logo
blue band <-
  JOURNAL "NP" ISSUES

"Nauchnoe Priborostroenie", 2017, Vol. 27, no. 4. ISSN 2312-2951

"NP" 2017 year Vol. 27 no. 4.,   ABSTRACTS

ABSTRACTS, REFERENCES

A. V. Prokofiev1,2, Ya. A. Fofanov3, I. V. Pleshakov1,2, E. E. Bibik4

LASER POLARIZATION-OPTICAL OSERVATION OF MAGNETIC NANOPARTICLES AGGLOMERATION IN A LIQUID MEDIUM

"Nauchnoe priborostroenie", 2017, vol. 27, no. 4, pp. 3—7.
doi: 10.18358/np-27-4-i37
 

An application of laser method of quantitative polarization-optical analysis to the study of structures formed in a magnetic fluid with excess amount of surfactant is described. It is shown, that add of oleic acid at a specified concentration to the colloidal solution of magnetite in kerosene significantly changes the characteristics of the observed polarization magneto-optical responses. This phenomenon was observed even at relatively weak, on the order of several tens of Oersted fields. This is connected with the generation of coagulates, changing their forms under the action of external magnetic field. The developed methodological approaches and the results obtained can be used to study the agglomeration and structure formation processes in magnetic fluids of various types.
 

Keywords: laser, polarization-optical analysis, magnetooptics, magnetic nanofluids

Author affiliations:

1Peter the Great St. Petersburg Polytechnic University, Russia
2Ioffe Physical Technical Institute of the RAS, Saint-Petersburg, Russia
3Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia
4St. Petersburg State Technological Institute (Technical University), Russia

 
Contacts: Fofanov Yakov Andreevich, yakinvest@yandex.ru
Article received in edition: 23.08.2017
Full text (In Russ.) >>

REFERENCES

  1. Casula M.F., Floris P., Innocenti C. et al. Magnetic resonance imaging contrast agents based on iron oxide superparamagnetic ferrofluids. Chemistry of Materials, 2010, vol. 22, no. 5, pp. 1739—1748.
  2. Bitar A., Kaewsaneha C. et al. Ferrofluids: from preparation to biomedical applications. Journal of Colloid Science and Biotechnology, 2014, vol. 3, no. 1, pp. 3—18.
  3. Logunov S.E., Koshkin A.Yu., Davydov V.V., Petrov A.A. Visualizer of magnetic fields. Journal of Physics: Conference Series, 2016, vol. 741. 012092.
  4. Taketomi S., Tikadzumi S. Magnitnye zhidkosti [Magnetic liquids]. Moscow, Mir Publ., 1993. 272 p. (In Russ.).
  5. Scholten P.C. The origin of magnetic birefringence and dichroism in magnetic fluids. IEEE Trans. Magnetics, 1980, vol. MAG-16, no. 2, pp. 221—225.
  6. Erin K.V. [Optical anisotropy of the colloid solutions of nanosized particles of magnetite in magnetic and electrical fields]. Vestnik Stavropol'skogo gosudarstvennogo universiteta [Bulletin of the Stavropol state university], 2009, vol. 63, pp. 96—98. (In Russ.).
  7. Erin K.V., Kunikin S.A. [Light dispersion by aggregates of nanoparticles of magnetite in case of influence of a magnetic field].  Zhurnal technicheskoy fiziki [Journal of technical physics], 2007, vol. 77, no. 10, pp. 85—88. (In Russ.).
  8. Zakinyan A.R., Dikansky Yu.I. Effect of microdrops deformation on electrical and rheological properties of magnetic fluid emulsion. Journal of Magnetism and Magnetic Materials, 2017, vol. 431, pp. 103—106.
  9. Fofanov Ya.A., Pleshakov I.V., Prokof'ev A.V., Bibik E.E. [Observation of feeble polarizable responses of magnetic nanoliquid]. Sbornik trudov IX Mezhdunarodnoy konferenzii "Fundamental'nye problemy optiki" [Proc. of the IX International conference "Fundamental Problems of Optics"], Saint-Petersburg, 2016, pp. 51—52.
  10. Scherer C., Figueiredo Neto A.M. Ferrofluids: Properties and applications. Brazilian Journal of Physics, 2005, vol. 35, no. 3A, pp. 718—727.
  11. Fofanov Ya.A. Threshold sensitivity in optical measurements with phase modulation. Proceedings SPIE, 1992, vol. 1811, pp. 413—414.
  12. Sokolov I.M., Fofanov Ja.A. Investigations of the small birefringence of transparent objects by strong phase modulation of probing laser radiation. JOSA A, 1995, vol. 12, no. 7, pp . 1579—1588.
  13. Fofanov Ya.A., Afanas'ev I.I., Borozdin S.N. [Structural double refraction in crystals of optical fluorite]. Opticheskiy zhurnal [Optical journal], 1998, vol. 9, pp. 22—25. (In Russ.).
  14. Fofanov Ja.A. [Methods and devices for quantitative analysis of structural birefringence of materials and substances]. Nauchnoe Priborostroenie [Scientific Instrumentation], 1999, vol. 9, no. 3, pp. 104—110. (In Russ.). URL:
  15. Fofanov Ya.A., Bardin B.V. [On the principles of automation of high sensitivity laser methods for qualitative polarization-optical analysis]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2002, vol. 12, no. 3, pp. 64—67. (In Russ.). URL: http://213.170.69.26/jnr/pub02/abstr02_3/a9.htm.
  16. Fofanov Ya.A., Pleshakov I.V., Kuz'min Yu.I. [Laser polarizable and optical research of process of magnetization of a magnetoordered crystal]. Opticheskiy zhurnal [Optical journal], 2013, vol. 80, no. 1, pp. 88—93. (In Russ.).
  17. Fofanov Ya.A., Pleshakov I.V., Prokof'ev A.V., Bibik E.E. [Research of polarizable magneto-optical responses of low-concentrated ferromagnetic fluid]. Pis'ma v ZhTF [Letters in ZhTF], 2016, vol. 42, no. 20, pp. 66—72. (In Russ.).
 

D. A. Kuzmin1, M. Z. Muradymov2, N. V. Krasnov2, N. V. Pomozov2, A. N. Arseniev2

TRANSPORT OF IONS IN SOURCES WITH IONIZATION AT ATMOSPHERIC PRESSURE.
I. SUBSTANTIVE GEOMETRY

"Nauchnoe Priborostroenie", 2017, vol. 27, no. 4, pp. 8—16.
doi: 10.18358/np-27-4-i816
 

The experimental study and theoretical estimates of the influence of the geometric and electrical parameters of ion sources with ionization at atmospheric pressure on ion transport from the ionization site to the entrance to the analyzer vacuum interface are carried out. he possibility of efficient control of the ion flux with minimal possible losses in a dense gas is shown. It was found out that the main source of ion loss during transport in a stationary gas is the motion along the lines of force of the electric field closing at the edges of the holes of the electrodes in the ion source. The effect of scattering of the ion flux in a dense gas and space charge is of secondary importance in the investigated ion source geometry and conditions.
 

Keywords: corona discharge, meniscus of sprayed liquid, ion flow, space charge

Author affiliations:

1Peter The Great Saint-Petersburg Polytechnic University, Russia
2Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia

 
Contacts: Krasnov Nikolay Vasil'evich, krasnov@alpha-ms.com
Article received in edition: 14.09.2017
Full text (In Russ.) >>

REFERENCES

  1. Arseniev A.N., Gavrik M.A., Muradymov M.Z., Kayumov A.A. [Researches and optimization of the transportation system of ionic streams in electric-gas-dynamic fields from area with atmospheric pressure in area of high vacuum of the mass analyzer]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2010, vol. 20, no. 4, pp. 120—126. (In Russ.). URL: http://213.170.69.26/en/mag/2010/abst4.php#abst14.
  2. Pervuhin V.V., Kolomiec Yu.N. [The system of transportation of ions from a source of ions at atmospheric pressure to an entrance opening of a mass spectrometer a vortex stream]. Pis'ma ZhETF [JETP Letters], 2012, vol. 38, no. 22, pp. 50—57. (In Russ.).
  3. Aleksandrov M.L., Gall L.N., Krasnov N.V., Nikolaev V.I., Pavlenko V.A., Shkurov V.A. [Extraction of ions from solutions at atmospheric pressure a method of mass-spectrometric analysis of bioorganic substances]. DAN SSSR [Reports of Academy of Sciences of USSR], 1984, vol. 277, no. 2, pp. 379—383. (In Russ.).
  4. Yamashita M., Fenn J.B. Negative ion production with the electrospray ion source. J. Phys. Chem., 1984, vol. 88, no. 20, pp. 4671—4675. Doi: 10.1021/j150664a046.
  5. Samokish V.A., Muradymov M.Z., Krasnov N.V. [Electrospray ion source with a dynamic division of fluid flow]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2012, vol. 22, no. 3, pp. 5—12. (In Russ.).
  6. Frezen. Method and device for transport of ions in gas through a capillary. US Patent N 5736740.
  7. Bruins A.P., Covey T.R., Henion J.D. Ion spray interface for combined liquid chromatography/atmospheric pressure ionization mass spectrometry. Anal. Chem., 1987, vol. 59, no. 22, pp. 2642—2646. Doi: 10.1021/ac00149a003.
  8. Xu X., Zhai J., Shui W., Xu G., Yang P. Adding auxiliary electrode — an effective method for enhancing signal-to-noise ratio in nanospray mass spectrometry. Analytical Letters. Molecular Spectrometry, 2004, vol. 37, no. 13, pp. 2711—2720.
  9. Schneider D.D., Douglas D.J., Chen D.D.V. An atmospheric pressure ion lens that improves nebulizer assisted electrospray ion sources. J. Am. Soc. Mass Spectrom., 2002, vol. 13, no. 8, pp. 906—913. Doi: 10.1016/S1044-0305(02)00389-6.
  10. Istochnik ionov Turbo VTM. Rukovodstvo operatora [Source of ions of Turbo VTM. Operator guide]. AB Sciex. URL: https://sciex.com/Documents/manuals/turbo-v-operator-guide-ru.pdf.
  11.    LCMS-8060. URL: www.shimadzu.ru/sites/default/files/lcms-8060-flyer-11.16.pdf.
  12. Boltachev G.Sh., Zubarev N.M. [Analytical model of a corona discharge from a conic electrode in the saturation mode]. Zhurnal tekhnicheskoj fiziki [Journal of technical physics], 2012, vol. 82, no. 12, pp. 28—37. (In Russ.).
  13. Gebhard C., Brekenfeld A., Frenzen J. US Patent N 2006/0186329A1, Aug 24, 2006.
  14. Bannyh O.A., Povarova K.B., Kapustin V.I. [New approach to the surface ionization and drift spectroscopy of organic molecules]. Zhurnal tekhnicheskoj fiziki [Journal of technical physics], 2002, vol. 72, no. 12, pp. 88—93. (In Russ.).
  15. Aleksandrov M.L., Gall L.N., Verenchikov A.N., Krasnov N.V., Shkurov V.A. [Research of the mechanism of formation of cations in a mass spectrometry of ERIE of a BP]. Nauchnoe Priborostroenie [Scientific Instrumentation], 1991, vol. 1, no. 2, pp. 3—36. URL: http://213.170.69.26/mag/abst_90s.php?y=91&n=2#abst1. (In Russ.).
 

D. A. Kuzmin1, M. Z. Muradymov2, N. V. Krasnov2,
N. V. Pomozov2, A. N. Arseniev2, M. N. Krasnov3

TRANSPORT OF IONS IN SOURCES WITH IONIZATION AT ATMOSPHERIC PRESSURE.
II. INVERSE GEOMETRY

"Nauchnoe Priborostroenie", 2017, vol. 27, no. 4, pp. 17—23.
doi: 10.18358/np-27-4-i1723
 

An experimental study and numerical modeling of the influence of the geometric and electrical parameters of ion sources with ionization at atmospheric pressure for inverse geometry on the transport of ions from the ionization site to the entrance to the analyzer vacuum interface is carried out. The possibility of increasing the ion current extraction from the primary flow of charged particles by several times is shown in comparison with the traditional geometry with the minimum possible losses in a dense gas. The effect on the flux of scattering ions in a dense gas and space charge is of secondary importance in the investigated ion source geometry.
 

Keywords: corona discharge, meniscus of sprayed liquid, ion flow, space charge

Author affiliations:

1Peter The Great Saint-Petersburg Polytechnic University, Russia
2Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia
3Saint-Petersburg Ltd. "BiAD", Russia

 
Contacts: Krasnov Nikolay Vasil'evich, krasnov@alpha-ms.com
Article received in edition: 26.09.2017
Full text (In Russ.) >>

REFERENCES

  1. Aleksandrov M.L., Gall L.N., Krasnov N.V., Nikolaev V.I., Pavlenko V.A., Shkurov V.A. [Extraction of ions from solutions at atmospheric pressure a method of mass-spectrometric analysis of bioorganic substances]. DAN SSSR [Reports of Academy of Sciences of USSR], 1984, vol. 277, no. 2, pp. 379—383. (In Russ.).
  2. Pashkov O.V., Muradymov M.Z., Krasnov N.V., Krasnov M.N. [Features electrospray torch with dynamic liquid flow splitter at atmospheric pressure]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2015, vol. 25, no. 3, pp. 3—9. (In Russ.). Doi: 10.18358/np-25-3-i39.
  3. LCMS-8060. URL: www.shimadzu.ru/sites/default/files/lcms-8060-flyer-11.16.pdf.
  4. Schneider D.D., Douglas D.J., Chen D.D.V. An atmospheric pressure ion lens that improves nebulizer assisted electrospray ion sources. J. Am. Soc. Mass Spectrom., 2002, vol. 13, no. 8, pp. 906—913. Doi: 10.1016/S1044-0305(02)00389-6.
  5. Al-Tavil E.A., Muradymov V.Z., Krasnov N.V., Krasnov M.N. [Electrospraying conductive solutions in normal conditions with a wide volume flow velocity range]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2017, vol. 27, no. 2, pp. 3—12. Doi: 10.18358/np-27-2-i312. (In Russ.).
  6. Kuzmin D.A., Muradymov V.Z., Krasnov N.V., Pomozov N.V., Arseniev A.N. [Transport of ions in sources with ionization at atmospheric pressure. I. Substantive geometry]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2017, vol. 27, no. 4, pp. 8—16. (In Russ.). Doi: 10.18358/np-27-4-i816.
  7. Arseniev A.N., Gavrik M.A., Muradymov M.Z., Kayumov A.A. [Researches and optimization of the transportation system of ionic streams in electric-gas-dynamic fields from area with atmospheric pressure in area of high vacuum of the mass analyzer]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2010, vol. 20, no. 4, pp. 120—126. (In Russ.).
  8. Manura D.J., Dahl D.A. SIMIONTM 8.0 User Manual. Sci. Instrument Services, Inc., Idaho Nat. Lab. 2006.
 

A. G. Varekhov

THE ELECTRODIFFUSION OF PROBING IONS TO BIOCOLLOIDS SURFACE

"Nauchnoe Priborostroenie", 2017, vol. 27, no. 4, pp. 24—33.
doi: 10.18358/np-27-4-i2433
 

The solution of the electrodiffusion problem that can be used in study of suspensions of cells and other particles (for example, liposomes), using probing ions, but also can be used in application-oriented tasks is proposed in this article. For example, in case of a medicines delivery study in cells or in case of a study of impact of short electrical pulses on cellular suspensions. It is supposed that duration of process of electrodiffusion is determined not by a pool of probing ions, but conditions on surfaces of particles, that are surface and electrokinetic potentials. In case of small times (less than one millisecond) the adsorption of probing ions is kinetically described as drift of ions in an electric field at a surface of a particle and in case of rather big times it is described as diffusion. The best values of probing ions concentration, when using such instrumental methods as the potentiometric and fluorescent analysis, are proved.
 

Keywords: biocolloids, probing ions, electrodiffusion, binding kinetics, optimum concentration

Author affiliations:

St. Petersburg State University of Aerospace Instrumentation, Russia

 
Contacts: Varekhov Aleksey Grigor'evich, varekhov@mail.ru
Article received in edition: 4.10.2017
Full text (In Russ.) >>

REFERENCES

  1. Flewelling R.F., Hubbell W.L. Hydrophobic ion interactions with membranes. Thermodynamic analysis of tetraphenylphosphonium binding to vesicles. Biophys. J., 1986, vol. 49, no. 2, pp. 531—540. Doi: 10.1016/S0006-3495(86)83663-3.
  2. Vladimirov Yu.A., Dobrecov G.E. Fluorescentnye zondy v issledovanii biologicheskih membrane [Fluorescent probes in a research of biological membranes]. Moscow, Nauka Publ., 1980. 320 p. (In Russ.).
  3. Lemke E.A., Schultz C. Principles for designing fluorescent sensors and reporters. Nature Chemical Biology, 2011, vol. 7, no. 8, pp. 480—483. Doi: 10.1038/nchembio.620.
  4. Ostroumova O.S., Efimova S.S., Malev V.V., Shagina L.V. Ionnye kanaly v model'nyh lipidnyh membranah [Ion channels in model lipide membranes]. Saint-Petersburg, Institute of Cytology RAS, 2012. 164 p. (In Russ.).
  5. Varekhov A.G. [Potentiometric measurements of transmembrane potential of cells with use of the penetrating ions]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2015, vol. 25, no. 1, pp. 27—35. Doi: 10.18358/np-25-1-i2735. (In Russ.).
  6. Varekhov A.G. [Fluorescent probing of biological particles suspensions]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2016, vol. 26, no. 2, pp. 29—36. Doi: 10.18358/np-26-2-i2936. (In Russ.).
  7. Kotyk A., Yanachek K. Membrannyj transport. Mezhdisciplinarnyj podhod [Membranous transport. Cross-disciplinary approach]. Moscow, Mir Publ., 1980. 341 p. (In Russ.).
  8. Jacobs M.H. Diffusion Processes. Springer Verlag, Berlin-Heidelberg, 1967. 160 p. Doi: 10.1007/978-3-642-86414-8.
  9. Marry G. Nelinejnye differencial'nye uravneniya v biologii: lekcii o modelyah [Non-linear differential equations in biology: lectures about models]. Moscow, Mir Publ., 1983. 397 p. (In Russ.).
  10. Carslaw H.S., Jaeger J.C. Conduction of Heat in Solids. Clarendon Press, 1986. 510 p. (Russ. ed.: Karslou G., Eger Dzh. Teploprovodnost' tverdyh tel. Moscow, Nauka Publ., 1964. 367 p.).
  11. Baron N.M., Kvyat E.I., eds. Kratkij spravochnik fiziko-himicheskih velichin [Quick reference guide of physical and chemical values]. Leningrad, Chemistry Publ., 1967. 182 p. (In Russ.).
  12. Dwight H.B. Tables of Integrals and Other Mathematical Data. N.Y., 1966. 336 p. (Russ. ed.: Dvajt G.B. Tablicy integralov i drugie matematicheskie formuly. Moscow, Nauka Publ., 1978. 224 p.).
 

D. A. Belov1,2, A. C. Aldekeeva1,3, Yu. V. Belov1, I. G. Kiselev2

NUCLEIC ACIDS ANALYZER HOLES TEMPERATURE SPREAD DETERMINING METHOD

"Nauchnoe Priborostroenie", 2017, vol. 27, no. 4, pp. 34—39.
doi: 10.18358/np-27-4-i3439
 

The temperature determining methods application results based on fluorescence signals approximation for the ANK-96 analyzer are considere d. An improved method for determining the temperature dispersion in the wells is proposed on the base of the fluorescence signals nonlinear approximation by sigmoidal function (SF). Fluorescent dyes with a high temperature dependence (about 15 % K—1) are used. The results are presented in tabular and graphical form. It was shown that the melting temperature of the DNA of all the tubes and their average value correspond to the absolute temperature scale in °C. The deviation of temperatures is not more than ± 0.2 °C. The average value of the melting points of the DNA in all tubes is Tmc = 80.82 °C. The maximum temperature deviation in 6 groups of 16 tubes (4 × 4) from the average value is 0.15 °C and does not exceed the maximum allowable values ± 0.2 °C. It is suggested to use the method based on nonlinear approximation by sigmoid function (SF) in tuning, calibrating and verifying the thermal parameters of nucleic acid analyzers.
 

Keywords: real-time PCR, DNA melting analysis, sigmoid function

Author affiliations:

1Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia
2Emperor Alexander I Saint-Petersburg State Transport University, Russia
3Pavlov Institute of Physiology RAS, Saint-Petersburg, Russia

 
Contacts: Belov Dmitriy Anatol'evich, onoff_10@mail.ru
Article received in edition: 21.07.2017
Full text (In Russ.) >>

REFERENCES

  1. Vedenov A.A., Dychne A.M., Frank-Kamenezkiy M.D. [Transition a spiral–a ball in DNA]. Uspechi fizicheskich nauk [Achievements of physical sciences], 1971, vol. 105, no. 11, pp. 479—519. Doi: 10.3367/UFNr.0105.197111d.0479. (In Russ.).
  2. DNA melt. (In Russ.). URL:
  3. Alekseev Ya.I., Belov Yu.V., Varlamov D.A. et al. [Devices for diagnostics of biological objects based on the real-time polymerase chain reaction (RT-PCR) method]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2006, vol. 16, no. 3, pp. 132—136. URL:
  4. Vorob'ev D.V. [Analysis and implementation of methods of temperature measurement]. Teoriya i praktika imitazionnogo modelirovaniya i sozdaniya trenazherov [Theory and practice of simulation modeling and creation of trainers], Sbornik statey Mezhdunarodnoy nauchno-prakticheskoy konferenzii, g. Penza, December 14—15, 2016, pp. 42—47. (In Russ.).
  5. Belen'kiy A.M. Izmerenie temperatury: teoriya, praktika, eksperiment. T. 2 [Temperature measurement: theory, practice, experiment. V. 2]. Spravochnoe izdanie v 3 tomach. Moscow, Teplotechnik Publ., 2007. 736 p. (In Russ.).
  6. Bityukov V.K., Petrov V.A. Metody i sredstva beskontaktnogo kontrolya teplovogo sostoyaniya izdeliy. Uchebnoe posobie [Methods and means of non-contact control of a thermal status of products. Manual].
    Moskovskiy gosudarstvennyy institut radiotechniki, elektroniki i avtomatiki (technicheskiy universitet), Moscow, 1999. 94 p. (In Russ.).
  7. Zhorina L.V. [Methods of noninvasive measurement of internal body temperature]. Vestnik Tambovskogo universiteta. Seriya: Estestvennye i technicheskie nauki [Bulletin of the Tambov university. Series: Natural and technical science], Tambov, 2017, vol. 22, no. 2, pp. 464-470. Doi: 10.20310/1810-0198-2017-22-2-464-470. (In Russ.).
  8. Chamarthy P., Garimella S.V., Wereley S.T. Measurement of the temperature non-uniformity in a microchannel heat sink using microscale laser-induced fluorescence. International Journal of Heat and Mass Transfer, 2010, vol. 53, no. 15-16, pp. 3275—3283. Doi: 10.1016/j.ijheatmasstransfer.2010.02.052.
  9. Varlamov D.A., Gerasimov M.A., Savina Zh.A., Sochivko D.G., Fedorov A.A. [The noninvasive analysis of thermal processes in reactors of instruments for carrying out polymerase chain reaction in real time]. Materialy konferenzii "Informazionno-technologicheskiy i telekommunikazionnyy klaster naukograda Chernogolovka: produkziya, partnerstvo i perspektivy razvitiya" [Conference materials "Information and technological and telecommunication cluster of the science city of Chernogolovka: production, partnership and perspectives of development"]. Chernogolovka, "Bogorodskiy pechatnik" Publ., 2015, pp. 55—57. (In Russ.).
  10. Sochivko D.G., Varlamov D.A., Fedorov A.A., Kuroch-kin V.E. [Method of noncontact temperature measurement in reactors of polymerase chain reaction]. Pis'ma v ZhTF [Letters in ZhTF], 2016, vol. 42, no. 7, pp 53—58. (In Russ.).
  11. Natrajan V.K., Christensen K.T. Development of fluorescent thermometry methods for microfluidic systems. 14th Int Symp on Applications of Laser Techniques to Fluid Mechanics. Lisbon, Portugal, 07—
    10 July, 2008.
  12. IAI RAS. Ustroystvo dlya obnaruzheniya spezificheskoy posledovatel'nosti nukleinovych kislot "ANK". Rukovodstvo po ekspluatazii PKDN.941417.003 RE [The device for detection of the specific sequence of nucleinic acids of ANC. Operation manual PKDN.941417.003 RE], 2013. (In Russ.).
  13. Thermo Fisher Scientific: Real-Time PCR (qPCR). URL: http://www.lifetechnologies.com/ru/ru/home/life-science/pcr/real-time-pcr.html.
  14. Belov D.A., Korneva N.A., Al'dekeeva A.C., Belov Yu.V., Kiselev I.G. [Genetic analyzer resolution increasing at DNA melting temperature determination]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2016, vol. 26, no. 2, pp. 17—22. (In Russ.). Doi: 10.18358/np-26-2-i1722.
 

D. G. Petrov1, E. D. Makarova1, I. E. Antifeev1, .
A. V. Brodskaya2,3, N. N. Konstantinova1, S. N. Malyshin1

INFLUENCE OF DIFFERENT KIND EXTERNAL FIELDS ON DNA YIELD AT ISOLATION ON SILICA FROM MODEL SOLUTIONS. EFFECT OF ULTRASOUND

"Nauchnoe Priborostroenie", 2017, vol. 27, no. 4, pp. 40—55.
doi: 10.18358/np-27-4-i4055
 

The effect of 2.65 MHz focused ultrasound on M. tuberculosis DNA yield with the use of commercial silica microcolumns and magnetic particles from the model solutions was studied over an ultrasound intensity range from 1.2 to 3.0 W/cm2. The study revealed that in both cases DNA yields are linearly proportional to the ultrasound intensity but upon reaching maximum values, the yields are inversely related to the intensity. In either case the DNA yield peaks 82 % at intensity of 2.0 W/cm2. Hence isolation of DNA outperforms by a factor of 2 as compared with the absence of ultrasound; it is 10 % greater than the DNA yield at optimal temperature 70 oC.
Visual observation and photo-, video-recording offer a clear view of acoustic field structure as well acoustic streaming patterns with time, at ultrasound processing of magnetic particles as the intensity increases. Consideration is being briefly given to some physic effects on DNA microcolumn adsorption in the course of the liquid passage through porous media during ultrasound processing. Using the literature data and electrophoresis the possibility of DNA fragmentation/destruction is assessed under the test conditions. It was not until about 3.0 W/cm2 that plasmid destruction has been going with the time period in excess of 1 minute.
It is concluded that choosing between the adsorption systems involved is basically determined by convenience in operation and availability rather than the system performance.
 

Keywords: nucleic acids, effect of ultrasound, DNA separation, DNA purification, DNA concentration, silica magnetic particles

Author affiliations:

1Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia
2Ministry of Healthcare of the Russian Federation Research Institute of Influenza, Saint-Petersburg, Russia
3Peter The Great St. Petersburg Polytechnic University, Russia

 
Contacts: Petrov Dmitriy Grigor'evich, dimoon88@mail.ru
Article received in edition: 18.10.2017
Full text (In Russ.) >>

REFERENCES

  1. Rudi K., Kroken M., Dahlberg O.J. et al. Rapid, universal method to isolate PCR-ready DNA using magnetic beads. Bio Techniques, 1997, vol. 22, no. 3, pp. 506—511.
  2. Malic L., Herrmann M., Hoa X.D., Tabrizian M. Current state of intellectual property in microfluidic nucleic acid analysis. Recent Patents on Engineering, 2007, vol. 1, pp. 71—88.
  3. Moroney V., Martinez H., Callahan H. et al. Magnetic bead based soil DNA isolation using the epMotion® and ClearMag™ technology. Eppendorf. Application Note, no. 278, May 2013 (4 pages).
  4. Pai A., Khachaturian A., Chapman S. et al. A handheld magnetic sensing platform for antigen and nucleic acid detection. Analyst, 2014, vol. 139, pp. 1403—1411.
  5. Gröschl M. Ultrasonic separation of suspended particles. Part I. Fundamentals. Acustica, 1998, vol. 84, no. 3, pp. 432—447.
  6. Coakley W.T., Hawkes j.J., Sobanski M.A. et al. Analytical scale ultrasonic standing wave manipulation cells and microparticles. Ultrasonics, 2000, vol. 38, pp. 638—641.
  7. Kuznetsova L.A., Coakley W.T. Applications of ultrasound streaming and radiation force in biosensors. Biosensors and Bioelectronics, 2007, vol. 22, no. 8, pp. 1567—1577.
  8. Schram C.J. Process for controlling a reaction by ultrasonic standing wave. Patent US N 4879011, 07.11.1989.
  9. Yasuda K., Kiyama M., Umemura S-I., Takeda K. Deoxyribonucleic acid concentration using acoustic radiation force. JASA, 1996, vol. 99, no. 2, pp. 1248—1251.
  10. Wiklund M., Green R., Ohlin M. Acoustofluidics 14: Applications of acoustic streaming in microfluidic devices. Lab Chip, 2012, vol. 12, no. 14, pp. 2438—2451.
  11. Kuznetsova L.A., Mullen W.H., Rudell C.J., Birch P. Extraction and purification of biological cells using ultrasound.  Patent EP N 2209545, 28.07.2010.
  12. James A., Laugharn Jr. Method and apparatus for material separation using acoustic energy. Patent US 2010/0197894, 5 Aug. 2010.
  13. Durin G., Chabaud S., Delattre C., Jary D. Device and method for isolating biological or chemical targets. Patent US N 8703434B2, 22.04.2014.
  14. Dzhenloda R.Kh., Petrov D.G., Shkinev V.M., Spivakov B.Ya. DNA recovery from environmental samples on suspension columns under a combined action of ultrasound and magnetic fields followed by polymerasechain reaction detection. Mendeleev Commun., 2017, vol. 27, pp. 302—303.
  15. Birch P., Joseph D., Bond P., Stanley C.J. Ultrasound & magnetic method. Patent WO N 2011027146, 10.03.2011.
  16. Patent WO N 2010102301, 10.09.2010.
  17. Glynne-Jones P., Hill M. Acoustofluidics 23: Acoustic manipulation combined with other force fields. Lab. Chip, 2013, vol. 13, no. 6, pp. 1003—1010.
  18. Michele R., Stone M.R. Method for releasing genetic material from solid phase. Patent US N 2008124777, 29.05.2008.
  19. Preiss-Bloom O., Tomer G. Modification of enzymatic crosslinkers for controlling properties of crosslinked matrices. Patent US N 2011077388A1, 31.03.2011.
  20. Joseph D.T., Perry M.P. Method for improved DNA release from binding substrates and/or decreasing PCR inhibition in pathogen detection. Patent WO N 2012125710A1, 20.09.2012.
  21. Petrov D.G., Makarova E.D., Korneva N.A., Aldekeeva A.S., Knyazkov N.N. [Influence of different kind external fields on DNA yield at isolation on silica from model solutions. 1. Effect of temperature]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2015, vol. 25, no. 2, pp. 91—101. Doi: 10.18358/np-25-2-i91101.
  22. Archangel'skiy M.E. [Impact of acoustic vibrations on diffusion process]. Uspechi fizicheskich nauk [Achievements of physical sciences], 1967, vol. 92, no. 2. pp. 181—206. (In Russ.).
  23. Martin C.J., Law A.N.R. The use of thermistor probes to measure energy distribution in ultrasound fields. Ultrasonics, 1980, vol. 18, no. 3, pp. 127—133.
  24. Pashovkin T.N., Shil'nikov G.V. [Registration and analysis of intensity distribution in ultrasonic beams using dyes]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2000, vol. 10, no. 3, pp. 17—26.
  25. Boyle R.W. Ultrasonics. Science Progress, 1928, vol. 23, pp. 75—105.
  26. Alekseev Ya.I., Belov Yu.V., Varlamov D.A. et al. [Devices for diagnostics of biological objects based
    on the real-time polymerase chain reaction (RT-PCR) method]. Nauchnoe Priborostroenie [Scientific Instru­mentation], 2006, vol. 16, no. 3. pp. 132—136. URL: http://213.170.69.26/mag/2006/abst3.php#abst15. (In Russ.).
  27. Harvey E.N., Loomis A.L. High frequency sound waves of small intensity and their biological effects. Nature, 1928, vol. 121, pp. 622—624.
  28. Haydock D., Yeomans J.M. Acoustic enhancement of diffusion in porous material. Ultrasonics, 2003, vol. 41, no. 7, pp. 531—538.
  29. Poesio P., Ooms G., Barake S. An investigation of the influence of acoustic waves on the liquid flow through a porous material. J. Acoust. Soc. Am., 2002, vol. 111, no. 5, pp. 2019—2025.
  30. Poesio P., Ooms G. Influence of high-frequency acoustic waves on the flow of a liquid through porous material: experimental and theoretical investigation. IUTAM Proc. on Physicochemical and Electromechanical Interactions in Porous Media. Huyghe J.M. et al. (eds.). 2005, vol. 125, Springer, pp. 61—66.
  31. Breitbach M., Bathen D. Influence of ultrasound on adsorption processes. Ultrason. Sonochem., 2001, vol. 8, no. 3, pp. 277—283.
  32. Fedchenia I.I. Acoustic Acceleration of Fluid Mixing in Porous Materials. Patent US N 2013/0201781, 08.08.2013.
  33. Jacobson G. Use of acoustic waves in semiconductor manufacturing equipment optimization. Patent US 2013/0036969, 14.02.2013.
  34. Breadmore M.C., Wolfe K.A., Arcibal I.G. et al. Microchip-based purification of DNA from biological samples. Anal. Chem., 2003, vol. 75, pp. 1880—1886.
  35. Tozak K.Ö., Erzengin M., Sargin İ., Ünlü N. Sorption of DNA by Diatomite-Zn (II) embedded supermacroporous monolithic P (HEMA) cryogels. EXCLI Journal, 2013, vol. 12, pp. 670—678.
  36. Ager K., Latulippe D.R., Zydney A.L. Plasmid DNA transmission through charged ultrafiltration membranes. J Membrane Science, 2009, vol. 344, no. 1-2, pp. 123—128.
  37. Shui L., Sparreboom W., Bomer J.G. et al. Low pressure microfluidic-based DNA fragmentation. 15th Int. Conf. on Miniaturized Systems for Chemistry and Life Sciences. 2—6 Oct. 2011, Seattle, Washington, USA, pp. 1191—1193.
  38. Levy M.S., Collins I.J., Yim S.S. et al. Effect of shear on plasmid DNA in solution. Bioprocess Engineering, 1999, vol. 20, no. 1, pp. 7—13. Doi: 10.1007/s004490050552.
  39. Joneja A., Huang X. A device for automated hydrodynamic shearing of genomic DNA. Biotechniques, 2009, vol. 46, no. 7, pp. 553—556.
  40. Li L., Jin M., Sun C., Wang X. et al. High efficiency hydrodynamic DNA fragmentation in a bubbling system. Scientific Reports, 2017, vol. 7, pp. 40745 (9 pages). Doi: 10.1038/srep40745.
  41. Okabe Y., Lee A.P. LCAT DNA shearing. Journal of Laboratory Automation, 2014, vol. 19, no. 2, pp. 163—170.
  42. Patel M.V., Tovar A.R., Lee A.P. Lateral cavity acoustic transducer as an on-chip cell/particle microfluidic switch. Lab Chip, 2012, vol. 12, no. 1, pp. 139—145.
  43. Obara H, Kudo N, Shimizu K. Vizualization of therapeutic ultrasound fields in small chamber using image subtraction schlieren technique. Proceedings of Symposium on Ultrasonic Electronics, 13—15 November 2012, vol. 33, no. 2P5-10, pp. 249—250.
  44. Kudo N. Effect of water surface conditions on standing wave fields generated inside a small chamber. J Therapeutic Ultrasound, 2014, vol. 2 (Suppl. 1), paper A23.
  45. Wood R.W., Loomis A.L. The physical and biological effects of high-frequency sound waves of great intensity. Phil. Mag. (Series 7), 1927, no. 4, pp. 417—436.
  46. Mitome H. Study of the generation mechanism of an acoustic jet through visualization experiments. Japan. J. Appl. Phys., 1991, vol. 30, Suppl.30-1, pp. 60—62.
  47. Spengler J.F., Coakley W.T., Christensen K.T. Microstreaming effects on particle concentration in an ultrasonic standing wave. AIChE J., 2003, vol. 49, pp. 2773—2782.
  48. Kuznetsova L.A., Coakley W.T. Microparticle concentration in short path length ultrasonic resonators: Role of radiation pressure and acoustic streaming. J. Acoust. Soc. Am., 2004, vol. 116, no. 4, pp. 1956—1966.
  49. Agranat B.A. (ed.). Ul'trazvukovaya technologiya [Ultrasonic technology]. Moscow, Metallurgiya Publ., 1974. 504 p.
  50. Kentish S., Ashokkumar M. The enhancement of mass transport processes using ultrasound. 19th Int. Congress on Acoustics. Madrid, 2—7 Sept. 2007. (5 pages).
  51. Spengler J., Jekel M. Ultrasound conditioning of suspensions — studies of streaming influence on particle aggregation on a lab- and pilot-plant scale. Ultrasonics, 2000, vol. 38, no. 1-8, pp. 624—628.
  52. Mitome H., Kozuka T., Tuziuti T. Measurement of the establishment process of acoustic streaming using laser Doppler velocimetry. Ultrasonics, 1996, vol. 34, no. 2, pp. 527—530.
  53. Working with Microspheres. TechNote 201, Bangs Laboratories, Inc., 10 April 2008. 20 pages.
  54. Hawley S.A., Macleod R.M., Dunn F. Degradation of DNA by intense, noncavitating ultrasound. J. Acoust. Soc. Am., 1963, vol. 35, no. 8, pp. 1285—1287.
  55. Grochovskiy S.L. [Specificity of decomposition of DNA ultrasound]. Molekulyarnaya biologiya [Molecular biology], 2006, vol. 40, no. 2, pp. 317—325. (In Russ.).
  56. Eshoo M.W., Picuri J., Hang A.T., Smith H.L, Meijering B., Bruyninckx M., Dobbelaer I. Ultrasonics for microfluidic sample preparation. Patent WO N 2016/065299, 28.04.2016.
  57. Bashkirov V.I., Ulmanella U., Eason R.G., Taft B. Methods and apparatuses for nucleic acid shearing by sonication.  Patent US N 9127306, 8.09.2015.
  58. Liu Q., Li J., Liu H. et al. Rapid cost-effective DNA quantification via a visually-detectable aggregation of superparamagnetic silica-magnetic nanoparticles. Nano Research., 2014, vol. 7, no. 5, pp. 755—784. Doi: 10.1007/s12274-014-0436-9.
  59. Wu M.L., Freitas S.S., Monteiro G.A. et al. Stabilization of naked and condensed plasmid DNA against degradation induced by ultrasounds and high-shear vortices. Biotechnol. Appl. Biochem., 2009, vol. 53, no. 4. pp. 237—246. Doi: 10.1042/BA20080215.
  60. Wasan E.K., Reimer D.L., Bally M.B. Plasmid DNA is protected against ultrasonic cavitation-induced damage when complexed to cationic liposomes. J Pharm. Sci., 1996, vol. 85, no. 4, pp. 427—433.
 

A. L. Bulyanitsa1,2, Ya. S. Posmitnaya1,3, A. N. Tupik1, G. E. Rudnitskaya1, A. A. Evstrapov1,3

THEORETICAL EVALUATION OF THE PROBABILISTIC CHARACTERISTICS OF A QUANTITATIVE ANALYSIS BASED ON A COMBINATION OF DROPLET MICROFLUIDIC AND POLYMERASE CHAIN REACTION FOR EXTREMELY SMALL AMOUNTS OF GENETIC MATERIAL

"Nauchnoe Priborostroenie", 2017, vol. 27, no. 4, pp. 56—62.
doi: 10.18358/np-27-4-i5662
 

The classical method of real-time polymerase chain reaction (PCR) has a large error in determining ultra-small amounts of genetic material (hundreds copies or less). In these conditions, the methods of digital PCR are used. At the same time, the smallest error in quantitative analysis is achieved under conditions of comparability of the number of copies and the number of analytical cells in which the presence of at least one copy of the analyzed material is recorded. The paper presents a theoretical probabilistic calculation of a scheme of a principal new combination of PCR and droplet microfluidic, which will provide acceptable characteristics for the analysis of extremely small amounts of the sample. In this case, PCR is used exclusively for the copying of genetic material, and quantitative analysis is performed with the help of droplet microfluidic. An example of estimating the error in counting the number of copies is given, taking into account two different independent random factors, as that selection of 10% of the sample and 1% error of drops’ with positive results of reaction estimation.
 

Keywords: quantitative analysis, polymerase chain reaction (PCR), droplet microfluidic, probabilistic characteristics, confidence probability, error, copy (DNA-mark)

Author affiliations:

1Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia
2Peter the Great St. Petersburg Polytechnic University, Russia
3ITMO University, Saint-Petersburg, Russia

 
Contacts: Bulyanitsa Anton Leonidovich, antbulyan@yandex.ru
Article received in edition: 31.08.2017
Full text (In Russ.) >>

REFERENCES

  1. Mackay Ian M. (ed.). Real-Time PCR in Microbiology: From Diagnosis to Characterization. Caister Academic Press, 2007. 454 p. ISBN: 978-1-904455-18-9.
  2. Lun F.M., Chiu R.W., Chan K.C., Leung T.Y., Lau T.K., Lo Y.M. Microfluidics digital PCR reveals a higher than expected fraction of fetal DNA in maternal plasma. Clin. Chem., 2008, vol. 54, no. 10, pp. 1664—1672. Doi: 10.1373/clinchem.2008.111385.
  3. Dube S, Qin J, Ramakrishnan R. Mathematical analysis of copy number variation in a DNA sample using digital PCR on a nanofluidic device. PLoS ONE, 2008. Doi: 10.1371/journal.pone.0002876.
  4. Sochivko D.G., Fedorov A.A., Lavrov V.V., Kurochkin V.E., Petrov R.V. [Stochastic model operation of kinetic curves of polymerase chain reaction]. DAN [Reports of Academy of Sciences], 2011, vol. 439, no. 5, pp. 696—699.
  5. Novickij P.V., Zograf I.A. Ocenka pogreshnostej rezul'tatov izmerenij [Assessment of errors of observed datas]. Leningrad, Nauka Publ., 1991. 248 p.
 

A. S. Berdnikov1, N. K. Krasnova2, K. V. Solovyev2

ANALYSIS OF THE GENERAL WHITTAKER' FORMULA FOR 3D ELECTRIC AND MAGNETIC POTENTIALS HOMOGENEOUS IN EULER TERMS

"Nauchnoe Priborostroenie", 2017, vol. 27, no. 4, pp. 63—71.
doi: 10.18358/np-27-4-i6371
 

Electric and magnetic fields which are homogeneous in Euler terms are a useful instrument to design the systems of charge particle optics. The similarity principle for charged particle trajectories in these fields which was realized by Yu.K. Golikov for the first time enables to create spectrographic charge particle optical systems in a more systematic and intelligence way by using the fields which are homogeneous in Euler terms. This paper considers the Whittaker’ formulas for 3D Laplace potentials which are homogeneous in Euler terms. This paper is the continuation of the cycle of publications devoted to the study of the properties of harmonic functions homogeneous in Euler terms and its applications to create effective electron and ion optical systems.
 

Keywords: electric fields, magnetic fields, homogeneity in Euler terms, similarity principle for charged particle trajectories, analytical solutions of Laplace equation

Author affiliations:

1Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia
2Peter The Great St. Petersburg Polytechnic University, Russia

 
Contacts: Berdnikov Alexander Sergeevich, asberd@yandex.ru
Article received in edition: 30.05.2017
Full text (In Russ.) >>

REFERENCES

  1. Fihtengolc G.M. Kurs differencial'nogo i integral'nogo ischisleniya. T. 1 [Course of differential and integral calculus. Vol. 1]. Moscow, Fizmatlit Publ., 2001. 616 p. (In Russ.).
  2. Smirnov V.I. Kurs vysshey matematiki. T. 1 [Course of the higher mathematics. Vol. 1.]. Moscow, Nauka Publ., 1974. 480 p. (In Russ.).
  3. Averin I.A. [Electrostatic and magnetostatic electron spectrographs based on Euler’ homogeneous potentials with non-integer orders]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2015, vol. 25, no. 3. pp. 35—44. Doi: 10.18358/np-25-3-i3544. (In Russ.).
  4. Berdnikov A.S., Averin I.A., Krasnova N.K., Solovyev K.V. [The elementary analytical electric and magnetic potentials, the uniform in Euler]. Vestnik Aktyubinskogo regional'nogo gosudarstvennogo universiteta im. K. Zhubanova. Fiziko-matematicheskie nauki [Bulletin of the Aktyubinsk regional state university of K. Zhubanov. Physical and mathematical sciences], 2016, vol. 44, no. 2, pp. 17—32. (In Russ.).
  5. Berdnikov A.S., Averin I.A., Krasnova N.K., Solovyev K.V. [Three-dimensional electric and magnetic potentials, the uniform in Euler]. Vestnik Aktyubinskogo regional'nogo gosudarstvennogo universiteta im. K. Zhubanova. Fiziko-matematicheskie nauki [Bulletin of the Aktyubinsk regional state university of K. Zhubanov. Physical and mathematical sciences], 2016, vol. 44, no. 2, pp. 147—165. (In Russ.).
  6. Averin I.A., Berdnikov A.S. [Regional fields the without net of electronic spectrographs with electrostatic fields, uniform in Euler]. Uspekhi prikladnoj fiziki [Achievements of applied physics], 2016, vol. 4, no. 1,
    pp. 5—8. (In Russ.).
  7. Berdnikov A.S., Averin I.A. [New approach to development of ion-optical schemes of static mass spectrographs on the basis of the non-uniform magnetic fields uniform in Euler]. Uspekhi prikladnoj fiziki [Achievements of applied physics], 2016, vol. 4, no. 1, pp. 89—95. (In Russ.).
  8. Berdnikov A.S., Averin I.A., Golikov Yu.K. [The static mass spectrographs of new type using the electric and magnetic fields uniform in Euler. I]. Mass-spektrometriya [Mass-spectrometry], 2015, vol. 12, no. 4, pp. 272—281. (In Russ.).
  9. Berdnikov A.S., Averin I.A., Golikov Yu.K. [The static mass spectrographs of new type using the electric and magnetic fields uniform in Euler. II]. Mass-spektrometriya [Mass-spectrometry], 2016, vol. 13, no. 1, pp. 11—20. (In Russ.).
  10. Berdnikov A.S., Averin I.A. [About impossibility of double focusing in the combined electric and magnetic fields uniform in Euler]. Mass-spektrometriya [Mass-spectrometry], 2016, vol. 13, no. 1, pp. 62—65. (In Russ.).
  11. Berdnikov A.S., Averin I.A., Krasnova N.K., Solovyev K.V. [Universal expressions for 3D electric and magnetic potentials which are uniform in Euler terms]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2016, vol. 26, no. 4, pp. 13—30. Doi: 10.18358/np-26-4-i1330. (In Russ.).
  12. Berdnikov A.S., Averin I.A., Krasnova N.K., Solovyev K.V. [Integrated formulas for the three-dimensional electric and magnetic potentials uniform in Euler with nonintegral orders of uniformity]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2016, vol. 26, no. 4, pp. 31—42. Doi: 10.18358/np-26-4-i3142. (In Russ.).
  13. Averin I.A., Berdnikov A.S., Gall N.R. [The principle of similarity of trajectories at the movement of charged particles with a different masses in electric and magnetic fields, uniform in Euler]. Pis'ma v ZhTF [Letters in ZhTF], 2017, vol. 43, no. 3, pp. 39—43. (In Russ.).
  14. Berdnikov A.S., Averin I.A., Krasnova N.K., Solovyev K.V. [Quasi-polynomial three-dimensional electric and magnetic potentials uniform in Euler]. Nauchno-tekhnicheskie vedomosti SPbGPU. Fiziko-matematicheskie nauki [Scientific and technical sheets SPbGPU. Physical and mathematical sciences], 2017, vol. 10, no. 1, pp. 71—80. (In Russ.).
  15. Krasnova N.K., Berdnikov A.S., Solovyev K.V., Averin I.A. [About quasipolynomial three-dimensional potentials of electric and magnetic fields]. Nauchno-tekhnicheskie vedomosti SPbGPU. Fiziko-matematicheskie nauki [Scientific and technical sheets SPbGPU. Physical and mathematical sciences], 2017, vol. 10, no. 1, pp. 81—92. (In Russ.).
  16. Berdnikov A.S., Averin I.A., Krasnova N.K., Solovyev K.V. [Theorems on the homogeneity of scalar and vector potentials for 3D electric and magnetic fields which are homogeneous in Euler terms]. Uspekhi prikladnoj fiziki [Achievements of applied physics], 2017, vol. 5, no. 1, pp. 10—27. (In Russ.).
  17. Berdnikov A.S., Krasnova N.K., Solovyev K.V. [Theorem on integration and differentiation of 3d electric and magnetic potentials which are homogeneous in Euler terms]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2017, vol. 27, no. 3, pp. 107—119. Doi: 10.18358/np-27-3-i107119. (In Russ.).
  18. Berdnikov A.S., Krasnova N.K., Solovyev K.V. [Harmonic integration of quasi polynomial potentials which are homogeneous in Euler terms]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2017, vol. 27, no. 3, pp. 120—127. Doi: 10.18358/np-27-3-i120127. (In Russ.).
  19. Golikov Yu.K., Krasnova N.K. [Application of electric fields uniform in the Euler sense in electron spectrography]. Zhurnal tekhnicheskoj fiziki, 2011, vol. 81, no. 2, pp. 9—15. (In Russ.). (In Eng: Technical Physics, 2011, vol. 56, no. 2, pp. 164—170. Doi: 10.1134/S1063784211020149).
  20. Golikov Yu.K., Krasnova N.K. [The generalized principle of similarity and its application in an electronic spectrography]. Prikladnaya fizika [Applied physics], 2007, no. 2, pp. 5—11. (In Russ.).
  21. Golikov Yu.K., Krasnova N.K. Teoriya sinteza elektrostaticheskich energoanalizatorov [Theory of synthesis of electrostatic energy analyzers]. St. Petersburg Polytechnic University Publ., 2010. 409 p. (In Russ.).
  22. Krasnova N.K. [Two-dimensional power-type electronic spectrographs with a symmetry plane]. Zhurnal tekhnicheskoj fiziki, 2011, vol. 81, no. 6, pp. 97—103. (In Russ.). (In Eng: Technical Physics, 2011, vol. 56, no. 6, pp. 843—849. Doi: 10.1134/S1063784211060120).
  23. Krasnova N.K. Teoriya i sintez dispergiruyuschich i fokusiruyuschich elektronno-opticheskich sred. Diss. dokt. fiz.-mat. nauk [The theory and synthesis of the disperse ing and focusing electron-optical environments. Dr. phys. and math. sci. diss.]. St. Petersburg, 2013. 259 p. (In Russ.).
  24. Golikov Yu.K., Krasnova N.K. [Analytical structures of electric spectrographs the fields of which are expressed in a uniform generalized form]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2014, vol. 24, no. 1, pp. 50—58. (In Russ.).
  25. Whittaker E.T., Watson G. Kurs sovremennogo analiza. Ch. 2: Transcendentnye funkcii [Course of the modern analysis. Part 2: Transcendental functions]. Moscow, GIFML Publ., 1963. 516 p. (In Russ.).
  26. Bogolyubov A.N., Levashova N.T., Mogilevskij I.E., Muhartova Yu.V., Shapkina N.E. Funkciya Grina operatora Laplasa [Green function of the operator of Laplace]. Moscow, Faculty of Physics Moscow State University, 2012. 130 p. (In Russ.).
  27. Pikulin V.P., Pohozhaev S.I. Prakticheskij kurs po uravneniyam matematicheskoj fiziki [Practical course on the equations of mathematical physics]. Moscow, MCNMO Publ., 2004. 208 p. (In Russ.).
  28. Bogolyubov A.N., Kravcov V.V. Zadachi po matematicheskoj fizike [Tasks in mathematical physics]. Moscow, Moscow State University, 1998. 350 p. (In Russ.).
  29. Evgrafov M.A. Analiticheskie funkcii [Analytical functions]. Third edition processed and added. Moscow, Nauka Publ., 1991. 447 p. (In Russ.).
  30. Markushevich A.I. Teoriya analiticheskih funkcij. T. 1, 2 [Theory of analytical functions. V. 1, 2]. Moscow, Nauka Publ. Vol. 1, 1967. 491 p. Vol. 2, 1968. 624 p. (In Russ.).
  31. Beytmen G., Erdeyi A. Vysshie transzendentnye funkzii. T. 1 [The highest transcendental functions. Vol. 1]. Moscow, Nauka Publ., 1973. 296 p. (In Russ.).
  32. Abramoviz M., Stigan I. (ed.). Spravochnik po spezial'nym funkziyam s formulami, grafikami i matematicheskimi tablizami [The reference book on higher transcendental functions with formulas, schedules and mathematical tables]. Moscow, Nauka Publ., 1979. 832 p. (In Russ.).
  33. Olver F.W.J., Lozier D.W., Boisvert R.F., Clark C.W. NIST Handbook of Mathematical Functions. NIST and Cambridge University Press, 2010. 952 p.
  34. Olver F. Asimptotika i spezial'nye funkzii [Asymptotes and special functions]. Moscow, Nauka Publ., 1990. 528 p. (In Russ.).
  35. Dzhekson Dzh. Klassicheskaya elektrodinamika [Classical electrodynamics]. Moscow, Mir Publ., 1965. 702 p. (In Russ.).
  36. Gobson E.V. Teoriya sfericheskich i ellipsoidal'nych funkziy [Theory of spherical and ellipsoidal functions]. Moscow, IIL Publ., 1952. 476 p. (In Russ.).
  37. Donkin W.F. On the Equation of Laplace’s Functions &c. Philosophical Transactions of the Royal Society of London, 1857, vol. 147, pp. 43—57. Doi: 10.1098/rstl.1857.0005.
  38. Donkin W.F. On the Equation of Laplace’s Functions &c. Proceedings of the Royal Society of London, 1856-1857, vol. 8, pp. 307—310. Doi: 10.1098/rspl.1856.0075.
  39. Golikov Yu.K. [Analytical ways of the description of harmonious functions]. Vestnik Aktyubinskogo regional'nogo gosudarstvennogo universiteta im. K. Zhubanova. Fiziko-matematicheskie nauki [Bulletin of the Aktyubinsk regional state university of K. Zhubanov. Physical and mathematical sciences], 2016, vol. 44, no. 2, pp. 165—181. (In Russ.).
 

A. S. Berdnikov1, N. K. Krasnova2, K. V. Solovyev2

WHITTAKER’ FORMULA FOR 3D ELECTRIC AND MAGNETIC POTENTIALS WITH A ZERO ORDER OF HOMOGENEITY AND ITS CONSEQUENCIES

"Nauchnoe Priborostroenie", 2017, vol. 27, no. 4, pp. 72—89.
doi: 10.18358/np-27-4-i7289
 

Electric and magnetic fields which are homogeneous in Euler terms are a useful instrument to design the systems of charge particle optics. The similarity principle for charged particle trajectories in these fields which was realized by Yu.K. Golikov for the first time enables to create spectrographic charge particle optical systems in a more systematic and intelligence way by using the fields which are homogeneous in Euler terms. This paper considers the Whittaker’ formula for 3D Laplace potentials of zero order of homogeneity. It also considers some of its important consequences. This paper is the continuation of the cycle of publications devoted to the study of the properties of harmonic functions homogeneous in Euler terms and its applications to create effective electron and ion optical systems.
 

Keywords: electric fields, magnetic fields, homogeneity in Euler terms, similarity principle for charged particle trajectories, analytical solutions of Laplace equation, Donkin formula

Author affiliations:

1Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia
2Peter The Great St. Petersburg Polytechnic University, Russia

 
Contacts: Berdnikov Alexander Sergeevich, asberd@yandex.ru
Article received in edition: 30.05.2017
Full text (In Russ.) >>

REFERENCES

  1. Fihtengolc G.M. Kurs differencial'nogo i integral'nogo ischisleniya. T. 1 [Course of differential and integral calculus. Vol. 1]. Moscow, Fizmatlit Publ., 2001. 616 p. (In Russ.).
  2. Smirnov V.I. Kurs vysshey matematiki. T. 1 [Course of the higher mathematics. Vol. 1.]. Moscow, Nauka Publ., 1974. 480 p. (In Russ.).
  3. Golikov Yu.K. [Pseudo-uniform electrostatic fields with the given electron-optical characteristics]. Trudy LPI [Proc. of the Leningrad polytechnical institute], 1983, no. 397, pp. 82—85. (In Russ.).
  4. Gabdullin P.G., Golikov Yu.K., Krasnova N.K., Davy-dov S.N. [Application of a formula of Donkin in the theory of energy analyzers. I]. Zhurnal technicheskoy fiziki [Journal of technical physics], 2000, vol. 70, no. 2, pp. 91—94. (In Russ.).
  5. Gabdullin P.G., Golikov Yu.K., Krasnova N.K., Davy-dov S.N. [Application of a formula of Donkin in the theory of energy analyzers. II]. Zhurnal technicheskoy fiziki [Journal of technical physics], 2000, vol. 70, no. 3, pp. 44-47. (In Russ.).
  6. Golikov Yu.K., Krasnova N.K. [The generalized principle of similarity and its application in electronic spectrography]. Prikladnaya fizika [Application-oriented physics], 2007, no. 2, pp. 5—11. (In Russ.).
  7. Golikov Yu.K., Krasnova N.K. Teoriya sinteza elektrostaticheskich energoanalizatorov [Theory of synthesis of electrostatic energy analyzers]. St. Petersburg Polytechnic University Publ., 2010. 409 p. (In Russ.).
  8. Krasnova N.K. [Two-dimensional power-type electronic spectrographs with a symmetry plane]. Zhurnal tekhnicheskoj fiziki, 2011, vol. 81, no. 6, pp. 97—103. (In Russ.). (In Eng: Technical Physics, 2011, vol. 56, no. 6, pp. 843—849. Doi: 10.1134/S1063784211060120).
  9. Golikov Yu.K., Krasnova N.K. [Application of electric fields uniform in the Euler sense in electron spectrography]. Zhurnal tekhnicheskoj fiziki, 2011, vol. 81, no. 2, pp. 9—15. (In Russ.). (In Eng: Technical Physics, 2011, vol. 56, no. 2, pp. 164—170. Doi: 10.1134/S1063784211020149).
  10. Krasnova N.K. Teoriya i sintez dispergiruyuschich i fokusiruyuschich elektronno-opticheskich sred. Diss. dokt. fiz.-mat. nauk [The theory and synthesis of the disperse ing and focusing electron-optical environments. Dr. phys. and math. sci. diss. ]. St. Petersburg, 2013. 259 p. (In Russ.).
  11. Golikov Yu.K., Krasnova N.K. [Analytical structures of electric spectrographs the fields of which are expressed in a uniform generalized form]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2014, vol. 24, no. 1, pp. 50—58. URL: http://213.170.69.26/en/mag/2014/abst1.php#abst6. (In Russ.).
  12. Berdnikov A.S., Krasnova N.K., Solovyev K.V. [Analysis of the general Whittaker’ formula for 3D electric and magnetic potentials homogeneous in Euler terms]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2017, vol. 27, no. 4, pp. 63—71. (In Russ.).
  13. Whittaker E.T., Watson G. Kurs sovremennogo analiza. Ch. 2: Transcendentnye funkcii [Course of the modern analysis. Part 2: Transcendental functions]. Moscow, GIFML Publ., 1963. 516 p. (In Russ.).
  14. Averin I.A. [Electrostatic and magnetostatic electron spectrographs based on Euler’ homogeneous potentials with non-integer orders]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2015, vol. 25, no. 3, pp. 35—44. Doi: 10.18358/np-25-3-i3544. (In Russ.).
  15. Berdnikov A.S., Averin I.A., Krasnova N.K., Solov'ev K.V. [The simplest analytical electric and magnetic potentials uniform in Euler]. Vestnik Aktyubinskogo regional'nogo gosudarstvennogo universiteta im. K. Zhubanova. Fiziko-matematicheskie nauki [Bulletin of the Aktyubinsk regional state university of K. Zhubanov. Physical and mathematical sciences], 2016, vol. 44, no. 2. pp. 17—32. (In Russ.).
  16. Berdnikov A.S., Averin I.A., Krasnova N.K., Solov'ev K.V. [Three-dimensional electric and magnetic potentials uniform in Euler]. Vestnik Aktyubinskogo regional'nogo gosudarstvennogo universiteta im. K. Zhubanova. Fiziko-matematicheskie nauki [Bulletin of the Aktyubinsk regional state university of K. Zhubanov. Physical and mathematical sciences], 2016, vol. 44, no. 2. pp. 147—165. (In Russ.).
  17. Averin I.A., Berdnikov A.S. [Edge fields the bessetochnykh of electronic spectrographs with electrostatic fields, uniform in Euler]. Uspechi prikladnoy fiziki [Achievements of application-oriented physics], 2016, vol. 4, no. 1, pp. 5—8. (In Russ.).
  18. Berdnikov A.S., Averin I.A. [New approach to development of ion-optical schemes of static mass spectrographs on the basis of the non-uniform magnetic fields uniform in Euler]. Uspekhi prikladnoj fiziki [Achievements of applied physics], 2016, vol. 4, no. 1, pp. 89—95. (In Russ.).
  19. Berdnikov A.S., Averin I.A., Golikov Yu.K. [The static mass spectrographs of new type using the electric and magnetic fields uniform in Euler. I]. Mass-spektrometriya [Mass-spectrometry], 2015, vol. 12, no. 4, pp. 272—281. (In Russ.).
  20. Berdnikov A.S., Averin I.A., Golikov Yu.K. [The static mass spectrographs of new type using the electric and magnetic fields uniform in Euler. II]. Mass-spektrometriya [Mass-spectrometry], 2016, vol. 13, no. 1, pp. 11—20. (In Russ.).
  21. Berdnikov A.S., Averin I.A. [About impossibility of double focusing in the combined electric and magnetic fields uniform in Euler]. Mass-spektrometriya [Mass-spectrometry], 2016, vol. 13, no. 1, pp. 62—65. (In Russ.).
  22. Berdnikov A.S., Averin I.A., Krasnova N.K., Solovyev K.V. [Universal expressions for 3D electric and magnetic potentials which are uniform in Euler terms]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2016, vol. 26, no. 4, pp. 13—30. Doi: 10.18358/np-26-4-i1330. (In Russ.).
  23. Berdnikov A.S., Averin I.A., Krasnova N.K., Solovyev K.V. [Integrated formulas for the three-dimensional electric and magnetic potentials uniform in Euler with nonintegral orders of uniformity]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2016, vol. 26, no. 4, pp. 31—42. Doi: 10.18358/np-26-4-i3142. (In Russ.).
  24. Averin I.A., Berdnikov A.S., Gall N.R. [The principle of similarity of trajectories at the movement of charged particles with a different masses in electric and magnetic fields, uniform in Euler]. Pis'ma v ZhTF [Letters in ZhTF], 2017, vol. 43, no. 3, pp. 39—43. (In Russ.).
  25. Berdnikov A.S., Averin I.A., Krasnova N.K., Solovyev K.V. [Quasi-polynomial three-dimensional electric and magnetic potentials uniform in Euler]. Nauchno-tekhnicheskie vedomosti SPbGPU. Fiziko-matematicheskie nauki [Scientific and technical sheets SPbGPU. Physical and mathematical sciences], 2017, vol. 10, no. 1, pp. 71—80. (In Russ.).
  26. Krasnova N.K., Berdnikov A.S., Solovyev K.V., Averin I.A. [About quasipolynomial three-dimensional potentials of electric and magnetic fields]. Nauchno-tekhnicheskie vedomosti SPbGPU. Fiziko-matematicheskie nauki [Scientific and technical sheets SPbGPU. Physical and mathematical sciences], 2017, vol. 10, no. 1, pp. 81—92. (In Russ.).
  27. Berdnikov A.S., Averin I.A., Krasnova N.K., Solovyev K.V. [Theorems on the homogeneity of scalar and vector potentials for 3D electric and magnetic fields which are homogeneous in Euler terms]. Uspekhi prikladnoj fiziki [Achievements of applied physics], 2017, vol. 5, no. 1, pp. 10—27. (In Russ.).
  28. Berdnikov A.S., Krasnova N.K., Solovyev K.V. [Theorem on integration and differentiation of 3d electric and magnetic potentials which are homogeneous in Euler terms]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2017, vol. 27, no. 3, pp. 107—119. Doi: 10.18358/np-27-3-i107119. (In Russ.).
  29. Berdnikov A.S., Krasnova N.K., Solovyev K.V. [Harmonic integration of quasi polynomial potentials which are homogeneous in Euler terms]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2017, vol. 27, no. 3, pp. 120—127. Doi: 10.18358/np-27-3-i120127. (In Russ.).
  30. Golikov Yu.K. [Analytical ways of the description of harmonious functions]. Vestnik Aktyubinskogo regional'nogo gosudarstvennogo universiteta im. K. Zhubanova. Fiziko-matematicheskie nauki [Bulletin of the Aktyubinsk regional state university of K. Zhubanov. Physical and mathematical sciences], 2016, vol. 44, no. 2, pp. 165—181. (In Russ.).
  31. Donkin W.F. On the Equation of Laplace’s Functions &c. Philosophical Transactions of the Royal Society of London, 1857, vol. 147, pp. 43—57. Doi: 10.1098/rstl.1857.0005.
  32. Donkin W.F. On the Equation of Laplace’s Functions &c. Proceedings of the Royal Society of London, 1856-1857, vol. 8, pp. 307—310. Doi: 10.1098/rspl.1856.0075.
  33. Gobson E.V. Teoriya sfericheskich i ellipsoidal'nych funkziy [Theory of spherical and ellipsoidal functions]. Moscow, IIL Publ., 1952. 476 p. (In Russ.).
  34. Sretenskiy L.N. Teoriya n'yutonovskogo potenziala [Theory of the Newtonian potential]. Moscow, Leningrad, OGIZ-GITTL Publ., 1946. 318 p. (In Russ.).
  35. Gyunter N.M. Teoriya potenziala i ee primenenie k osnovnym zadacham matematicheskoy fiziki [The potential theory and its application to the main objectives of mathematical physics]. Moscow, GITTL Publ., 1953. 415 p. (In Russ.).
  36. Thomson W. Extraits de deux Lettres adressées à M. Liouville. Journal de mathématiques pures et appliquées, 1847, Tome XII, pp. 256—264.
  37. Tomson W. (lord Kel'vin), Tet P.G. Traktat po natural'noy filosofii. Chast' I [The treatise on natural philosophy. Part I]. Moskva, Izhevsk, NIZ "Regulyarnaya i chaoticheskaya dinamika" Publ., 2010. 572 p. (In Russ.).
  38. Vladimirov V.S. Uravneniya matematicheskoy fiziki [Equations of mathematical physics]. Moscow, Nauka Publ., 1981. 512 p. (In Russ.).
  39. Smirnov V.I. Kurs vysshey matematiki [Course of the higher mathematics]. Vol. 4, Part 2, Moscow, Nauka Publ., 1981. 297 p. (In Russ.).
  40. Lavrent'ev M.A., Shabat B.V. Metody teorii funkziy kompleksnogo peremennogo [Methods of the function theory of complex variable]. Moscow, Nauka Publ., 1973. 736 p. (In Russ.).
  41. Evgrafov M.A. Analiticheskie funkzii. Ucheb. posobie dlya vuzov. 3-e izd., pererab. i dop. [Analytic functions. Studies. the manual for higher education institutions. 3rd ed., reslave. and additional]. Moscow, Nauka Publ., 1991. 447 p. (In Russ.).
  42. Markushevich A.I. Teoriya analiticheskich funkziy. T. 1, 2 [Theory of analytic functions. Vol. 1, 2]. Moscow, Nauka Publ., 1967. 486 p. (ò. 1), 624 p. (ò. 2). (In Russ.).
  43. Vekua I.N. Novye metody resheniya ellipticheskich uravneniy [New methods of the solution of elliptical equations]. Moscow, Leningrad, OGIZ-GITTL Publ., 1948. 296 p. (In Russ.).
  44. Muschelishvili N.I. Singulyarnye integral'nye uravneniya. Granichnye zadachi teorii funkziy i nekotorye ich prilozheniya k matematicheskoy fizike (3-e izd.) [Singular integrable equations. Boundary tasks of the function theory and some of their applications to mathematical physics (the 3rd ed.)]. Moscow, Nauka Publ., 1968. 512 p. (In Russ.).
  45. Manzhirov A.V., Polyanin A.D. Spravochnik po integral'nym uravneniyam: Metody resheniya [The reference manual on integrable equations: Decision methods]. Moscow, Faktorial Publ., 2000. 384 p. (In Russ.).
 

B. P. Sharfarets

INTERACTION OF LIGHT WITH A GENERALIZED THERMO-ACOUSTIC FIELD

"Nauchnoe Priborostroenie", 2017, vol. 27, no. 4, pp. 90—97.
doi: 10.18358/np-27-4-i9097
 

The influence of the acoustic field and the field of free convection caused by a thermal source on the refractive index of light in a homogeneous continuous medium is considered. The corresponding expressions for both fields are given, allowing one to calculate the perturbations of the density of the medium, and, consequently, the perturbation of the refractive index of light caused by density perturbation Specific orders of magnitude of the velocity for free convection are given, the relative values of the density change, and also the expression for the Grashof number as a parameter of the flow intensity for free convection.
 

Keywords: refractive index of light, free convection, Boussinesq equations, Grashof number

Author affiliations:

Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia

 
Contacts: Sharfarets Boris Pinkusovich, sharb@mail.ru
Article received in edition: 13.10.2017
Full text (In Russ.) >>

REFERENCES

  1. Gerasimov S.I., Erofeev V.I., Speranskiy A.V., Totyshev K.V. Algoritmy opredeleniya parametrov schem tenevogo fotografirovaniya [Algorithms of determination of parameters of diagrams of shadow photography]. Sarovskiy fiziko-technicheskiy in-t NIYaU MIFI, 2013. 95 p. (In Russ.).
  2. Landau L.D., Lifshiz E.M. Teoreticheskaya fizika. T. 6. Gidrodinamika [Theoretical physics. V. 6. Hydrodynamics]. Moscow, Nauka Publ., 1988. 736 p. (In Russ.).
  3. Serrin J. Mathematical principles of classical fluid mechanics. Berlin, 1959 (Russ. ed.: Serrin Dzh. Matematicheskie osnovy klassicheskoy mechaniki zhidkosti. Moscow, In. lit. Publ., 1963. 256 p.).
  4. Rudenko O.V., Soluyan S.I. Teoreticheskie osnovy nelineynoy akustiki [Theoretical fundamentals of non-linear acoustics]. Moscow, Nauka Publ. 288 p. (In Russ.).
  5. Sharfarets B.P., Knyazkov N.N., Pashovkin T.N. [About mathematical tasking for movement of viscous compressible heat-conducting fluids in thermoelastic tube]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2013, vol. 23, no. 4, pp. 85—90. (In Russ.). URL:
  6. Sharfarets B.P., Sharfarets E.B. [Some particular qualities of simulation for microfluidic processes]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2013, vol. 23, no. 4, pp. 91—94. (In Russ.). URL:
  7. Sharfarets B.P. [About the solution of the linearized problem of movement of viscous heat-conducting liquid in the thermoelastic tube by means of Kirchhoff\'s untied equations]. Nauchnoe Priborostroenie [Scientific Instrumen­tation], 2014, vol. 24, no. 2, pp. 27—32. (In Russ.). URL: http://213.170.69.26/en/mag/2014/abst2.php#abst4.
  8. Sharfarets E.B., Sharfarets B.P. [Free convection. Accounting for certain physical features when simulation software using for modeling convection flows]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2014, vol. 24, no. 2, pp. 43—51. (In Russ.). URL: http://213.170.69.26/en/mag/2014/abst2.php#abst6.
  9. Knyazkov N.N., Sharfarets B.P., Sharfarets E.B. [The basic expressions used in the electrokinetic phenomena (review)]. Nauchnoe Priborostroenie [Scientific Instru­mentation], 2014, vol. 24, no. 4, pp. 13—21. (In Russ.). URL: http://213.170.69.26/mag/2014/abst4.php#abst2.
  10. Sharfarets B.P. [An overview of the theory of transport phenomena and surface phenomena in relation 
    to the solution of some problems of analytical instrumentation]. Nauchnoe Priborostroenie [Scientific Instru­mentation], 2015, vol. 25, no. 3, pp. 45—64. Doi: 10.18358/np-25-3-i4564. (In Russ.).
  11. Sharfarets B.P., Sharfarets E.B., Knyaz'kov N.N., Pashovkin T.N. [Some features of the numerical solution of tasks of thermoelasticity and hydrodynamics heat-conducting compressed viscous liquid by means of universal packages]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2016, vol. 26, no. 3, pp. 57—63. Doi: 10.18358/np-26-3-i5763. (In Russ.).
  12. Levich V.G. Fiziko-chimicheskaya gidrodinamika [Physical and chemical hydrodynamics]. Moscow, GIFML Publ., 1959. 700 p. (In Russ.).
  13. Gershuni G.3., Zhuchovizkiy E.M. Konvektivnaya ustoychivost' neszhimaemoy zhidkosti [Convective stability of incompressible liquid]. Moscow, Nauka Publ., 1972. 392 p. (In Russ.).
  14. Koshlyakov N.S., Gliner E.B., Smirnov M.M. Uravneniya v chastnych proizvodnych matematicheskoy fiziki [Partial equations of mathematical physics]. Moscow, Vysshaya shkola Publ., 1979. 712 p. (In Russ.).
  15. Isakovich M.A. Obschaya akustika [General acoustics]. Moscow, Nauka Publ., 1973. 496 p. (In Russ.).
  16. Gebchart B., Dzhaluriya Y., Machadzhan R., Sammakiya B. Svobodnokonvektivnye techeniya, teplo- i mas-soobmen. T. 1 i 2 [Freely convective currents, warm and mass exchange. V. 1 and 2]. Moscow, Mir Publ., 1991. 678 p. (V. 1); 528 p. (V. 2). (In Russ.).
  17. Kikoin A.K., Kikoin I.K. Obschiy kurs fiziki. Molekulyarnaya fizika [General course of physics. Molecular physics]. Moscow, Nauka Publ., 1976. 480 p. (In Russ.).
 

Y. D. Kolpakova1, S. M. Malyutenkova1, R. A. Bublyaev2

APPLICATION OF MASS-SPECTROMETRY FOR CONTROL OF ANTIBIOTICS IN MILK

"Nauchnoe Priborostroenie", 2017, vol. 27, no. 4, pp. 98—101.
doi: 10.18358/np-27-4-i98101
 

Using the example of lincomycin, the possibility of using quantitative mass spectrometry for the detection of antibiotics in a wide range of concentrations in the milk of treated animals was demonstrated. A calibration curve was constructed to determine the concentration of lincomycin in milk for MX5310, a time-of-flight mass spectrometer with a source of ions of the "electrospray" type and an orthogonal ion delivery method. Lincomycin was found in milk, at its concentrations of smaller and larger then maximum allowable concentration.
 

Keywords: mass spectrometry, electrospray, time-of-flight mass spectrometer, lincomycin

Author affiliations:

1Peter the Great St. Petersburg Polytechnic University, Russia
2Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia

 
Contacts: Bublyaev Rostislav Anatol'evich, bub-slava@yandex.ru
Article received in edition: 26.09.2017
Full text (In Russ.) >>

REFERENCES

  1. Effektivnyj skrining ostatkov veterinarnyh preparatov v prodovol'stvennom syr'e zhivotnogo proiskhozhdeniya s pomoshch'yu test-sistem serii RIDASCREEN [Efficient screening of oddments of veterinary medicines in food staples of animal origin by means of the test systems of the RIDASCREEN series]. (In Russ.).
  2. SanPiN 2.3.2.1078-01. Gigienicheskie trebovaniya bezopasnosti i pishchevoj cennosti pishchevyh produktov. Prilozhenie ¹ 21: Maksimal'nye dopustimye urovni ostatkov veterinarnyh (zootekhnicheskih) preparatov v pishchevyh produktah zhivotnogo proiskhozhdeniya, kontroliruemye soglasno informacii ob ih ispol'zovanii pri proizvodstve prodovol'stvennogo syr'ya [Hygienic requirements of safety and nutrition value of foodstuff. The appendix No. 21: Maximum admissible levels of oddments of veterinary (zootechnical) medicines in foodstuff of animal origin, controlled according to information on their use by production of food staples]. (In Russ.) URL: http://mibio.ru/docs/110/sanpin_2.3.2.1078-01_gigienicheskie_trebovaniya_bezopasnosti.pdf.
  3. Turnipseed Sh., Casey Ch., Nochetto Cr., Heller D.N. Determination of melamine and cyanuric acid residues in infant formula using LCMS/MS // Laboratory Information Bulletin (LIB), 2008, vol. 4421, no. 24. URL: www.cfsan.fda.gov/~frf/lib4421.html.
  4. Podolskaya E.P., Novikov A.V., Mirgorodskaya O.A. [Mass spectrometric measurements of halogen-modified 2’-deoxyuridine concentration ratios]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2004, vol. 14, no. 2, pp. 116—120. (In Russ.). URL: http://213.170.69.26/en/mag/2004/abst2.php#abst13.
  5. Novikov A.V., Bublyaev R.A., Manoilov A.V., Krasnov N.V., Mirgorodskaya O.A. [Melamine analysis in milk products using MX-5310 complex]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2008, vol. 18, no. 4, pp. 13—15. (In Russ.). URL: http://213.170.69.26/mag/2008/abst4.php#abst2.
  6. Profilaktika i lechenie korov pri mastite v period zapuska i suhostoya [Prophylaxis and treatment of cows at mastitis during start and a dead wood]. VetLib. URL: http://www.vetlib.ru/akusherstvo/page,5,221-zapusk-lechenie-preparat-moloko-korova.html. (In Russ.).
 

A. Yu. Elizarov1, V. A. Elokhin2, V. A. Nikolaev2, T. D. Ershov2,
I. I. Faizov3, A. I. Levshankov3, A. V. Schegolev3

NON-INVASIVE MASS SPECTROMETRIC METHOD OF MEASUREMENT SKIN SECRETION CO2

"Nauchnoe Priborostroenie", 2017, vol. 27, no. 4, pp. 102—106.
doi: 10.18358/np-27-4-i102106
 

The possibility of using a mass spectrometer with a membrane interface for a non-invasive measurement of the skin secretion CO2 of a healthy human. As a result, the technique of percutaneous measurement at the level of the upper third of the forearm of the upper limbs was developed, and the reproducibility of the results was analyzed. Calibration of measuring equipment was carried out and experimental clinical measurements were carried out. The results obtained are analyzed and given a substantive interpretation. The developed method can be recommended for implementation in clinical practice.
 

Keywords: mass spectrometer, membrane interface, carbon dioxide

Author affiliations:

1Ioffe Physical Technical Institute of the RAS, Saint-Petersburg, Russia
2AO Scientific Instruments, Saint-Petersburg, Russia
3Military Medical Academy of St. Petersburg, Russia

 
Contacts: Ershov Timofey Dmitrievich, ershov_t@sinstr.ru
Article received in edition: 19.09.2017
Full text (In Russ.) >>

REFERENCES

  1. Krauss B., Hess D.R. Capnography for procedural sedation and analgesia in the emergency department. Annals of Emergency Medicine, 2007, vol. 50, no. 2, pp. 172—181.
  2. Alkalay I., Suetsugu S., Constantine H., Stein M. Carbon dioxide elimination across human skin. Am. J. Physiol., 1971, vol. 220, no. 5, pp. 1434—1436.
  3. Elokhin V.A., Ershov T.D., Elizarov A.Yu. [Application interface membrane separator mass-spectrometric analysis of anesthetic drugs in biological fluid]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2014, vol. 24, no. 2, pp. 118—122. (In Russ.). URL: http://213.170.69.26/en/mag/2014/abst2.php#abst15.
 

B. S. Slepak1, K. B. Slepak2

MANAGEMENT OF INNOVATIONS IN SCIENTIFIC INSTRUMENTATION

"Nauchnoe Priborostroenie", 2017, vol. 27, no. 4, pp. 107—117.
doi: 10.18358/np-27-4-i107117
 

Breakthrough scientific research in the field of molecular genetic analysis, which refers to a risky, significant funding for state organizations, is described. Scientific instruments illustrating the development of one of the most promising areas of scientific instrumentation, which allows the creation of small-scale analytical systems with modern software for rapid analysis of a large variety of biological samples, are presented.
 

Keywords: biological sample, DNA sequencer, micro fluidic chip, polymerase chain reaction, fluorescence, capillary

Author affiliations:

1Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia
2NRC "Kurchatov Institute" – CRISM "Prometey", Russia

 
Contacts: Slepak Boris Semyenovich, slepak@mail. ru
Article received in edition: 1.11.2017
Full text (In Eng.) >>

REFERENCES

  1. Slepak K.B. The development of the scientific and educational potential of Russia’s regions in the process of innovative import substitution. Economics and management, 2015, no. 7, pp. 84—91.
  2. Slepak K.B. The development of science, education and innovative technologies in the regions of Russia as a factor in ensuring national security. SPb., Publishing house of Polytechnic University, 2014. 192 p. ISBN 978-5-7422-4577-3.
  3. Meeting of the Governmental Commission on Import Substitution [Electronic resource]. URL: http://government.ru/news/19937/.
  4. Fedorov A.A., Sochivko D.G., Varlamov D.A., Kurochkin V.E. Extended kinetic model of real-time polymerase chain reaction process. Journal of Physics: Conference Series, 2016, vol. 769, no. 1. 012019. Doi: 10.1088/1742-6596/769/1/012019.
  5. Fedorov A.A., Berdnikov A.S., Sochivko D.G., Varlamov D.A., Kurochkin V.E., Petrov R.V. Approximate analytic solution of a simple system of kinetic equations describing the enzymatic synthesis of nucleic acids. Doklady Biochemistry and Biophysics [Reports on biochemistry and biological physics], 2016, vol. 470, no. 1, pp. 379—382. Doi: 10.1134/S1607672916050185.
  6. Belenky B.G., Evstrapov A.A., Kozulin R.A., Konovalov S.V., Kurochkin V.E. Fluorimetric detector. RF patent issued 10 May, 2002, granted No. RU 2182329. (In Russ.).
  7. Status of the Microfluidics Industry 2017. URL: https://www.i-micronews.com/category-listing/product/status-of-the-microfluidics-industry-2017.html
  8. Agilent. URL: http://www.genomics.agilent.com.
  9. Fluidigm. URL: http://www.fluidigm.com/biomark-system.html.
  10. Appliedbiosystems. URL: http://appliedbiosystems.com.
  11. Shen F., Du W., Kreutz J.E., Fok A., Ismagilov R.F. Digital PCR on a SlipChip. Lab Chip, 2010, vol. 20, no. 10, pp. 2666—2672.
  12. Guo M.T., Rotem A., Heymanab J.A., Weitz D.A. Droplet microfluidics for high-throughput biological assays. Lab Chip, 2012, no. 12, pp. 2146—2155.
  13. BIO-RAD QX200™ Droplet Digital™ PCR System. URL: http://www.bio-rad.com/ru-ru/product/qx200-droplet-digital-pcr-system.
  14. Raindance Technologies Inc, USA. RainDrop® Digital PCR System. URL: http://raindancetech.com/digital-pcr-tech/raindrop-digital-pcr-system/.
  15. Bulyanitsa A.L., Posmitnaya Y.S., Rudnitskaya G.E., Lukashenko T.A., Tsymbalov A.I., Evstrapov A.A. Glass and polymer microfluidic chips for electrophoretic separation of biomolecules. Nauchnoe Priborostroenie [Scientific Instrumentation], 2014, vol. 24, no. 4, pp. 67—76.
  16. Kukhtevich I.V., Belousov K.I., Bukatin A.S., Chubinskiy-Nadezhdin V.I., Vasileva V.Y., Negulyaev Y.A., Evstrapov A.A. Microfluidic Chips for the Study of Cell Migration under the Effect of Chemicals. Technical Physics Letters, 2016, vol. 42, no. 5, pp. 478—481.
  17. Belousov K.I., Filatov N.A., Evstrapov A.A., Kukhtevich I.V., Bukatin A.S. The study of mixing of reagents within a droplet in various designs of microfluidic chip. Journal of Physics: Conference Series, 2016, vol. 741, no.1. 012052.
  18. Bukatin A.S., Mukhin I.S., Malyshev E.I., Kukhtevich I.V., Evstrapov A.A., Dubina M.V. Peculiarities in the formation of microstructures with a high aspect ratio in preparing polymer microfluid chips for in vitro analysis of single living cells. Technical Physics, 2016, vol. 61, no. 10, pp. 1566—1571.
  19. Evstrapov A.A., Bulyanitsa A.L., Rudnitskaya G.E., Lukashenko T.A., Tupik A.N., Tsymbalov A.I., Esikova N.A., Posmitnaya Y.S. Evaluation of the results of a real-time polymerase chain reaction of cDNA of CK19 tumor markers by electrophoresis on a microfluidic chip. Nauchnoe Priborostroenie [Scientific Instrumentation], 2012, vol. 22, no. 4, pp. 17—25.
  20. Evstrapov A., Esikova N., Rudnitskaya G., Antropova T.V. Porous glasses as a substrate for sensor elements. Optica Applicata, 2010, vol. XL, no. 2, pp. 333—340.
  21. Esikova N.A., Evstrapov A.A., Bulyanitsa A.L., Antropova T.V. Study features of the change of the fluorescence signal of the sensor element based on porous glass on the concentration of labeled insulin. Glass Physics and Chemistry, january 2015, vol. 41, no. 1, pp. 89—92. (ISSN: 1087-6596).
  22. Order No. 543 of the FASO of Russia dated November 3, 2015 "On the Council for Scientific Instrumentation of the Federal Agency for Scientific Organizations".
 
 

FROM EDITION

VOLUME 27 TABLE OF CONTENTS

"Nauchnoe Priborostroenie", 2017, vol. 27, no. 4, pp. 118—126.
 

NUMBER 1 (112 p.)
Thematic issue: Works of participants of the All-Russian scientific and practical conference "SCIENTIFIC INSTRUMENT MAKING — THE CURRENT STATE AND THE PROSPECTS OF DEVELOPMENT",
November 15–16, 2016, Moscow
WORKS FROM THE CONFERENCE (pp. 5–56)
PHYSICS OF INSTRUMENT MAKING (pp. 57–82)
MATHEMATICAL METHODS AND MODELLING IN INSTRUMENT MAKING (pp. 83–112)
 
NUMBER 2 (108 p.)
INSTRUMENT MAKING OF PHYSICAL AND CHEMICAL BIOLOGY (pp. 3–31)
PHYSICS OF INSTRUMENT MAKING (pp. 32–65)
MATHEMATICAL METHODS AND MODELLING IN INSTRUMENT MAKING (pp. 66–90)
EQUIPMENT AND SYSTEMS (pp. 91–108)
 
NUMBER 3 (136 p.)
EQUIPMENT AND SYSTEMS (pp. 3–27)
INSTRUMENT MAKING FOR BIOLOGY AND MEDICINE (pp. 28–54)
PHYSICS AND CHEMISTRY OF INSTRUMENT MAKING (pp. 55–69)
MATHEMATICAL METHODS AND MODELLING N INSTRUMENT MAKING (pp. 70–136)
 
NUMBER 4 (128 p.)
PHYSICS OF INSTRUMENT MAKING (pp. 3–23)
SYSTEM ANALYSIS OF MEASURING DEVICES AND METHODS (pp. 24–55)
MATHEMATICAL METHODS AND MODELLING IN INSTRUMENT MAKING (pp. 56–97)
INSTRUMENT MAKING FOR BIOLOGY AND MEDICIN (pp. 98–106)
EQUIPMENT AND SYSTEMS (pp. 107–117)

Full text >>

 

FROM EDITION

THE AUTHOR'S INDEX OF VOLUME 27

"Nauchnoe Priborostroenie", 2017, vol. 27, no. 4, pp. 127—128.

Full text >>

Ulitsa Ivana Chernykh, 31-33, lit. A, St. Petersburg, Russia, 198095, P.O.B. 140
tel: (812) 3630719, fax: (812) 3630720, mail: iap@ianin.spb.su

content: Valery D. Belenkov design: Banu S. Kuspanova layout: Anton V. Manoilov