  1. Bonk T., Humeny A. MALDI-TOF-MS Analysis of Protein and DNA. The Neuroscientist, 2001, vol. 7, no. 1, pp. 6—12. DOI: 10.1177/107385840100700104
  2. Drzezdzon J., Jacewicz D., Sielicka A., Chmurzynski L. MALDI-MS for polymer characterization-Recent developments and future prospects. Trends in Analytical Chemistry, 2019, vol. 115, pp. 121—128. DOI: 10.1016/j.trac.2019.04.004
  3. Calvano C.D., Monopoli A., Cataldi T.R.I., Palmisano F. MALDI matrices for low molecular weight compounds: an endless story? Analytical and Bioanalytical Chemistry, 2018, vol. 410, no. 17, pp. 4015—4038. DOI: 10.1007/s00216-018-1014-x
  4. Wu C.-Y., Lee K.-C., Kuo Y.-L., Chen Y.-C. Revisiting the quantitative features of surface-assisted laser desorption/ionization mass spectrometric analysis. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, vol. 374, no. 2079. DOI: 10.1098/rsta.2015.0379
  5. Aminlashgari N., Hakkarainen M. Surface Assisted Laser Desorption Ionization-Mass Spectrometry (SALDI-MS) for Analysis of Polyester Degradation Products. Journal of The American Society for Mass Spectrometry, 2012, vol. 23, no. 6, pp. 1071—1076. DOI: 10.1007/s13361-012-0360-8
  6. Gao C., Zhen D., He N., An Z., Zhou Q., Li C., Grimes C., Cai Q. Two-dimensional TiO2 Nanoflakes Enable Rapid SALDI-TOF-MS Detection of Toxic Small Molecules (dyes and their metabolites) in Complex Environments. Talanta, 2019, vol. 196, pp. 1—8. DOI: 10.1016/j.talanta.2018.11.104
  7. Chenyi L., Hongchao G., Xingqi Z., Chan G., Ning J., Yan Q., Qingyun C. Self-assembly TiO2 nanosheets as a SALDI-TOF-MS matrix for high-throughput identification of polyfluorinated compounds in water samples. Microchemical Journal, 2020, vol. 152, pp. 1—10. DOI: 10.1016/j.microc.2019.104294
  8. Popovic I., Nesic M., Vranjes M., Saponjic Z., Petkovic M. TiO2 nanocrystals — assisted laser desorption and ionization time-of-flight mass spectrometric analysis of steroid hormones, amino acids and saccharides. Validation and comparison of methods. RSC Advances, 2016, vol. 6, no. 2, pp. 1027—1036. DOI: 10.1039/c5ra20042c
  9. Gorbunov A.Y., Krasnov K.A., Bardin A.A., Keltsieva O.A., Babakov V.N., Podolskaya E.P. TiO2-modified MALDI target for in vitro modeling of the oxidative biotransformation of diclofenac. Mendeleev Commun., 2020, vol. 30, pp. 220—222. DOI: 10.1016/j.mencom.2020.03.030
  10. Hu J.-B., Chen Y.-C., Urban P. L. Coffee-ring effects in laser desorption/ionization mass spectrometry. Analytica Chimica Acta, 2013, vol. 766, pp. 77—82. DOI: 10.1016/j.aca.2012.12.044
  11. Piret G., Kim D., Drobecq H., Coffinier Y., Melnyk O., Schmuki P., Boukherroub R. Surface-assisted laser desorption—ionization mass spectrometry on titanium dioxide (TiO2) nanotube layers. The Analyst, 2012, vol. 137, no. 13, pp. 3058—3063. DOI: 10.1039/c2an35207a
  12. Lo C., Lin J., Chen W., Chen C., Chen Y. Surface-Assisted Laser Desorption/Ionization Mass Spectrometry on Titania Nanotube Arrays. Journal of the American Society for Mass Spectrometry, 2008, vol. 19, no. 7, pp. 1014—1020. DOI: 10.1016/j.jasms.2008.04.025
  13. Bozorgtabar M., Rahimipour M., Salehi M., Jafarpour M. Structure and photocatalytic activity of TiO2 coatings deposited by atmospheric plasma spraying. Surface and Coatings Technology, 2011, vol. 205, pp. 229—231. DOI: 10.1016/j.surfcoat.2011.03.045 
  14. Obregon S., Amor G., Vazquez A. Electrophoretic deposition of photocatalytic materials. Advances in Colloid and Interface Science, 2019, vol. 269, pp. 236—255. DOI: 10.1016/j.cis.2019.05.003
  15. Tsuji T., Mizuki T., Yasutomo M., Tsuji M., Kawasaki H., Yonezawa T., Mafuné F. Efficient fabrication of substrates for surface-assisted laser desorption/ionization mass spectrometry using laser ablation in liquids. Applied Surface Science, 2011, vol. 257, no. 6, pp. 2046—2050. DOI: 10.1016/j.apsusc.2010.08.128
  16. Juenke J.M., Brown P.I., McMillin G.A., Urry F.M. A Rapid Procedure for the Monitoring of Amiodarone and N-Desethylamiodarone by HPLC-UV Detection. Journal of Analytical Toxicology, 2004, vol. 28, no 1, pp. 63—66. DOI: 10.1093/jat/28.1.63
  17. Dor S., Ruhle S., Ofir A., Adler M., Grinis L., Zaban A. The influence of suspension composition and deposition mode on the electrophoretic deposition of TiO2 nanoparticle agglomerates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, vol. 342, no. 1-3, pp. 70—75. DOI:10.1016/j.colsurfa.2009.04.009
  18. Hamaker H.C. Formation of a deposit by electrophoresis. Transactions of the Faraday Society, 1940, vol. 35, pp. 279—287. DOI: 10.1039/tf9403500279
  19. Workie B., McCandless B.E., Gebeyehu Z. Electrophoretic Deposition of Aluminum Nitride from Its Suspension in Acetylacetone Using Iodine as an Additive. Journal of Chemistry, 2013, pp. 1—7. DOI: 10.1155/2013/489734
  20. Nuno M., Ball R.J., Bowen C.R., Kurchania R., Sharma G.D. Photocatalytic activity of electrophoretically deposited (EPD) TiO2 coatings. Journal of Materials Science, 2015, vol. 50, no 14, pp. 4822—4835. DOI: 10.1007/s10853-015-9022-0
  21. Wooh S., Encinas N., Vollmer D., Butt H.-J. Stable Hydrophobic Metal-Oxide Photocatalysts via Grafting Polydimethylsiloxane Brush. Advanced Materials, 2017, vol. 29, no. 16, 1604637. DOI:10.1002/adma.201604637
  22. Veyko V.P., Metev S.M. Lazernye tekhnologii v mikroelektronike [Laser technologies in microelectronics]. Sofia, Izdanie BAN, 1991. 487 p. (In Russ.).
  23. Pento A.V. Razvitie lazernyh metodov ionizacii v mass-spektrometrii organicheskih soedinenij. Dis. … kand. fiz.-mat. nauk [Development of laser ionization methods in mass spectrometry of organic compounds. cand. of phys.-math. sci. diss.]. Moscow, 2015. 127 p. (In Russ.).
  24. Liu J., Ye L., Wooh S., Kappl M., Steffen W., Butt H.-J. Optimizing Hydrophobicity and Photocatalytic Activity of PDMS-Coated Titanium Dioxide. ACS Applied Materials & Interfaces, 2019, vol. 11, pp. 27422−2742. DOI: 10.1021/acsami.9b07490
  25. Mills A., Hunte S.L. An overview of semiconductor photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 1997, vol. 108, no. 1, pp. 1—35.
  26. Park E.J., Han S.W., Jeong B., Park S.H., Kim Y.-G., Kim Y.H., Kim Y.D. Effect of polydimethylsiloxane (PDMS) coating on TiO2-based MALDI matrix for dimethyl methylphosphonate (DMMP) analysis. Applied Surface Science, 2015, vol. 353, pp. 342—349. DOI: 10.1016/j.apsusc.2015.06.122
  27. Morris N.J., Anderson H., Thibeault B., Vertes A., Powell M.J., Razunguzwa T.T. Laser desorption ionization (LDI) silicon nanopost array chips fabricated using deep UV projection lithography and deep reactive ion etching. RSC Advances, 2015, vol. 5, no. 88, pp. 72051—72057. DOI: 10.1039/c5ra11875a
 

N. A. Gryaznov, D. A. Goryachkin, V. I. Kuprenyuk, E. N. Sosnov, V. L. Alekseev

CONTROLLABLE MICHELSON INTERFEROMETER
OF REFRACTIVE TYPE

"Nauchnoe Priborostroenie", 2021, vol. 31, no. 1, pp. 59—65.
DOI: 10.18358/np-31-1-i5965
 

In some applications of a Michelson interferometer, in particular, when it is used in a laser resonator, the high stability of its phases is necessary. The proposed paper contains the comparison of two interferometer configurations. The first of them uses a classical schematic interferometer, the second one is designed with the use of a refractive schematic one, which is typical of enhanced stability against misalignments and occasional fluctuations of surrounding air. The possibility is discussed of applying the controllable refractive interferometer inside the resonator for generation of ultra short laser pulses.
 

Keywords: Michelson interferometer (MI), refractive Michelson interferometer (RMI), the optical paths difference (OPD), long-term stability

Author affiliations:

The Russian State Scientific Center for Robotics and Technical Cybernetics (RTC), Saint Petersburg

 
Contacts: Goryachkin Dmitry Alekseevich, d.goryachkin@rtc.ru
Article received by the editorial office on 08.12.2020

Full text (In Russ./ In Eng.) >>

REFERENCES

  1. Gryaznov N.A., Goryachkin D.A., Kuprenyuk V.I., So-snov E.N., Alekseev V.L. [ Passive stabilisation of Michelson interferometer ]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2020, vol. 20, no. 4, pp. 63—74. DOI: 10.18358/np-30-4-i6374
  2. Gryaznov N.A., Sosnov E.N., Goryachkin D.A., Nikitina V.M., Rodionov A.Yu. [Active phase synchronization of modes in a resonator with a Michelson interferometer]. Opticheskiy zhurnal [Optical magazine], 2019, vol. 86, no. 4, pp. 3—10.
  3. Messerschmidt R.G., Abbink. R.E. Interferometer spectrometer with reduced alignment sensitivity. Patent US 7,161,679 B2. 2007. URL: https://patents.google.com/patent/US7161679B2/en
 

S. M. Abdurakhmonov, O. K. Kuldashov

AUTOMATIC LIQUID LEVEL GAUGE FOR HAZARDOUS AREAS

"Nauchnoe Priborostroenie", 2021, vol. 31, no. 1, pp. 66—72.
DOI: 10.18358/np-31-1-i 6672
 

The purpose of this work is to develop an automatic liquid level meter for hazardous zones. The analysis of currently known level meters, which are widely used in the oil and oil refining industry, showed that their cost is very high. The proposed level gauge cost is significantly lower than that of industrial analogues for manufacture and operation. This paper describes the capabilities and operating principles of the developed liquid level meter for hazardous zones. The proposed level gauge is designed to measure the level of petroleum products for technological accounting and control of petroleum products. The flowchart and algorithm of the level gauge operation are given.
This paper presents the "upper" level of automatic process control on personal computers. This level is based on the Trace Mode software package by AdAstrA Research Group, Ltd (Russia). The software package provides for the transmission of target setpoints from a computer, preliminary alarm, archiving of data of technological parameters, and a mnemonic diagram for passing technological parameters in real time. The level meter is designed to measure various levels with appropriate settings, the measurement accuracy ranges from 0.5—1 %.
 

Keywords: oil, controller-meter, technological parameter, displacement, lower boundary, upper boundary, separation, sensor, explosive zone

Author affiliations:

Tashkent University of information technologies named after Muhammad al-Khwarizmi,
Ferghana branch, Ferghana city, Republic of Uzbekistan

 
Contacts: Kuldashov Obbozjon Khokimovich, kuldashov.abbos@mail.ru
Article received by the editorial office on 30.11.2020

Full text (In Russ./ In Eng.) >>

REFERENCES

  1. Fomin V.I., Feodorov A.V., Lukyanchenko A.A., Kostyuchenkov D.K. [Automatic analytical control of industrial facilities air explosion hazard]. Pozharovzryvobezopasnost' [Fire and Explosion Safety], 2004, no. 4, pp. 49—51. (In Russ.).
  2. Karantzalos K., Argialas D. Automatic detection and tracking of oil spills in SAR imagery with level set segmentation. International Journal of Remote Sensing, 2008, vol. 29, is. 21, pp. 6281—6296. DOI: 10.1080/01431160802175488
  3. Shokorov V.A. [Developing and application of pressure and temperature sensors based on microelectromechanical systems for part space-and-rocket engineering]. Izmerenie. Monitoring. Upravlenie. Kontrol' [Measuring. Monitoring. Management. Control], 2017, no. 3, pp. 60—66. DOI: 10.21685/2307-5538-2017-3-9 (In Russ.).
  4. Vasil'ev V.A., Moskalev S.A., Polzunov I.V., Shokorov V.A. [Status and prospects of semiconductor microelectromechanical systems and pressure sensors based on them]. Metrologiya [Metrology], 2014, no. 11, pp. 15—24. (In Russ.). URL: https://www.elibrary.ru/item.asp?id=22783973
  5. Arkhipov D.B., Bulyanitsa A.L., Shcherbakov A.P. [Analytical instrumentation in the journals "Nature" and "Science" for 2001—2017. Webometric analysis]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2019,

    vol. 29, no. 3, pp. 63—68. (In Russ.). URL: http://iairas.ru/mag/2019/abst3.php#abst7
  6.   Sergeev V.A., Sharfarets B.P. [About one new method of electroacoustic transformation. A theory based on electrokinetic phenomena. Part II. The acoustic aspect]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2018, vol. 28, no. 2, pp. 36—44. DOI: 10.18358/np-28-2-i3644 (In Russ.).
  7. Kumar S., Furuhashi H. Long-range measurement system using ultrasonic range sensor with high-power transmitter array in air. Ultrasonics, 2017, vol. 74, pp. 186—195. DOI: 10.1016/j.ultras.2016.10.012
  8. Kuz'minov V.Yu., Frolov A.G. [Magnetostrictive level meter]. Ekspoziciya neft' gaz [Exposition Oil & Gas magazine], 2011, no. 18, pp. 43—44. (In Russ.). URL: https://www.elibrary.ru/item.asp?id=17100637
  9. Ghicioi E., Vlasin N.I., Prodan M., Suvar M.C., Pasculescu V.M. Developing the research methods for the explosion/fire events from refineries. 18th International Multidisciplinary Scientific GeoConference SGEM 2018, Proceedings, pp. 381—388. DOI: 10.5593/sgem2018/1.4/S06.050
  10. Wang Y.S., Matni N., Doyle J.C. A system-level approach to controller synthesis. IEEE Trans. Automat. Contr., 2019, vol. 64, is. 10, pp. 4 079—4 093. DOI: 10.1109/TAC.2018.2890753
  11. Blinov A.V., Mishanin A.E., Moskalev S.A., Polzunov I.V. [Integral pressure sensor, acceleration and temperature on the basis of MEMS technology]. Datchiki i systemi [Sensors & Systems], 2012, no. 9, pp. 9—11. URL: https://www.elibrary.ru/item.asp?id=17929130 (In Russ.).
  12. Prima E.C., Munifaha S.S., Salam R., Aziz M.H., Suryani A.T. Automatic water tank filling system controlled using ArduinoTM based sensor for home application. Procedia Engineering, 2017, vol. 170, pp. 373—377. DOI: 10.1016/j.proeng.2017.03.060
  13. Hauptmann P., Lucklum R., Püttmer A., Henning B. Ultrasonic sensors for process monitoring and chemical analysis: State-of-the-art and trends. Sensors and Actuators A: Phys., 1998, vol. 67, is. 1-3, pp. 32—48. DOI: 10.1016/S0924-4247(97)01725-1
  14. Arifin I. Automatic water level control berbasis mikrocontroller Dengan Sensor ultrasonik. Jurusan Teknik Elektro Fakultas Teknik Universitas Negeri Semarang, 2015. URL: https://123dok.com/document/6zk1g18q-automatic-water-control-berbasis-mikrocontroller-dengan-sensor-ultrasonik.html
  15. Eltaieb A, Min Z.J. Automatic water level control system. Int. J. Sci. Res., 2015, vol. 4. DOI: doi.org/10.21275/v4i12.NOV152239
 

E. E. Maiorov1, T. A. Chernyak2, G. A. Tsygankova3,
A. C. Mashek3, A. A. Konstantinova4, E. A. Pisareva5

SPECTRAL STUDIES OF TEXTILE OPTICAL BLEACH
AND ORGANIC DYE

"Nauchnoe Priborostroenie", 2021, vol. 31, no. 1, pp. 73—83.
DOI: 10.18358/np-31-1-i7383
 

This paper shows the relevance of the developed spectrophotometer for the study of optical bleach and organic dye for different tissues. The paper presents a block diagram of the spectrophotometer and provides technical and operational characteristics of the device. Diffuse reflection spectra were obtained for different tissue samples, which show that the optical bleach forms a short-wave absorption band at λ ≤ 420 nm and gives a luminescent additive to the reflected radiation flux in the blue region of the spectrum λ ≈ 430—480 nm. In the region of λ ≈ 500—640 nm, the reflection coefficient decreases. A quantitative comparison of the brightness parameter B determined from the R(λ) spectra and the brightness parameter B of the white tissues was performed. The results of Be measurements were reduced to the reference value Br by linear interpolation. The interpolation error did not exceed δB ≤ 1 %. The color parameters for the X, Y, and Z coordinates were measured with an error of no more than 1 %. The diffuse reflection spectra of colored tissue samples are analyzed and the results of measurements of colorimetric coordinates are obtained.
 

Keywords: spectrometry, RGB components, light wavelength, diffuse reflection coefficient, reference value, optical bleach, interpolation

Author affiliations:

1Saint Petersburg University of Management Technologies and Economics, Russia
2Saint Petersburg State University of Aerospace Instrumentation (GUAP), Russia
3The naval Polytechnic Institute, Pushkin, Russia
4Military Academy of Telecommunications named. S.M. Budyonny, Saint Petersburg, Russia
5Mikhailovskaya Military Artillery Academy, Saint Petersburg, Russia

 
Contacts: Mayorov Evgeniy Evgen'evich, majorov_ee@mail.ru
Article received by the editorial office on 23.11.2020

Full text (In Russ./ In Eng.) >>

REFERENCES

  1. Ajzenberg Yu.B., ed. Spravochnaya kniga po svetotekhnike [Light Engineering Reference Book]. Moscow, Energoatomizdat Publ., 1983. 472 p. (In Russ.).
  2. Gurevich M.M. Cvet i ego izmerenie [Color and its measurement]. Moscow — Leningrad, Akademiya nauk SSSR Publ., 1950. 268 p. (In Russ.).
  3. Dzhadd D., Vyshecki G. Cvet v nauke i tekhnike [Color in Science and Technology]. Moscow, Mir Publ., 1978. 592 p. (In Russ.).
  4. Ganz E. Whiteness measurement. J. of Color and Appearance, 1972, vol. 1, no. 5, pp. 33—41.
  5. Thielert R., Schliemann G. Visual impression of whiteness and its colorimetric definition. J. of Opt. Soc. Am., 1973, vol. 63, pp. 1607—1612. DOI: 10.1364/JOSA.63.001607
  6. Yustova E.N. Cvetovye izmereniya (Kolorimetriya) [Color measurements (Colorimetry)]. St. Petersburg State University Publ., 2000. 397 p. (In Russ.).
  7. Malacara-Hernandez D. Color vision and colorimetry: theory and applications. SPIE, 2002. 176 p. URL: https://www.spie.org/Publications/Book/422835?SSO=1
  8. Maiorov E.E., Mashek A.Ch., Tsygankova G.A., Khaidarov G.G., Khaidarov A.G., Zaitsev U.E., Abrahamyan V.K. [Development of a laboratory spectrophotometer for the visible spectrum for the control of liquid-phase environments]. Pribory i sistemy. Upravlenie, kontrol', diagnostika [Instruments and Systems: Monitoring, Control, and Diagnostics], 2016, no. 8, pp. 42—46. URL: http://pribor.tgizd.ru/ru/arhiv/15438 (In Russ.).
  9. Maiorov E.E., Mashek A.Ch., Tsygankova G.A., Khokhlova M.V., Kurlov A.V., Fadeev A.O. [The ability to use the colorimeter with the RGB components for research photooptical bleaching, toning and dyeing the paper]. Pribory i sistemy. Upravlenie, kontrol', diagnostika [Instruments and Systems: Monitoring, Control, and Diagnostics], 2017, no. 3, pp. 22—29. URL: http://pribor.tgizd.ru/ru/arhiv/16076 (In Russ.).
  10. Maiorov E.E., Mashek A.Ch., Tsygankova G.A., Abrahamyan G.A., Zaitsev U.E., Khaidarov A.G., Khaidarov G.G., Dagaev A.V., Ponomarev S.E. [Development of optical device for processing of holographic interferogram with respect to the local gradient of the diffuse — reflective objects]. Pribory [Instruments], 2017, no. 6, pp. 25—28.
    URL: https://www.elibrary.ru/item.asp?id=29459833 (In Russ.).
  11. Prokopenko V.T., Maiorov E.E., Shalamay L.I., Popova N.E., Chernyak T.A., Kurlov A.V., Dagaev A.V., Tsygankova G.A. [In vivo study of human tooth enamel using colorimetric device]. Izvestiya vysshih uchebnyh zavedenij. Priborostroenie [Journal of Instrument Engineering], 2019, vol. 62, no. 4, pp. 373–379. DOI: 10.17586/0021-3454-2019-62-4-372-378 (In Russ.).
 

A. P. Voloshchenko

APPLICATION OF A PARAMETRIC PROFILOGRAPH
TO STUDY THE FINE STRUCTURE OF THE SEABED

"Nauchnoe Priborostroenie", 2021, vol. 31, no. 1, pp. 84—95.
DOI: 10.18358/np-31-1-i8495
 

In 2015—2016 in the area of Cape Panagia of the Taman Peninsula, employees of the Southern Federal University, together with the Russian Geographical Society, carried out archaeological research using hydroacoustic methods. In 2015 the main task of the expedition was to test and demonstrate the capabilities of the side-scan sonar of the Neman series. As a result, the underwater landscape of the area was studied and a map of the seabed was compiled. In the second year, the main task of the expedition was to test and demonstrate the capabilities of the parametric profilograph of the PGL-101 series. The article presents and discusses previously unpublished materials and results of 2016, which provide a fresh look at the capabilities of the parametric profilograph. The structure of the upper part of the sedimentary stratum lying north-west of Cape Panagia was studied in detail. The most illustrative profiling data are presented. Additionally, the data of acoustic survey of the area using side-scan sonar are presented. The necessity of using a parametric profilograph in carrying out marine geological and geomorphological studies is shown. The necessity of creating and developing new samples of domestic hydroacoustic equipment is shown. The results of the expedition can be used in carrying out a wide range of geological and geomorphological, paleogeographic, archaeological and ecological research.
 

Keywords: geological section, sedimentary layer, shelf, syncline, parametric profilograph, side-scan sonar

Author affiliations:

Southern Federal University, Taganrog, Russia

 
Contacts: Voloshchenko Alexander Petrovich, apvoloshhenko@sfedu.ru
Article received by the editorial office on 21.11.2020

Full text (In Russ./ In Eng.) >>

REFERENCES

  1. Kaevitser V.I., Krivtsov A.P., Razmanov V.M., Smol’yaninov I.V., Elbakidze A.V., Slovtsov I.B. [Underwater mud volcanoes in the Taman peninsula: sonar surveys]. Vulkanologiya i sejsmologiya [Journal of volcanology and seismology], 2016, no. 4, pp. 27—33. DOI: 10.7868/S0203030616040039 (In Russ.).
  2. Kozhuhov I.V., Firsov Y.G., Gordienko N.Y. [Northern region of Russia as a zone of ecological risk and a new technologic stage in the Arctic exploration]. Ekspluatatsiya morskogo transporta [Journal Maritime Transport Operation], 2013, vol. 72, no. 2, pp. 73—78. (In Russ.).
  3. Schreider A.A., Schreider Al.A., Klyuev M.S., Evsenko E.I. [High-resolution geoacoustic system for geological and archaeological study of the bottom]. Protsessy v geosredakh [Processes in GeoMedia], 2016, no. 6, pp. 156—161. (In Russ.).
  4. Dmitrevskiy N.N., Ananyev R.A., Libina N.V., Roslyakov A.G. [Utilizing a seismoacoustic complex for the study of the upper sedimentary stratum and seafloor relief in east arctic]. Okeanologiya [ Oceanology ], 2013, vol. 53, no. 3, pp. 412—417. DOI: 10.7868/S0030157413020019 (In Russ.).
  5. Bolikhovskaya N.S., Gorlov Yu.V., et al. [The Taman Peninsula landscape and climate changes in the course of the recent 6000 years]. Problemy istorii, filologii, kul'tury [Journal of Problems of History, Philology, Culture], 2002, no. 12, pp. 257—271. (In Russ.).
  6. Gorlov Yu.V. [Geographical situation on the Taman Peninsula in the second half of holocene]. Problemy istorii, filologii, kul'tury [Journal of Problems of History, Philology, Culture], 2008, no. 21, pp. 415—437. (In Russ.).
  7. Popkov V.I. [The post-sedimentary character of development of intraplate dislocations as a reflection of impulsiveness of deformation processes]. Geodynamics & Tectonophysics, 2013, vol. 4, no. 3, pp. 327—339. DOI: 10.5800/GT-2013-4-3-0104 (In Russ.).
  8. Shardanova T.A., Solovyeva N.A. [Influence of neotectonics and eustatics on the formation of deposits of the sarmatian, meotic and pontic stages of the Taman Peninsula]. Vestnik Moskovskogo universiteta. Seriya 4: Geologiya [Bulletin of Moscow University. Series 4: Geology], 2006, no. 5, pp. 36—43. (In Russ.).
  9. Balabanov I.P., Izmaylov Ya.A. [Changes in the level and hydrochemical regime of the Black and Azov seas over the past 20 thousand years]. Vodnye resursy [Water resources], 1988, no. 6, pp. 54—61. (In Russ.).
  10. Soldatov G.V. [Defining the parameters of sediments remote sensing for environmental monitoring]. Izvestiya YUFU. Tekhnicheskie nauki [News of SFedU. Engineering sciences], 2011, no. 9, pp. 88—93. (In Russ.).
  11. Soldatov G.V., Tarasov S.P. [Hydroacoustic method for remote ecological seabed monitoring]. Izvestiya YUFU. Tekhnicheskie nauki [News of SFedU. Engineering sciences], 2009, no. 10, pp. 228—233. (In Russ.).
  12. Demidov A.I. et al. [Hydroacoustic systems for remote sensing of the bottom of reservoirs and water column]. Sbornik dokladov IV Vserossijskoj konferencii "Radiolokaciya i radiosvyaz'" [Proc. of reports of the IV All-Russian conference "Radar and radio communication"]. Moscow, IRE RAN Publ., 2010, pp. 63—67. (In Russ.).
  13. Matvienko Yu.V., Voronin V.A., Tarasov S.P., Sknarya A.V., Tutynin E.V. [The ways of the improvement hydroacoustic technologies for sea bottom investigations with using AUV]. Podvodnye issledovaniya i robototekhnika [Underwater Investigations and Robotics], 2009, no. 2, pp. 4—15.
    URL: http://jmtp.febras.ru/journal/2_8_2009/4_15.pdf (In Russ.).
  14. Svininnikov A.I., Yaroshchuk I.O. [Geoacoustic modeling of the Sea of Japan shelf (for Possyet Bay taken as an example)]. Vestnik Dal'nevostochnogo otdeleniya Rossiyskoy akademii nauk [Bulletin of the Far Eastern Branch of the Russian Academy of Sciences], 2006, no. 3, pp. 85—93. (In Russ.).
  15. Golovkina E.M., Nabozhenko M.V. [Contemporary condition of benthic communities of Kerch Strait (the Russian sector) and gulfs of the Taman Peninsula]. Nauka Yuga Rossii [Journal of Science of the South of Russia], 2012, vol. 8, no. 2, pp. 53—61. (In Russ.).
  16. Boiko N.I., Korkoshko A.V. [Kimmeriantitanium-zirconium placers of Tamansky Peninsula]. Izvestiya vysshikh uchebnykh zavedeniy. Geologiya i razvedka [Proceedings of higher educational establishments. Geology and Exploration], 2007, no. 1, pp. 20—24. (In Russ.).
 

S. V. Vantsov, V. A. Sokolov, O. V. Khomutskaya

COMPREHENSIVE CONTROL SYSTEM FOR INDUSTRIAL ROBOTS

"Nauchnoe Priborostroenie", 2021, vol. 31, no. 1, pp. 96—106.
DOI: 10.18358/np-31-1-i96106
 

The article considers the control system for industrial robots (IR), including precision robots (PIR), representing the integration of systems of different levels of the control hierarchy into a single (integrated) system. There are the analyzes of the structural diagram and the original mathematical formulation of the control task and, accordingly, the principles of constructing algorithms for the functioning of such systems as a whole are given. It is shown that the expansion of the range of manufactured products requires continuous improvement of technological equipment, including both "mechanics" and the entire complex of control devices: electrics, electronics, pneumatics, hydraulics, optics and their possible various "complexes" (combinations).
The presented hierarchical control systems can be used not only for stationary and mobile ground-based robotic systems, but also for controlling the movement of single and group UAVs, since in both cases it is necessary to move the IR unit in space to fulfill the assigned task.
 

Keywords: industrial robot (IR), precision industrial robot (PIR), unmanned aerial vehicles (UAVs), IR manipulator, hierarchical structural diagram of IR control, human operator (HO), control objectives, control criteria, control optimization

Author affiliations:

Moscow Aviation Institute (National Research University), Russian Federation

 
Contacts: Chomutskaya Ol'ga Vladislavovna, khomutskayaov@gmail.com
Article received by the editorial office on 24.12.2020

Full text (In Russ./ In Eng.) >>

REFERENCES

  1. Burdakov S.F., Dyachenko V.A., Timofeev A.N. Proektirovanie manipulyatorov promyshlennyh robotov i robotizirovannyh kompleksov: uchebnoe posobie dlya studentov vuzov [Design of manipulators of industrial robots and robotic complexes: Education book]. Moscow, Vysshaya shkola, 1986. 264 p. (In Russ.).
  2. Klimchik A., Magid E., Pashkevich A. Machining with Serial and Quasi-Serial Industrial Robots: Comparison Analysis and Architecture Limitations. Engineering, Computer Science 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2016, pp. 252—259. DOI: 10.1109/IROS.2016.7759063
  3. Horn C., Kruger J. Feasibility of Connecting Machinery and Robots to Industrial Control Services in the Cloud. 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA), 2016. DOI: 10.1109/ETFA.2016.7733661
  4. Klimchik A., Ambiehl A., Garnier S., Furet B., Pashkevich A. Efficiency Evaluation of Robots in Machining Applications Using Industrial Performance Measure. Robotics and Computer-Integrated Manufacturing, 2017, vol. 48, pp. 12—29. DOI: 10.1016/j.rcim.2016.12.005
  5. Dekle R. Robots and Industrial Labor: Evidence from Japan, 2020. Available at SSRN: https://ssrn.com/abstract=3670356 . DOI: 10.2139/ssrn.3670356
  6. Guyonneau R., Mercier F. Istiabot. An Open Source Mobile Robot for Education and Research. 12th International Workshop on Robot Motion and Control (RoMoCo), 2019, pp 131—136. DOI: 10.1109/RoMoCo.2019.8787363
  7. Vantsov S.V. [Production robotization: directions and some issues]. Elektronika NTB [Electronics: Science, Technology, Business], 2020, no. 7, pp. 176—178. DOI: 10.22184/1992-4178.2020.198.7.176.178 (In Russ.).
  8. Kostrov B.V., Ruchkin V.N., Fulin V.A. Iskusstvennyj intellekt i robototekhnika [Artificial Intelligence and Robotics]. Moscow, Dialog-MIFI, 2008. 224 p. (In Russ.).
  9. Klimchik A., Magid E., Pashkevich A. Design of Experiments for Elastostatic Calibration of Heavy Industrial Robots with Kinematic Parallelogram and Gravity Compensator. IFAC-PapersOnLine, 2016, vol. 49, no. 12. pp. 967—972. DOI: 10.1016/j.ifacol.2016.07.901
  10. Villania V., Pinib F., Lealib F., Secchi C. Survey on Human — Robot Collaboration in Industrial Settings: Safety, Intuitive Interfaces and Applications. Mechatronics, 2018, vol. 55, pp. 248—266.
  11. Wang Q., Li J., Hua Q., Zhu Y. Globally Stable Rigid Formation Control for Multi-Robot Systems. Proceedings of the Thirty-Fourth Chinese Control Conference, Hangzhou, 2015. Google Scholar, 2015, pp. 7 505—7 510. DOI: 10.1109/ChiCC.2015.7260829
  12. Solodovnikov V.V., ed. Teoriya avtomaticheskogo regulirovaniya. Kniga 1. Matematicheskoe opisanie, analiz ustojchivosti i kachestva sistem avtomaticheskogo regulirovaniya [Automatic regulation theory. Book 1. Mathematical description, stability and quality analysis of automatic control systems]. Moscow, Mashinostroenie Publ., 1967. 770 p. (In Russ.).
  13. Kima J., Croft E.A. Online Near Time-Optimal Trajectory Planning for Industrial Robots. Robotics and Computer-Integrated Manufacturing, 2019, vol. 58, pp. 158—171. DOI: 10.1016/j.rcim.2019.02.009
  14. Dudek W., Wegierek M., Karwowski J., Szynkiewicz W., Winiarski T., K. Kozłowski, ed. Task Harmonisation for A Single-Task Robot Controller. 12th International Workshop on Robot Motion and Control (RoMoCo) IEEE, 2019, pp. 86—91. DOI: 10.1109/RoMoCo.2019.8787385
  15. Mohnkea Ch., Reinkobera S., Uhlmann E. Constructive Methods to Reduce Thermal Influences on the Accuracy of Industrial Robots. Procedia Manufacturing, 2019, vol. 33, pp. 19—26. DOI: 10.1016/j.promfg.2019.04.004
  16. Martinova L.I., Sokolov S.S., Nikishechkin P.A. Tools for Monitoring and Parameter Visualization in Computer Control Systems of Industrial Robots. International Conference in Swarm Intelligence ICSI 2015:  Advances in Swarm and Computational Intelligence, 2015,
    pp. 200—207. DOI: 10.1007/978-3-319-20472-7_22
  17. Bingol M.C., Aydogmus O. Performing Predefined Tasks Using the Human-Robot Interaction on Speech Recognition for An Industrial Robot. Engineering Applications of Artificial Intelligence, 2020, vol. 95. DOI: 10.1016/j.engappai.2020.103903
  18. Filaretov V., Yukhimets D., Mursalimov E. The Universal Onboard Information-Control System for Mobile Robots. Procedia Engineering, 2015, vol. 100, pp. 737—745. DOI: 10.1016/j.proeng.2015.01.427
  19. Bahloul A., Tliba S., Chitour Y. Dynamic Parameters Identification of An Industrial Robot With And Without Payload. Ifac-Papersonline, 2018, vol. 51, is. 15, pp. 443—448. DOI: 10.1016/j.ifacol.2018.09.185
  20. Petukhov A., Steshina L., Kurasov P., Tanryverdiev I. Decision Support System for Assessment of Vocational Aptitude of Man-Machine Systems Operators. 2016 IEEE 8th International Conference on Intelligent Systems (IS), 2016, pp. 672—679. DOI: 10.1109/IS.2016.7737383
  21. Zhao Y.M., Lin Y., Xi F., Guo S. Calibration-Based Iterative Learning Control For Path Tracking of Industrial Robots. IEEE Transactions on Industrial Electronics, 2015, vol. 62, no. 5, pp. 2921—2929. DOI: 10.1109/TIE.2014.2364800
  22. Klimchik A., Ambiehl A., Garnier S., Furet B., Pashkevich A. Comparison Study of Industrial Robots for High-Speed Machining. Mechatronics and Robotics Engineering for Advanced and Intelligent Manufacturing, 2017, pp. 135—149. DOI: 10.1007/978-3-319-33581-0_11
  23. Stebulyanina M.M., Kovshovb E.E., Kuvshinnikovb V.S. Interval Quadratic Connected Control Systems in Industrial Robotics and Mechatronics. Procedia Computer Science, 2019, vol. 150, pp. 579—585. DOI: 10.1016/j.procs.2019.02.096
 

S. I. Shevchenko

CALCULATION OF ABERRATION COEFFICIENTS
FOR A CYLINDRICAL MIRROR

"Nauchnoe Priborostroenie", 2021, vol. 31, no. 1, pp. 107—123.
DOI: 10.18358/np-31-1-i107123
 

Angular aberration coefficients for a cylindrical mirror up to the fourth order in the vicinity of the azimuthal angle φ0 = 0 and in the vicinity of an arbitrary angle ϑ0 value are analytically obtained. A method is developed for calculating aberration coefficients of arbitrary order and in the vicinity of an arbitrary point based on the results of calculating several trajectories. Analytical and numerical methods for calculating aberration coefficients up to the fourth order are productive in the vicinity of the point (φ0 = 0, ϑ0) that coincide with high accuracy.
 

Keywords: energy analyzer, cylindrical mirror, emission ring, output aperture

Author affiliations:

Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia

 
Contacts: Shevchenko Sergey Ivanovich, nyro2@yandex.ru
Article received by the editorial office on 30.12.2020

Full text (In Russ./ In Eng.) >>

REFERENCES

  1. Shevchenko S.I. [About the properties of cylindrical mirrors for the accounting of electrons with the azimuthal component of velocity. The distribution of electrons near the output aperture ]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2017, vol. 27, no. 1, pp. 90—101. DOI: 10.18358/np-27-1-i90101 (In Russ.).
  2. Shevchenko S.I. [ About the properties of cylindrical mirrors for the accounting of electrons with the azimuthal component of velocity. The focusing and focus line ]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2017, vol. 27, no . 3, pp. 81—89. DOI: 10.18358/np-27-3-i8189 (In Russ.).
  3. Shevchenko S.I. [ On analytical solution of the equation of electrons motion in cylindrical mirror accounting electrons having azimuthal velocity component ]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2019, vol. 29,  no. 2, pp. 109—117. DOI: 10.18358/np-29-2-i109117 (In Russ.).
  4. Zashkvara V.V., Korsunskiy M.I., Lavrov V.P., Redkin V.S. [About influence of the final size of a source on focusing of a bunch of charged particles in an electrostatic spectrometer with the cylindrical field]. Zhurnal tekhnicheskoj fiziki [Journal of technical physics], 1971, vol. 41, no. 1, pp. 187—192. (In Russ.).
  5. Sar-El H.Z. [Cylindrical mirror analyzer with surface entrance and exit slots. I. Nonrelativistic part]. Pribory dlya nauchnych issledovaniy [Review of Scientific Instruments], 1971, vol. 42, no 11, pp. 43—48. DOI: 10.1063/1.1684948 (In Russ.).
  6. Aksela S. [Instrument function of a cylindrical electron energy analyzer]. Pribory dlya nauchnych issledovaniy [Review of Scientific Instruments], 1972, vol. 43, no. 9, pp. 122—128. DOI: 10.1063/1.1685923 (In Russ.).
  7. Dreyper D.E., Li Ch.-I. [Characteristics of a cylindrical mirror analyzer with "ring-axis" geometry, "axis-axis" geometry and n = 1.5 with finite point dimensions and slits for mid-path angles of 30°... 65°]. Pribory dlya nauchnych issledovaniy [Review of Scientific Instruments], 1977, vol. 48, no. 7, pp. 138—154. DOI: 10.1063/1.1135170 (In Russ.).
  8. Dubinov A.E., Dubinova I.D., Saykov S.K. W-funkziya Lamberta i ee primenenie v matema-ticheskich zadachach fiziki. Ucheb. posobie dlya vuzov [Lambert's W-function and its application in mathematical physics problems. Textbook for universities.]. Sarov, FGUP, "RFYaZ-VNIIEF", 2006. 160 p. (In Russ.).
  9. Zashkvara V.V., Korsunskiy M.I., Kosmachev O.S. [The focusing properties of an electrostatic mirror with the cylindrical field]. Zhurnal tekhnicheskoj fiziki [Journal of technical physics], 1966, vol. 36, no. 1, pp. 132—137. (In Russ.).
  10. Abramoviz V.A., Stigan I. Spravochnik po spezial'nym funkziyam [Special Functions Handbook]. Moskow, Nauka Publ., 1979. 830 p. (In Russ.).
 

DOCTOR OF ENGINEERING, PROFESSOR
VLADIMIR EFIMOVICH KUROCHKIN IS 70 YEARS OLD

"Nauchnoe Priborostroenie", 2021, vol. 31, no. 1, pp. 124—124.
DOI: 10.18358/np-31-1-i124124
 

Congratulation !

 
Full text (In Russ.) >>

Ulitsa Ivana Chernykh, 31-33, lit. A, St. Petersburg, Russia, 198095, P.O.B. 140
tel: (812) 3630719, fax: (812) 3630720, mail: iap@ianin.spb.su

content: Valery D. Belenkov design: Banu S. Kuspanova layout: Anton V. Manoilov