logo
blue band <-
  JOURNAL "NP" ISSUES

"Nauchnoe Priborostroenie", 2019, Vol. 29, no. 1. ISSN 2312-2951, DOI: 10.18358/np-29-1-25d3

"NP" 2019 year Vol. 29 no. 1.,   ABSTRACTS

ABSTRACTS, REFERENCES

D. N. Kuzmin1, L. N. Gall2, A. B. Maleev3, A. V. Saprygin3

THE DEVELOPMENT OF MTI-350TM MASS SPECTROMETER AS AN EXAMPLE OF THE CREATION OF MODERN SCIENTIFIC AND TECHNOLOGICAL EQUIPMENT

"Nauchnoe priborostroenie", 2019, vol. 29, no. 1, pp. 5—10.
doi: 10.18358/np-29-1-i510
 

The paper discusses some peculiarities of the design and development of scientific equipment, particularly mass spectrometers, which provide implementation of high standard scientific and technological analytical testing methods.
 

Fig. 1. Mass spectrometer ÌÒÈ-350Ò
Fig. 2. Mass spectrometer ÌÒÈ-350ÒM
Fig. 3. Samples storage unit of the mass spectrometer ÌÒÈ-350ÒM
Fig. 4. The ion detector ÌÒÈ-350ÒM
 

Keywords: mass spectrometer, surface thermo ionization, isotopic analysis, samplewheel, solids, isotopes, MTI-350

Author affiliations:

1Experimental Factory of Scientific Engineering with Special Design Department,
Chernogolovka, Moscow region, Russia

2The Institute for Analytical Instrumentation, Saint-Petersburg, Russia
3ANK Service Ltd, Novouralsk, Sverdlovsk region, Russia

 
Contacts: Kuzmin Denis Nikolaevitch, kuzmin@ezan.ac.ru
Article received by editing board 28.06.2018
Full text (In Russ.) >>

REFERENCES

  1. Kikoin I.K., ed. Obogashchenie urana [Uranium enrichment]. Moscow, Energoatomizdat Publ., 1983. 320 p. (In Russ.).
  2. Gall L.N., Gall R.N., Rutgajzer Yu.S., Shereshevskij A.M. [Three-tape source of ions]. ZhTF [Journal of Applied Physics], 1962, vol. 32, no. 2, pp. 202—207. (In Russ.).
  3. Gall L.N., Golikov Yu.K. [To the theory of the thermal ionizer]. Sbornik "Fizicheskaya ehlektronika". Trudy LPI [Collection "Physical Electronics". Proc. LPI]. LGU, 1973, no. 328, pp. 102—106. (In Russ.).
  4. Gall L.N., Sokolov B.N. [Source of ions with the superficial ionization]. Nauchnye pribory [Scientific Instruments], 1978, no. 16, pp. 17. (In Russ.).
  5. Berdnikov A.S., Gall L.N., Hasin Yu.I. [Technique of coordination of a source of ions of a static mass spectrometer with a mass-analyzer]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2001, vol. 11, no. 4, pp. 28—34. URL: http://iairas.ru/en/mag/2001/abst4.php#abst4. (In Russ.).
  6. Berdnikov A.S., Gall L.N., Gall N.R., Lednev V.A., Hasin Yu.I. [The modern approaches to an isotopic analysis of uranium and transuranic elements in a solid phase by method of the superficial ionization]. Atomnaya ehnergiya [Atomic energy], 2006, vol. 66, no. 6, pp. 118—127. (In Russ.).
  7. Shtan A.S., Kir'yanov G.I., Saprygin A.V., Kalashnikov V.A., Zalesov Yu.N., Maleev A.B., Novikov D.V., Gall L.N., Berdnikov A.S., Manojlov V.V., Zaruckij I.V., Gall N.R., Ivanov A.P., Lednev V.A., Borodin V.A., Gorbunov V.G., Savina Zh.A., Kudryavcev V.N. [Mass spectrometer for precision determination of isotope composition of uranium, plutonium and the fuel blend in a solid phase (MTI-350T)]. Voprosy atomnoj nauki i tekhniki. Seriya "Fizika i avtomatizaciya" [Questions of atomic science and technology. Physics and Automation series], 2008, vol. 63, pp. 1—38. (In Russ.).
 

D. V. Likhodeev1, V. V. Gravirov1,2, K. V. Kislov2, S. M. Dolov3

PRECISION NARROW BAND DIFFERENTIAL TEMPERATURE SENSOR

"Nauchnoe Priborostroenie", 2019, vol. 29, no. 1, pp. 11—16.
doi: 10.18358/np-29-1-i1116
 

Recently, we have created precision narrow-band temperature sensors that allow us to measure temperature with a relative error of at least 0.005 °C. These temperature sensors are designed to study the fine structure of temperature fields in the rock solid, as well as to take into account internal temperature variations in various geophysical devices. The article considers the principal ways to achieve the required accuracy of measurements, calibration, and installation of the necessary operating temperature range of the sensors. Carrying out measurements using the developed sensors in the tunnel of the North Caucasus Geophysical Observatory of the IPE RAS in the Baksan Gorge will provide unique data on the structure and dynamics of the thermal field near the Elbrus volcano.
 

Fig. 1. 

Temperature change at the ends of the day hole of laboratory no. 2. Duration of recording is 6 months. Measurement of surface temperatures was performed using miniature thermographs (loggers) High Capacity Temperature Loggers iButton. Measurement accuracy 0.1 °Ñ [7]

Fig. 2.

Thermometer base flow chart

Fig. 3.

The family of dependencies of the output signal of the thermometer on temperature

Fig. 4.

Amplitude-frequency characteristic of the output stage of the filter amplifier when setting unity gain

Fig. 5.

Thermistor with output signal generation and protection module

Fig. 6.

General view of the assembly of 4-channel filtering and amplifying module

Fig. 7.

General view of the 4-channel differential thermometer assembly layout


 

Keywords: temperature sensors, the Earth's thermal field, monitoring

Author affiliations:

1Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences, Moscow; Russia
2Institute of Earthquake Prediction Theory and Mathematical Geophysics of
the Russian Academy of Science, Moscow; Russia

3Geophysical Survey of the Russian Academy of Sciences (GS RAS), Obninsk, Russia

 
Contacts: Likhodeev Dmitriy Vladimirovitch, dmitry@ifz.russss
Article received by editing board 28.06.2018
Full text (In Russ.) >>

REFERENCES

  1. Sobisevitch A.L., Gridnev D.G., Sobisevitch L.E., Kanonidi K.Kh. [Instrumental System of the North Caucasus Geophysical Observatory]. Sejsmicheskie pribory [Seismic instruments], 2008, vol. 44, no. 1, pp. 21—42. DOI: 10.3103/S0747923908010027. (In Russ.).
  2. Kislov K.V., Gravirov V.V. Issledovanie vliyaniya okruzhayushchej sredy na shum shirokopolosnoj sejsmicheskoj apparatury. Seriya "Vychislitel'naya sejsmologiya" [Research of influence of a surrounding medium on noise of the broadband seismic equipment. Computing Seismology series]. Moscow, Krasand Publ., 2013, vol. 42. 240 p. (In Russ.).
  3. Kislov K.V., Gravirov V.V. [Noise of elastic elements of the seismic equipment]. Estestvennye i tekhnicheskie nauki [Natural and technical science], 2008, vol. 37, no. 5,pp. 142—148. (In Russ.).
  4. Gravirov V.V., Kislov K.V. [Criticality of a seismometer to variations of parameters]. Elektronnyj nauchnyj zhurnal "Issledovano v Rossii" [Online scientific magazine "It is investigated in Russia"], 2008, no. 26, pp. 301—312. (In Russ.).
  5. Gravirov V.V., Kislov K.V. [One of paths of oscillation of a temperature hindrance of a broadband seismometer]. Elektronnyj nauchnyj zhurnal "Issledovano v Rossii" [Online scientific magazine "It is investigated in Russia"], 2008, no. 27, pp. 313—321. (In Russ.).
  6. Golubev V.G., Lihodeev D.V. [System of geothermic and climatic monitoring of the Baksan geophysical observatory]. Sejsmicheskie pribory [Seismic instruments], 2006, vol. 42, pp. 29—36. (In Russ.).
  7. Lihodeev D.V. Issledovanie teplovyh i navedennyh volnovyh processov v rajone El'brusskogo vulkanicheskogo centra. Diss. kand. fiz.-mat. nauk [Research of the thermal and induced wave processes around the Elbrus volcanic center. Cand. phys. math. sci. diss.]. Moscow, 2013. 151 p. (In Russ.).
  8. Malovichko A.A., Gabsatarova I.P., Likhodeev D.V., Zaklyukovskaya A.S., Presnov D.A. [Development of the multiscale seismic monitoring system in the Elbrus volcano region]. Sejsmicheskie pribory [Seismic instruments], 2014, vol. 50, no. 4, pp. 47—57. (In Russ.).
  9. Masurenkov Yu.P., Sobisevich A.L., Lihodeev D.V., Shevchenko A.V. [Thermal anomalies of the North Caucasus]. Doklady Akademii nauk [Reports of Academy of Sciences], 2009, vol. 428, no. 5, pp. 667—670. (In Russ.).
 

Yu. G. Vainer, V. N. Krasheninnikov, A. V. Zybin, A. V. Malek, F. V. Vereschagin

DUAL OPTICAL MICROSCOPE FOR VISUALIZATION OF SINGLE "TRANSPARENT" NANOPARTICLES

"Nauchnoe Priborostroenie", 2019, vol. 29, no. 1, pp. 17—25.
doi: 10.18358/np-29-1-i1725
 

An experimental setup of a far-field optical microscope intended for simultaneous visualization of single nanoparticles by two different methods is described. The first method is based on a modified version of a surface plasmon resonance microscope, the second on a highly sensitive recording of fluorescent labels inserted into the observed nanoparticles. The created microscope allows visualizing nanoparticles that weakly absorb light in a selected wavelength range and are characterized by a refractive index close to its size in the surrounding liquid (polymeric nanoparticles, viruses, liposomes, intracellular microvesicles in aqueous medium). The combination of the two methods allows to increase the reliability of nanoparticles detection. The optical scheme of the dual microscope and its principle of operation are described, and examples of the registration of nanoparticles are given.

Fig. 1. Optical scheme of a dual microscope for plasmon resonance execution.
The dashed lines on the right exemplarily show cases in which the results of detection of the same nanoparticles by two methods coincide.

Fig. 2. The value of the reflection coefficient from the gold layer depending on the angle of incidence and the value of the angle of incidence of laser radiation with a wavelength of 675 nm on the gold layer selected in the experiments

Fig. 3. The first (a) and last (á) video frames measured by a CMOS camera in a series of measurements with a total duration of 7.5 s (150 frames).
The first frame was obtained before deposition of 80 nm polystyrene nanoballs on the measuring surface. Panel (c) shows the result of subtracting the last video frame from the first one. The bright dots correspond to the position of the nanoballs deposited on the measuring surface of the prism.

Fig. 4. An example of registration of a polystyrene nanoball with a diameter of 80 nm using a plasmon resonance microscope created.
a1, á1 — fragments of two video frames, measured respectively before (Fig. 3, a) and after (Fig. 3, á) deposition of a polystyrene nanoball on the measuring surface; â1 is their difference (Fig. 3, â).
à2, á2 — wave shape in the same for all frames video line, which is marked by a horizontal black line; â2 is their difference.
The demo line is shown passing through the image of nanoball, visually observed on â1 and corresponded on the difference signal â2 with a peak> 20 standard units that is noticeably higher than the noise level in the video signal

Fig. 5. An example of the registration of images of single exosomes on a plasmon resonance microscope.
Field of view ~ 800 × 800 μm

Fig. 6. An example of the registration of fluorescent images of single exosomes (a) and liposomes (á), marked with fluorescent labels of dye Cy 5.5. Field of view ~ 300 × 300 μm

Keywords: optical fluorescence microscopy, dark-field microscope, plasmon resonance microscopy, dual microscope, nanoparticles, liposomes, exosomes

Author affiliations:

Institute for Spectroscopy of RAS, Moscow, Russia

 
Contacts: Vainer Yuriy Grigorievitch, vainer@isan.troitsk.ru
Article received by editing board 28.06.2018
Full text (In Russ.) >>

REFERENCES

  1. Gurevich E.L., Temchura V.V., Überla K., Zybin A. Analytical features of particle counting sensor based on plasmon assisted microscopy of nano objects. Sensors and Actuators B. Chemical, 2011, vol. 160, no. 1, pp. 1210—1215. DOI: 10.1016/j.snb.2011.09.050.
  2. Matsuzaki K., Murase O., Sugishita K., Yoneyama S., Akada K., Ueha M., Nakamura A., Kobayashi S. Optical characterization of liposomes by right angle light scattering and turbidity measurement. Biochimica et Biophysica Acta (BBA). Biomembranes, 2000, vol. 1467, no. 1. P. 219—226. DOI: 10.1016/S0005-2736(00)00223-6.
  3. Pol van der E., Coumans F.A.W., Sturk A., Nieuwland R., Leeuwen van T.G. Refractive index determination of nanoparticles in suspension using nanoparticle tracking analysis. Nano Lett., 2014, vol. 14, no. 11, pp. 6195—6201. DOI: 10.1021/nl503371p.
 

O. N. Alyackrinskiy1, M. A. Batazova1, D. Yu. Bolkhovityanov1, M. Yu. Kosachev1, P. V. Logatchov1, A. M. Medvedev1, YU. I. Semenov1, M. M. Sizov1, A. A. Starostenko1, 2, A. S. Tsygunov1

PROTOTYPE OF ELECTRON SOURCE WITH MAGNETIC BEAM ROTATION FOR ELECTRON BEAM TECHNOLOGIES

"Nauchnoe Priborostroenie", 2019, vol. 29, no. 1, pp. 26—32.
doi: 10.18358/np-29-1-i2632
 

This paper describes an online realtime data acquisition system. The design utilizes ARM single board computers that bring very low power requirements, portability and lightweightness. We have implemented a unified approach to acquire, transfer and store the measurements. The approach takes advantages of SeedLink protocol to establish online real time data flows between the components of the system. Communication over IPv4 rely on secure virtual private networks. The system features remote management of data logger and all connected devices. For purposes of testing and technology showcase we’ve implemented support for a range of variometer-type magnetometers.
A prototype of a source of electrons with a magnetic beam rotation for electron-beam technologies is presented. The use of the principle of its operation will make it possible to expand the possibilities of using an electron beam in the processes of thermal processing of materials for the synthesis of heat-resistant composites and compounds, the production of nanopowders and reactive deposition of protective coatings, where there is increased gas evolution and contamination in the technological chamber, and also to produce electron-beam welding in hard-to-reach places.
The criteria and method for the exhibition of a magnetic mirror are given.
The measurements of the beam profile show:

  • the displacement relative to the plane of antisymmetry of the magnetic mirror leads to an insignificant increase in the cross section of the beam at the crossover point of the beam;
  • the beam dimensions before and after the rotation coincide;
  • the prototype beam is suitable for electron beam welding.

Fig. 1. 

General view of the prototype

Fig. 2.

Photo of magnetic mirror

Fig. 3.

Prototype block diagram

Fig. 4.

Calculated trajectory displacement versus electron energy

Fig. 5.

The trajectory of an electron with an energy of 60 keV. The distance L = 92 mm between the intersection points of the axes of magnetic lenses before and after rotation with the end plane of the dipole at 370 Gs

Fig. 6.

The beam profiles at beam shifts relative to the antisymmetry plane of the magnetic mirror.
1 — offset by 0; 2 — by 1.3; 3 — by 2 mm

Fig. 7.

10 mm thick samples of smelting stainless steel
Table 1. The main parameters of the prototype
Table 2. Values an at n =1, …, 5

Keywords: thermal treatment of materials, synthesis of heat-resistant materials, electron beam welding, magnetic rotation of the electron beam, electron beam focusing, electron beam profile, direct-tantalum cathode, differential vacuum pumping, electron beam welding in hard-to-reach places

Author affiliations:

1Budker Institute of Nuclear Physics of Siberian Branch of
Russian Academy of Sciences (BINP SB RAS), Novosibirsk, Russia

2Novosibirsk State University (NSU), Novosibirsk, Russia

 
Contacts: Semenov Yuriy Ignatievitch, Yu.I.Semenov@inp.nsk.su
Article received by editing board 28.06.2018
Full text (In Russ.) >>

REFERENCES

  1. Kaydalov A.A., Istomin E.I. Svarochnye ehlektronnye pushki [Welding electronic pappus]. Kiev, STC Paton Welding Institute, 2003. 153 p. (In Russ.).
  2. Semenov Yu.I., Logatchev P.V. et al. 60 keV 30 kW electron beam facility for electron beam technology. Proceedings of EPAC08. Italy, Genoa, TUPP161.
  3. Ïaòeíò ¹ 2623578, 28.06.2017.
  4. Kelman V.M., Korsunskij M.I., Lange F.F. [Magnetic electronic mirror]. ZhETF [Journal of Experimental and Theoretical Physics], 1939, vol. 9, no. 6, pp. 681—684. (In Russ.).
  5. Coggeshall N.D.Fringing Flux Corrections for Magnetic Focusing Devices. Journal of Applied Physics, 1947, vol. 18, pp. 855—861. DOI: 10.1063/1.1697559.
  6. Enge H.A., SeptierA., ed. Deflecting magnets. Focusing of Charged Particles, vol. 2. New York, 1967, pp. 203—264. DOI: 10.1016/B978-0-12-636902-1.50012-3.
  7. Ancharov A.I., Grigoryeva T.F., Logachev P.V., Semenov Iu.I., Starostenko A.A., Tolochko B.P. Possibility of application of hafnium and tantalium carbides as materials for additive manufacturing. The International Seminar on Interdisciplinary Problemes in Additive Technologies "Problemes of materials science in additive technologies". Tomsk, Russia, December 6—9, 2016, pp. 2.
  8. Ancharov A.I., Vosmerikov S.V., Grigor'eva T.F., Kosachev M.Yu., Semenov Yu.I. [Research of a possibility of receiving high-temperature composites by methods of mechanochemical and electron beam processing]. Trudy 20-go yubilejnogo mezhdunarodnogo mezh-disciplinarnogo simpoziuma "Poryadok, besporyadok i svojstva oksidov" [Proc. 20th anniversary international cross-disciplinary symposium "Order, disorder and properties of oxides"], Rostov-on-Don: Fund of science and education, 2017, iss. 20, vol. 1, pp. 12—14. (In Russ.).
  9. Ancharov A.I., Grigor'eva T.F., Kosachev M.Yu., Semenov Yu.I.,Starostenko A.A., Tolochko B.P. [About a possibility of receiving products from the melted refractory carbides of hafnium and a tantalum by method of electron beam processing]. Trudy 20-go mezhdunarodnogo simpoziuma "Uporyadochenie v mineralah i splavah" [Proc. 20th international symposium "Streamlining in minerals and alloys"], 10—15 September 2017, Rostov-on-Don: Fund of science and education, 2017, iss. 20, vol. 1, pp. 27—30.(In Russ.).
 

V. A. Lomovskoy

THE DEVICE FOR RESEARCHING OF LOCAL DISSIPATIVE PROCESSES IN SOLID MATERIALS OF VARIOUS CHEMICAL ORIGIN, COMPOSITION AND STRUCTURE

"Nauchnoe Priborostroenie", 2019, vol. 29, no. 1, pp. 33—46.
doi: 10.18358/np-29-1-i3346
 

Discussion of the aforementioned device and theoretical analysisof detection of the local dissipative losses areas by means of internal friction spectra in localinelasticity areas. The purpose of the analysis is to solve the basic problem of physicochemical mechanics: association of chemical origin, composition, structure (physico-chemical and physico-mechanical characteristics) and synthesis of materials with targeted properties.
 

Fig. 1. Methodical ratio of frequency ranges for various research methods.
@. — radioscopy, 1 — infrared region, 2 — visible light, 3 — UV region, 4 — X-rays, 5 — ? rays, 6 — infra-low-frequency mechanical vibrations, 7 — free-decaying mechanical vibrations, 8 — mechanical resonance, 9 — ultrasonic waves, 10 — hypersonic waves, 11 — vibrations of atoms in molecules, 12 — electron transitions in the outer electron shells of atoms and molecules, 13 — separation of the first electron from atoms, 14 — transitions of electrons in the inner shells of atoms, 15 — nuclear processes

Fig. 2. Methods for studying internal friction

Fig. 3. Horizontal torsional pendulum (block diagram).
1 — adjustable level base; 2 — horizontal movement guides of thermocryochamber 3; 4 — fixed collet clamp; 5 — the investigated specimen; 6 — collet clamp of horizontal rod 7 of the oscillatory system; 8 — bearing vertical plate; 9 — the central ring of the oscillating system; 10 — supporting needle of the oscillating system; 11 — the agate bearing; 12 —shoulders of the change of moment of inertia of the oscillating system; 13 — cargoes of change of moment of inertia; 14 — tractive electromagnets pulsed excitation of the oscillatory process; 15 — the optical shutter of the registration system oscillations; 16 — photoconverter of the vibration registration system; 17 — monochromatic emitter of the vibration registration system; 18 — centering balancer of the oscillatory system; 19 — thread of the counterweight 20; 21 — cap of the vacuum system of the device

Fig. 4. Schematic representation of the excitation of an oscillatory process in a test sample of a rectangular cross section (a) and a diagram of a damped oscillatory process (á, â, ã, ä)

Appendix 1. Experimental spectra of internal friction Q–1•104 and temperature change in the frequency of the oscillatory process excited in the systems under study.
a — Filamentous corundum crystal: 1 — single crystal, 2, 3, 4 — polycrystalline system with varying degrees of structural defects (defectiveness decreases in row 3, 2, 4), temperature dependence of the modulus (frequency) for a single crystal: curve 1 — modulus decay, curve 2a — the modulus defect in the region of peak loss for curve 2 [1].
á — KNa2PO4 with different PO4 content (curves 1, 2, 3), curves 1 and 2 — temperature dependences of the shear modulus corresponding to curves 1 and 2 [2].
â — Liquidating glasses õNa2Î-25B2O3-(75-x )SiO2 with different content of Na2Î (x varies from 0 to 25 mol%) [3].
ã — Chitosan in salt (1) and the main (2) form and the corresponding temperature-frequency dependence

Appendix 2. Vertical torsion pendulum (model — a; block diagram — á).
1 — level adjustable base; 2 — vacuum seal; 3 — biaxial positioner; 4 — electric winding of the excitation system of forced torsional vibrations; 5 — magnet of the excitation system of vibration; 6 — the central ring of the oscillatory system; 7 — double-seat needle core of the centering system of the investigated fiber; 8 — support; 9 — locks of the initial position of the oscillating system; 10—- optical shutter of the photoconveter of the registration system of the oscillatory process; 11 — shoulders of changes in the moment of inertia of the oscillatory system; 12 — the test sample; 13 — dilatometric effects compensation unit; 14 — counterweight thread; 15 — counterweight; 16 — carrier plate of the dilatometric effects compensation unit; 17 — thermal cryochamber; 18 — terminals for supplying voltage to the thermal cryochamber; 19 — cooling system fitting; 20 — vertical positioner; 21 — stand-alone vertical positioner of the zero position system; 22 — bracket for the excitation, removal and registration of free damped torsional vibrations; 23 — mobile carrier sleeve of the excitation, removal and registration system; 24 — movement drive of the sleeve; 23; 25 — electromagnets of the excitation system of damped free torsional vibrations; 26 — registration system of damped oscillatory process
 

Keywords: dynamic rating of investigation, dissipative properties, internal friction spectra, modulus defect

Author affiliations:

A.N. Frumkin Institute of Physical chemistry and Electrochemistry RAS, Moscow, Russia  

 
Contacts: Lomovskoy Viktor Andreevich,lomovskoy49@gmail.com
Article received by editing board 28.06.2018
Full text (In Russ.) >>

REFERENCES

  1. Ammer S.A., Moskalenko A.G., Yuyukin K.P. [Dislocation maximum of internal friction in corundum crystals]. Sb. Mekhanizmy relaksacionnyh yavlenij v tverdyh telah [Collection of articles. Mechanisms of the relaxational phenomena in solid bodies], Kaunas, 1974, pp. 232—235. (In Russ.).
  2. Burdanina N.A., Kamysheva L.N., Gridnev S.A., Zolototrubov Yu.S., Zhurov V.I. [Dielectric and mechanical losses of crystals with expressly injected defects]. Sb. Mekhanizmy relaksacionnyh yavlenij v tverdyh telah [Collection of articles. Mechanisms of the relaxational phenomena in solid bodies], Kaunas, 1974, pp. 239—244. (In Russ.).
  3. Balashov Yu.S., Noskov A.B., Ivanov N.V. [Processes of a mechanical glass transition in sweating glasses]. Sb. Mekhanizmy relaksacionnyh yavlenij v tverdyh telah [Collection of articles. Mechanisms of the relaxational phenomena in solid bodies], Kaunas, 1974, pp. 344—347. (In Russ.).
  4. Lomovskoy V.A., Abaturova N.A., Lomovskaya N.Yu., Hlebnikova O.A., Galushko T.B. [Areas of a local unelasticity and the relaxational phenomena in polyvinyl formal]. Vysokomolekulyarnye soedineniya. Seriya A [Polymer Science. Series A Polymer Physics], 2018, vol. 60, no. 3, pp. 201—207. DOI: 10.7868/S2308112018030045. (In Russ.).
  5. Lomovskoy V.A., Andreev I.V., Balashov Yu.S. Ustrojstvo dlya opredeleniya dinamicheskogo modulya sdviga tonkih steklyannyh volokon. Copyright certificate no. 1315871. [The device for definition of dynamic rigidity modulus of fine spun glasses]. Bulletin of inventions, 1987, no. 31. (In Russ.).
  6. Bondarev M.M., Bujvis S.B., Lomovskoy V.A., Shatalov V.G. Gorizontal'nyj krutil'nyj mayatnik. Copyright certificate no. 1387634. [Horizontal torsional pendulum]. Bulletin of inventions, 1987. (In Russ.).
  7. Lomovskoy V.A. et al. Izmeritel'nyj preobrazovatel'. Patent RF no. 2568963. [Patent for measuring transducer]. Prioritet 2015. (In Russ.).
  8. Mayer D.R. Prufungvon Kunstoffund Gummimitfreientorsionsschwingugen. Kunststoffe, 1967, bd. 54, no. 4, pp. 257—263.
 

A. N. Stashkov1, A. P. Nichipuruk1, E. A. Schapova2

MOBILE MAGNETIC MEASUREMENT SYSTEM
FOR CONTROL OF RESIDUAL MECHANICAL STRESSES
IN STEEL STRUCTURES

"Nauchnoe Priborostroenie", 2019, vol. 29, no. 1, pp. 47—54.
doi: 10.18358/np-29-1-i4754
 

The paper describes the foundations of the developed calibration-free magnetic method for NDT of the level of residual mechanical stresses in constructions made of low-carbon steels. The new mobile magnetic measurement system is described, which does not require the procedure of preliminary calibration on standard samples. The key elements of the measurement system are the primary converter of the original design, as well as the principle of calculating mechanical stresses over magnetic parameters. The work of measurement system is tested on samples of low-carbon steel with 0.2 % C under the action of compressive loads in the elastic deformation region.
 

Fig. 1. Scheme of the primary transducer of magnetometric complex.
ÏÝÌ — added electromagnet, ÂÒÏ — eddy current transducer

Fig. 2. The appearance of the primary transducer of magnetometric complex

Fig. 3. Functional diagram of a mobile magnetometric complex.
1 — a laptop; 2 — added electromagnet (ÏÝÌ); 3 — eddy current transducer (ÂÒÏ); 4 — Hall sensor; 5 — controlled object; ÏÓ1 and ÏÓ2 — pre-amplifiers; ÓÌ1 and ÓÌ2 — power amplifiers

Fig. 4. Appearance of mobile magnetometric complex

Fig. 5. Oscillogram of the current supplied in ÏÝÌ coils for magnetization reversal of the part of the controlled object along the limiting hysteresis loop

Fig. 6. Appearance of the main user interface window

Fig. 7. Appearance of the "Advanced Settings" window

Fig. 8. The result of processing the field dependence of the electromotive force of the measuring winding of the eddy current transducer obtained on a plate of low carbon steel Ñò20 with a relative elongation of 4.6%. 1 — experimental curve; 2, 3, 4 — the result of the approximation of the experimental curve using pseudo-Voigt functions

Table. Test measurement results


Keywords: steel, mechanical stresses, anisotropy, orthogonal magnetic fields, reversible magnetization, a magnetic measurement system, calibration-free

Author affiliations:

1M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences,
Yekaterinburg, Russia

2Ural Federal University named after the first President of Russia B.N. Yeltsin,
Yekaterinburg, Russia

 
Contacts: Stashkov Alexey Nikolaevitch, stashkov@imp.uran.ru
Article received by editing board 28.06.2018
Full text (In Russ.) >>

REFERENCES

  1. Chernyshev G.N., Popov A.L., Kozincev V.M., Ponomarev I.I. Napryazheniya v deformiruemyh tverdyh telah [Tension in deformable solid bodies]. Moscow, Fizmatlit Publ., 1996. 242 p. (In Russ.).
  2. Schajer G.S. Practical residual stress measurement methods. John Wiley & Sons Ltd, 2013. 310 p.
  3. Birger I.A. Ostatochnye napryazheniya [Residual stress]. Moscow, Mashgiz Publ., 1963. 232 p. (In Russ.).
  4. Osika V.I., Kochetkov B.M., Pavlov E.I., Kachan I.P. [Facility deformation monitoring]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2017, vol. 27, no. 1, pp. 46—52. URL: //iairas.ru/en/mag/2017/abst1.php#abst8. (In Russ.).
  5. Vonsovskij S.V., Shur Ya.S. Ferromagnetizm [Ferromagnetics]. Moscow, Leningrad, OGIS Publ., 1948. 816 p. (In Russ.).
  6. Gorkunov E.S., Zadvorkin S.M., Smirnov S.V., Mitropol'skaya S.Yu., Vichuzhanin D.I. [Interrelation between parameters of an intense strained state and magnetic characteristics of carbon steels]. Fizika metallov i metallovedenie [Physics of Metals and Metallography], 2007, vol. 103, no. 3, pp. 322—327. (In Russ.).
  7. Kuleev V.G., Car'kova T.P., Sazhina E.Yu., Doroshek A.S. [About influence of a plastic strain low-carbon ferromagnetic form of their hysteresis curves, staly on change, and dependences of a differential transmittivity on the field]. Defektoskopiya [Russian Journal of Nondestructive Testing], 2015, no. 12, pp. 34—42. (In Russ.).
  8. Mushnikov A.N., Mitropolskaya S.Yu. Effect of mechanical stresses on the magnetic characteristics of pipeline steels of different classes. Diagnostics, Resource and Mechanics of materials and structures, 2016, no 4, pp. 57—70. DOI: 10.17804/2410-9908.2016.4.057-070.
  9. Reutov Yu.Ya., Pudov V.I. [The equipment for monitoring of ferromagnetic products with a small coercive force]. Defektoskopiya [Russian Journal of Nondestructive Testing], 2017, no. 12, pp. 40—45. (In Russ.).
  10. Filinov V.V., Shaternikov V.E., Arakelov P.G. [Monitoring of technological tension by method of magnetic noise]. Defektoskopiya [Russian Journal of Nondestructive Testing], 2014, no. 12, pp. 58—71. (In Russ.).
  11. Nichipuruk A.P., Stashkov A.N., Kuleev V.G., Schapova E.A., Osipov A.A. [Technique and the device for bezgraduirovochny determination of size of the residual squeezing stresses in deformed by stretching low-carbon còaëÿõ]. Defektoskopiya [Russian Journal of Nondestructive Testing], 2017, no. 11, pp. 21—26. (In Russ.).
  12. Nichipuruk A.P., Stashkov A.N., Kostin V.N, Korh M.K. [Possibilities of magnetic monitoring of the plastic strains preceding a gap in designs from low-carbon staly]. Defektoskopiya [Russian Journal of Nondestructive Testing], 2009, no. 9, pp. 31—38. (In Russ.).
  13. Kuleev V.G., Car'kova T.P., Sazhina E.Yu., Doroshek A.S. [About influence of a plastic strain low-carbon ferromagnetic form of their hysteresis curves, staly on change, and dependences of a differential transmittivity on the field]. Defektoskopiya [Russian Journal of Nondestructive Testing], 2015, no. 12, pp. 34—42. (In Russ.).
  14. Nichipuruk A.P., Rozenfel'd E.V., Ogneva M.S., Stashkov A.N., Korolev A.V. [The experimental method of assessment of critical fields of the displaced domain borders in the provoloka which are plastically deformed by stretching from low-carbon steel]. Defektoskopiya [Russian Journal of Nondestructive Testing], 2014, no. 10, pp. 18—26. (In Russ.).
  15. Stashkov A.N., Nichipuruk A.P. Ustrojstvo dlya nerazrushayushchego kontrolya szhimayushchih mekhanicheskih napryazhenij v nizkouglerodistyh stalyah. Patent RF no. 2658595. [Patent for device for nondestructive monitoring of the squeezing mechanical tension in low-carbon still]. Prioritet 26.04.2018. (In Russ.).
  16. Ida T., Ando M., Toraya H. Extended pseudo-Voigt function for approximating the Voigt profile. Journal of Applied Crystallography, 2000, no. 33, pp. 1311—1316. DOI: 10.1107/S0021889800010219.
 

D. V. Petrov, I. I. Matrosov, A. R. Zaripov

THE APPLICATION OF RAMAN SPECTROSCOPY
TO CONTROL THE CARBON DIOXIDE CONCENTRATION
IN THE ATMOSPHERIC AIR

"Nauchnoe Priborostroenie", 2019, vol. 29, no. 1, pp. 55—60.
doi: 10.18358/np-29-1-i5560
 

The possibility of determination of carbon dioxide concentration in atmospheric air using Raman spectroscopy has been demonstrated. The sensitivity of the method realized with the help of the developed Raman gas analyzer was on level of ppm units. The ways of its improvement and perspectives of using Raman gas analysis for simultaneous monitoring of concentrations of all greenhouse gases are shown.
 

Fig. 1. Raman spectrum of atmospheric air

Fig. 2. Raman spectra of major components of atmospheric air

Fig. 3. Dynamics of change in carbon dioxide concentration, determined by two gas analyzers


Keywords: gas analysis, atmospheric air, carbon dioxide, Raman spectroscopy

Author affiliations:

Institute of Monitoring of Climatic and Ecological Systems SB RAS, Tomsk, Russia

 
Contacts: Petrov Dmitriy Vitalievitch, dpetrov@imces.ru
Article received by editing board 28.06.2018
Full text (In Russ.) >>

REFERENCES

  1. Keller P., Ferkel H., Zweiacker K., Naser J., Meyer J.-U., Riehemann W. The application of nanocrystalline BaTiO-composite films as CO2-sensing layers. Sensors Actuators B, 1999, vol. 57, no. 1-3, pp. 39—46. DOI: 10.1016/S0925-4005(99)00151-3.
  2. Pascale R., Caivano M., Buchicchio A., Mancini I.M., Bianco G., Caniani D. Validation of an analytical method for simultaneous high-precision measurements of greenhouse gas emissions from wastewater treatment plants using a gas chromatography-barrier discharge detector system. J. of Chromatography A, 2017, vol. 1480, pp. 62—69. DOI: 10.1016/j.chroma.2016.11.024.
  3. Verkouteren R.M., Dorko W.D. High-accuracy gas analysis via isotope dilution mass spectrometry: carbon dioxide in air. Anal. Chem., 1989, vol. 61, no. 21, pp. 2416—2422. DOI: 10.1021/ac00196a019.
  4. Esler M.B., Griffith D.W.T., Wilson S.R., Steele L.P. Precision trace gas analysis by FT-IR spectroscopy. 1. Simultaneous analysis of CO2, CH4, N2O, and CO in air. Anal. Chem., 2000, vol. 72, no. 1, pp. 206—215. DOI: 10.1021/ac9905625.
  5. Crosson E.R. A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide, and water vapor. Appl. Phys. B, 2007, vol. 92, no. 3, pp. 403-408. DOI: 10.1007/s00340-008-3135-y.
  6. Pandey S.K., Kim K.H. The relative performance of NDIR-based sensors in the near real-time analysis of CO2 in air. Sensors, 2007, vol. 7, no. 9, pp. 1683—1696. DOI: 10.3390/s7091683.
  7. Buldakov M.A., Korolev B.V., Matrosov I.I., Petrov D.V., Tihomirov A.A. [ICR gas analyzer of composition of natural gas]. Zhurnal prikladnoy spektroskopii [Journal of applied spectroscopy], 2013, vol. 80, no. 1, pp. 128—132. (In Russ.).
  8. Sharma R., Poonacha S., Bekal A., Vartak S., Weling A., Tilak V., Mitra C. Raman analyzer for sensitive natural gas composition analysis. Opt. Eng., 2016, vol. 55, no. 10, pp. 104103. DOI: 10.1117/1.OE.55.10.104103.
  9. Eichmann S.C., Kiefer J., Benz J., Kempf T., Leipertz A., Seeger T. Determination of gas composition in a biogas plant using a Raman-based sensor system. Meas. Sci. Technol., 2014, vol. 25, no. 7, pp. 075503. DOI: 10.1088/0957-0233/25/7/075503.
  10. Hanf S., Keiner R., Yan D., Popp J., Frosch T. Fiber-enhanced raman multigas spectroscopy: a versatile tool for environmental gas sensing and breath analysis. Anal. Chem., 2014, vol. 86, pp. 5278−5285.
  11. Chow K.K., Short M., Lam S., McWilliams A., Zeng H.
    A Raman cell based on hollow core photonic crystal fiber for human breath analysis. Med. Phys., 2014, vol. 41, no. 9, pp. 092701. DOI: 10.1118/1.4892381.
  12. Petrov D.V., Matrosov I.I., Sedinkin D.O., Tikhomirov A.A. [Effective spectral device for Raman spectroscopy]. Optika atmosfery i okeana [Atmospheric and oceanic optics], 2015, vol. 28, no. 08, pp. 756—760. DOI: 10.15372/AOO20150813. (In Russ.).
  13. Petrov D.V., Matrosov I.I., Tihomirov A.A. [Highly sensitive ICR spectrometer of gaseous fluids]. Zhurnal prikladnoy spektroskopii [Journal of applied spectroscopy], 2015, vol. 82, no. 1, pp. 124—128. (In Russ.).
  14. Howard-Lock H.E., Stoicheff B.P. Raman intensity measurements of the Fermi Diad ν1, 2ν2 in 12CO2 and 13CO2. J. mol. spectrosc., 1971, vol. 37, no. 2, pp. 321—326. DOI: 10.1016/0022-2852(71)90302-X.
  15. Petrov D.V. Multipass optical system for a Raman gas spectrometer. Applied Optics, 2016, vol. 55, no. 33, pp. 9521—9525. DOI: 10.1364/AO.55.009521.
 

D. A. Konovalov1, Ya. V. Fattakhov2, A. R. Fakhrutdinov2,
V. A. Shagalov2, R. Sh. Khabipov2, A. N. Anikin2

DOWNHOLE TOOL FOR MEASURING
THE DIELECTRIC CHARACTERISTICS OF RESERVOIR FLUID

"Nauchnoe Priborostroenie", 2019, vol. 29, no. 1, pp. 61—66.
doi: 10.18358/np-29-1-i6166
 

In work the device for measurement of dielectric characteristics of a reservoir fluid is presented. This device is designed to work in a well with a depth of up to 5 km. Measurements of dielectric characteristics are made by the capacitive divider method, and both amplitude and phase changes of high frequency oscillations passing through two measuring capacitor cells filled with the investigated fluid are taken into account. Measuring cells differ in the length of the central electrode and are designed to work in different parts of the oil-water concentration range. Based on the results of the tests, the optimal range of operating frequencies of the device is determined, depending on the design of the cells used.
 

Fig. 1. Block diagram of a downhole tool for measuring dielectric characteristics of formation fluid

Fig. 2. Drawing of the measuring cell.
1 — body, 2 — flange, 3 — flange, 4 — internal electrode, 5 — dielectric inserts, 6 — metal stud, 7 — short internal electrode / stud

Fig. 3. The frequency dependences of the signals of the detector outputs of the detecting module for three test liquids and for two different electrode lengths are 50 mm (à and á), 150 mm (â and ã).
à, â — signal proportional to the ratio of amplitudes; á, ã — signal proportional to the phase difference

Fig. 4. Temperature dependence of the dielectric permittivity of distilled water.
A straight line represents a theoretical relationship; the relative error bars of experimental points correspond to 5%


Keywords: dielectric constant, capacitive sensor, cylindrical capacitor, capacitance measurement, moisture meter

Author affiliations:

1Federal research center "Kazan scientific center of the Russian
Academy of Sciences", Kazan, Tatarstan, Russia

2The Kazan E. K. Zavoisky Physical-Technical Institute of the Kazan Scientific Center of the
Russian Academy of Sciences, Kazan, Tatarstan, Russia

 
Contacts: Konovalov Dmitriy Aleksandrovitch, dak@kfti.knc.ru
Article received by editing board 28.06.2018
Full text (In Russ.) >>

REFERENCES

  1. Berliner M.A. Izmerenie vlazhnosti v diapazone SVCh [Measurement of humidity in the microwave oven range]. Moscow, Energy Publ., 1973. 400 p. (In Russ.).
  2. Muhitdinov M.M., Musaev E.S. Opticheskie metody i ustrojstva kontrolya vlazhnosti [Optical techniques and control units of humidity]. Moscow, Energoatomizdat Publ., 1986. 95 p. (In Russ.).
  3. Gusev Yu.A., ed. Osnovy dielektricheskoj spektroskopii: uchebnoe posobie dlya studentov fizicheskogo fakul'teta [Fundamentals of dielectric spectroscopy: manual for students of physical faculty]. Kazan, KGU Publ., 2008. 112 p. (In Russ.).
  4. Demyanov A.A. Izmeritel'nyj preobrazovatel' neftyanogo vlagomera. Patent RF no. 5046667/25. [Patent for the device for measuring converter of the oil hygrometer]. Prioritet 06.05.1992. (In Russ.).
  5. STM32F373CCT6 Data Sheets.
    URL: http://www.st.com/content/ccc/resource/technical/document/ datasheet/f0/ac/ee/70/19/13/4f/56/DM00046749.pdf/files/DM00046749.pdf/ jcr:content/translations/en.DM00046749.pdf (accessed 22.10.2017).
  6. AD9851 Data Sheets. URL: http://www.analog.com/static/imported-files/data_sheets/AD9851.pdf (accessed 22.10.2017).
  7. AD8302 Data Sheets. URL: http://www.analog.com/static/imported-files/data_sheets/AD8302.pdf (accessed 22.10.2017).
  8. MAX485 Data Sheets. URL: https://datasheets.maximintegrated.com/en/ds/MAX1487-MAX491.pdf (accessed 22.10.2017).
  9. Eyzenberg D., Kaufman V. Struktura i svojstva vody [Structure and properties of water]. Leningrad, Gidrometeoizdat Publ., 1975. 280 p. (In Russ.).
 

A. N. Temnikov

TABLET—TYPE MAGNETIC FIELD SCANNER
WITH NON—MOVING SENSOR

"Nauchnoe Priborostroenie", 2019, vol. 29, no. 1, pp. 67—70.
doi: 10.18358/np-29-1-i6770
 

Design options for a tablet-type magnetic field scanner are described. Scanners differ in the number of sensors and the way data is recorded. All sensors are fixed and scanning is performed by moving the source of magnetic field. The transition from the moving sensor to the moving source allows circumventing the number of principal problems and creating an exceptionally simple, compact and reliable design.

 

Fig. 1. Layout view of a magnetic field scanner.
The black rectangle 1 in the center is a Hall sensor, on the right 2 is a holder with a cylindrical magnet installed in it. To simplify the figure, the millimeter divisions on the scales are not shown. In the position of the magnet shown in the figure, the coordinates of the Hall sensor are relative to the center of the magnet: x = - 4.6 mm; y = 0 mm. The size of the scan area at the selected scanner size is 10 × 10 cm. The vertical dashed line shows the location of the array of 16 Hall sensors in the scanner of the second type, the horizontal dashed lines indicate the vertical size of this scanner

Fig. 2. Magnet holder
1 — base, 2 — holder, 3 — magnet, 4 — insert


Keywords: magnetic field, scanning, sensor

Author affiliations:

Kazan National Research Technological University, Kazan, Russia

 
Contacts: Temnikov Alexey Nikolaevitch, antemnikov@yahoo.com
Article received by editing board 28.06.2018
Full text (In Russ.) >>

REFERENCES

  1. Keller P. Technologies for Precision Magnetic Field Mapping.
    URL: http://metrolab.com/wp-content/uploads/2015/07/General_tech_note_Technologies_for_Precision_Magnetic_Field_Mapping.pdf
  2. Overview magnetic field mapper.
    URL: http://www.senis.ch/products/mappers.
  3. Field mapping. URL: https://www.dextermag.com/services/engineering/magnetic-field-mapping/.
  4. Linear output magnetic field sensor.
    URL: http://www.analog.com/media/en/technical-documentation/data-sheets/AD22151.pdf.
  5. Mikushin A.V., Sazhnev A.M., Sedinin V.I. Cifrovye ustrojstva i mikroprocessory [Digital devices and microprocessors]. Saint Petersburg, BHV-Peterburg Publ., 2010. 832 p. (In Russ.).
  6. 16-Channel, 1 MSPS, 12-Dit ADC with Sequencer in 28-Lead TSSOP.
    URL: http://www.analog.com/media/en/technical-documentation/data-sheets/AD7490.pdf
  7. DLP-TxRx-G USB to serial adapter.
    URL: http://www.ftdichip.com/Support/Documents/DataSheets/DLP/dlptxrx-v14-ds.pdf.
  8. MAX 7000 Programmable Logic Device Family.
    URL: https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ds/archives/m7000.pdf
 

V. A. Zakharov, S. M. Molin, S. V. Len’kov,
V. A. Kolyasev, A. G. Kopytov, M. A. Gusev

SENSORS BASED ON PERMANENT MAGNETS USING ROTATIONAL MAGNETIZATION OF THE MATERIAL

"Nauchnoe Priborostroenie", 2019, vol. 29, no. 1, pp. 71—75.
doi: 10.18358/np-29-1-i7175
 

The functional capabilities of magnetic sensors with a two-pole magnetizing device on permanent magnets and a magnetic field transducer with a normal orientation of the sensitivity axis in relation to the direction of the magnetizing field are investigated. The possibility of operation of devices in the mode of rotation of the sensor in relation to the control of mechanical properties and stress-strain state of products made of ferromagnetic materials.
 

Fig. 1. Permanent magnet sensor design

Fig. 2. The formation of magnetization in the sample when turning the magnetizing device of the sensor

Fig. 3. The dependence of the parameter Íó on the angle of rotation α of the sensor of the structurescope for two limiting values of deformation. Row1 — e0. Row2 — eÌ

Fig. 4. Dependence of parameters Íó1, Íó2 è ΔÍ from relative deformation

Fig. 5. Block diagram of the measuring system

Fig. 6. Magnetic sensor unit.
a — the sensor on a sample with captures; á — bottom view of the flux probe without gasket

Fig. 7. User interface


Keywords: magnetic sensor, magnetic field strength, ferromagnetic materials, coercive force, relative deformation

Author affiliations:

Udmurt Federal Research Center of the Ural Brunch of RAS, Izhevsk, Udmurtia, Russia

 
Contacts: Zakharov Vladimir Anatolievitch, zva@udman.ru
Article received by editing board 28.06.2018
Full text (In Russ.) >>

REFERENCES

  1. Gorkunov E.S., Zakharov V.A. [Coercimeters with added magnetic devices (review)]. Defektoskopiya [Russian Journal of Nondestructive Testing], 1995, no. 8, pp. 69—88. (In Russ.).
  2. Zakharov V.A., Molin S.M., Len’kov S.V., Kolyasev V.A. [Strukturoskops on permanent magnets]. Inzhenernaya fizika [Engineering Physics], 2016, no. 12, pp. 68—73. (In Russ.).
  3. Zakharov V.A., Molin S.M., Len’kov S.V., Kolyasev V.A. Magnitnyj strukturoskop. Patent RF no. 173646. [Patent for the useful model magnetic structuroscope]. Prioritet 04.09.2017. (In Russ.).
 

A. V. Nikulin1, A. V. Khromov1, O. N. Kompanets2, D. P. Chulkov3

NANOSENS AND CALIBRATION OF PORTABLE
BIOSENSOR ANALYTICAL DEVICES

"Nauchnoe Priborostroenie", 2019, vol. 29, no. 1, pp. 76—81.
doi: 10.18358/np-29-1-i7681
 

The possibility of using the highly stable anti-cancer drug Nanosens as an additional standard of optical activity for calibration of portable biosensor analytical devices based on DNA biosensing units and a dichrometer is discussed.
 

Fig. 1. The spectrum of Nanosens circular dichroism in the UV and visible regions of the spectrum

Fig. 2. The position of the anomalous circular dichroism band of cholesteric liquid crystal DNA dispersion of a negative sign, circular dichroism bands of camphorsulfonic acid and Nanosens (positive sign) in the region of 300 nm and anomalous circular dichroism bands of a negative sign (dashed lines) of DNA molecular and nano structures with different intercalators embedded in their structure in the region of 500 nm.
It can be seen that the spectrum of circular dichroism of Nanosens is well “superimposed” on the position of the bands of circular dichroism in both regions of the spectrum


Keywords: optical activity, circular dichroism, dichrometer calibration, DNA based biosensor, biologically active substances

Author affiliations:

1RUDN University, Moscow, Russia
2Institute of Spectroscopy of the Russian Academy of Sciences, Troitsk, Moscow, Russia
3Medtekhnika of the RF President̕ Administration, Moscow, Russia

 
Contacts: Kompanets Oleg Nikolaevitch, onkomp@isan.troitsk.ru
Article received by editing board 28.06.2018
Full text (In Russ.) >>

REFERENCES

  1. Evdokimov Yu.M. (ed.), Salyanov V.I., Semenov S.V., Skuridin S.G. Zhidkokristallicheskie dispersii i nanokonstrukcii DNK [Liquid crystal dispersions and nanodesigns of DNA]. Moscow, Radiotekhnika Publ., 2008. 294 p. (In Russ.).
  2. Evdokimov Yu.M. (ed.), Salyanov V.I., Skuridin S.G. Nanostruktury i nanokonstrukcii na osnove DNK [Nanostructures and nanodesigns on the basis of DNA]. Moscow, SAYNS-PRESS, 2010. 254 p. (In Russ.).
  3. Schippers P.H., Dekkers H.P.J.M. Direct determination of absolute CD data and calibration of commercial instruments. Analitical Chemistry, 1981, vol. 53, no. 6, pp. 778—782. DOI: 10.1021/ac00229a008.
  4. Gusev V.M., Kompanets O.N., Pavlov M.A., Chulkov D.P., Evdokimov Yu.M., Skuridin S.G. [DNA nanoconstructions for testing and calibration of CD spectrometers]. Naukoemkie tekhnologii [Science Intensive Technologies], 2013, no. 4, pp. 68—76. (In Russ.).
  5. Hromov A.V., Kogan B.Ya., Fejzulova R.K.-G., Pankratov A.A., Yakubovskaya R.I. [Preclinical researches of the medicinal medicine Nanopsychic]. Biomedical Photonics, 2015, no. S1, pp. 12—13. (In Russ.).
 

G. A. Shabanov1, A. A. Rybchenko1, Y. A. Lebedev1, E. A. Pripatinskaya1, E. V. Smolenskii1, V. I. Korochentsev2, S. P. Kryzhanovskii3, S. A. Feigin4, V. V. Mishchenko4, G. M. Zhuravel4

THE PROTOTYPE "SPECTRAL ANALYSIS
OF VIBROACOUSTIC ACTIVITY OF THE HUMAN HEAD"

"Nauchnoe Priborostroenie", 2019, vol. 29, no. 1, pp. 82—86.
doi: 10.18358/np-29-1-i8286
 

To study the spectrum of global bioelectric activity of the brain non-specific system, a medical device called "Spectral analyzer of bioacoustic activity of the human head" was developed. Made a prototype. A method for recording the total acoustic field of the human brain using an induction sensor was proposed. The device of induction sensors, features of narrow-band spectral analysis and a new system of frequency coordinates matrix of "set of functional states". The device can be used to assess the adaptive capabilities of the body when interacting with aggressive influence factors, functional and topical diagnosis of internal organs.
 

Fig. 1. Location of induction vibration sensors on the human head

Fig. 2. Type of acoustic signal taken from the human head using induction vibration sensors.
The upper chart — the right cerebral hemisphere, the lower chart — the left hemisphere; between vertical lines — the distance in time is 1 s, along the vertical axis — the voltage at the output of the sensors in µV


Keywords: induction vibration sensor, acoustic encephalogram, acoustic field of the head, electroencephalogram

Author affiliations:

1Scientific research center "Arktika" of the Far Eastern branch of RAS, Vladivostok, Russia
2Far Eastern Federal University, Vladivostok, Russia
3Medical Association of the Far Eastern branch of RAS, Vladivostok, Russia
4National medical research center for obstetrics, gynecology and perinatology named after
academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia 

 
Contacts: Smolenskii Egor Viktorovich, neurokib@mail.ru
Article received by editing board 28.06.2018
Full text (In Russ.) >>

REFERENCES

  1. Novosti vysokih tekhnologij. Sozdana tekhnologiya, pozvolyayushchaya slushat' bakterii i kletki [The technology allowing to listen to bacteria and cages is created]. Hi-News.ru. URL: https://hi-news.ru/technology/sozdana-texnologiya-pozvolyayushhaya-slushat-bakterii-i-kletki.html (accessed 20.05.2017). (In Russ.).
  2. Mirgorodskii V.I., Gerasimov V.V., Peshin S.V. [Detection of new acoustic signals from the human head]. Akusticheskij Zhurnal [Acoustic journal], 2014, vol. 60, no. 4, pp. 437—442. (In Russ.).
  3. Shabanov G.A., Maksimov A.L., Rybchenko A.A. Funkcional'no-topicheskaya diagnostika organizma cheloveka na osnove analiza ritmicheskoj aktivnosti golovnogo mozga [Functional and topical diagnostics of a human body on the basis of the analysis of rhythmic activity of a brain]. Vladivostok, Dalnauka Publ., 2011. 206 p. (In Russ.).
  4. Podol'skiy I.Ya., Vorob'ev V.V., Belova N.A. [Long-term changes in EEG spectra of the hippocampus and neocortex during pharmacological action on the cholinergic system]. Zhurnal vysshej nervnoj deyatel'nosti im. I.P. Pavlova [I.P. Pavlov Journal of Higher Nervous Activity], 2000, vol. 50, no. 6, pp. 982—990. (In Russ.).
  5. Minkin V.A. Vibroizobrazhenie [Vibroimage]. Saint Petersburg, Renome Publ., 2007. 108 p. (In Russ.).
  6. Gukasov V.M., Shovkoplyas Y.A., Minkin V.A. [Vibroimage method – the modern basis of environmental safety]. Medicina i vysokie tekhnologii [Medicine and high technology], 2012, no. 2, pp. 46—50. (In Russ.).
  7. Shabanov G.A., Lebedev Y.A., Rybchenko A.A., Maksimov A.L., Korochentsev V.I. [A Study of the Human Brain Acoustic Field Spectrum]. Vestnik SVNC DVO RAN [Bulletin of the North-East Science Center], 2017, no. 3, pp. 115—122. (In Russ.).
 

L. N. Zalyalyutdinova1, Ya. V. Fattakhov2, D. A. Fazliakhmetova3,
A. A. Bayazitov2, N. A. Krylatykh2, A. Ya. Imanaeva4, A. A. Petrova5

VISUALIZATION OF LABORATORY ANIMALS’ TUMORS
WITH CONTRAST AGENTS IN LOW-FIELD MRI SYSTEM "TMR-0.06-KFTI"

"Nauchnoe Priborostroenie", 2019, vol. 29, no. 1, pp. 87—91.
doi: 10.18358/np-29-1-i8791
 

New safety issues of currently existing MRI contrasting agents dictate search of new contrasting preparetions, namely among those devoid of gadolinium. The study of the diagnostic capabilities of Russian low-field magnetic resonance tomograph with use of gadobutrol and officially approved parenteral iron-containing medication drug has revealed the prospect of the latter for the solvation this problem.
 

Fig. 1. MRI image of a control rat (without contrast) (a) and an experimental rat (b) with a tumor transplanted into withers 20 minutes after the administration of the Gadovist.
Shooting mode — T1 (signal acquisition time ÒÅ = 34, sequence repetition time TR = 300 ms)

Fig. 2. MRI images in dynamics.
a — MRI image of an experimental rat with a tumor transplanted to the withers, 1 h after the administration of the the Gadovist; shooting mode — T1 (TE = 34, TR = 300 ms). á — image of an experienced rat with a solid tumor 1.5 h after injection of contrast; shooting mode T2 (TE = 80, TR = 1000 ms)

Fig. 3. Rat images with a tumor at the withers 1 h after the administration of the iron-containing pharmaceutical drug (à) and without the drug (control) (á). T1 shooting mode (TE = 34, TR = 300 ms)


Keywords: MRI, magnetic resonance contrasting agents, gadolinium, iron, sarcoma 45

Author affiliations:

1Kazan State Medical University, Kazan, Russia
2Zavoisky Physical-Technical Institute of FRC Kazan Scientific Center of RAS, Kazan, Russia
3Republican clinical dermatology and venereology dispensary, Kazan, Russia
4JSC "TATCHEMPHARMPREPARATY", Kazan, Russia
5Interregional clinical and diagnostic center, Kazan, Russia

 
Contacts: Zalyalyutdinova Luisa Nailievna, zalyalyu@gmail.com
Article received by editing board 28.06.2018
Full text (In Russ.) >>

REFERENCES

  1. EMA’s final opinion confirms restrictions on use of linear gadolinium agents in body scans. European medicines agency. 2017. URL:
  2. Gadolinium-based contrast agents (GBCAs): Drug safety communication - retained in body; new class warnings. U.S. Food and Drug Administration. 2017. URL:
  3. 2018).
  4. Registr lekarstvennyh sredstv Rossii [Register of pharmaceuticals of Russia]. URL: www.rlsnet.ru (accessed 22.05.2018). (In Russ.).
  5. Parsell E. Elektrichestvo i magnetism [Electricity and magnetism], vol. 2. Moscow, Nauka Publ., 1971. 444 p. (In Russ.).
  6. Bayazitov A.A., Chumarov P.I., Fattakhov Ya.V. [The reception radio-frequency quadrature Neck sensor for the magnetic and resonant tomograph]. PTE [Devices and technique of an experiment], 2018, vol. 61, no. 4, pp. 125—131. DOI: 10.1134/S0032816218040031. (In Russ.).
 

A. A. Bayazitov1, Ya. V. Fattakhov1, V. E. Khundiryakov2

DESIGN OF AN ELLIPTICAL COIL
FOR A SPECIALIZED MAGNETIC RESONANCE SCANNER
WITH A 0.4 TESLA FIELD

"Nauchnoe Priborostroenie", 2019, vol. 29, no. 1, pp. 92—98.
doi: 10.18358/np-29-1-i9298
 

The work is devoted to mathematical calculation, development of designs measurement of radio frequency characteristics of the coil for a specialized magnetic resonance scanner. The results of mathematical modeling of the field homogeneity, for the receiving coil, are presented depending on its design features. A comparative analysis of the results of two types of contours are made: cylindrical and elliptical. Based on the results of the simulation, experimental samples of the receiving coil are manufactured and the results of measuring their radio-frequency characteristics are presented.
 

Fig. 1. Sensor circuit with 6 turns

Fig. 2. Calculation of the magnetic field induction distribution along the X axis (y = 0 mm, z = 0 mm) from 4 turns (1) and from 6 turns (2) for optimal values of the contour parameters

Fig. 3. Calculation of the distribution of the magnetic field induction from the circuit with 6 turns along the X axis, with Ry = 80 mm for
1) Rz = 70 mm, x1 = 45 mm, x2 = 60 mm;
2) Rz = 60 mm, x1 = 40 mm, x2 = 60 mm;
3) Rz = 50 mm, x1 = 35 mm, x2 = 60 mm;
4) Rz = 40 mm, x1 = 35mm, x2 = 50 mm

Fig. 4. The calculation of the distribution of the magnetic field induction from the circuit with 6 turns along the Z axis with a shift of the observation plane along the X axis by 70 mm from the origin, with Ry = 80 mm for
1) Rz = 70 mm, x1 = 45 mm, x2 = 60 mm;
2) Rz = 60 mm, x1 = 40 mm, x2 = 60 mm;
3) Rz = 50 mm, x1 = 35 mm, x2 = 60 mm;
4) Rz = 40 mm, x1 = 35 mm, x2 = 50 mm

Fig. 5. Calculation of the magnetic field induction distribution along the Y axis with a shift of the observation plane along the X axis by 70 mm from the origin, with Ry = 80 mm for
1) Rz = 70 mm, x1 = 45 mm, x2 = 60 mm;
2) Rz = 60 mm, x1 = 40 mm, x2 = 60 mm;
3) Rz = 50 mm, x1 = 35 mm, x2 = 60 mm;
4) Rz = 40 mm, x1 = 35 mm, x2 = 50 mm

Fig. 6. Signal measurements along X-axis in the area of interest from the real contour.
1 — distribution of the signal from the elliptical contour, 2 — distribution of the signal from the cylindrical contour. The frame shows the area of interest


Keywords: MRI, calculation of magnetic field distribution, sensor "brush", the receiving sensor, Gauge brush

Author affiliations:

1Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, Kazan, Russia
2Kazan Federal University, Kazan, Russia

 
Contacts: Bayazitov Alfis Albertovitch, bayazitov.alfis@kfti.knc.ru
Article received by editing board 28.06.2018
Full text (In Russ.) >>

REFERENCES

  1. Parsell E. Elektrichestvo i magnetism. T. 2 [Electricity and magnetism. Vol. 2.]. Moscow, Nauka Publ., 1971. 444 p. (In Russ.).
  2. Barker J.R. New coil systems for the production of uniform magnetic fields. J. Sci. Instrum., 1949, vol. 26, pp. 213—215. DOI: 10.1088/0950-7671/26/8/307.
  3. Barker J.R. The magnetic field inside a solenoid. British journal of applied physics, 1950, vol. 1, no. 3, pp. 65—67. Doi: 10.1088/0508-3443/1/3/303.
  4. Korn G., Korn T. Spravochnik po matematike [Reference book on mathematics]. Moscow, Nauka Publ., 1977. 630 p. (In Russ.).
  5. Bayazitov A.A., Pankratov A.S., Saykin K.S. [Development of the quadrature kidneys sensor for the low-field MR-tomograph]. Sb. st. "Struktura i dinamika molekulyarnyh sistem" [Collection of articles "Structure and dynamics of molecular systems"], Yoshkar-Ola, Ufa, Kazan, Moscow, 2009, iss. XVI, vol. 3, pp. 264. (In Russ.).
  6. Bayazitov A.A., Chumarov P.I., Fattakhov Ya.V. [The reception radio-frequency quadrature Neck sensor for the magnetic and resonant tomograph]. PTE [Devices and technique of an experiment], 2018, vol. 61, no. 4, pp. 125—131. (In Russ.).
  7. Red E. Spravochnoe posobie po vysokochastotnoj skhemotekhnike: skhemy, bloki, 50-omnaya tekhnika [The handbook on high-frequency circuitry: schemes, blocks, 50-omny technique]. Moscow, Mir Publ., 1990. 47 p. (In Russ.).
  8. Cassidy P.J., Grieve S., Clarke K., Edwards D.J. Electromagnetic characterization of MR RF coil using the transmission-line modeling method. Magnetic resonance materials in physics, biology and medicine (magma), 2002, vol. 14, no. 1, pp. 20—29. DOI: 10.1007/BF02668183.
 

G. M. Cherniakov

A NEW METHOD FOR SHORT-TIME TESTING OF MULTICOMPONENT HYDROCARBON LIQUID

"Nauchnoe Priborostroenie", 2019, vol. 29, no. 1, pp. 99—105.
doi: 10.18358/np-29-1-i99105
 

A new method for express testing of multicomponent liquid, consist principally of hydrocarbons (90% and more), is described. The new method is an alternative type of technical implementation for "electronic tongue" idea. It is based on a brand new process that provides an opportunity to identify analyzed multicomponent liquid with standard sample (etalon) and to perform liquid express analysis, avoiding its detailed composition test. In addition, standard sample (etalon) equivalence makes it possible to match full identity/concordance of analyzed liquid in technology of liquid creation, not only in elemental composition.
 

Fig. 1. View of the measuring unit of the device when the cover is removed.
1 — measuring microwave unit;
2 — adjustable waveguide transformer

Fig. 2. View of the phase plane and the interface panel section at the moment of automatic completion of the express analysis of a sample of food ethanol

Fig. 3. View of the phase plane and the interface panel section at the moment of automatic completion of the express analysis of a sample of hydrolyzed ethanol

Fig. 4. View of the phase plane and the interface panel section at the moment of automatic completion of the express analysis of a sample of synthetic ethanol

Fig. 5. View of the phase plane and part of the interface panel at the time of stopping the observation of the effect of introducing impurities of synthetic alcohol into the sample of food ethanol


Keywords: express analysis, multicomponent (complex) hydrocarbon liquid, identical with standard sample/etalon, interaction of matter with EMR (electromagnetic radiation)

Author affiliations:

Gesand LLC, Saint-Petersburg, Russia

 
Contacts: Chernyakov Gennadiy Michaylovitch, genmich1@mail.ru
Article received by editing board 30.11.2018
Full text (In Russ.) >>

REFERENCES

  1. Kislyakova L.P., Bulyanitsa A.L., Kislyakov Yu.Ya., Gulyaev V.I. [Estimation of a people’s functional condition after physical activities based on the indicators of the exhaled air condensate registered by polyselective electrochemical sensors with using the projective methods of the multidimensional analysis]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2016, vol. 26, no. 2, pp. 37—47. URL: http://iairas.ru/en/mag/2016/abst2.php#abst5. (In Russ.).
  2. Gardner J.W., Dartlett P.N. A brief history of electronic noses. Sensors & Actuators B: Chemical, 1994, vol. 18, no. 1-3, pp. 211—221. DOI: 10.1016/0925-4005(94)87085-3.
  3. Polshin E., Rudnitskaya A., Kirsanov D., Legin A., Saison D., Delvaux F., Delvaux F.R., Nicolaï B.M., Lammertyn J. Electronic tongue as a screening tool for rapid analysis of beer. Talanta, 2010, vol. 81, no. 1-2, pp. 88—94.
    DOI: 10.1016/j.talanta.2009.11.041.
  4. Lebedev A.T. Mass-spektrometriya dlya analiza objektov okruzhayushchej sredy [Mass spectrometry for the analysis of objects of a surrounding medium]. Moscow, Tekhnosfera Publ., 2013. 632 p. (In Russ.).
  5. Cherniakov G.M., Shannikov D.V. Ustrojstvo dlya diagnostiki. Patent RF no. 43 145. [Patent for the device for diagnostics]. Prioritet 31.03.2004. (In Russ.).
  6. Cherniakov G.M., Shannikov D.V., Rybakov Yu.V. Ustrojstvo dlya diagnostiki biologicheskih sred. Patent RF no. 40 705. [Patent for the device for diagnostics of biological environments]. Prioritet 07.04.2004. (In Russ.).
 

V. V. Manoilov1, A. G. Kuzmin1, I. V. Zarutskiy1, Yu. A. Titov1, N. S. Samsonova1,2

METHODS OF PROCESSING AND INVESTIGATION
OF THE POSSIBILITIES OF CLASSIFICATION
OF MASS SPECTRA OF EXHALED GASES

"Nauchnoe Priborostroenie", 2019, vol. 29, no. 1, pp. 106—110.
doi: 10.18358/np-29-1-i106110
 

Analysis of exhaled air is one of the important areas of non-invasive medicine. As an example of the use of this method in scientific instrumentation, mathematical processing of mass spectra obtained on a quadrupole mass spectrometer MC7-200 is considered. The methods of data processing described on the basis of linear and quadratic discriminant analysis allow us to divide processed mass spectra of exhaled gases into two groups: mass spectra of exhaled gases of healthy people and mass spectra of exhaled gases of people with possible pathologies.
 

Fig. 1. The mass spectrometer ÌÑ7-200

Fig. 2. Reference mass spectrum

Fig. 3. The result of discriminant analysis.
Along the horizontal axis — the values of the variables for the first main component, along the vertical axis — the values of the variables for the second component.
a — result of linear discriminant analysis, á — the result of quadratic discriminant analysis


Keywords: mathematical methods of data processing, mass spectrometers, discriminant analysis

Author affiliations:

1Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia
2The Ioffe Institute of RAS, Saint-Petersburg, Russia

 
Contacts: Samsonova Natalya Sergeevna, kolomna.88@mail.ru;
Manoylov Vladimir Vladimirovich, manoilov_vv@mail.ru
Article received by editing board 27.07.2018
Full text (In Russ.) >>

REFERENCES

  1. Kuzmin A.G., Tkachenko E.I., Oreshko L.S., Titov Yu.A. [Perspective of a method of mass-spectrometry aroma diagnosis for composition of the exhaled air]. Tezisy dokladov X Evrazijskoj nauchnoj konferencii "DONOZOLOGIYA-2014" [Theses of reports of the X Eurasian scientific DONOZOLOGY-2014 conference]. Saint-Petersburg,
    18—19 December 2014, pp. 229—231. (In Russ.).
  2. Patent RF no. 94763. Prioritet 27.05.2010. (In Russ.).
  3. Kuzmin A.G., Titov Yu.A. [Small-sized mass spectrometers for dynamic researches of composition of the exhaled air]. Trudy I Mezhdunarodnoj nauchno-prakticheskoj konferencii "Vysokie tekhnologii, fundamental'nye i prikladnye issledovaniya v fiziologii i medicine". Ch. 3 [Proc. I of the international scientific and practical conference "High Technologies, Basic and Applied Researches in Physiology and Medicine". Part 3]. Saint-Petersburg, 23−26 November 2010, SPBGPU, 2010, pp. 266−270. (In Russ.).
  4. Kuzmin A.G., Tkachenko E.I., Oreshko L.S., Titov Yu.A., Balabanov A.S. [Method of mass-spectrometry express diagnostics on composition of the exhaled air]. Meditsinskiy Akademicheskiy Zhurnal [Medical Academic Journal], 2016, vol. 16, no. 4, pp. 106—107. (In Russ.).
  5. Kuzmin A.G., Tkachenko E.I., Oreshko L.S., Titov Yu.A., Balabanov A.S. The method of medical instant diagnostics based on real-time mass-spectrometric analysis of exhaled air composition. 3rd ICMM PAN-ASIA PACIFIC CONGRESS ON MILITARY MEDICINE. Abstracts. 08.08.2016—12.08.2016, St.-Petersburg, pp. 181—182.
  6. Manoylov V.V., Titov Yu.A., Kuz'min A.G., Zaruzkiy I.V. [Methods for data processing and classification for mass spectra of exhaled gases using discriminant analysis]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2016, vol. 26, no. 3, pp. 50—57.
    URL: http://iairas.ru/en/mag/2016/full3/Art7.pdf. (In Russ.).
 

A. I. Zhernovoy, S. V. Dyachenko

A MEASUREMENT OF A MAGNETIC LIQUID
MAGNETIZATION BY NMR METHOD
WITH ONE MEASURING BOBBIN

"Nauchnoe Priborostroenie", 2019, vol. 29, no. 1, pp. 111—115.
doi: 10.18358/np-29-1-i111115
 

A new nuclear magnetic resonance method for magnetic liquid magnetization measurement is proposed in the article. The only coil was employed in NMR magnetometer instead of earlier used two coils which were a source of error due to field difference within the coils.
 

Fig. 1. Layout of device for measuring the magnetization of magnetic fluid with the rotation of the sample.
1— water pump, 2 — polarizer cuvette, 3 — polarizer magnet, 4 — electromagnet sensitive element, 5 — sample container, 6 — sample container slot, 7 — measuring coil (nutation coil), 8 — pipeline, 9 — radio frequency generator, 10 — analyzer magnet, 11 — NMR signal registration coil, 12 — device for recording the NMR signal

Fig. 2. View of the sensing element at two angular positions of the sample.
4 — electromagnet of the sensitive element, 5 — sample container, 6 — sample container slot, 7 — measuring coil (nutation coil).
a — the slot is located normally to the induction, á — the slot is parallel to the induction


Keywords: magnetic liquid, magnetization, method NMR with two and one measuring bobbins

Author affiliations:

Saint-Petersburg State Institute of Technology (Technical University), Saint-Petersburg, Russia

 
Contacts: Zhernovoy Aleksandr Ivanovich, azhspb@rambler.ru
Article received by editing board 22.10.2018
Full text (In Russ.) >>

REFERENCES

  1. Zhernovoy A.I., Naumov V.N., Rudakov Yu.R. [Paramagnetic nanoglobules dispersion curve definition via magnetization and magnetizable field using NMR method]. Nauchnoe Priborostroenie [Scientific Instru­mentation], 2009, vol. 19, no. 3, pp. 57—61. URL: http://iairas.ru/en/mag/2009/full3/Art8.pdf. (In Russ.).
  2. Zhernovoy A.I. Sposob izmereniya namagnichennosti magnitnoj zhidkosti [Way of measurement of magnetization of magnetic liquid]. Patent RF no. 2625147. Prioritet 17.07.2017. (In Russ.).
 

I. F. Spivak-Lavrov, A. A. Nurmukhanov, T. Zh. Shukaeva

PRISMATIC MASS SPECTROGRAPH
WITH A CONICAL ACHROMATIC PRISM
AND TRANSAXIAL LENSES

"Nauchnoe Priborostroenie", 2019, vol. 29, no. 1, pp. 116—125.
doi: 10.18358/np-29-1-i116125
 

The conical achromatic prism (CAP) has a record angular dispersion equal to about 50 radians per 100% of mass variation. In CAP, electric and magnetic fields are realized whose potentials in a spherical coordinate system depend only on angular variables. The particles of a homogeneous planar parallel ion beam move in the middle plane of the CAP along similar trajectories and maintain parallelism at the exit from the CAP. The CAP also focuses on energy, and the parallelism of the volume beam is maintained due to its telescoping in the vertical direction. CAP can be used in a prismatic mass spectrometer, which in its scheme is similar to a prism light-optical spectrometer equipped with a collimating and focusing lens. The linear dispersion of the prism spectrometer is equal to the angular dispersion of the CAP multiplied by the focal length of the focusing lens. A prismatic device is designed in which three-electrode transaxial lenses are used as a collimating and focusing lens. Due to the large mass dispersion by using a positional detector located in the focal plane of the focusing lens, a mass spectrograph can also be implemented in such a device.
 

Fig. 1. Diagram of a prism mass spectrometer with a conical achromatic prism. 1 — pole tips; 2, 3 — magnetic screens-electrodes of a prism; 4, 5, 6 — electrodes of collimator and focusing lenses; 7, 8 — slots of ion source and receiver

Fig. 2. Three-electrode conical achromatic prism. Electrodes 1 are simultaneously magnetic poles, and electrodes 2, 3 are magnetic shields; V1, V2, V0 — electrode potentials

Fig. 3. Schematic representation of a transaxial lens

Fig. 4. The course of the ion trajectories in the collimator lens in the projections on the horizontal (a) and vertical (á) directions

Fig. 5. Separation of a parallel narrow ion beam by mass in a conical achromatic prism for two masses with a relative difference in the masses.
Here S is the ion source, D is the diaphragm, PD is the position detector

Fig. 6. The projection of the ion beam on the horizontal (a) and vertical (á) directions

Fig. 7. Mass spectrum of the doublet of masses.
The left peak corresponds to γ=1/20000, and the right γ = 0

Fig. Ï1. Particle distribution in the ion source by coordinates (a) and departure angles (á)

Fig. Ï2. Particle distribution in the detector plane for two masses with γ = 0 and γ = 1/20000

Fig. Ï3. Mass spectrum of the doublet of masses. The left peak corresponds to γ = 1/20000, and the right one – γ = 0


Keywords: prismatic mass spectrometer, transaxial lens

Author affiliations:

Aktobe Regional State University, Aktobe, Kazakhstan

 
Contacts: Spivak-Lavrov Igor Feliksovich, spivakif@rambler.ru
Article received by editing board 11.10.2018
Full text (In Russ.) >>

REFERENCES

  1. Glikman L.G., Spivak-Lavrov I.F. [The general criterion of quality of static mass-analyzers with the fields combined electric and magnetic]. Pis'ma v ZhTF [Applied Physics Letters], 1990, vol. 16, no. 13, pp. 26—29. (In Russ.).
  2. Ishihara M.A., Kammei Y., Matsuda H. A high-performance mass spectrometer for very small size. Nucl . Instr. and Meth. in Phys. Res. A, 1995, vol. 363, no. 1-2, pp. 440—444. URL: https://ac.els-cdn.com/0168900295003312/1-s2.0-0168900295003312-main.pdf?_tid=e7a06765-6f29-4bdf-b478-1f23adf9f1a7&acdnat=1542804841_5cb83b5a4c7171b60cc77d8a7f21e7ff.
  3. Baisanov O.A., Doskeev G.A., Spivak-Lavrov I.F. Calculation of a mass-spectrometer with a sector magnet, an electrostatic prism and a transaxial lens. Proceedings of the Seventh International Conference on Charged Particle Optics. UK, 2006. Physics Procedia, 2008, vol. 1, no. 1. pp. 425—433. DOI: 10.1016/j.phpro.2008.07.123.
  4. Baisanov O.A., Doskeev G.A., Spivak-Lavrov I.F. [Abberation of a mass spectrometer with a sector magnet and a cgs prismatic electrostatic system]. Prikladnaya fizika [Applied physics], 2008, no. 4, pp. 100—104. URL: https://ac.els-cdn.com/S0168900211002567/1-s2.0-S0168900211002567-main.pdf?_tid=fed8826e-15f9-4775-a324-e161ad35aad8&acdnat=1542805898_22f04735dfed36accd1ff46b6c9132f0. (In Russ.).
  5. Baisanov O.A., Doskeev G.A., Spivak-Lavrov I.F. New schemes of static mass spectrometers. Nucl. Instr. and Meth. in Phys. Res. A, 2011, vol. 645, no. 1, pp. 216—218.
  6. Spivak-Lavrov I.F. Copyright certificate of the USSR no. 671582. Prioritet 1979. (In Russ.).
  7. Spivak-Lavrov I.F. The use of conformally-invariant equations to describe tracks of charged particles. Nucl. Instr. and Meth. in Phys. Res. A, 1995, vol. 363, no. 1, pp. 485—490. URL: https://ac.els-cdn.com/0168900295002677/1-s2.0-0168900295002677-main.pdf?_tid=5bb0a9df-05fd-425b-91ca-96aa08632ec9&acdnat=1542805837_36025767a7950f058ef6cce4c39c1c85.
  8. Spivak-Lavrov I.F. Analytical methods for the calculation and simulation of new schemes of static and time-of-flight mass spectrometers. Advances in Imaging and Electron Physics, 2016, vol. 193, Burlington, Academic Press,
    pp. 45—128. DOI: 10.1016/bs.aiep.2015.10.001.
 

A. S. Berdnikov1, N. V. Konenkov2, A. G. Kuzmin1, S. V. Masyukevich1

ON THE APPLICATION OF THE METHOD OF STROBOSCOPIC SAMPLES IN THE STUDY OF QUADRUPOLE EXCITATION AND QUADRUPOLE RESONANCE

"Nauchnoe Priborostroenie", 2019, vol. 29, no. 1, pp. 126—134.
doi: 10.18358/np-29-1-i126134
 

The paper analyzes some logical errors which exist in new theory of the quadrupole excitations for rf quadrupole mass filters which was suggested by M. Yu. Sudakov and E. V. Mamontov using the analysis of the envelopes for the stroboscopic samples of coordinates and velocities of ions in the rf quadrupole field. The paper also shows that by direct using of the equations produced by the perturbation theory it is possible to produce a clear model describing the main properties of quadrupole excitation, for which stroboscopic samplings are not required.
 

Keywords: quadrupole rf fields, pseudo potential of electric rf field, quadrupole excitation of ion oscillations, monodromy matrix, instability bands

Author affiliations:

1Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia
2Physical and Mathematical Department, Ryazan State University, Ryazan, Russia

 
Contacts: Berdnikov Aleksandr Sergeevich, asberd@yandex.ru
Article received by editing board 15.10.2018
Full text (In Russ.) >>

REFERENCES

  1. Sudakov M.Yu., Mamontov E.V. [Research of the quadrupole filter of masses with quadrupole exaltation by method of the equation of bending around]. Zhurnal tekhnicheskoj fiziki [Journal of technical physics], 2016, vol. 86, no. 11, pp. 112—120.
  2. Sudakov M.Yu., Apackaya M.V. [The concept of effective potential for the description of the movement of ions in the kvadrupolny filter of masses]. Zhurnal ehksperimental'noj i tekhnicheskoj fiziki [Journal of experimental and technical physics], 2012, vol. 142, pp. 222—229. (In Russ.).
  3. Zhao X., Xiao Z., Douglas D.J. Overcoming Field Imperfections of Quadrupole Mass Filters with Mass Analysis in Islands of Stability. Analytical Chemistry, 2009, vol. 81, pp. 5806—5811. DOI: 10.1021/ac900711b.
  4. Konenkov N.V., Cousins L.M., Baranov V.I., Sudakov M.Yu. Quadrupole mass filter operation with auxiliary quadrupolar excitation: theory and experiment. International Journal of Mass Spectrometry, 2001, vol. 208, no. 1-3, pp. 17—27. DOI: 10.1016/S1387-3806(01)00375-X.
  5. Mak-Lahlan N.V. Teoriya i primenenie funkcij Matye [Theory and applications of functions of Mathieu]. Moscow, Inostrannaya literatura Publ., 1953. 474 p. (In Russ.).
  6. Bondarenko G.V. Uravnenie Hilla i ego primenenie v oblasti tekhnicheskih kolebanij [The equation of Hill and his application in the field of technical fluctuations]. Moscow, Leningrad, AS USSR, 1936. 49 p. (In Russ.)
  7. Erugin N.P. Metod Lappo-Danilevskogo v teorii linejnyh differencial'nyh uravnenij [Lappo-Danilevsky's method in the theory of the linear differential equations]. Leningrad, Leningradskij universitet, 1956. 109 p. (In Russ.).
  8. Shtokalo I.Z. Linejnye differencial'nye uravneniya s peremennymi koehfficientami [The simple differential equations with variable coefficients]. Kiev, Academy of Sciences of USSR Publ., 1960. 78 p. (In Russ.).
  9. Shtokalo I.Z. Operacionnye metody i ih razvitie v teorii linejnyh differencial'nyh uravnenij s peremennymi koehfficientami [Operational methods and their development in the theory of the linear differential equations with variable coefficients]. Kiev, Academy of Sciences of USSR, 1961. 128 p. (In Russ.).
  10. Erugin N.P. Linejnye sistemy obyknovennyh differencial'nyh uravnenij s periodicheskimi i kvaziperiodicheskimi koehfficientami [The linear systems of the ordinary differential equations with periodic and quasiperiodic coefficients]. Minsk, Akademiya nauk BSSR, 1963. 137 p. (In Russ.).
  11. Krasnosel'skij M.A. Operator sdviga po traektoriyam differencial'nyh uravnenij [The operator of shift on trajectories of the differential equations]. Moscow, Glavnaya redakciya fiziko-matematicheskoj literatury, 1966. 331 p. (In Russ.).
  12. Gantmaher F.R. Teoriya matric. Izd. 2-e, dop. [Theory of matrixes. The edition 2 added]. Moscow, Nauka Publ., 1966. 576 p. (In Russ.).
  13. Demidovich B.P. Lekcii po matematicheskoj teorii ustojchivosti [Lectures on a mathematical stability theory]. Moscow, Nauka Publ., 1967. 472 p. (In Russ.).
  14. Yakubovich V.A., Starzhinskij V.M. Linejnye differencial'nye uravneniya s periodicheskimi koehfficientami i ih prilozheniya [The linear differential equations with periodic coefficients and their applications]. Moscow, Nauka Publ., 1972. 720 p. (In Russ.).
  15. Konenkov N.V., Sudakov M.Yu., Douglas D.J. Matrix methods to calculate stability diagrams in quadrupole mass spectrometry. Journal of American Society for Mass Spectrometry, 2002, vol. 13, pp. 597—613. DOI: 10.1016/S1044-0305(02)00365-3.
  16. Berdnikov A.S., Verentchikov A.N., Konenkov N.V. [About methodological problems when replacing discrete mass and spectrometer models by continual models]. Mass-spektrometriya [Mass-spektrometry], 2017, vol. 14, no. 3, pp. 176—189. (In Russ.).
  17. Berdnikov A.S., Kuzmin A.G., Masyukevich S.V. [On the use of stroboscopic samples in the analysis of the motion of ions in quadrupole radio-frequency fields. I. Critical analysis of the concept]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2018, vol. 28, no. 3, pp. 90—100. DOI: 10.18358/np-28-3-i90100. (In Russ.).
  18. Berdnikov A.S., Kuzmin A.G., Masyukevich S.V. [On the use of stroboscopic samples in the analysis of the motion of ions in quadrupole radio-frequency fields. II. Correction of the concept]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2018, vol. 28, no. 4, pp. 135—145. DOI: 10.18358/np-28-4-i135145. (In Russ.).
  19. Verentchikov A., Berdnikov A., Yavor M. Stable ion beam transport through periodic electrostatic structures: linear and non-linear effects. Physics Procedia, 2008, vol. 1, pp. 87—97. DOI: 10.1016/j.phpro.2008.07.082.
  20. Berdnikov A.S., Douglas D.J., Konenkov N.V. The effective potential for ion motion in a radio frequency quadrupole field revisited. International Journal of Mass Spectrometry, 2015, vol. 377, pp. 345—354. DOI: 10.1016/j.ijms.2014.08.009.
  21. Berdnikov A.S., Douglas D.J., Konenkov N.V. The pseudopotential for quadrupole fields up to q = 0.9080. International Journal of Mass Spectrometry, 2017, vol. 421, pp. 204—223. DOI: 10.1016/j.ijms.2017.04.003.
  22. Landau L.D., Lifshic E.M. Teoreticheskaya fizika. T. I. Mekhanika [Theoretical physics. Vol. I. Mechanics]. Moscow, Nauka Publ., 1988. 215 p. (In Russ.).
  23. Yakubovich V.A., Starzhinskij V.M. Parametricheskij rezonans v linejnyh sistemah [Parametrical resonance in the linear systems]. Moscow, Nauka Publ., 1987. 328 p. (In Russ.).
  24. Bulianitsa A.L., Kurochkin V.E. Studing ordering processes in open systems (on the example of pattern evolution in colonies of imperfect mycelial fungi). Nauchnoe Priborostroenie [Scientific Instrumentation], 2000, vol. 10, no. 2, pp. 43—49. (In Russ.).
  25. Evstrapov A.A., Bulyanitsa A.L., Rudnitskaya G.E., Belenkii B.G., Petryakov A.O., Kurochkin V.E. [Characteristic features of digital signal filtering algorithms as applied to electrophoresis on a microchip]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2003, vol. 13, no. 2, pp. 57—63. (In Russ.).
  26. Bulyanitsa A.L., Evstrapov A.A., Rudnitskaya G.E. [Calculation of microscale system channel parameters by the method of moments]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2003. vol. 13, no. 4, pp. 28—40. (In Russ.).
  27. Bulyanitsa A.L. [Mathematical modeling in microfluidics: basic concepts]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2005, vol. 15, no. 2, pp. 51—66. (In Russ.).
  28. Sudakov M. Effective potential and the ion axial beat motion near the boundary of the first stable region in a nonlinear ion trap. International Journal of Mass Spectrometry, 2001, vol. 206, pp. 27—43. DOI: 10.1016/S1387-3806(00)00380-8.
  29. Sudakov M. Nonlinear equations of the ion vibration envelope in quadrupole mass filters with cylindrical rods. International Journal of Mass Spectrometry, 2017, vol. 422, pp. 62—73. DOI: 10.1016/j.ijms.2017.08.017.
  30. Snyder D.T., Penga W.-P., Cooks R.G. Resonance methods in quadrupole ion traps. Chemical Physics Letters, 2017, vol. 668, pp. 69—89. DOI: 10.1016/j.ijms.2017.08.017.
 

B. P. Sharfarets

SYSTEM ELECTROHYDRODYNAMICS EQUATIONS APPLIED
TO ELECTROOSMOTIC PROCESSES

"Nauchnoe Priborostroenie", 2019, vol. 29, no. 1, pp. 135—142.
doi: 10.18358/np-29-1-i135142
 

A closed system of electrohydrodynamic (EHD) equations for such a specific subsection of electrohydrodynamics as electroosmotic phenomena is obtained. The EHD system does not contain the diffusion equation for the search for the field of ion concentrations. In the paper they are calculated more simply in the Debye-Hückel approximation. This makes it possible to simplify the calculation of electroosmotic potentials and ion charge densities. Correction of other equations of the EHD-system was carried out taking into account the features of electroosmotic processes. The presence of a heat conduction equation in the system makes it possible to calculate the temperature field in a liquid, which is extremely necessary for maintaining the necessary temperature regime when a new type of radiator is realized in practice.
 

Keywords: electrohydrodynamics, electroosmotic process, electrohydrodynamic system of equations,
the Debye–Hückel approximation, ion concentration

Author affiliations:

Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia

 
Contacts: Sharfarets Boris Pinkusovich, sharb@mail.ru
Article received by editing board 25.09.2018
Full text (In Russ.) >>

REFERENCES

  1. Sharfarets B.P. [Application of the system of electrohydrodynamics equations for mathematical modeling of a new method of electro-acoustic transformation]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2018, vol. 28, no. 4, pp. 127—134. (In Russ.). URL: http://iairas.ru/en/mag/2018/abst4.php#abst21.
  2. Castellanos A. (ed.), Ghakin A.I. Electrohydrodynamics. Wien, Springer-Verlag, 1998. 362 p.
  3. Bologa M.N., Grosu F.P., Kozhuhar I.A. Elektrokonvekciya i teploobmen [Electroconvection and heat exchange]. Chisinau, Shtiintsa Publ., 1977. 320 p. (In Russ.).
  4. Newman J.S. Electrochemical systems. New Jersey, Prentice‐Hall, Inc., Englewood Cliffs, 1973. 432 p. (Russ. ed.: Newman J. Elektrohimicheskie sistemy. Moscow, Mir Publ., 1977. 464 p.). (In Russ.).
  5. Bruus H. Theoretical Microfluidics. Oxford University Press, 2008. 346 p.
  6. Sharfarets B.P., Kurochkin V.E. [To the question of mobility of particles and molecules in porous media]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2015, vol. 25, no. 4, pp. 43—55. (In Russ.). URL: http://iairas.ru/en/mag/2015/abst4.php#abst6.
  7. Sergeev V.A., Sharfarets B.P. [About one new method of electroacoustic transformation. A theory based on electrokinetic phenomena. Part I. The hydrodynamic aspect]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2018, vol. 28, no. 2, pp. 25—35. (In Russ.). URL: http://iairas.ru/en/mag/2018/abst2.php#abst4.
 

K. V. Solovyev1,2, M. V. Vinogradova1

UPDATING THE ION MOTION STABILITY CONDITIONS
FOR ELECTROSTATIC TRAP INTEGRABLE
IN ELLIPTIC COORDINATES

"Nauchnoe Priborostroenie", 2019, vol. 29, no. 1, pp. 143—148.
doi: 10.18358/np-29-1-i143148
 

For ideal focusing traps electrostatic fields having charged particle motion separated in elliptic coordinates the ion motion stability conditions are updated. Analytical exact and approximate expressions are found for fields with zero and close to zero field parameter μ values. These expressions connect initial data and field parameters to guarantee the ion motion finiteness.
 

Fig. 1. Parameters Vinf(E, δ) (bottom), Vsup(E, δ) (max level of retention in the finite state) of the potential well

Fig. 2. Evolution of the configuration of the potential well (6) for the case μ = 0

Fig. 3. The range of values (ε, E) that ensure the stability of the motion of an ion along the u coordinate for values μ = 0 (exactly) and μ = ±0.1 (approximately, according to (16))

Fig. 4. Parameters Umin(E, ε) (bottom), Umin max(E, ε) = min(Umax1(E, ε), Umax2(E, ε)) (max level of retention in the finite state) of the potential well (6) for the case μ = 0


Keywords: ideal space-time focusing, mass spectrometry, ion trap

Author affiliations:

1Peter the Great St. Petersburg Polytechnic University, Saint-Petersburg, Russia
2Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia

 
Contacts: Solovyev Konstantin Vyacheslavovitch, k-solovyev@mail.ru
Article received by editing board 18.09.2018
Full text (In Russ.) >>

REFERENCES

  1. Gall' L.N., Golikov Yu.K., Aleksandrov M.L. et al. Vremyaproletnyj mass-spektrometr. Copyright certificate of the USSR no. 1247973. [Time-of-flight mass spectrometer]. Prioritet 16.01.1985. (In Russ.).
  2. Hu Q., Noll R., Li H., Makarov A., Hardman M., Cooks G.R. The Orbitrap: a new mass spectrometer. J. Mass Spectrom., 2005, vol. 40, pp. 430—443.
  3. Nikolaev E., Sudakov M., Vladimirov G., et al. Multi-electrode harmonized kingdon traps. J. Am. Soc. Mass Spectrom., 2018, vol. 29, no. 11, pp. 2173—2181. DOI: 10.1007/s13361-018-2032-9.
  4. Golikov Yu.K., Krasnova N.K., Solovyev K.V., Nikitina D.V. [Integrating electrostatic traps]. Prikladnaya fizika [Applied physics], 2006, no. 5, pp. 51—57. (In Russ.).
  5. Golikov Yu.K., Solovyev K.V. [Electrostatic ionic traps with a separation of variables in parabolic coordinates]. Pis'ma v ZhTF [Applied Physics Letters], 2010, vol. 36, no. 7, pp. 82—88. (In Russ.).
  6. Golikov Yu.K., Solovyev K.V. [Criterion of cross stability in ionic traps with the driving integrated in elliptical axials]. Pis'ma v ZhTF [Applied Physics Letters], 2011, vol. 37, no. 22, pp. 43—49. (In Russ.).
  7. Solovyev K.V., Vinogradova M.V. [About specification of stability criterions of driving of ions in electrostatic traps with integrable driving]. Tezisy VIII s’ezda VMSO [Theses of the VIII congress of VMSO], 9‑13 October 2017, Moscow, 2017, pp. 110. URL: http://www.spsl.nsc.ru/FullText/konfe/VMSO_2017.pdf. (In Russ.).
  8. Solovyev K.V., Vinogradova M.V. [Conditions of a finitnost of driving of an ion in an electrostatic trap with a separation of variables in parabolic coordinates]. Pis'ma v ZhTF [Applied Physics Letters], 2018, vol. 44, no. 14, pp. 34—41. DOI: 10.21883/PJTF.2018.14.46342.17215. (In Russ.).
  9. Korn G., Korn T. Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review. General Publishing Company, 2000. 1151 p. (Russ. ed.: Korn G., Korn T. Spravochnik po matematike dlya nauchnyh rabotnikov i inzhenerov. Moscow, Nauka Publ., 1984. 833 p.). (In Russ.).
 

D. A. Gavrilov

THE COMPUTER SYSTEM TESTING OF ALGORITHMS
FOR DETECTION AND LOCALIZATION OF OBJECTS
IN VIDEO SEQUENCES

"Nauchnoe Priborostroenie", 2019, vol. 29, no. 1, pp. 149—156.
doi: 10.18358/np-29-1-i149156
 

The paper presents the hardware and software complex for object's detection and localization algorithms testing in video sequences. The description of the hardware and software complex, the software intended for incoming video signal generation and control data recording for detection and localization algorithms testing in video sequences are presented. The basic software modules including the path interpolator, the dynamic settings interpolator, the video generator by 2.5-dimensional scene model are presented. The operating time measuring process of algorithm under testing is described. The testing program is presented. The presented hardware and software complex and the experimental testing program allow to solve issues emerging during detection and localization algorithms development.
 

Fig. 1. The general scheme of software and hardware complex

Fig. 2. Block diagram of the layout of the detection and localization system

Fig. 3. The scheme of measuring algorithms time

Table. Algorithm test results


Keywords: detection and localization algorithms, testing of detection and localization algorithms

Author affiliations:

Moscow Institute of Physics and Technology (State University), Dolgoprudniy, Moscow region, Russia
S.A. Lebedev Institute of exact mechanics and ADP equipment of RAS, Moscow, Russia

 
Contacts: Gavrilov Dmitriy Aleksandrovitch, gavrilov.da@mipt.ru
Article received by editing board 13.11.2018
Full text (In Russ.) >>

REFERENCES

  1. Perevalov D.S.[Research of algorithms of detection and localization of an object on images in the conditions of structural distortions]. Vychislitel'nye tekhnologii [Computational Technologies], 2009, vol. 1, no. 14, pp. 94—106. (In Russ.).
  2. Gavrilov D.A. [Neural network algorithm of automatic detection and maintenance of an object of interest in video signal]. Trudy 16-y nacional'noj konferencii po iskusstvennomu intellektu KII-2018 [Proc. of the 16 th national conference on an artificial intelligence of KII-2018], Moscow, 2018, vol. 2, pp. 188—196.
  3. Gavrilov D.A., Pavlov A.V. [Streaming hardware based implementation of SURF algorithm]. Izvestiya Vysshikh Uchebnykh Zavedenii. Elektronika [Proceedings of universities. Electronics], 2018, vol. 23, no. 5, pp. 502—511.
    DOI: 10.24151/1561-5405-2018-23-5-502-511. (In Russ.).
  4. Yakimov P.Yu. [Tracking of road signs in the video sequence with use of speed of the car]. Komp'yuternaya optika [Computeroptics], 2015, vol. 39, no. 5, pp. 795—800. DOI: 10.18287/0134-2452-2015-39-5-795-800. (In Russ.).
  5. Korzunov O.V., Luzhinskiy A.I. [Analysis of detection and coordinates measurement algorithms in optoelectronic systems]. Izvestiya Tula State University. Tekhnicheskie nauki [News of TULGU. Technical science], 2017, vol. 3, no. 12, pp. 164—171. (In Russ.).
  6. Perkins K. RTP Audio and Video for the Internet. Addison-Wesley Professional, 2003. 432 p.
  7. Abbott D. PCI Bus Demystified. Newnes, 2004. 250 p.
  8. Specifications of the Camera Link Interface Standard for Digital Cameras and Frame Grabbers: Version 1.1. Automated Imaging Association, 2004. URL: http://multimedia.3m.com/mws/media/297466O/3mtm-camera-linktm-app-d-spec-for-dig-camera-frame-grabber.pdf
 

Ulitsa Ivana Chernykh, 31-33, lit. A, St. Petersburg, Russia, 198095, P.O.B. 140
tel: (812) 3630719, fax: (812) 3630720, mail: iap@ianin.spb.su

content: Valery D. Belenkov design: Banu S. Kuspanova layout: Anton V. Manoilov