logo
blue band <-
  JOURNAL "NP" ISSUES

"Nauchnoe Priborostroenie", 2023, Vol. 33, no. 4.

 ISSN 2312-2951

"NP" 2023 year Vol. 33 no. 4.,   ABSTRACTS

ABSTRACTS, REFERENCES

A. N. Zubik, G. E. Rudnitskaya, A. A. Evstrapov

MICROVALVES IN MICROFLUIDIC DEVICES.
PART 1. ACTIVE MICROVALVES

"Nauchnoe priborostroenie", 2023, vol. 33, no. 4, pp. 3—27.
 

The microvalve is one of the most important functional elements of a microfluidic device. Microvalves allow dosing, mixing, starting/stopping liquid flows, flow control, and sealing reaction chambers –widely used operations in integrated microfluidic systems. There are many types of microvalves, each of which has different characteristics, and is designed to solve specific problems. Microvalves have been developed as active or passive structural elements with mechanical, non-mechanical, and external systems. This article provides an overview of the most commonly used designs of microvalves based on various actuators in microfluidics.
 

Keywords: microfluidics, microvalve, active valve, passive valve

Author affiliations:

Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia

 
Contacts: Zubik Aleksandra Nikolaevna, tunix@yandex.ru
Article received by the editorial office on 27.07.2023

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Au A.K., Lai H., Utela B.R., Folch A. Microvalves and Micropumps for BioMEMS. Micromachines, 2011, vol. 2, no. 2, pp. 179—220. DOI: 10.3390/mi2020179
  2. Woolf M.S., Dignan L.M., Lewis H.M., Tomley C.J., Nauman A.Q., Landers J.P. Optically-controlled closable microvalves for polymeric centrifugal microfluidic de-vices. Lab Chip, 2020, no. 8, pp. 1426—1440. DOI: 10.1039/C9LC01187K
  3. Durasiewicz C.P., Güntner S.T., Maier P.K., Hölzl W., Schrag G. Piezoelectric normally open microvalve with multiple valve seat trenches for medical applications. Appl. Sci., 2021, vol. 11, iss. 19, id. 9252. DOI: 10.3390/app11199252
  4. Zhang C., Xing D., Li Y. Micropumps, microvalves, and micromixers within PCR microfluidic chips: Advances and trends. Biotechnology Advances, 2007, vol. 25, no. 5, pp. 483—514. DOI: 10.1016/j.biotechadv.2007.05.003
  5. Qian J.-Y., Hou C.-W., Li X.-J., Jin Z.-J. Actuation mechanism of microvalves: a review . Micromachines, 2020, vol. 11, no. 2, id. 172. DOI: 10.3390/mi11020172
  6. Oh K.W., Ahn C.H. A review of microvalves. J. Micromech. Microeng., 2006, vol. 16, no. 5, pp. R13—R39. DOI: 10.1088/0960-1317/16/5/R01
  7. Wu J., Fang H., Zhang J., Yan S. Modular microfluidics for life sciences. J Nanobiotechnol., 2023, vol. 21, art. 85. DOI: 10.1186/s12951-023-01846-x
  8. Huang M., Zheng L., Zhang H., Xue S., Ni H. Application of microvalve based on computer control in biological chemical and medical. Proceedings of the 2019 International Conference on Artificial Intelligence and Advanced Manufacturing - AIAM 2019. Dublin, Ireland, art. 18, pp. 1—6. DOI: 10.1145/3358331.3358349
  9. Bae B., Han J., Masel R.I., Shannon M.A. A bidirectional electrostatic microvalve with microsecond switching performance. J. Microelectromechanical Syst., 2007, vol. 16, no. 6, pp. 1461—1471. DOI: 10.1109/jmems.2007.907782
  10. Anjewierden D., Liddiard G.A., Gale B.K. An electrostatic microvalve for pneumatic control of microfluidic systems. J. Micromech. Microeng., 2012, vol. 22, id. 025019. DOI: 10.1088/0960-1317/22/2/025019
  11. Yıldırım E., Arıkan M.S., Külah H., Arikan M.S. A normally closed electrostatic parylene microvalve for micro total analysis systems. Sens. Actuators A: Phys., 2012, vol. 181, pp. 81—86. DOI: 10.1016/j.sna.2012.05.008
  12. Ezkerra A., Fernández L.J., Mayora K., Ruano-López J.M. A microvalve for lab-on-a-chip applications based on electrochemically actuated SU8 cantilevers. Sens. Actuators B: Chem., 2011, vol. 155, no. 2,
    pp. 505—511. DOI: 10.1016/j.snb.2010.12.054
  13. Das C., Payne F. Design and characterization of low power, low dead volume electrochemically-driven microvalve. Sens. Actuators A: Phys., 2016, vol. 241, pp. 104—112. DOI: 10.1016/j.sna.2016.01.038
  14. Lee N.E., Soper S., Wang W. Design and fabrication of an electrochemically actuated microvalve. Microsyst. Technol., 2008, vol. 14, pp. 1751—1756. DOI: 10.1007/s00542-008-0594-3
  15. Harrison D.J., Fluri K., Seiler K., Fan Z.H., Effenhauser C.S., Manz A. Micromachining a miniaturized capillary electrophoresis-based chemical-analysis system on
    a chip. Science, 1993, vol. 261, no. 5123, pp. 895—897. DOI: 10.1126/science.261.5123.895
  16. Jacobson S.C., Ermakov S.V., Ramsey J.M. Minimizing the number of voltage sources and fluid reservoirs for electrokinetic valving in microfluidic devices. Anal. Chem., 1999, vol. 71, no. 15, pp. 3273—3276. DOI: 10.1021/ac990059s
  17. Fazal I., Elwenspoek M.C. Design and analysis of a high pressure piezoelectric actuated microvalve. J. Micromech. Microeng., 2007, vol. 17, no. 11, pp. 2366—2379. DOI: 10.1088/0960-1317/17/11/026
  18. Nafea M., Nawabjan A., Sultan Mohamed Ali M. A wirelessly-controlled piezoelectric microvalve for regulated drug delivery. Sens. Actuators A: Phys, 2018, vol. 279, no. 15, pp. 191—203. DOI: 10.1016/j.sna.2018.06.020
  19. Chen S., Lu S., Liu Y., Wang J., Tian X., Liu G., Yang Z. A normally-closed piezoelectric micro-valve with flexible stopper. AIP Adv., 2016, vol. 6, no. 4, id. 045112. DOI: 10.1063/1.4947301
  20. Casals-Terré J., Duch M., Plaza J.A., Esteve J., Pérez-Castillejos R., Vallés E., Gomez E. Design, fabrication and characterization of an externally actuated ON/OFF microvalve. Sens. Actuators A: Phys., 2008, vol. 147, no. 2, pp. 600—606. DOI: 10.1016/j.sna.2008.06.022
  21. Chang P.J., Chang F.W., Yuen M.C., Otillar R., Horsley D.A. Force measurements of a magnetic micro actuator proposed for a microvalve array. J. Micromech. Microeng., 2014, vol. 24, no. 3, id. 034005. DOI: 10.1088/0960-1317/24/3/034005
  22. Pan T., McDonald S.J., Kai E.M., Ziaie B. A magnetically driven PDMS micropump with ball check-valves. J. Micromech. Microeng., 2005, vol. 15, no. 5, pp. 1021—1026. DOI: 10.1088/0960-1317/15/5/018
  23. Fu C., Rummler Z., Schomburg W. Magnetically driven micro ball valves fabricated by multilayer adhesive film bonding. J. Micromech. Microeng., 2003, vol. 13, no. 4, pp. S96—S102. DOI: 10.1088/0960-1317/13/4/316
  24. Gholizadeh A., Javanmard M. Magnetically actuated microfluidic transistors: miniaturized micro-valves using magnetorheological fluids integrated with elastomeric membranes. J. Microelectromechanical Syst., 2016, vol. 25, no. 5, pp. 922—928. DOI: 10.1109/JMEMS.2016.2586420
  25. Harper J.C., Andrews J.M., Ben C., Hunt A.C., Murton J.K., Carson B.D., Bachand G., Lovchik J.A., Arndt W.D., Finley M.R., Edwards T.L. Magnetic-adhesive based valves for microfluidic devices used in low-resource settings. Lab Chip., 2016, no. 21, pp. 4142—4151. DOI: 10.1039/C6LC00858E
  26. Liu T.G., Wu J., Xia C., Qian Z.H. A microvalve driven by a ferrofluid-based actuator. Adv. Mater. Res., 2012, vol. 433-440, pp. 3767—3772. DOI: 10.4028/www.scientific.net/amr.433-440.3767
  27. Hulme S.E., Shevkoplyas S.S., Whitesides G.M. Incorporation of prefabricated screw, pneumatic, and solenoid valves into microfluidic devices. Lab Chip., 2009, vol. 9, no. 1, pp. 79—86. DOI:10.1039/b809673b
  28. Goldowsky J., Knapp H.F. Gas penetration through pneumatically driven PDMS micro valves. RSC Adv., 2013, no. 39, pp. 17698—17976. DOI: 10.1039/c3ra42977f
  29. Perdigones F., Luque A., Quero J.M., Sánchez F.A.P. Pneumatically actuated positive gain microvalve with n-channel metal-oxide semiconductor-like behavior. Micro Nano Lett., 2011, vol. 6, no. 6, pp. 363—365. DOI: 10.1049/mnl.2011.0150
  30. Baek J.Y., Park J.Y., Ju J.I., Lee T.S., Lee S.H. A pneumatically controllable flexible and polymeric microfluidic valve fabricated via in situ development. J. Micromech. Microeng., 2005, vol. 15, pp. 1015—1020. DOI: 10.1088/0960-1317/15/5/017
  31. Samuel R., Thacker C.M., Maricq A.V., Gale B. Simple and cost-effective fabrication of microvalve arrays in PDMS using laser cut molds with application to C. elegans manipulation in microfluidics. J. Micromech. Microeng., 2014, vol. 24, no. 10, id. 105007. DOI: 10.1088/0960-1317/24/10/105007
  32. Kaminaga M., Ishida T., Omata T. Fabrication of pneumatic microvalve for tall microchannel using inclined lithography. Micromachines, 2016, vol. 7, no. 12, id. 224. DOI: 10.3390/mi7120224
  33. Oh J., Kim G., Noh H. A novel PDMS/Parylene microvalve with three dimentional dome petal shape. Proceedings of the 2010 IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS). Wanchai, Hong Kong, China, 24—28 January 2010, pp. 1075—1078. DOI: 10.1109/MEMSYS.2010.5442396
  34. Galanopoulos S., Chatzidai N., Melissinaki V., Selimis A., Schizas C., Farsari M., Karalekas D. Design, fabrication and computational characterization of a 3D micro-valve built by multi-photon polymerization. Micromachines, 2014, vol. 5, no. 3, pp. 505—514. DOI: 10.3390/mi5030505
  35. Wolf R.H., Heuer A.H. TiNi (shape memory) films on silicon for MEMS applications. J. Microelectromech. Syst., 1995, vol. 4, no. 4, pp. 206—212. DOI: 10.1109/84.475547
  36. Kahn H., Huff M.A., Heuer A.H. The TiNi shape-memory alloy and its applications for MEMS. J. Micromech. Microeng., 1998, vol. 8, no. 3, pp. 213—221. DOI: 10.1088/0960-1317/8/3/007
  37. Kohl M., Skrobanek K.D., Miyazaki S. Development of stress-optimised shape memory microvalves. Sensors Actuators A: Phys., 1999, vol. 72, no. 3, pp. 243—250. DOI: 10.1016/S0924-4247(98)00221-0
  38. Kohl M., Brugger D., Ohtsuka M., Takagi T. A novel actuation mechanism on the basis of ferromagnetic SMA thin films. Sensors Actuators A: Phys., 2004, vol. 114, no. 2-3, pp. 445—450. DOI: 10.1016/j.sna.2003.11.006
  39. Kohl M., Schmitt M., Backen A., Schultz L., Krevet B., Fähler S. Ni-Mn-Ga shape memory nanoactuation. Appl Phys Lett., 2014, vol. 104, no. 4, id. 043111. DOI: 10.1063/1.4863667
  40. Münchow G., Dadic D., Doffing F., Hardt S., Drese K.S. Automated chip-based device for simple and fast nucleic acid amplification. Expert Rev Mol Diagn., 2005, vol. 5, no. 4, pp. 613—620. DOI: 10.1586/14737159.5.4.613
  41. Megnin C., Kohl M. Shape memory alloy microvalves for a fluidic control system. J. Micromech. Microeng., 2014, vol. 24, no. 2, id. 025001. DOI: 10.1088/0960-1317/24/2/025001
  42. Megnin C., Moradi B., Zuern J., et al. Shape memory alloy based controllable multi-port microvalve. Microsyst Technol ., 2020, vol. 26, pp. 793—800. DOI: 10.1007/s00542-019-04614-w
  43. Orecchio F.M., Tommaso V., Santaniello T., Castiglioni S., Pezzotta F., Monti A., Butera F., Maier J.A.M., Milani P. A novel fluidic platform for semi-automated cell culture into multiwell-like bioreactors. Micromachines, 2022, vol. 13, no. 7, id. 994. DOI: 10.3390/mi13070994
  44. Liu W.-Y., Fu X.-T., Zhang X.-Q., Hu W.-Y. A new shape memory alloy microvalve based on surface acoustic wave. Ferroelectrics, 2016, vol.  504, no. 1, pp. 22—30. DOI: 10.1080/00150193.2016.1238709
  45. Nagai M., Oguri M., Shibata T. Characterization of light-controlled Volvox as movable microvalve element assembled in multilayer microfluidic device. Jpn. J. Appl. Phys., 2015, vol. 54, no. 6, id. 067001. DOI: 10.7567/JJAP.54.067001
  46. Liu R.H., Yang J., Lenigk R., Bonanno J., Grodzinski P. Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection. Anal. Chem., 2004, vol. 76, no. 7, pp. 1824—1831. DOI:  10.1021/ac0353029
  47. Shaikh K.A., Li S., Liu C. Development of a latchable microvalve employing a low-melting-temperature metal alloy. J. Microelectromech. Syst., 2008, vol. 17, no. 5, pp. 1195—1203. DOI: 10.1109/JMEMS.2008.2003055
  48. Beck A., Obst F., Gruner D., Voigt A., Mehner P.J., Gruenzner S., Koerbitz R., Shahadha M.H., Kutscher A., Paschew G., Marschner U., Richter A. Fundamentals of hydrogel-based valves and chemofluidic transistors for Lab-on-a-Chip technology: a tutorial review. Advanced Materials Technologies, 2023, vol. 8, no. 3, id. 2200417. DOI: 10.1002/admt.202200417
  49. Beebe D.J., Moore J.S., Bauer J.M., Yu Q., Liu R.H., Devadoss C., Jo B.H. Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature, 2000, vol. 404, no. 6778, pp. 588—590. DOI: 10.1038/35007047
  50. Liu R.H., Yu Q., Beebe D.J. Fabrication and characterization of hydrogel-based microvalves. J. Microelectromech. Syst., 2002, vol. 11, no. 1, pp. 45—53. DOI: 10.1109/84.982862
  51. Wang J., Chen Z., Mauk M., Hong K.-S., Li M., Yang S., Bau H.H. Self-actuated, thermo-responsive hydrogel valves for Lab on a Chip. Biomedical Microdevices. 2005, vol. 7, no. 4, pp. 313—322. DOI: 10.1007/s10544-005-6073-z
 

A. K. Britenkov, M. S. Norkin, A. V. Stulenkov, R. V. Travin

STUDY OF THE ELECTROACOUSTIC CHARACTERISTICS OF THE COMPACT LOW-FREQUENCY HYDROACOUSTIC TRANSDUCER (3D LFHE) OF A LONGITUDINAL-BENDING TYPE AND A COMPLEX SHAPE

"Nauchnoe Priborostroenie", 2023, vol. 33, no. 4, pp. 28—39.
 

The results of studies of the resonant characteristics of a compact longitudinal-bending hydroacoustic transducer with an all-metal radiating shell of a complex shape – 3D LFHE –in air and an analysis of its electroacoustic characteristics in water are presented. An analysis of the distribution of the amplitude of vibrations over the device surface in air and electroacoustic parameters in water, obtained during full-scale tests, confirms that the radiator presented in the work with overall dimensions less than 120 mm and a weight of up to 1.2 kg is superior in a number of parameters to radiators of similar sizes, in particular, it has a higher values of the coefficient of mechanical transformation and the use of the added mass of water. Despite its compact size, the 3D LFHE presented in the paper has a voltage sensitivity of 1.6 Pa×m/V in water at a fundamental resonance frequency of 1.6 kHz, a relative bandwidth of at least 16%, and an efficiency in the operating frequency band of up to 90%. It is shown that after installing additional elements, the efficiency of 3D LFHE is increased due to reducing the level of vibrations of the end flanges outside the main frequency band. According to the calculations, the radiated acoustic power of such a 3D LFHE in the mode of transmission of binary phase-shift keyed signals can reach 50 W or more, which allows, taking into account the high reliability (confirmed service life of more than 1011 cycles) and manufacturability, to successfully use such hydroacoustic transducers for a wide range of problems in underwater hydroacoustics, navigation, and telecommunications.
 

Keywords: underwater communication, hydroacoustic modem, electromechanical transformer, low-frequency hydroacoustic emitter, additive technologies, acoustic power, laser vibrometry

Author affiliation:

A.V. Gaponov-Grekhov Institute of Applied Physics of the RAS, Nizhny Novgorod, Russia

 
Contacts: Britenkov Alexander Konstantinovich, britenkov@ipfran.ru
Article received by the editorial office on 29.06.2023

Full text (In Russ./In Eng.) >>

REFERENCES

  1.   Britenkov A.K., Bogolybov B.N., Smirnov S.A., Perfilov V.A. [3D-printing possibilities for the manufacturing technology development of hydroacoustic longitudinal-bending type emitters with the complex radiator’s body geometry]. Uchenye zapiski fizicheskogo fakul'teta Moskovskogo universiteta [Journals of Faculty of Physics Lomonosov Moscow State University], 2017, no. 5, Id. 1750104. (In Russ.). URL: https://www.elibrary.ru/item.asp?id=32451211 .
  2. Sreejith V.S., Tiwari N. Modelling of a hydroacoustic projector to produce low frequency sound. The Journal of the Acoustical Society of America , 2020, vol. 147, iss. 4, pp. 2682—2693. DOI: 10.1121/10.0001133
  3. Sverdlin G.M. Gidroakusticheskie preobrazovateli i antenny [Hydroacoustic transducers and antennas]. Leningrad, Sudostroenie Publ., 1980. 232 p. (In Russ.).
  4. Urick R.J. Principles of Underwater Sound. McGray Hill. (Russ. ed.: Urik R.D. Osnovy gidroakustiki. Translate from English. Leningrad, Sudostroenie Publ., 1978. 448 p.).
  5. Britenkov A.K., Bogolyubov B.N., Deryabin M.S., Farfel V.A. [Measuring electromechanical characteristics of a complex shape compact low-frequency hydro-acoustic irradiator]. Trudy MAI [Proceedings of the Moscow Aviation Institute], 2019, no. 105. (In Russ.). URL: https://trudymai.ru/published.php?ID=104035
  6. Bogorodskii V.V., Zubarev L.A., Korepin E.A., Yakushev V.I. Podvodnye ehlektroakusticheskie preobrazovateli [Underwater electroacoustic transducers]. Leningrad, Sudostroenie Publ., 1983. 248 p. (In Russ.).
  7. Britenkov A.K., Bogolybov B.N., Smirnov S.A. Prodol'no-izgibnyi gidroakusticheskii preobrazovatel' [Longitudinal-bending hydroacoustic transducer]. Patent RF no. 2681268 . Data podachi zayavki 04.04.2018, reg. ¹ 2018112134. Prioritet 05.03.2019. (In Russ.). URL: https://yandex.ru/patents/doc/RU2681268C1_20190305
  8. Britenkov A.K., Rodyushkin V.M., Ilyakhinsky A.V. [Acoustic sensing study of the physical and mechanical properties of titanium alloy Ti-6Al-4V, made by selective laser melting]. Fizika i mekhanika materialov [Materials Physics and Mechanics], 2021, vol. 47, no. 1, pp. 139—158. URL: https://www.elibrary.ru/item.asp?id=44929220 (In Russ.).
  9. Buchhave P. Laser Doppler velocimeter with variable optical frequency shift. Opt. and Laser Technology, 1975, vol. 7, iss. 1, pp. 11—16. DOI: 10.1016/0030-3992(75)90088-2
  10. Britenkov A.K., Bogolybov B.N., Norkin M.S., Tra-vin  R.V., Zakharov S.B. "Vibromechanical Characteristics of the Emitting Shells of Small-Sized Low-Frequency Hydroacoustic Piezoelectric High Power Density Transducers," 2022 International Conference on Dynamics and Vibroacoustics of Machines (DVM), Samara, Russian Federation, 2022, pp. 1—6. DOI: 10.1109/DVM55487.2022.9930906
  11. Rothberg S.J., Allen M.S., Castellini P., Di Maio D., Dirckx J.J.J., Ewins D.J., Halkon B.J., Muyshondt P., Paone N., Rayan T., Steger H., Tomashi E.P., Vanlanduit S., Vignola J.F. An international review of laser Doppler vibrometry: Making light work of vibration measurement. Opt. and Lasers in Engineering. 2017, vol. 99, no. 1, pp. 11—22. DOI: 10.1016/j.optlaseng.2016.10.023
  12. Britenkov A.K., Sorokin A.M. Prodol'no-izgibnyi gidroakusticheskii preobrazovatel' [Longitudinal-bending hydroacoustic transducer]. Patent RF no. 196335. Data podachi zayavki 07.10.2019, reg. ¹ 2019131544. Prioritet 26.02.2020. (In Russ.). URL: https://yandex.ru/patents/doc/RU196335U1_20200226
  13. Ermolaev E.V., Machov V.I. [Vibration analysis of the piezoceramic rod with cover]. Trudy XIV Vserossiiskoi konferentsii "Prikladnye tekhnologii gidroakustiki i gidrofiziki" GA-2018 [Proc. XIV All-Russ. Conf. "Applied technologies of hydroacoustics and hydrophysics" GA-2018]. Saint Petersburg, 2018, pp. 637—639. (In Russ.). URL: https://www.elibrary.ru/item.asp?id=35640016
  14. Britenkov A.K., Bogolyubov B.N., Farfel V.A. [Electro-acoustic characteristics of the experimental transducer of longitudinally flexural type with complex shape of the radiating cover]. Uchenye zapiski fizicheskogo fakul'teta Moskovskogo universiteta [Journals of Faculty of Physics Lomonosov Moscow State University], 2020, no. 1, Id. 2010106. (In Russ.). URL: https://www.elibrary.ru/item.asp?id=42605657
  15. Bogolyubov B.N, Kirsanov A.V., Leonov I.I., Smir-nov C.A., Farfel V.A. [Design And Experimental Testing Of Compact Flextensional Hydroacoustic Transducer With Central Radiation Frequency 520 Hz]. Gidroakustika [Hydroacoustics], 2015, no. 23(3), pp. 20—26. (In Russ.). URL: https://www.oceanpribor.ru/docs/SbGA23.pdf
  16. Andreev M.Ya., Klyushin V.V., Rubanov I.L., Bogolyubov B.N. [Low-frequency small-sized longitudinal flexural electroacoustical converter]. Datchiki i Systemi [Sensors and Systems], 2010, no. 12, pp. 51—55. URL: https://www.elibrary.ru/item.asp?id=15282942 (In Russ.).
  17. Panich A.A., Skrylev A.V., Dolya V.K., Swirskaya S.N., Dykina L.A., Karyukov E.V., Nagaenko A.V. [Overview of perspective piezocomposites for application in acoustic and hydroacoustics]. Trudy XIV Vserossiiskoi konferentsii "Prikladnye tekhnologii gidroakustiki i gidrofiziki" GA-2018 [Proc. XIV All-Russ. Conf. "Applied technologies of hydroacoustics and hydrophysics" GA-2018]. Saint Petersburg, 2018, pp. 470—473. (In Russ.). URL: https://www.elibrary.ru/item.asp?id=35640016
  18. Butler J.L., Charles H.S. Transducers and arrays for underwater sound. Switzerland, Springer, 2007. 610 p.
  19. Koryakin Yu.A., Smirnov S.A., Yakovlev G.V. Korabel'naya gidroakusticheskaya tekhnika. Sostoyanie i aktual'nye problemy [Ship sonar equipment. Status and current issues]. Saint Petersburg, Nauka Publ., 2004. 410 p. (In Russ.).
 

S. V. Biryukov

METHOD FOR MEASURING THE ELECTRIC FIELD STRENGTH
WITH DETERMINING THE ERROR OF THE MEASUREMENT
RESULT AND THE DISTANCE TO THE FIELD SOURCE

"Nauchnoe Priborostroenie", 2023, vol. 33, no. 4, pp. 40—47.
 

Electric fields of a technogenic nature, surrounding technical and biological objects have adverse effects on them. This leads to the need to control and measure the parameters of electric fields. In this regard, the creation of new methods and means for measuring the electric field strength of a technogenic nature is an urgent task. The paper considers a method for measuring the electric field strength, that allows not only measuring the value of the field strength, but also determining its error from the measured values and estimating the distance to the field source. The method is based on a dual electric induction spherical electric field strength sensor. The sensor allows you to simultaneously measure two strength values at the same point of the field, with errors of opposite signs. The use of two intensity values in the method during one measurement session made it possible to determine the error at each measurement point and the distance to the field source. The possibility of using the method of measuring the electric field strength to determine the error of the measurement result and the distance to the field source at each point of the field is considered for the first time.
 

Keywords: measurement method, electric field strength, dual sensor, error estimate at each measurement point, distance to the field source

Author affiliations:

Omsk State Technical University, Omsk, Russia

 
Contacts: Biryukov Sergey Vladimirovich, sbiryukov154@mail.ru
Article received by the editorial office on 10.07.2023

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Yurkevich V.M., Kondrat'ev B.L. [On the method of measuring the intensity and other characteristics of the electric field]. Izmeritel`naya tekhnika [Measuring technique], 1980, no. 5, pp. 57—59. (In Russ.).
  2. Chugunov S.A., Yurkevich V.M. [Expansion of the electric field measurement area when using the probe me-thod]. Izmeritel ` naya tekhnika [Measuring technique], 1981, no. 1, pp. 33-35. (In Russ.)
  3. Kondrat'ev B.L., Yurkevich V.M. [Measurements in the electric field with potential equalization]. Trudy Moskovskogo ehnergeticheskogo instituta [Proceedings of the Moscow Energy Institute], 1979, no. 432, pp. 20-22. (In Russ.)
  4. Koldekott P., Devore R.V., Sebo S.A. [Measurement of electric fields at ultra-high voltage substations]. Ehlektricheskie stantsii seti i sistemy. Ehkspress informatsiya [Network and system electrical stations. Express information], 1977, no. 19, pp. 10-26.
  5. Chauzy S., Magnes P. Mise au point d`un mesureur de champ electrique alternatif 50 Hz. Rev. gen. elec., 1988, no. 7, pp. 27-38. (In French).
  6. Biryukov S.V. [Method of measuring electric field strength by aligning components]. Sbornik materialov XIV nauchno-tekhnicheskoi konferentsii: "Datchiki i preobrazovateli informatsii sistem izmereniya, kontrolya i upravleniya (Datchik-2002)" [Proc. XIV sci. pract. conf.: "Sensors and data converters of measuring, monitoring and control systems (Sensor-2002)"]. Ed. by V.N. Azarov. Moscow, MGIEM, 2002. P. 25-26. (In Russ.).
  7. Biryukov S.V. [Methods of measuring non-uniform electric field tensity close to field sources by using three-coordinate sensors]. Izvestiya vuzov. Ehlektromekhanika [Bulletin of higher educational institutions. Electromechanics], 2003, no. 4, pp. 22-25. (In Russ.) URL: https://elibrary.ru/item.asp?id=9220771
  8. Biryukov S.V., Tyukina L.V., Tyukin A.V. Sposob izmereniya napryazhennosti ehlektricheskogo polya sdvoennym datchikom. Patent RF no. 2773868. [Method of measuring electric field strength by dual sensor]. Prioritet 14.06.2022. Byul. No. 17. (In Russ.). URL: https://yandex.ru/patents/doc/RU2773868C1_20220614
  9. Biryukov S.V., Tyukina L.V., Tyukin A.V. [Method of measuring intensity of heterogeneous electric fields by average value]. Omskii nauchnyi vestnik [Scientific journals of OMSTU], 2021, no. 4 (178), pp. 67—74. DOI: 10.25206/1813-8225-2021-178-67-74 (In Russ.).
  10. Biryukov S.V., Tyukina L.V. Sdvoennyi datchik dlya izmereniya napryazhennosti ehlektricheskogo polya s sostavnymi chuvstvitel'nymi ehlementami [Dual sensor for measuring electric field strength with composite sensing elements]. Patent RF no. 210806 RU U1. Prioritet 05.05.2022. Byul. No. 13. (In Russ.) URL: https://yandex.ru/patents/doc/RU210806U1_20220505
  11. Biryukov S.V., Tyukina L.V., Tyukin A.V. [Next generation dual spherical low frequency electric field intensity sensors]. Omskii nauchnyi vestnik [Scientific journals of
    OMSTU], 2021, no. 5 (179), pp. 62—67. (In Russ.). DOI: 10.25206/1813-8225-2021-179-62-67
  12. Shchiglovskii K.B., Aksel'rod V.S. [Instruments for measuring electrostatic field parameters and their calibration]. Izmeritel`naya tekhnika [Measuring technique], 1978, no. 5, pp. 63-65. (In Russ.).
  13. Misakyan M., Kotter F.R., Kaler R.L. [Miniature electric field sensor]. Pribory dlya nauchnykh issledovanii [Scientific instruments], 1978, no. 7, pp. 52-55. (In Russ.)
  14. Shkarin Yu.P. [Impact of high voltage electrical installations on the environment]. Perevody dokladov Mezhdunarodnoi konferentsii po bol'shim ehlektricheskim sistemam (SIGREH-86) [Transl. proc. int. conf.: "Large electrical systems (SIGRE-86)"]. Moscow, Ehnergoatomizdat Publ., 1988. 104 p. (In Russ.)
  15. Biryukov S.V., Tyukina L.V., Tyukin A.V. Sposob izmereniya napryazhennosti ehlektricheskogo polya datchikom sdvoennogo tipa [Method of measuring electric field strength by a dual-type sensor]. Patent RF no. 2774654 RU, MKÈ G 01 R 29/12. Prioritet 21.06.2022. Byul. No. 18. (In Russ.). URL: https://yandex.ru/patents/doc/RU2774654C1_20220621
 

I. F. Spivak-Lavrov, O. A. Baysanov, S. U. Sharipov, B. O. Sarsembaev

DYNAMICS OF CHARGED PARTICLES IN TWO-DIMENSIONAL
MAGNETIC PRISMS WITH ACCOUNT OF THE INFLUENCE
OF FRINGE FIELDS

"Nauchnoe Priborostroenie", 2023, vol. 33, no. 4, pp. 48—55.
 

The analytical formulas developed for the potential of the electrostatic field of deflector plates with grounded screens are applied to the scalar magnetic potential of a two-dimensional magnetic prism with magnetic screens. By defining the induction of the magnetic field of the prism as the gradient of the scalar magnetic potential, we simultaneously analytically describe the fringe fields of the magnet. In this case, to calculate the trajectories of charged particles in a two-dimensional magnetic prism, it is convenient to use Newton's dimensionless equations, which make it possible to take into account the influence of the fringe fields of a magnet on the properties of prisms. The corpuscular-optical characteristics of two-dimensional magnetic prims with magnetic screens in the telescopic focusing mode are calculated taking into account the influence of the fringe fields of the magnet.
 

Keywords: two-dimensional magnetic prisma, magnet fringe fields, Newton's dimensionless equations, telescopic focusing mode

Author affiliations:

Aktobe Regional University named after. K. Zhubanova, Aktobe, Kazakhstan

 
Contacts: Spivak-Lavrov Igor' Feliksovich, spivakif@rambler.ru
Article received by the editorial office on 09.08.2023

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Kel'man V.M., Yakushev E.M. [Optical properties of deflecting electronic systems]. ZhTF [Journal of Applied Physics], 1967, vol. 37, no. 12, pp. 2121—2136. (In Russ.).
  2. Kel'man V.M., Nazarenko L.M., Yakushev E.M. [Symmetric prism mass spectrometer theory]. ZhTF [Journal of Applied Physics], 1972, vol. 42, no. 5, pp. 963—968. (In Russ.).
  3. Yakushev E.M. [High resolution symmetrical prism mass spectrometer]. ZhTF [Journal of Applied Physics], 1976, vol. 46, no. 8, pp. 1700—1706. (In Russ.).
  4. Kel'man V.M., Karetskaya S.P., Fedulina L.V., Yakushev E.M. Ehlektronno-opticheskie ehlementy prizmennykh spektrometrov zaryazhennykh chastits [Electron-optical elements of prism spectrometers of charged par-ticles]. Alma-Ata, Nauka KazSSR, 1979. 232 p. (In Russ.).
  5. Kel'man V.M., Rodnikova I.R., Sekunova L.S. Staticheskie mass-spektrometry [Static mass spectrometers]. Alma-Ata, Nauka KazSSR, 1983. 264 p. (In Russ.).
  6. Gall L.N., Antonov A.S., Gall N.R., Yakushev E.M., Nazarenko L.M., Semenov A.A. A prism mass-spectrometer for isotope analysis of hydrogen—helium mixtures. Technical physics letters, 2018, vol. 44, no 7, pp. 646—649. DOI: 10.1134/S1063785018070209
  7. Spivak-Lavrov I.F., Sharipov S.U., Sarsembaev B.O. Fringe fields of deflector plates with two earthed screens. Nuclear Inst. and Methods in Physics Research A, 2023, vol. 1051, Id. 168161. DOI: 10.1016/j.nima.2023.168161
  8. Spivak-Lavrov I.F., Nurmukhanov A.A., Shukaeva T.Zh. [Prismatic mass spectrograph with a conical achromatic prism and transaxial lenses]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2019, vol. 29, no. 1, pp. 116—125. DOI: 10.18358/np-29-1-i116125 (In Russ.).
  9. Spivak-Lavrov I.F., Shugaeva T.Zh., Kalimatov T.S. Mass analyzer with conic achromatic prism and trans-acxial lenses. International Journal of Mass Spectrometry, 2019, vol. 444, id. 116180. DOI: 10.1016/j.ijms.2019.116180
 

D. A. Davydov , V. Yu. Neruk, P. P. Pivnev

RESEARCH OF THE IMPEDANCE OF A BROADBAND
ACOUSTIC PIEZOELECTRIC TRANSDUCER COMPOSED
OF DIFFERENT-FREQUENCY EMITTERS

"Nauchnoe Priborostroenie", 2023, vol. 33, no. 4, pp. 56—59.
 

The construction of hydroacoustic underwater surveillance systems is associated with compliance with some necessary requirements for their characteristics. One of them is high distance resolution. The distance resolution is determined by the bandwidth of the emitted and received signals and, consequently, by the bandwidth of the converters employed in the antenna system. The bandwidth  of converters is achieved in various ways: by means of traditional methods of expanding the frequency band with an active or passive load, the use of special materials for converters, and the use of parametric modes of emission of acoustic signals. One of the options for constructing such converters may be the use of different-frequency components of piezoelements in one converter, mechanically coupled along the field. In this case, it is necessary to take into account the quality factor of each of the loaded oscillatory systems, and not only the active load on radiation must be considered, but also the damping of the parts of the converter by structural elements.
 

Keywords: hydroacoustics, broadband, antenna systems, active component of impedance, piezoelectric transducer

Author affiliations:

Southern Federal University, Taganrog, Russia

 
Contacts: Davydov Daniil Andreevich, d.davydov505@gmail.com
Article received by the editorial office on 09.08.2023

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Voronin V.A., Pivnev P.P., Tarasov S.P. [Broadband hydroacoustic antenna system ecological monitoring of water environment and natural sedimentary rocks]. Inzhenernyi vestnik Dona. Rostov-na-Donu [Engineering journal of Don], 2015, no. 4, pp. 1—17. (In Russ.). URL: http://www.ivdon.ru/ru/magazine/archive/n4p2y2015/3476
  2. Bogorodskii V.V., Zubarev L.A., Korepin E.A., Yaku-shev V.I. Podvodnye ehlektroakusticheskie preobrazovateli : Raschet i proektirovanie . Spravochnik [Underwater electroacoustic transducers: Calculation and design. Reference book]. Leningrad, Sudostroenie Publ., 1983. 248 p. (In Russ.).
  3. Aronov B.S. Ehlektroakusticheskie preobrazovateli iz p'ezoehlektricheskoi keramiki [Electroacoustic transducers made of piezoelectric ceramics]. Leningrad, Ehnergoatomizdat Publ., 1990. 270 p. (In Russ.).
  4. Pugachev S.I. P'ezokeramicheskie preobrazovateli. Spravochnik [Piezoceramic transducers. Reference book]. Leningrad, Sudostroenie Publ., 1984. 256 p. (In Russ.).
  5. Bogorodskii V.V., Yakovlev G.V., Korepin E.A., Dol-zhikov A.K. Gidroakusticheskaya tekhnika issledovaniya i osvoeniya okeana [Sonar technology for ocean exploration and development]. Leningrad, Gidrometeoizdat Publ., 1984. 264 p. (In Russ.).
  6. Glazanov V.E. [Input impedance on side surface of radially excited elastic cylinder]. Akusticheskij zhurnal [Acoustic journal. Moscow], 1976, vol. 22, no 2, pp. 206—213. (In Russ.). URL: http://www.akzh.ru/pdf/1976_2_206-213.pdf
  7. Orlov L.V., Shabrov A.A. Gidroakusticheskaya apparatura rybopromyslovogo flota [Hydroacoustic equipment of the fishing fleet]. Leningrad, Sudostroenie Publ., 1987. 224 p. (In Russ.).
 

V. A. Lomovskoy, Y. V. Chugunov, S. A. Shatokhina

METHODOLOGY FOR THE STUDY OF INTERNAL FRICTION
IN THE MODE OF FREE DAMPED OSCILLATORY PROCESS

"Nauchnoe Priborostroenie", 2023, vol. 33, no. 4, pp. 60—71.
 

The study of local dissipative processes, which appear as loss peaks in the internal friction spectrum at various temperature ranges and have a variety of structural sources as well as internal friction mechanisms, is the focus of this work.
 

Keywords: free oscillations, logarithmic decrement, temperature dependence of frequency, shear modulus defect, measurement error

Author affiliations:

Frumkin Institute of Physical Chemistry and Electrochemistry of RAS, Moscow, Russia

 
Contacts: Shatokhina Svetlana Aleksandrovna, svetlanka.mazurina@mail.ru
Article received by the editorial office on 10.10.2023

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Lomovskoy V.A. [The device for researching of local dissipative processes in solid materials of various chemical origin, composition and structure]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2019, vol. 29, no. 1, pp. 33—46. DOI: 10.18358/np-29-1-i3346 (In Russ.).
  2. Postnikov V.S. Vnutrennee trenie v metallakh [Internal friction in metals]. Moscow, Metallurgiya Publ., 1969. 330 p. (In Russ.).
  3. Krishtal M.A., Golovin S.A. Vnutrennee trenie i struktura metallov [Internal friction and structure of metals]. Moscow, Metallurgiya Publ., 1976. 376 p. (In Russ.).
  4. Meshkov S.I. Vyazkouprugie svoistva metallov [Visco-elastic properties of metals]. Moscow, Metallurgiya Publ., 1974. 192 p. (In Russ.).
  5. Tavadze F.N. et al., eds. Vnutrennee trenie v metallicheskikh materialakh. Mekhanizmy vnutrennego treniya
    [Internal friction in metallic materials. Internal friction mechanisms]. Collection of articles. Moscow, Nauka Publ., 1970. 208 p. (In Russ.).
  6. Tavadze F.N. et al., eds. Vnutrennee trenie v metallakh, poluprovodnikakh, diehlektrikakh i ferromagnetikakh
    [Internal friction in metals, semiconductors, dielectrics and ferromagnets]. Collection of articles. Moscow, Nauka Publ., 1978. 234 p. (In Russ.).
  7. Gridnev S.A. Mekhanizmy vnutrennego treniya v segneto-ehlektrikakh i segnetoehlastikakh. Diss. dokt. fiz.-mat. nauk [Internal friction mechanisms in ferroelectrics and ferroelastics. Doct. phys.-math. sci. diss.]. Voronezh, 1983. 360 p. (In Russ.).
  8. Postnikov V.S., et al., eds. Mekhanizmy relaksatsion-nykh yavlenii v tverdykh telakh [Mechanisms of relaxation phenomena in solids]. Collection of articles. Kaunas, KPI Publ., 1974. 364 p. (In Russ.).
  9. Bartenev G.M., Barteneva A.G. Relaksatsionnye svoistva polimerov [Relaxation properties of polymers]. Moscow, Khimiya Publ., 1992. 384 p. (In Russ.).
  10. Rebinder P.A. Izbrannye trudy. Poverkhnostnye yavleniya v dispersnykh sistemakh: fiziko-khimicheskaya mekhanika [Selected works. Surface phenomena in dispersonal systems: physicochemical mechanics]. Moscow, Nauka Publ., 1979. 384 p. (In Russ.).
  11. Vol'kenshtein M.V. Konfiguratsionnaya statistika polimernykh tsepei [Configuration statistics of polymer chains]. S.E. Bresler, ed. Leningrad, Akademiya nauk SSSR, 1959. 466 p. (In Russ.).
  12. Lomovskoy V.A. [Relaxation phenomena in poly(methyl methacrylate)]. Tonkie Khimicheskie Tekhnologii [Fine Chemical Technologies], 2015, vol. 10, no. 3, pp. 5—49. (In Russ.). URL: https://www.finechem-mirea.ru/jour/article/view/235?locale=ru_RU
  13. Lomovskoy V.A., Abaturova N.A., Lomovskaya N.Y., Khlebnikova O.A. [Internal-friction spectra of poly(vinyl alcohol) with various molecular masses]. VMS. Seriya A [Polymer Science, Series A], 2015, vol. 57, no. 2,
    pp. 120—127. DOI: 10.7868/S2308112015020091 (In Russ.).
  14. Lomovskoy V.A., Shatokhina S.A., Chalykh A.E., Matveev V.V. Spectra of Internal Friction in Polyethylene. Polymers ( Basel ), 2022, vol. 14, no. 4, Id. 675. DOI: 10.3390/polym14040675   
  15. Lomovskoy V.A. [Problems of structure formation in dispersed systems]. Sovremennye problemy fizicheskoi khimii: sbornik [Modern problems of physical chemistry: A collection]. Moscow, Izd. Dom "Granitsa". 2005,
    pp. 193—209. (In Russ.).
  16. Prokhorov A.M., ed. Fizicheskaya ehntsiklopediya [Physical encyclopedia]. Moscow, Bol'shaya Rossiiskaya ehntsiklopediya Publ., 1992. (In Russ.).
  17. Postnikov V.S. [Temperature dependence of internal friction of pure metals and alloys]. Uspekhi Fizicheskih Nauk [Advances in the physical sciences], 1958, vol. 66, no. 1, pp. 43—77. DOI: 10.3367/UFNr.0066.195809b.0043 (In Russ.).
  18. Mason W.P., ed.. Physical Acoustics. Principles and Methods. 1st edition. Elsiever, 1964. (Russ. ed.: Mehzon U., editor. Fizicheskaya akustika. Moscow: Mir Publ., 1966. Vol. 1—7. 1974 p.).
  19. Mikhailov I.G., Solov'ev V.A., Syrnikov Yu.P. Osnovy molekulyarnoi akustiki [Fundamentals of molecular acoustics]. I.G. Mikhailov, ed. Moscow, Nauka Publ., 1964. 514 p. (In Russ.).
  20. Porai-Koshits E.A., ed. Sbornik materialov VII Vsesoyuznogo soveshchaniya: "Stekloobraznoe sostoyanie" [Proc. of the VII all-union meeting: "Glassy state"]. Leningrad: Nauka Publ., 1983. 214 p. (In Russ.).
  21. Lomovskoy V.A., Abaturova N.A., Lomovskaya N.Y., Galushko T.B. [Relaxation phenomena in films of chitosan of various chemical forms]. VMS. Seriya A [Polymer Science, Series A], 2019, vol. 61, no. 1, pp. 52—58. DOI: 10.1134/S2308112019010188 (In Russ.).
 

A . O. Schiriy

TWO METHODS FOR MEASURING HF BAND NOISE

"Nauchnoe Priborostroenie", 2023, vol. 33, no. 4, pp. 72—83.
 

Two methods of measuring HF band noise are presented. The first method allows you to extract information about station interference from data on ionospheric radiosounding using linear-frequency-modulated signals — thus, the characteristics of both the signal and interference can be measured simultaneously; the informativeness of the existing ionospheric sounding method increases; however, in this case, reception is carried out in a specific radiosounding mode, which somewhat limits the possibilities of measuring noises, for example, measuring their absolute values. If only interference characteristics are needed, then it is advisable to use the second technique, which operates in the mode of a conventional "classical" radio reception. The second method is a universal, flexible method for measuring panoramas of the spectrum of noises of various types. Its flexibility lies in the possibility of wide variation of the parameters of interference measurements, including processing the stored measurement data after the experiment finishes, which allows you to use the same data for research with different purposes; the second technique can be combined with ionospheric sounding. The described methods are implemented as part of hardware and software complexes of various designs for ionospheric sounding. A technique for estimating the background noise level based on a panorama of the interference spectrum is also given. In the future, it is possible to implement an algorithm for panoramic measurement of interference in all kinds of ranges wider than a decameter one (but including it). It is proposed to do this on the basis of Software Defined Radio technology.
 

Keywords: noise measurement, decameter noise, noise spectrum, ionospheric radiosonding, oblique ionospheric sounding

Author affiliations:

Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation
of the Russian Academy of Sciences (IZMIRAN), Moscow, Russia

 
Contacts: Schiriy Andrey Olegovich, andreyschiriy@gmail.com
Article received by the editorial office on 31.07.2023

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Filipp N.D., Blaunshtein N.Sh., Erukhimov L.M., Ivanov V.A., Uryadov V.P. Sovremennye metody issledovaniya dinamicheskikh protsessov v ionosfere [Current methods of studying dynamic processes in the ionosphere]. Chisinau, Shtiintsa Publ., 1991. 286 p. (In Russ.).
  2. Akimov V.F., Kalinin Yu.K. Vvedenie v proektirovanie ionosfernykh zagorizontnykh radiolokatorov [Introduction to the design of ionospheric over-the-horizon radars]. S.F. Boev, ed. Moscow, Tekhnosfera Publ., 2017. 492 p. (In Russ.).
  3. Alebastrov V.A., Goikhman Eh.Sh., Zamorin I.M., Kolosov A.A., Korado V.A., Kuz'minskii F.A., Kukis B.S. Osnovy zagorizontnoi radiolokatsii [Basics of over-the-horizon radar]. A.A. Kolosov, ed. Moscow, Radio i svyaz' Publ., 1984. 256 p. (In Russ.).
  4. Fabrizio G. High Frequency Over-the-Horizon Radar: Fundamental Principles, Signal Processing, and Practical Applications. McGraw-Hill Education, 2013. 944 p.
  5. Schiriy A.O. Razrabotka i modelirovanie algoritmov avtomaticheskogo izmereniya kharakteristik ionosfernykh korotkovolnovykh radiolinii. Avtoref. diss. kand. techn. nauk [Development and modeling of algorithms for automatic measurement of characteristics of ionospheric shortwave radio links. Abstract cand. techn. sci. diss.]. Saint-Petersburg, Sankt-Peterburgskii gos. un-t telekommunikatsii im. prof. M.A. Bonch-Bruevicha, 2007. 19 p. (In Russ.).
  6. Kolchev A.A., Schiriy A.O., Nedopekin A.E. Matema-ticheskie modeli i metodiki izmereniya ACHKh mnogo-luchevykh ionosfernykh korotkovolnovykh radiolinii [Mathematical models and methods of measuring frequency response of multipath ionospheric shortwave radio links]. Yoshkar-Ola, Mar. gos. un-t, 2013. ISBN 978-5-94808-762-7. 147 p. (In Russ.).
  7. Red Eh.T. Skhemotekhnika radiopriemnikov. Prakticheskoe posobie [Circuitry of radio receivers. A Practical Guide]. Transl. from Germ. Moscow, Mir Publ., 1989. 152 p. (In Russ.).
  8. Polyakov V. [On the real selectivity of ShW receivers]. Radio [Radio], 1981, no. 3, pp. 18—20. (In Russ.).
  9. Maksimov M.V., Bobnev M.P., Krivitskii B.Kh., Gorgonov G.I., Stepanov B.M., Shustov L.N., Il'in V.A. Zashchita ot radiopomekh [Protection against radio interference]. M.V. Maksimov, ed. Moscow, Sovetskoe radio Publ., 1976. 496 p. (In Russ.).
  10. Komarovich V.F., Sosunov V.N. Sluchainye radiopomekhi i nadezhnost' CV-svyazi [Random radio interference and reliability of ShW communication]. Moscow, Svyaz' Publ., 1977. 134 p. (In Russ.).
  11. Khmel'nitskii E.A. Otsenka real'noi pomekhozashchishchennosti priema signalov v CV diapazone [Estimation of real noise immunity of signals reception in the ShW range]. Moscow: Svyaz' Publ., 1975. 232 p.
    (In Russ.).
  12. Otchet 322: [Global Atmospheric Disturbance Distribution and Characteristics]. Dokumenty X Plenarnoi Assamblei MKKR. Zheneva, 1963 [Documents of the X Plenary Assembly of the ICC. Geneva, 1963]. Moscow: Svyaz' Publ., 1965. 80 p. (In Russ.).
  13. Earl G.F., Ward B.D. The frequency management system of the Jindalee over-the-horizon backscatter HF radar. Radio Science, 1987, vol. 22, no. 2, pp. 275—291. DOI: 10.1029/RS022i002p00275
  14. Kolchev A.A., Schiriy A.O. [Rejection of spectrally lumped noise during LFM sounding of the ionosphere]. Izvestiya vysshikh uchebnykh zavedenii. Radiofizika [News of higher educational institutions. Radiophysics], 2006, vol. 49, no. 9, pp. 751—759. (In Russ.). URL: https://elibrary.ru/item.asp?id=9209029
  15. Kolchev A.A., Schiriy A.O. [Estimation of parameters of interference concentrated in spectrum at the output of LFM iono-probe receiver]. Izvestiya vysshikh uchebnykh zavedenii. Radioehlektronika [News of higher educational institutions. Radioelectronics] 2007, no. 5, pp. 54­61. (In Russ.). URL: https://elibrary.ru/item.asp?id=12878495
  16. Novitskii P.V. Zograf I.A. Otsenka pogreshnostei rezul'tatov izmerenii [Evaluation of measurement results errors]. Leningrad, Ehlektroatomizdat Publ., 1991. 304 p. (In Russ.).
  17. Kolchev A.A., Schiriy A.O. [Reconstruction of the frequency dependence of the complex reflection coefficient from data of the oblique LFM ionosonde]. Optika
    Atmosfery i Okeana
    [Optics of the atmosphere and ocean], 2007, vol. 20, no. 7, pp. 627—630. URL: http://ao.iao.ru/ru/content/vol.20-2007/iss.07/9 (In Russ.).
  18. Schiriy A.O.  HF channel transmit function module measurement. 5th International Conf. on Actual Problems of Electron Devices Engineering, APEDE. 10 Dec 2002. P. 365—369. DOI: 10.1109/APEDE.2002.1044964
  19. Kolchev A.A., Shumaev V.V., Schiriy A.O. [Flexible method of measurement of radio interference]. Tekhnologii elektromagnitnoi sovmestimosti [Technologies of electromagnetic compatibility], 2007, no 1, pp. 50—54. URL: https://elibrary.ru/item.asp?id=22766702 (In Russ.).
  20. Konovalchik A.P., Plaksenko O.A., Schiriy A.O. [Justification of the appearance of perspective radar systems by means developing Russian radar cad system]. Naukoemkie tekhnologii v kosmicheskikh issledovaniyakh Zemli [H&ES Research], 2019, vol. 11, no. 1, pp. 4—11. (In Russ.). URL: https://cyberleninka.ru/article/n/obosnovanie-oblika-perspektivnyh-radiolokatsionnyh-stantsiy-posredstvom-razrabatyvaemoy-otechestvennoy-sistemy
  21. GNU Chirp Sounder. Sodankylä Geophysical Observatory. Accessed: 28.08.2023. URL: https://www.sgo.fi/~j/gnu_chirp_sounder/
 

T. V. Osipova, A. M. Baranov, I. I. Ivanov

EVALUATION OF THE EFFECTIVENESS OF MACHINE LEARNING
CLASSIFIERS FOR GAS TYPE AND CONCENTRATION RECOGNITION

"Nauchnoe Priborostroenie", 2023, vol. 33, no. 4, pp. 84—90.
 

The paper highlights the artificial intelligence (AI) classification methods in machine learning for recognizing the gas type and its concentration in a mixture. The applicability of classifiers is assessed. During the study, theoretical values of hydrogen, hydrocarbons, and their mixtures with a hydrogen fraction of 20, 50 and 80% were calculated, and the AI classifiers were evaluated using experimental data obtained from a catalytic sensor. The presented classifiers made it possible to determine the type of gas with an accuracy of up to 87.5%.
 

Keywords: catalytic sensor, principal component analysis, classification, determining concentration, hydrogen, data processing

Author affiliations:

Moscow Aviation Institute (National Research University), Moscow, Russia

 
Contacts: Osipova Tat'yana Vladislavovna, t.osipova.95@mail.ru
Article received by the editorial office on 11.09.2023

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Popadko N.V., Rozhnyatovsky G.I., Daudi D.I. [Hydrogen energy and the global energy transition]. Innovatsii i investitsii [Innovation and Investment], 2021, no. 4, pp. 59—64. URL: https://elibrary.ru/item.asp?id=45723109 (In Russ.).
  2. Grushevenko E., Kapitonov S., Mel'nikov Yu., et al. Dekarbonizatsiya neftegazovoi otrasli: mezhdunarodnyi opyt i prioritety [Decarbonization of the oil and gas industry: international experience and priorities]. Tsentr ehnergetiki MSHU SKOLKOVO, 2021. 158 p. URL: https://energy.skolkovo.ru/downloads/documents/SEneC/Research/ SKOLKOVO_EneC_Decarbonization_of_oil_and_gas_RU_22032021.pdf (accessed 01.08.2023). (In Russ.).
  3. Baranov A.M., Osipova T.V. [Recent trends in the development of sensors for pre-explosive concentrations of flammable gases and vapors of flammable liquids (review)]. Nauchnoe Priborostroenie [Scientific Instru­mentation], 2021, vol. 31, no. 4, pp. 3—29. DOI: 10.18358/np-31-4-i329 (In Russ.).
  4. Osipova T.V., Baranov A.M., Ivanov I.I. [Principal component analysis as an alternative algorithm for processing data of thermocatalytic sensor]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2022, vol. 32, no. 1, pp. 77—92. DOI: 10.18358/np-32-1-i7792 (In Russ.).
  5. Osipova T.V., Baranov A.M., Ivanov I.I. [The principal component analysis as a method for determining the hydrogen concentration in multicomponent mixtures]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2023, vol. 33, no. 2. pp. 24—34. (In Russ.). URL: http://iairas.ru/mag/2023/abst2.php#abst3
  6. Choi S.-Il, Eom T., Jeong Gu-Min. Gas classification using combined features based on a discriminant analysis for an electronic nose. Journal of Sensors, 2016, vol. 2016, id. 9634387. DOI: 10.1155/2016/9634387
  7. Li H., Luo D., Sun Y., GholamHosseini H. Classification and identification of industrial gases based on electronic nose technology. Sensors, 2019, vol. 19, id. 5033. DOI: 10.3390/s19225033
  8. Karpov-sensors. Proizvodstvo termokataliticheskikh sensorov goryuchikh gazov [Production of thermocatalytic sensors of combustible gases]. URL: http://karpov-sensor.com/ (accessed 01.08.2023). (In Russ.).
  9. Scikit-learn: machine learning in Python. URL: https://scikit-learn.org (accessed 09.08.2023). (In Russ.).
  10. Ivanov I.I., Baranov A.M., Talipov V.A., Mironov S.M., Kolesnik I.V., Napolskii K.S. [Development of effective sensors for detecting pre-explosive H2 concentrations]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2021, vol. 31, no. 3, pp. 25—36. DOI: 10.18358/np-31-3-i2536 (In Russ.).
 

E. E. Maiorov1, A. V. Arefiev1, R. B. Guliyev1, V. P. Pushkina1, G. A. Tsygankova2

INVESTIGATION OF THE DEVELOPED SPECTROPHOTOMETRIC
SENSOR FOR COLORIMETRIC DEVICES
USING OPTOELECTRONIC RGB COMPONENTS

"Nauchnoe Priborostroenie", 2023, vol. 33, no. 4, pp. 91—100.
 

The study highlights the development of a spectrophotometric sensor for colorimetric devices using optoelectronic RGB components. Foreign colorimeters, which include spectrophotometers, have a high cost and are sometimes inaccessible to a domestic consumer, therefore, the development of a spectrophotometric sensor for domestic colorimeters built on optoelectronic RGB components may draw interest. The work defines the goal and sets the task of the study. A block diagram, a lighting system with a photometric integrating sphere, and the appearance of a spectrophotometric sensor are presented. The spectral distribution of the signal I(λ) in the measuring channel at level "0" and at level "1" is obtained. The wavelength scale sensor was calibrated using normalized emission lines from a mercury-helium lamp and blue glass of the SS6 make. The resulting error Δλ = 0.5 nm of calibration of the wavelength scale was obtained. The linearity of the transmission scale was investigated, and the photometric error was estimated in terms of comparing the measured and calculated transmission values T(λ) for colored neutral glasses. The measurement error was no worse than ΔT ≤ 0.5%.
 

Keywords: spectrophotometric sensor, wavelength scale, transmittance, measurement error, glasses, linear interpolation, colorimeter

Author affiliations:

1Saint-Petersburg State University of Aerospace Instrumentation (GUAP), Saint-Petersburg, Russia
2Naval Polytechnic Institute of the VUNC Navy VMA, Pushkin, Russia

 
Contacts: Maiorov Evgeniy Evgen'evich, majorov_ee@mail.ru
Article received by the editorial office on 15.07.2023

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Yustova E.N. Tsvetovye izmereniya (Kolorimetriya) [Color measurements (Colorimetry)]. Saint Petersburg, SPbGU Publ., 2000. 397 p. (In Russ.).
  2. Kreopalova G.V., Lazareva N.L., Puryaev D.T. Opticheskie izmereniya [Optical measurements]. Moscow, Mashinostroenie Publ., 1987. 264 p. (In Russ.).
  3. Tardy H.L. Matrix method for integrating-sphere calculations. Journal of the Optical Society of America A, 1991, vol. 8, no. 9, pp. 1411—1418. DOI: 10.1364/JOSAA.8.001411
  4. Clare J.F. Comparison of four analytic methods for the calculation of irradiance in integrating spheres. Journal of the Optical Society of America A, 1998, vol. 15, no. 12, pp. 3086—3096. DOI: 10.1364/JOSAA.15.003086
  5. Pickering J.W., Prahl S.A., van Wieringen N., Beek J.F., Sterenborg H.J.C.M., van Gemert M.J.C. A double integrating sphere system for measuring the optical properties of tissue. Applied Optics, 1993, vol. 32, no. 4, pp. 399—410. DOI: 10.1364/AO.32.000399
  6. Prokopenko V.T., Maiorov E.E., Shalamay L.I., Popova N.E., Chernyak T.A., Kurlov A.V., Dagaev A.V., Tsygankova G.A. [In vivo study of human tooth enamel using colorimetric device]. Izvestiya vysshikh uchebnykh zavedenii. Priborostroenie [Journal of Instrument Engineering], 2019, vol. 62, no. 4, pp. 373—379. (In Russ.). DOI: 10.17586/0021-3454-2019-62-4-372-378
  7. Arefiev A.V., Guliyev R.B., Dagaev A.V., Maiorov E.E., Pisareva E.A., Khokhlova M.V. [Experimental study of the developed colometric sensor for measuring the color of glass]. Fundamental'nye i prikladnye problemy tekhniki i tekhnologii [Fundamental and appliad problems of engineering and technology], 2021, no. 1 (345), pp. 131—137. (In Russ.). DOI: 10.33979/2073-7408-2021-345-1-131-137
  8. Kolesnichenko S.V., Konstantinova A.A., Mashek A.C., Maiorov E.E., Pisareva E.A., Tsygankova T.A. [Photometry of automotive motor oils]. Izvestiya tul'skogo gosudarstvennogo universiteta. Tekhnicheskie nauki [Proceedings of the TSU. Technical science], 2021, no. 6, pp. 83—88. DOI: 10.24412/2071-6168-2021-6-83-88 (In Russ.).
  9. Tsygankova G.A., Maiorov E.E., Kolesnichenko S.V., Konstantinova A.A., Mashek A.C., Pisareva E.A. [Expe-rimental study of the developed spectrocolorimetric system for studying the optical properties of liquid-phase media of the food industry]. Pribory [Instruments], 2022, no. 3 (261), pp. 22—28. URL: http://www.pribory-smi.ru/ (In Russ.).
  10. Maiorov E.E., Chernyak T.A., Dagaev A.V., Mashek A.Ch., Tsygankova G.A., Khokhlova M.V., Kurlov A.V., Fadeev A.O. [The ability to use the colorimeter with the RGB components for research photooptical bleaching, toning and dyeing the paper]. Pribory i sistemy. Upravlenie, kontrol', diagnostika [Instruments and Systems: Monitoring, Control, and Diagnostics], 2017, no. 3, pp. 22—29. URL: http://pribor.tgizd.ru/ru/arhiv/16076 (In Russ.).
  11. Maiorov E.E., Mashek A.Ch., Tsygankova G.A., Abramyan V.K., Zaitsev Yu.E., Khaidarov A.G, Khaidarov G.G. [Development of a colorimetric sensor with an RGB element and a two-band optoelectronic in-tagging sphere for the control of diffusely penetrating objects]. Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta [Scientific statements of Belgorod State University], 2017, vol. 48, no. 20 (269), pp. 107—115. (In Russ.).
  12. Maiorov E.E., Shalamay L.I., Turovskaya M.S., Litvinenko A.N., Chernyak T.A., Pushkina V.P., Dagaev A.V., Ponomarev S.E. [The application of the developed colorimetric device for measuring the geometric parameters of the color dental bleach and its feasibility study]. Pribory i sistemy. Upravlenie, kontrol', diagnostika [Instruments and Systems: Monitoring, Control, and Diagnostics], 2018, no. 1, pp. 54—59. (In Russ.). URL: https://elibrary.ru/item.asp?id=32298075
  13. Maiorov E.E., Shalamay L.I., Dagaev A.V., Ushakova A.S., Guliev R.B., Khokhlova M.V., Tsygankova G.A., Pisareva E.A. [Study of the spectra of diffuse reflection samples of white paper automated RGB colorimeter]. Pribory i sistemy. Upravlenie, kontrol', diagnostika [Instruments and Systems: Monitoring, Control, and Diagnostics], 2019, no. 12, pp. 27—35. (In Russ.). DOI: 10.25791/pribor.12.2019.1062
  14. Maiorov E.E. [Application of colorimetricsystemsfor quality control of paper products]. Modelirovanie i situatsionnoe upravlenie kachestvom slozhnykh sistem: Tret'ya Vserossiiskaya nauchnaya konferentsiya (Saint Petersburg, 18—22 Apr 2022). [Proc. of the III All-Russian science conferences "Modelirovanie i situatsionnoe upravlenie kachestvom slozhnykh sistem"]. Saint Petersburg, SUAI Publ., 2022. pp. 56—58. (In Russ.).
  15. Maiorov E.E. [Measuring the paint layer optical parameters with a colorimetric instrument]. Izvestiya vysshikh uchebnykh zavedenii. Priborostroenie [Journal of Instrument Engineering], 2022, vol. 65, no. 6, pp. 413—419. (In Russ.). DOI: 10.17586/0021-3454-2022-65-6-413-419
 

V. S. Sibirtsev1, A. G. Kuzmin2, Yu. A. Titov2, M. Yu. Zanevskaya3, A. Yu. Zaitseva2

POSSIBILITIES OF MASS SPECTROMETRIC QUALITY CONTROL
OF DAIRY PRODUCTS ON THE EXAMPLE OF INDUSTRIAL
YOGHURTS WITH VARIOUS ADDITIVES

"Nauchnoe Priborostroenie", 2023, vol. 33, no. 4, pp. 101—110.
 

Mass spectrometry is a unique tool for the quality and safety control of food products. In this article, the objects of study were samples of "fresh" and "acceleratedly fermented" samples of yogurts industrially produced by different manufacturers (with various microbiological starters, dairy raw materials, functional food additives, etc.). The qualitative and quantitative composition analysis of the samples was carried out using a small-sized quadrupole gas mass spectrometer MS7-200 with electron impact ionization developed at the IAP RAS. Then, the "intelligent" mathematical processing of the obtained data was carried out (using the method of "principal components", etc.). The work confirmed that mass spectrometric analysis and subsequent mathematical processing of the obtained data using the methods of multivariate statistical analysis can reliably assess the composition and quality of samples of various dairy products, including the materials used for their packaging. In addition, the methods developed by us for preliminary "accelerated fermentation" of the analyzed samples of dairy products, as well as pre-heating of the package before sampling, significantly increase the sensitivity of the analysis. The solutions proposed in this work make it possible to use mass spectrometry as one of the most effective methods for monitoring the composition and quality of dairy products. This method has such advantages as accessibility for wide use, high speed and cost-effectiveness, low requirements for operator qualifications, etc.
 

Keywords: mass spectrometry, food industry, dairy products

Author affiliations:

1State University of Chemistry and Pharmacy Saint Petersburg, Russia
2Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia
3State University of Aerospace Instrumentation Saint Petersburg, Russia

 
Contacts: Kuzmin Aleksey Georgievich, agqz55@rambler.ru
Article received by the editorial office on 25.08.2023

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Komarova O.N., Havkin A.I. [Cultured milk foods in children’s nutrition: nutritional and biological value]. Rossiyskiy Vestnik Perinatologii i Pediatrii [Russian Bulletin of Perinatology and Pediatrics], 2017, vol. 62, no. 5, pp. 80—86. DOI: 10.21508/1027-4065-2017-62-5-80-86 (In Russ.).
  2. Amarowicz R. Squalene: a natural antioxidant. European journal of lipid science and technology, 2009, vol. 111, no. 5, pp. 411—412. DOI: 10.1002/ejlt.200900102
  3. Wishart D.S. Metabolomics: applications to food science and nutrition research. Trends in food science & technology, 2008, vol. 19, no. 9, pp. 482—493. DOI: 10.1016/j.tifs.2008.03.003
  4. Sibirtsev V.S. Fluorescent DNA probes: study of mechanisms of changes in spectral properties and features of practical application. Biochemistry (Moscow), 2007, vol. 72, no. 8, pp. 887—900. DOI: 10.1134/S0006297907080111
  5. Sibirtsev V.S., Naumov I.A., Kuprina E.E., Olekhnovich R.O. Use of impedance biotesting to assess the actions of pharmaceutical compounds on the growth of microorganisms. Pharmaceutical Chemistry Journal, 2016, vol. 50, no. 7. P. 481—485. DOI: 10.1007/s11094-016-1473-3
  6. Sibirtsev V.S. Biological test methods based on fluorometric genome analysis. Journal of Optical Technology,
    2017, vol. 84, no. 11, pp. 787—791. DOI: 10.1364/JOT.84.000787
  7. Kokina M.S., Frioui M., Shamtsyan M., Sibirtsev V.S., Krasnikova L.V., Konusova V.G., Simbirtsev A.S. Influence of pleurotus ostreatus beta-glucans on the growth and activity of certain lactic acid bacteria. Scientific Study and Research: Chemistry and Chemical Engineering, Biotechnology, Food Industry, 2018. vol. 19, no. 4, pp. 465—471. URL: https://doaj.org/article/012511169b2b40088e1b19e263ffa07e
  8. Sibirtsev V.S., Uspenskaya M.V., Garabadzhi A.V., Shvets V.I. Complex methods of instrumental microbiological testing of environmental safety of various products, wastes and territories. Doklady Biological Sciences, 2019, vol. 485, no. 6, pp. 59—61. DOI: 10.1134/S001249661902011X
  9. Manoilov V.V., Kuzmin A.G., Titov U.A. Extraction of information attributes from the mass spectrometric signals of air. Journal of analytical chemistry, 2016, vol. 71, no.  14 , pp. 1301—1308. DOI: 10.1134/S1061934816140094
  10. Milman B.L., Konopelko L.A. [Modern mass spectrometry: proportions of development]. Mass-spektrometriya [Mass spectrometry], 2006, vol. 3, no. 4, pp. 271—276. (In Russ.). URL: http://mass-spektrometria.ru/download/2006/T3N4.pdf
  11. Dass C. Fundamentals of contemporary mass spectrometry. John Wiley & Sons, 2007. 513 p.
  12. Milman B.L., Zhurkovich I.K. Mass spectrometric analysis of medical samples and aspects of clinical diagnostics. Journal of analytical chemistry, 2015, vol. 70, no. 10, pp. 1179—1191. DOI: 10.1134/S1061934815100135
  13. Muratshin A.M., Shmakov V.S., Tyrsin Yu.A. [Determination of the nature of ethanol by chromatography-mass spectrometry]. Pivo i napitki [Beer and drinks], 2005, no. 6, pp. 40—42. (In Russ.). URL: https://elibrary.ru/item.asp?id=17354203
  14. Manoilov V.V., Novikov L.V., Zarutskii I.V., Kuzmin A.G., Titov Y.A. Methods for processing mass spectrometry signals from exhaled gases for medical diagnosis. Biomedical engineering, 2020, vol. 53, no. 5, pp. 355—359. DOI: 10.1007/s10527-020-09942-0
  15. Kuzmin A.G., Tkachenko E.I., Oreshko L.S., Titov Yu.A., Balabanov A.S. [Method of mass spectrometric express diagnostics by the composition of exhaled air]. Meditsinskii akademicheskii zhurnal [Medical academic journal], 2016, vol. 16, no. 4, pp. 106—107. URL: https://journals.eco-vector.com/MAJ/article/view/9625 (In Russ.).
  16. Kuzmin A.G. Kvadrupol'nyi mass-spektrometr. Patent RU  94763 U1, byul. no. 34. [Quadrupole mass spectro-meter]. Prioritet 15.12.2009. (In Russ.). URL: https://yandex.ru/patents/doc/ru94763u1_20100527
  17. Manoilov V.V., Kuzmin A.G., Zarutskiy I.V., Titov Yu.A., Samsonova N.S. [Methods of processing and investigation of the possibilities of classification of mass spectra of exhaled gases]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2019, vol. 29, no. 1, pp. 106—111. DOI: 10.18358/np-29-1-i106110
  18. Lu H., Zhang H., Chingin K., Fang X., Chen H., Xiong J. Ambient mass spectrometry for food science and industry. Trends in analytical chemistry, 2018, vol. 107, pp. 99—115. DOI: 10.1016/j.trac.2018.07.017
  19. Kim Dzh.O. Faktornyi, diskriminantnyi i klasternyi analiz [Factor, discriminant and cluster analysis]. Translate A.M. Khotinskii, S.B. Korolev, eds. I.S. Enyukov. Moscow, Finansy i statistika Publ., 1989. 215 p.
 

A. A. Gavrishev1, D. L. Osipov2

BUILDING OF A GENERALIZED QUALITY ASSESSMENT
CRITERION CRYPTOGRAPHIC CODE SEQUENCES USED
IN SECURE WIRELESS COMMUNICATION SYSTEMS

"Nauchnoe Priborostroenie", 2023, vol. 33, no. 4, pp. 111—118.
 

The analysis of statistical methods for assessing the cryptographic strength of code sequences used in secure wireless communication systems was carried out. The analysis showed that a universal quality assessment indicator (QAI) for assessing the cryptographic strength of code sequences was not proposed in the well-known works. It is noted that it is advisable to form a QAI complex for assessing the cryptographic resistance of code sequences using statistical methods. The QAIs previously described in the literature are to be included in this set. The formed QAI complex, according to the authors, makes it possible to more accurately assess the cryptographic resistance of code sequences used in secure wireless communication systems. To evaluate the cryptographic resistance of code sequences and to serve as a generalized quality criterion, a single tuple has been developed based on the QAI complex. It is noted such a tuple is not explicitly represented in known papers. The authors have modified the original tuple taking into account the QAIs, responsible for reliability. The need to pay attention to the QAI complex is revealed in the use of cryptographic code sequences in secure wireless communication systems. The generalized quality assessment criterion will improve the accuracy of assessing the cryptographic resistance of code sequences used in secure wireless communication systems.
 

Keywords: quality assessment indicators, secure wireless communication systems, code sequences, crypto resistance, statistical methods

Author affiliations:

1NRNU MEPhI, Moscow, Russia
2NCFU, Stavropol, Russia

 
Contacts: GavrishevAleksejAndreevich, alexxx.2008@inbox.ru
Article received by the editorial office on 18.08.2023

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Sukharev E.M., ed. Obshchesistemnye voprosy zashchity informatsii [System-wide information security issues]. Moscow, Radiotekhnika Publ., 2003. 296 p. (In Russ.).
  2. Pankova V.V., Salomatin S.B. [Cryptographic analysis of the code structures of hermite curve for compliance with the requirements of information security systems]. Doklady BGUIR [BSUID reports], 2014, no. 3 (81), pp. 58—63. URL: https://libeldoc.bsuir.by/handle/123456789/1280 (In Russ.).
  3. Gavrishev A.A., Osipov D.L. [Building a quality assessment criterion binary barker-like codes]. T-Comm: Telekommunikatsii i transport [T-Comm — journal of telecommunications and their application in transport industry], 2022, vol. 16, no. 12, pp. 11—16. DOI: 10.36724/2072-8735-2022-16-12-11-16 (In Russ.).
  4. Navas R.E., Cuppens F., Cuppens N., Toutain L., Papadopoulos G. Physical resilience to insider attacks in IoT networks: Independent cryptographically secure sequences for DSSS anti-jamming. Computer Networks, 2021. vol. 187, id. 107751. DOI: 10.1016/j.comnet.2020.107751
  5. Gorbenko I.D., Zamula A.A. [Cryptographic signals: requirements, synthesis methods, properties, application in telecommunication systems]. Radiotekhnika (KhNUREh) [Radio engineering (KhNURE)], 2016, no. 186, pp. 7—23. URL: https://openarchive.nure.ua/items/5da89961-36a4-4b6e-9180-6154ec233eaf (In Russ.).
  6. Ivanov M.A., Chugunkov I.V. Kriptograficheskie metody zashchity informatsii v komp'yuternykh sistemakh i setyakh [Cryptographic methods of information protection in computer systems and networks]. Moscow: NIYaU MIFI Publ., 2012. 400 p. (In Russ.).
  7. Fomichev V.M., Mel'nikov D.A. Kriptograficheskie metody zashchity informatsii. V 2 ch. Ch. 1. Matematicheskie aspekty [Cryptographic methods of information protection. At 2 parts. Part 1. Mathematical aspects]. Moscow: Yurait Publ., 2017. 209 p. (In Russ.).
  8. Gavrishev A.A. [Assessment of the crypto resistance of the generators of code sequences]. Vestnik NTsBZhD [Bulletin of the NCBhD], 2019, no. 4(42), pp. 86—91. (In Russ.). URL: https://ncbgd.tatarstan.ru/rus/file/pub/pub_2170199.pdf
  9. Koryachko V.P., Kureichik V.M., Norenkov I.P. Teoreti-cheskie osnovy SAPR [Theoretical foundations of CAD]. Moscow, Energoatomizdat Publ., 1987. 400 p. (In Russ.).
  10. Varakin L.E. Sistemy svyazi s shumopodobnymi signalami [Noise-like communication systems]. Moscow, Radio i svyaz' Publ., 1985. 384 p. (In Russ.).
  11. Grishentsev A.Yu., Arustamov S.A., Korobeynikov A.G., Kozin O.V. [Orthogonal noise-like signal symbols for broadband channel protection]. Nauchno-tekhnicheskii vestnik informatsionnykh tekhnologii, mekhaniki i optiki [Scientific and Technical Journal of Information Technologies, Mechanics and Optics], 2019, vol. 19, no. 2, pp. 280—291. DOI: 10.17586/2226-1494-2019-19-2-280-291 (In Russ.).
  12. Studenikin A.V., Zhuk A.P. [Modeling of discrete orthogonal code sequences for information transmission systems]. Naukoemkie tekhnologii v kosmicheskikh issledovaniyakh Zemli [High technologies in Earth space research], 2021, vol. 13, no. 1, pp. 36—43. DOI: 10.36724/2409-5419-2021-13-1-36-43 (In Russ.).
  13. Orel D.V. Modelirovanie stokhasticheskikh sistem dvoichnykh kvaziortogonal'nykh kodovykh posle­dovatel'nostei na osnove metoda funktsional'nykh preobrazovanii. Avtoref. diss. kand. techn. nauk. [Simulation of stochastic systems of binary quasi-orthogonal code sequences based on the method of functional transformations. Abstract cand. techn. sci. diss.]. Stavropol, 2013. 19 p. (In Russ.).
  14. Gavrishev A.A., Zhuk A.P. [The application of the algorithm Berlekamp-Massey for the quantitative analysis of secure communication systems]. Prikladnaya informatika [Journal of applied informatics], 2019, vol. 14, no. 4 (82), pp. 118—134. In Russ.). URL: https://www.elibrary.ru/item.asp?id=39324218
  15. Wang X., Zhou Sh., Zhang H., Zhang Y. New 4D Discrete Hyperchaotic Map and Its Application in Image Encryption. Research Square, 2022. DOI: 10.21203/rs.3.rs-1564139/v1
  16. Zuev M.Y., Kafarov K.M., Loginov S.S. [On the relation between indicators of chaotic dynamics and statistical characteristics of pseudo-random signals based on non-linear systems of Lorentz and Chua]. Vestnik Povolzhskogo gosudarstvennogo tekhnologicheskogo universiteta. Se-riya: Radiotekhnicheskie i infokommunikatsionnye sistemy [Vestnik of Volga State University of Technology. Series "Radio engineering and infocommunication systems"], 2021, no. 2(50), pp. 21—29. DOI: 10.25686/2306-2819.2021.2.21 (In Russ.).
  17. Bogachenko N.F., Gorohov I.O. [Construction of a pseudo-random sequence generator based on a cellular automaton]. Matematicheskie struktury i modelirovanie [Mathematical structures and modeling], 2020, no. 4(56), pp. 64—74. DOI: 10.24147/2222-8772.2020.4.64-74 (In Russ.).
  18. Al'nadzhar Kh.Kh. [Evaluation of pseudo-random number generator quality based on fuzzy logic for e-commerce applications]. Materialy VII Mezhdunarodnoi ochnoi nauchno-prakticheskoi konferentsii "Problemy analiza i modelirovaniya regional'nykh sotsial'no-ehkonomicheskikh protsessov" [Proc. VII Int. full-time sci. pract. conf. "Problems of analysis and modeling of regional socio-economic processes"]. Kazan, 2017. pp. 27—30. URL: https://kpfu.ru/staff_files/F459443669/PA2017.pdf (In Russ.).
  19. Shakhtarin B.I., Kobylkina P.I., Sidorkina Yu.A., Kondrat'ev A.V., Mitin S.V. Generatory khaoticheskikh kolebanii: Uchebnoe posobie [Chaotic oscillation generators: Tutorial]. Moscow, Gelios ARV Publ., 2007. 248 p. (In Russ.).
  20. Gavrishev A.A. [Modeling and quantitative and qualitative analysis of common secure communication systems]. Prikladnaya informatika [Journal of applied informatics], 2018, vol. 13, no. 5, pp. 84—122. (In Russ.). URL:
  21. Sun K. Chaotic Secure Communication: Principles and Technologies. Tsinghua University Press and Walter de Gruyter GmbH, 2016. 333 p.
  22. Gavrishev A.A., Zhuk A.P. [Application of methods of nonlinear dynamics to study the chaotic state of the carrier signals of secure communication systems based on dynamic chaos]. Vestnik NGU. Seriya: Informatsionnye tekhnologii [Vestnik NSU. Series: Information Technologies], 2018, vol. 16, no. 1, pp. 50—60. (In Russ.). URL: https://intechngu.elpub.ru/jour/article/view/19
  23. Vasyuta K.S. [Classification of processes in information and communication radio engineering systems using BDS statistics]. Problemy telekommunikatsii [Telecommunications issues], 2012, no. 4 (9), pp. 63—71. URL: https://elibrary.ru/item.asp?id=20260336
  24. Makarenko S.I. Spravochnik nauchnykh terminov i oboznachenii [Handbook of scientific terms and designations]. Saint Petersburg, Naukoemkie tekhnologii Publ., 2019. 254 p. (In Russ.).
  25. Lisnichuk A.A. [Multi-criteria synthesis procedure of ofdm-signals to increase energy efficiency and structural hiding of communication radio systems]. Vestnik Ryazanskogo gosudarstvennogo radiotekhnicheskogo universiteta [Vestnik of Ryazan State Radio Engineering University], 2021, no. 77, pp. 17—28. DOI: 10.21667/1995-4565-2021-77-17-28 (In Russ.).
  26. Gavrishev A.A., Gavrishev A.N. [To the question of calculating the crest factor values of signals generated by common hidden communication systems]. Vestnik NTsBZhD [Bulletin of the NCBhD], 2020, no. 3(45), pp. 149—157. (In Russ.). URL: https://ncbgd.tatarstan.ru/rus/file/pub/pub_2478119.pdf
 

IN MEMORY OF L. N. GALL

"Nauchnoe Priborostroenie", 2023, vol. 33, no. 4, pp. 119—120.
 

Full text (In Russ.) >>
 
 

ÑÎÄÅÐÆÀÍÈÅ ÒÎÌÀ 33

"Nauchnoe Priborostroenie", 2023, vol. 33, no. 4, pp. 121—123.
 

 ÍÎÌÅÐ 1
 ÍÎÌÅÐ 2
 ÍÎÌÅÐ 3
 ÍÎÌÅÐ 4

 

Full text (In Russ.) >>
 

 

CONTENTS OF VOLUME 33

"Nauchnoe Priborostroenie", 2023, vol. 33, no. 4, pp. 124—126.
 

 NUMBER 1
 NUMBER 2
 NUMBER 3
 NUMBER 4

 

Full text (In Eng.) >>
 

 

ÀÂÒÎÐÑÊÈÉ ÓÊÀÇÀÒÅËÜ ÒÎÌÀ 33

"Nauchnoe Priborostroenie", 2023, vol. 33, no. 4, pp. 127—127.
 

Full text (In Russ.) >>
 

 

THE AUTHORS INDEX OF VOLUME 33

"Nauchnoe Priborostroenie", 2023, vol. 33, no. 4, pp. 128—128.
 

Full text (In Eng.) >>
 

Ulitsa Ivana Chernykh, 31-33, lit. A, St. Petersburg, Russia, 198095, P.O.B. 140
tel: (812) 3630719, fax: (812) 3630720, mail: iap@ianin.spb.su

content: Valery D. Belenkov design: Banu S. Kuspanova layout: Anton V. Manoilov