logo
blue band <-
  JOURNAL "NP" ISSUES

"Nauchnoe Priborostroenie", 2022, Vol. 32, no. 3. ISSN 2312-2951, DOI: 10.18358/np-32-3-e109

"NP" 2022 year Vol. 32 no. 3.,   ABSTRACTS

ABSTRACTS, REFERENCES

A. N. Zubik, G. E. Rudnitskaya, A. A. Evstrapov, T. A. Lukashenko

POINT-OF-CARE (POC) DEVICES: CLASSIFICATION
AND BASIC REQUIREMENTS

"Nauchnoe priborostroenie", 2022, vol. 32, no. 3, pp. 3—29.
doi: 10.18358/np-32-3-i329
 

The review presents the classification of point-of-care (POC) devices, and discusses the main characteristics of the devices and the requirements for them. The differences between the POC testing method and the laboratory method of analysis are considered. Examples of devices that fit the definition of POC for diagnosing infectious diseases are given.
 

Keywords: point-of-care (POC), lab-on-chip (LOC), lab-on-a-disc (LOAD), microfluidics, microfluidic chip,
dip stick, lateral flow assay (LFA) test strip, microfluidic paper analytical device (µPAD)

Author affiliations:

Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia

 
Contacts: Zubik Aleksandra Nikolaevna, tunix@yandex.ru
Article received by the editorial office on 04.07.2022

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Kumar S., Nehra M., Khurana S., et al. Aspects of point-of-care diagnostics for personalized health wellness. Int. J. Nanomedicine, 2021, vol. 16, pp. 383—402.
    DOI: 10.2147/IJN.S267212
  2. Liu D., Wang Y., Li X., et al. Integrated microfluidic devices for in vitro diagnostics at point of care. Aggregate, 2022, Id. e184. DOI: 10.1002/agt2.184
  3. Pandey C.M., Augustine S., Kumar S., et al. Microfluidics based point-of-care diagnostics. Biotechnol. J., 2018, vol. 13, is. 1, Id. 1700047. DOI: 10.1002/biot.201700047
  4. Xiguang L., Xiangzhi Z., Gerald K.J., et al. The creation of point-of-careology. Point of Care: The Journal of Near-Patient Testing & Technology, 2019, vol. 18, no. 3, pp. 77—84. DOI: 10.1097/POC.0000000000000191
  5. Wang C., Liu M., Wang Z., et al. Point-of-care diagnostics for infectious diseases: From methods to devices. Nano Today, 2021, vol. 37, Id. 101092. DOI:
    10.1016/j.nantod.2021.101092
  6. Liu Y., Zhan L., Qin Z., et al. Ultrasensitive and highly specific lateral flow assays for point-of-care diagnosis. ACS Nano, 2021, vol. 15, no. 3, pp. 3593−3611. DOI: 10.1021/acsnano.0c10035
  7. Majdinasab M., Badea M., Marty J.L. Aptamer-based lateral flow assays: Current trends in clinical diagnostic rapid tests. Pharmaceuticals, 2022, vol. 15, no. 1, Id. 90. DOI: 10.3390/ph15010090
  8. Pohanka M. Point-of-care diagnoses and assays based on lateral flow test. Int . J . Anal . Chem., 2021, vol. 2021,
    Id. 6685619. DOI: 10.1155/2021/6685619
  9. Safronova V.A., Samsonova J.V., Grigorenko V.G., Osipov A.P. [Lateral flow immunoassay for progesterone detection]. Vestnik Moskovskogo Universiteta. Seriya 2. Khimiya [Moscow University Chemistry Bulletin], 2012, vol. 53, no. 5, pp. 326—334. URL: https://www.elibrary.ru/item.asp?id=18751263 (In Russ.).
  10. Nguyen N.N.T., McCarthy C., Lantigua D., Camci-Unal  G. Development of diagnostic tests for detection of SARS-CoV-2. Diagnostics, 2020, Vol. 10, no. 11, Id. 905. DOI: 10.3390/diagnostics10110905
  11. Carbon Valley Farmer and Miner. Lateral flow assay market size volume, share, demand growth, business opportunity by 2030, 2022. URL:
    http://www.cvfarmerandminer.com/content/lateral-flow-assay-market-size-volume-share-demand-growth-business-opportunity-by-2030 (accessed 01.07.2022).
  12. GeneXpert. URL:
    www.biovendor.cz/userfiles/microsites/genexpert/tri%20v%20rade.png (accessed 01.07.2022).
  13. Cambridge Consultants. Final Report: Cost of goods and manufacturing analysis of GeneXpert cartridges, 2019. 37 p. URL:
    https://msfaccess.org/sites/default/files/2019-12/2018%20COGS%20analysis%20of%20Xpert%20MTB_RIF%20Ultra%20cartridges.pdf (accessed 01.07.2022).
  14. Gotham D., McKenna L., Deborggraeve S., Madoori S., Branigan D. Public investments in the development of GeneXpert molecular diagnostic technology. PLoS ONE, 2021, vol. 16, is. 8, Id. e0256883.
    DOI: 10.1371/journal.pone.0256883
  15. Xpert® Xpress SARS-CoV-2. Instruktsiya po primeneniyu [Application instructions]. Cepheid, 2021. 28 p. URL: https://www.cepheid.com/Package%20Insert%20Files/Xpress-SARS-CoV-2/Xpert%20Xpress%20SARS-CoV-2%20Assay%20RUSSIAN%20Package%20Insert%20302-3787-RU-RU%20Rev.%20B.pdf (accessed 01.07.2022). (In Russ.).
  16. Niemz A., Ferguson T.M., Boyle D.S. Point-of-care nucleic acid testing for infectious diseases. Trends. Biotechnol., 2011, vol. 29, is. 5, pp. 240—250. DOI: 10.1016/j.tibtech.2011.01.007
  17. Biomerieux. URL: www.biomerieux-russia.com (accessed 01.07.2022). (In Russ.).
  18. Poritz M.A., Blaschke A.J., Byington C.L., et al. FilmArray, an automated nested multiplex PCR system for multi-pathogen detection: development and application to respiratory tract infection. PLoS One, 2011, vol. 6, is. 11, Id. e0026047. DOI: 10.1371/journal.pone.0026047
  19. Seiner D.R., Colburn H.A., Baird C., et al. Evaluation of the FilmArray® system for detection of Bacillus anthracis, Francisella tularensis and Yersinia pestis. J. Appl. Microbiol., 2013, vol. 114, is. 4, pp. 992—1000. DOI: 10.1111/jam.12107
  20. Dailey P.J., Osborn J. Landscape of molecular platforms for near-patient testing: the MAPDx Program. Geneva: FIND, 2019. 36 p. URL: https://www.finddx.org/wp-content/uploads/2019/08/Public_Molecular-Landscape-Report_FINAL-Aug2019docx.pdf (accessed 01.07.2022).
  21. Tuberculosis diagnostics technology and market landscape. Technical report. 4th edition. Switzerland: World Health Organization, 2015. 88 p.
  22. TANGEN. The next generation in molecular diagnostics. URL: https://tangenbiosciences.com/ (accessed 01.07.2022).
  23. Morozova K. Laboratoriya na diske: Tangen razrabatyvaet novyi metod diagnostiki [Lab on disk: Tangen develops new diagnostic method]. PCR.news, 2019. URL: https://pcr.news/novosti/laboratoriya-na-diske-tangen-razrabatyvaet-novyy-metod-diagnostiki/?ysclid=l4y86hmnip924385457 (accessed 01.07.2022). (In Russ.).
  24. Tangen Biosciences. URL: www.cbinsights.com/company/tangen-biosciences (accessed 01.07.2022).
  25. LabWare Portable Disease Surveillance Lab (PDSL): Fighting COVID-19 and Reducing Turnaround Time for Test Results. URL: www.labware.com/lims/portable-disease-surveillance-lab (accessed 01.07.2022).
  26. Stedtfeld R.D., Tourlousse D.M., Seyrig G., et al. Gene-Z: a device for point of care genetic testing using a smartphone. Lab. Chip, 2012, vol. 12, no. 8, pp. 1454—1462. DOI: 10.1039/c2lc21226a
  27. Zhang W., Guo S., Carvalho W.S.P., et al. Portable point-of-care diagnostic devices. Anal. Methods, 2016, vol. 8, pp. 7847—7867. DOI: 10.1039/c6ay02158a
  28. Pai N.P., Vadnais C., Denkinger C., et al. Point-of-care testing for infectious diseases: diversity, complexity, and barriers in low- and middle-income countries. PLoS Med., 2012, vol. 9, no. 9, Id. e1001306.
    DOI: 10.1371/journal.pmed.1001306
  29. Kettler H., White K., Hawkes S. Mapping the landscape of diagnostics for sexually transmitted infections. TDR World Health Organ, 2004. 44 p. URL:
    https://apps.who.int/iris/bitstream/handle/10665/68990/TDR_STI_IDE_04.1.pdf (accessed 01.07.2022).
  30. Hsieh Y.-H., Gaydos C.A., Hogan M.T., et al. What qualities are most important to making a point of care test desirable for clinicians and others offering sexually transmitted infection testing? PLoS One, 2011, vol. 6, no. 4,
    Id. e19263. DOI: 10.1371/journal.pone.0019263
  31. Land K.J., Boeras D.I., Chen X.-S., et al. REASSURED diagnostics to inform disease control strategies, strengthen health systems and improve patient outcomes. Nat. Microbiol., 2019, vol. 4, pp. 46—54. DOI: 10.1038/s41564-018-0295-3
  32. Wu G., Zaman M.H. Low-cost tools for diagnosing and monitoring HIV infection in low-resource settings. Bull. World Health Organ., 2012, vol. 90, no. 12, pp. 914—920. DOI: 10.2471/BLT.12.102780
  33. Lofgren S.M., Morrissey A.B., Chevallier C.C., et al. Evaluation of a dried blood spot HIV-1 RNA program for early infant diagnosis and viral load monitoring at rural and remote healthcare facilities. AIDS, 2009, vol. 23, is. 18, pp. 2459—2466. DOI: 10.1097/QAD.0b013e328331f702
  34. Mabey D., Peeling R., Ustianowski A., et al. Diagnostics for the developing world. Nat. Rev. Microbiol., 2004, vol. 2, pp. 231—240. DOI: 10.1038/nrmicro841
  35. Mauk M.G., Song J., Liu C., Bau H.H. Simple approaches to minimally-instrumented, microfluidic-based point-of-care nucleic acid amplification tests. Biosensors, 2018, vol. 8, is. 1, Id. 17. DOI: 10.3390/bios8010017
  36. Primiceri E., Chiriacò M.S., Notarangelo F.M., et al. Key enabling technologies for point-of-care diagnostics. Sensors, 2018, vol. 18, no. 11, Id. 3607. DOI: 10.3390/s18113607
  37. Manocha A., Bhargava S. Emerging challenges in point-of-care testing. C urr. Med. Res. Pract., 2019, vol. 9, no. 6, pp. 227—230. DOI: 10.1016/j.cmrp.2019.11.006
  38. Malekjahani A., Sindhwani S., Syed A.M., Chan W.C.W. Engineering steps for mobile point-of-care diagnostic devices. Acc. Chem. Res., 2019, vol. 52, no. 9, pp. 2406—2414. DOI: 10.1021/acs.accounts.9b00200
  39. Wang P., Kricka L.J. Current and emerging trends in point-of-care technology and strategies for clinical validation and implementation. Clin. Chem., 2018, vol. 64, no. 10, pp. 1439—1452. DOI: 10.1373/clinchem.2018.287052
  40. Sachdeva S., Davis R.W., Saha A.K. Microfluidic point-of-care testing: commercial landscape and future directions. Front. Bioeng. Biotechnol., 2021, vol. 8, Id. 602659. DOI: 10.3389/fbioe.2020.602659
  41. Mielczarek W.S., Obaje E.A., Bachmann T.T., Kersaudy-Kerhoas M. Microfluidic blood plasma separation for medical diagnostics: is it worth it? Lab. Chip., 2016, vol. 18, pp. 3441—3448. DOI: 10.1039/c6lc00833j
  42. Mark D., Haeberle S., Roth G., et al. Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem. Soc. Rev., 2010, vol. 39, no. 3, pp. 1153—1182. DOI: 10.1039/b820557b
  43. Martinez A.W., Phillips S.T., Butte M.J., Whitesides G.M. Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew. Chem., Int. Ed. Engl., 2007, vol. 46, is. 8, pp. 1318—1320. DOI: 10.1002/anie.200603817
  44. Miyazaki C.M., Carthy E., Kinahan D.J. Biosensing on the centrifugal microfluidic Lab-on-a-Disc platform. Processes, 2020, vol. 8, is. 11, Id. 1360. DOI: 10.3390/pr8111360
  45. Smith S., Mager D., Perebikovsky A., et al. CD-based microfluidics for primary care in extreme point-of-care settings. Micromachines, 2016, vol. 7, is. 2, Id. 22. DOI: 10.3390/mi7020022
  46. Knowledge center. URL: www.sightdx.com/knowledge-center/point-of-care-testing (accessed 01.07.2022).
  47. Dementiyeva I.I., Morozov Yu.A., Tcharnaya M.A., Gontcharova A.V. [The point-of-care technologies in clinic of emergency states]. Klinicheskaya laboratornaya diagnostika [Russian Clinical Laboratory Diagnostics], 2013, no. 7, pp. 5—10. URL: https://www.elibrary.ru/item.asp?id=20253920 (In Russ.)
  48. Harpaldas H., Arumugam S., Campillo Rodriguez C., et al. Point-of-care diagnostics: recent developments in a pandemic age. Lab. Chip, 2021, vol. 21, is. 23, pp. 4517—4548. DOI: 10.1039/d1lc00627d
  49. Syedmoradi L., Norton M.L., Omidfar K. Point-of-care cancer diagnostic devices: From academic research to clinical translation. Talanta, 2021, vol. 225, Id. 122002. DOI: 10.1016/j.talanta.2020.122002
  50. Makower J., Meer A., Denend L. FDA impact on U.S. medical technology innovation: a survey of over 200 medical technology companies. PricewaterhouseCoopers LLP, 2010. 44 p. URL: https://www.medtecheurope.org/wp-content/uploads/2015/07/01112010_FDA-impact-on-US-medical-technology-innovation_Backgrounder.pdf (accessed 01.07.2022).
  51. Zarei M. Advances in point-of-care technologies for molecular diagnostics. Biosens. Bioelectron., 2017, vol. 98, pp. 494—506. DOI: 10.1016/j.bios.2017.07.024
 

V. I. Matveev

ANALITIKA EXPO-2022 REVIEW

"Nauchnoe Priborostroenie", 2022, vol. 32, no. 3, pp. 30—40.
doi: 10.18358/np-32-3-i3040
 

The 20th Anniversary International Exhibition of Laboratory Equipment and Chemical Reagents was held in Moscow on April 19—22, 2022. Participants demonstrated laboratory equipment, chemical reagents, laboratory furniture, laboratory utensils, laboratory automation tools, biotechnology and measuring equipment (spectrometers, particle size analyzers, density meters, pH meters, oximeters, ionomers, etc.).
 

Keywords: exhibition, laboratory equipment, chemical reagents, control and measuring equipment, automation tools

Author affiliation:

Scientific Research Institute of Introscopy of MNPO Spektrum, Moscow, Russia

 
Contacts: Matveev Vladimir Ivanovich, v.matveev98@yandex.ru
Article received by the editorial office on 12.05.2022

Full text (In Russ./In Eng.) >>
 

E. V. Lutschekina

UPDATING EQUIPMENT FOR THE SCIENCE ORGANIZATIONS
OF RUSSIA: THE PROBLEMS AND THEIR SOLUTIONS

"Nauchnoe Priborostroenie", 2022, vol. 32, no. 3, pp. 41—58.
doi: 10.18358/np-32-3-i4158
 

The conditions for achieving the objectives of the scientific and technological development of Russia are determined. A brief analysis of organizations conducting research and development has been carried out. Based on the data of state statistics, an analysis was made of the trends in the development of the instrumentation of scientific organizations engaged in research and development in 2017—2020. The problems arising during the implementation of equipment upgrade tasks in the conditions of economic sanctions are stated. Possible solutions to these problems are proposed. It is noted that the restoration of domestic scientific instrumentation is one of the main conditions for updating the research equipment of scientific organizations.
 

Keywords: research and development (R&D), instrumentation, scientific devices and equipment

Author affiliations:

Institute for study of science of the Russian Academy of Sciences (ISS RAS), Moscow, Russia

 
Contacts: Lutschekina Elena Vasil'evna, E.Lutschekina@issras.ru
Article received by the editorial office on 15.06.2022

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Ukaz Prezidenta Rossiiskoi Federatsii ot 01 dekabrya 2016 goda ¹ 642 "O Strategii nauchno tekhnologicheskogo razvitiya Rossiiskoi Federatsii" [Decree of the President of the Russian Federation of December 01, 2016 No. 642 "On the Strategy of Scientific Technological Development of the Russian Federation"] URL: http://www.kremlin.ru/acts/bank/41449 (In Russ.).
  2. Zavarukhin V.P., Solomentseva O.A., Solopova M.A., et al., eds. Nauka, tekhnologii i innovatsii Rossii: 2020. Krat. stat. sb. [Science, Technology and Innovation of Russia: 2020]. Moscow, IPRAN RAN Publ., 2020, 128 p. DOI:  10.37437/9785912941481-20-sb5 (In Russ.).
  3. Zavarukhin V.P., Solomentseva O.A., Solopova M.A., et al., eds. Nauka, tekhnologii i innovatsii Rossii: 2021. Krat. stat. sb. [Science, Technology and Innovation of Russia: 2021]. Moscow, IPRAN RAN Publ., 2021, 128 p. DOI:  10.37437/9785912941634-21-sb3 (In Russ.).
  4. Pasport natsional'nogo proekta "Nauka" [Passport of the national project "Science"]. URL: http://government.ru/info/35565 (In Russ.).
  5. Pasport federal'nogo proekta "Razvitie peredovoi infrastruktury dlya provedeniya issledovanie i razrabotok
    v Rossiiskoi Federatsii"
    [Passport of the federal project "Development of advanced infrastructure for research and development in the Russian Federation"]. URL:
    https://projects.sakha.gov.ru/uploads/ckfinder/userfiles/files/ FP_Razvitie_peredovoj_infrastruktury_dlya_provedeniya_issledovanij_i_razrabotok_v_Rossijskoj_Federacii(1).pdf (In Russ.).
  6. Chuikov A. [For whom are national projects — a bone in the throat?]. Argumenty nedeli [Arguments of the week], 2021, no. 38 (782). (In Russ.).
  7. Prekrasnyi start poluchilsya: o realizatsii natsproekta "Nauka" [A great start turned out: on the implementation of the national project "Science"]. URL: https://indicator.ru/humanitarian-science/prekrasnyi-start-poluchilsya.htm (In Russ.).
  8. Natsional'nyi proekt "Nauka" [National Project "Science"]. URL: http://government.ru/info/35565/ (In Russ.).
  9. [Who allowed Gref to digitize our children? Interview with academician Vladimir Betelin] Argumenty nedeli [Arguments of the week], 2021, no. 28 (772). (In Russ.).
  10. Minobrnauki predlozhilo razrabotat' federal'nyi proekt po priborostroeniyu [The Ministry of Education and Science proposed to develop a federal project on instrument making]. URL: https://tass.ru/ekonomika/13651409 (In Russ.).
  11. Dmitrii Chernyshenko: Na importozameshchenie nauchnogo oborudovaniya v ehtom godu budet napravleno
    8 mlrd rublei
    [Dmitry Chernyshenko: 8 billion rubles will be allocated for import substitution of scientific equipment this year]. URL: http://government.ru/news/45098/ (In Russ.).
 

Krasnov N.V.1, Kurnin I.V.1, Arseniev A.N.1, Cherepanov A.G.2, Krasnov M.N.3

PROPERTIES OF ION BEAMS FORMED BY A GRIDLESS
TWO-ELECTRODE ION SHUTTER OF AN ION MOBILITY
SPECTROMETER AT ATMOSPHERIC PRESSURE.
I. CONTINUOUS ION BEAM

"Nauchnoe Priborostroenie", 2022, vol. 32, no. 3, pp. 59—74.
doi: 10.18358/np-32-3-i5974
 

The properties of the ion flow have been experimentally determined depending on the parameters of a gridless two-electrode ion shutter and the conditions of ion transport in the drift tube. The transverse structure of the ion flow in the plane of the collector is investigated using a collector consisting of concentric rings. The resulting ion current distributions have a radial structure that varies depending on experimental conditions. Theoretical estimates are given to take into account the degree of influence of the space charge on the transverse dimensions of the ion beam in the drift field. The agreement of experimental and theoretical results allows one to conclude that the observed phenomena are caused by a space charge.
 

Keywords: gridless two-electrode ion shutter, ion transport at atmospheric pressure, ion mobility spectrometer, space charge

Author affiliations:

1Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia
2St. Petersburg Polytechnic University of Peter the Great, Saint Petersburg, Russia
3Device Consulting Ltd., Saint Petersburg, Russia

 
Contacts: Krasnov Nikolay Vasil'evich, krasnov@alpha-ms.com
Article received by the editorial office on 11.07.2022

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Eiceman G.A, Karpas Z, Hill H.H.Jr. Ion mobility spectrometry. 3rd edn. CRC Press, Boca Raton, 2013. 428 p. DOI: 10.1201/b16109
  2. Kurnin I.V., Krasnov N.V., Krasnov M.N. Ustroistvo bessetochnogo ionnogo zatvora. Patent RF no. 2766305. [Patent for the device for Screen-Free Ion Gate Device]. Prioritet 04.03.2021. (In Russ.).
  3. Kurnin I.V., Krasnov N.V., Arseniev A.N., Cherepano A.G., Krasnov M.N., Podolskaya E.P. [Characteristics of a gridless two-diaphragm ion gate at atmospheric pressure]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2021, vol. 31, no. 4, pp. 55—70. DOI: 10.18358/np-31-4-i5570 (In Russ.).
  4. Arseniev A.N., Alekseev D.N., Belchenko G.V., Gavrik M.A., Krasnov N.V., Koryakin P.S., Krasnov I.A., Kurnin I.V., Myaldzin Sh.U., Muradymov M.Z., Monakov A.G., Pavlov V.G., Zvereva A.V., Nikitina S. N., Podolskaya E.P., S. S. Prisyach E.P., Semenov S.Yu., Krasnov M.N., Samokish A.V. [Spectroscopy of peptides, proteins and oligonukleotides from solutions by ion mobility Nauchnoe Priborostroenie [Scientific Instrumentation], 2015, vol. 25, no. 1, pp. 17—26. DOI: 10.18358/np-25-1-i1726 (In Russ.).
  5. Kurnin I.V., Samokish A.V., Krasnov N.V. [Simulation of the operational mode of ion mobility spectrometer with Bradbury—Nielsen ion gate]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2010, vol. 20, no. 3, pp. 14—21. URL: http://iairas.ru/mag/2010/abst3.php#abst3 (In Russ.).
  6. Kurnin I.V., Krasnov N.V., Semenov S.Y., Smirnov V.N. Bradbury-Nielsen gate electrode potential switching modes optimizing the ion packet time width in an ion mobility spectrometer. International Journal for Ion Mobility Spectrometry, 2014, vol. 17, pp. 79—85. DOI: 10.1007/s12127-014-0152-x
  7. Bradbury N.E., Nielsen R.A. Absolute values of the electron mobility in hydrogen. Phys. Rev., 1936, vol. 49, no. 5, pp. 388—392. DOI: 10.1103/PhysRev.49.388
  8. Arseniev A.N., Kurnin I.V., Krasnov N.V., Muradymov M.Z., Yavor M.I., Pomozov T.V., Krasnov M.N. Optimization of ion transport from atmospheric pressure ion sources. International Journal for Ion Mobility Spectrometry , 2019, vol. 22, no. 1, pp. 31—38. DOI: 10.1007/s12127-018-0242-2
  9. Karpas Z., Eiceman G.A., Ewing R.G., Algom A., Avida R., Friedman M., Matmor A., Shahat O. Ion distribution profiles in the drift region of an ion mobility spectrometer. Int. J. Mass Spectrometry and Ion Processes, 1993, vol. 127, pp. 95—104. DOI: 10.1016/0168-1176(93)87082-4
  10. Tang X., Bruce J.E., Hill H.H.Jr. Characterizing electrospray ionization using atmospheric pressure ion mobility spectrometry. Anal. Chem., 2006, vol. 78, is. 22, pp. 7751—7760. DOI: 10.1021/ac0613380
  11. Siems W.F., Wu C., Tarver E.E., Hill H.H.Jr., Larsen P.R., McMinn D.G. Measuring the resolving power of ion mobility spectrometers. Anal. Chem., 1994, vol. 66, is. 23, pp. 4195—4201. DOI: 10.1021/ac00095a014
  12. Kurnin I.V. [ Influence of ion-molecular reactions on a resolving power of ion mobility spectrometer with Bradbury–Nielsen gate] . Nauchnoe Priborostroenie [Scientific Instrumentation], 2017, vol. 27,  no. 3 , pp. 90—98. DOI: 10.18358/np-27-3-i9098 (In Russ.).
  13. Kurnin I.V. [Estimation of space charge influence on resolution of ion-mobility spectrometer]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2021, vol. 31, no. 4 , pp. 41—54. DOI: 10.18358/np-31-4-i4154 (In Russ.)
 

S. I. Tarasov, N. V. Gerling

MEASUREMENT OF CO2 AND H2O FLOWS BETWEEN MEDIUM AND PLANTS BY INFRARED GAS ANALYZER BASED ON OPEN GAS EXCHANGE SYSTEM TAKING INTO ACCOUNT INSTRUMENTAL ERROR

"Nauchnoe Priborostroenie", 2022, vol. 32, no. 3, pp. 75—103.
doi: 10.18358/np-32-3-i75103
 

Currently, the study of gas exchange in leaves and even entire plants is not difficult. Measurement of gas exchange parameters is, as a rule, carried out using infrared gas analyzers integrated with open gas exchange systems. The measured parameter values are used to evaluate and calculate the physiological processes of interest to the investigator, such as, for example, the rate of absorption of carbon dioxide by the plant during photosynthesis or the rate of release of water vapors during transpiration. In the scientific literature on plant physiology, the error of the result of measuring physiological parameters is given without taking into account the instrumental error, the contribution of which to the total error can be significant, since the physiological parameters of interest to the researcher are mostly indirectly measurable values. This work is devoted to the study of the influence of the error of measuring the parameters of gas exchange of plants obtained using open gas exchange systems on the error of the estimated physiological parameters. The work analyzes equations that are used to estimate the rate of absorption of carbon dioxide and the release of water vapors based on the gas exchange parameters of the plant and are actually standard for open gas exchange systems; issues related to the release of carbon dioxide from the plant in the form of gas during respiratory processes in the light are also considered. An evaluation of instrumental error of carbon dioxide absorption rate measurement during photosynthesis for open gas exchange systems is given.
 

Keywords: open gas exchange systems, infrared gas analyzer, instrument error, carbon dioxide absorption rate,
mass balance equation

Author affiliations:

Institute of Biology of the Komi Scientific Center Ural Branch of the RAS, Syktyvkar, Russia

 
Contacts: Gerling Natal'ya Vladimirovna, gerling@ib.komisc.ru
Article received by the editorial office on 03.06.2022

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Taylor J.R. An Introduction to Error Analysis. 2nd ed. CA, University Science Books, Sausalito, 1997. 327 p.
  2. Rabinovich S.G. Evaluating Measurement Accuracy: A Practical Approach. Springer, 2017. 328 p. DOI: 10.1007/978-3-319-60125-0
  3. Zaidel' A.N. Ehlementarnye otsenki oshibok izmereniya [Elementary estimates of measurement errors]. Leningrad: Nauka Publ., 1967. 88 p. (In Russ.).
  4. Long S.P., Bernacchi C.J. Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. Journal of Experimental Botany, 2003, vol. 54, no. 392, pp. 2393—2401. DOI: 10.1093/jxb/erg262
  5. JCGM 100:2008. Evaluation of measurement data — Guide to the expression of uncertainty in measurement. 2010. 120 p. URL:
    https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf/cb0ef43f-baa5-11cf-3f85-4dcd86f77bd6
  6. LI-COR, Inc. Using the LI-6400. Portable photosynthesis system. OPEN Software version 5.1. 1998—2003. 846 p. URL: https://sites.middlebury.edu/biol323/files/2011/01/6400MAN.pdf
  7. PP Systems, Inc. CIRAS-2 Portable Photosynthesis System. Operator’s Manual. Version 2.03. 2007. URL: https://www.manualslib.com/manual/1425117/Pp-Systems-Ciras-2.html
  8. von Caemmerer S., Farquhar G.D. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta, 1981, no. 153, pp. 376—387. DOI: 10.1007/BF00384257
  9. Graham D. Effects of light on "dark" respiration. Biochemistry of plants, New York, Academic Press, 1980, vol. 2, pp. 525—579. URL: http://hdl.handle.net/102.100.100/294477?index=1
  10. Long S.P., Farage P.K., Garcia R.L. Measurement of leaf and canopy photosynthetic C02 exchange in the field. Journal of Experimental Botany, 1996, vol. 47, no. 304, pp. 1629—1642. DOI: 10.1093/jxb/47.11.1629
  11. Cunningham R.E., Williams R.J.J. Diffusion in gases and porous media. New York, Plenum Press, 1980. 287 p. DOI: 10.1007/978-1-4757-4983-0
  12. Mikleš J., Fikar M. Process Modelling, Identification, and Control. Springer-Verlag, Berlin, Heidelberg, 2007. 480 p.
  13. Bird R.B., Stewart W.E., Lightfoot E.N. Transport phenomena. 2nd ed. New York, John Wiley & Sons, 2002. 898 p. URL: https://nitsri.ac.in/Department/Chemical%20Engineering/TP2.pdf
  14. Slattery J.C. Advanced transport phenomena. Cambridge, University Press, 1999. 709 p.
    DOI: 10.1017/CBO9780511800238
  15. Benenson W., Harris J.W., Stocker H., Lu H. Handbook of physics. New York, Springer, 2001. 1190 p. DOI: 10.1007/0-387-21632-4
  16. Weiss I., Mizrahi Y., Raveh E. Chamber response time: a neglected issuein gas exchange measurements. Photosynthetica, 2009, vol. 47, no. 1, pp. 121—124. DOI: 10.1007/s11099-009-0018-3
  17. LI-COR: Interfacing custom chambers to the LI-6400 sensor head. LI-6400 Application note 3. LI-COR, Lincoln, 2003. URL:
    https://www.esalq.usp.br/lepse/imgs/conteudo_thumb/Interfacing-Custom-Chambers-to-the-LI-6400-Sensor-Head.pdf
  18. LCi. Portable Photosynthesis System. Instruction manual. ADC BioScientific Ltd, Hoddesdon, Herts, 2004. 58 p. URL: https://studylib.net/doc/18839284/lci-portable-photosynthesis-system-instruction-manual
  19. LI-COR, Inc. LI-6400. Portablble PhotosynthesisSystem. Specifications. URL:
    https://www.licor.com/env/products/photosynthesis/LI-6400XT/specs.html
  20. LI-COR. URL: https://www.licor.com/
  21. Larcher W. Physiological plant ecology. New York: Springer, Berlin and Heidelberg, 1995. 506 p. DOI: 10.1007/978-3-642-87851-0
 

A. O. Gorelov

MATHEMATICAL APPARATUS
FOR 3D PRINTING MODEL ANALYSIS

"Nauchnoe Priborostroenie", 2022, vol. 32, no. 3, pp. 104—116.
doi: 10.18358/np-32-3-i104116
 

The paper analyzes the factors affecting the process of 3D printing using fused deposition modeling (FDM) and examines the possibilities of improving the surface quality by reducing the surface stair stepping of the manufactured product. It also describes a mathematical framework for assessing the orientation of the model in the working area of a 3D printer, which will optimize the process of layer-by-layer deposition during 3D printing and expand the scope of this technology.
 

Keywords: 3D printing, mathematical apparatus, thermoplastic deposition technology, surface quality

Author affiliations:

Moscow Aviation Institute (National Research University), Moscow, Russia

 
Contacts: Gorelov Andrei Olegovich, 2652045@gmail.com
Article received by the editorial office on 05.07.2022

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Maksimova I.A. [3D technologies in medicine]. Voprosy ustoichivogo razvitiya obshchestva [Issues of sustainable development of society], 2021, no. 1, pp. 61—65. DOI: 10.34755/IROK.2021.67.91.080 (In Russ.)
  2. Vasil'ev F.V. [Reducing the cost of products for aerospace technology manufactured by layer-by-layer synthesis methods]. Trudy MAI [Proceedings of the Moscow Aviation Institute], 2011, no. 49, pp. 79—79.
    URL: https://elibrary.ru/item.asp?id=17321868 (In Russ.)
  3. ASTM / ISO 52900:2021. Additive manufacturing. General principles. Fundamentals and vocabulary. URL: https://www.iso.org/standard/74514.html
  4. Levashkin D., Ogin P., Vasilyev F. Efficiency of hybrid cyclic processing with the use of additive technologies on CNC machines for the manufacture of composite aviation parts due to the reduction of processing errors. Materials Science Forum, 2019, vol. 946, pp. 959—965. DOI: 10.4028/www.scientific.net/MSF.946.959
  5. Stroud I., Xirouchakis P.C. STL and extensions. Advances in Engineering Software, 2000, vol. 31, is. 2, pp. 83—95. DOI: 10.1016/S0965-9978(99)00046-0
  6. Ripetskiy A., Zelenov S., Kuznetsova E. Current issues of developing methodology and software solutions used in different phases of modelling additive production processes. Key Engineering Materials, 2018, vol. 771, pp. 97—102. DOI: 10.4028/www.scientific.net/KEM.771.97
  7. Gorelov A.O. [Effect of Model Orientation in the 3D Printer Work Area on Surface Quality]. Sbornik tezisov dokladov konferentsii "Gagarinskie chteniya" [Proc. of conference "Gagarin readings"], 2016, vol. 1, pp. 610—611.
    URL: https://gagarin.mai.ru/files/2016/Vol_1.pdf (In Russ.)
  8. Vasil'ev F.V. [Automate the process of preparing models for rapid prototyping]. Liteinoye proizvodstvo [Foundry. Technologies and Equipment], 2004, no. 4, pp. 24—25. (In Russ.)
  9. Vasil'ev F.V. [Model Geometry Analysis for Laser Stereolithography]. Trudy IX Mezhdunarodnogo nauchno-tekhnicheskogo seminara "Sovremennye tekhnologii v zadachakh upravleniya, avtomatiki i obrabotki informatsii" [Proc. 9th International science technology seminar "Modern technologies in the tasks of control, automation and information processing"], Alushta, 2000, pp. 142—143. (In Russ.)
  10. Vasil'ev F.V. Issledovanie faktorov, vliyayushchikh na protsess posloinogo sinteza metodom lazernoi stereolitografii [Investigation of factors influencing the process of layer-by-layer synthesis by laser stereolithography. cand. techn. sci. diss.] Moscow, 2011. 161 p. URL: https://elibrary.ru/item.asp?id=19271648 (In Russ.)
  11. Gorelov A.O. [3D Printer Area Model Orientation Management System]. Sbornik tezisov dokladov konferentsii "Gagarinskie chteniya" [Proc. of conference "Gagarin readings"], 2017, pp. 896—897.
    URL: https://elibrary.ru/item.asp?id=30100439&pff=1 (In Russ.)
 

S. V. Vantsov, F. V. Vasiliev, O. V. Khomutskaya

TECHNOLOGICAL PROCESS CONTROL CAPABILITIES

"Nauchnoe Priborostroenie", 2022, vol. 32, no. 3, pp. 117—128.
doi: 10.18358/np-32-3-i117128
 

The modern definition allows us to interpret the technological process as a complex system in interaction with the components of the environment, which leads to a beneficial effect. From this point of view, the technological process is subject to the general rules of control theory, thanks to which the principles and algorithms used in this theory can be adapted and extended to the control of technological processes. It is noted, however, that the main difference between the technological process and traditional control objects is the constant irresistible and degradative change in its characteristics over time.
The article shows the possibility of transition from process control in the statistical sense to control in terms of the actual state, i.e. to real-time process control. The concept of functional controllability of technological processes is introduced. An analysis of the generalized block diagram of the technological process control system as a technically complex system is given. The formalization of the goals of technological process control is given, which makes it possible to form further control tasks and typical control schemes for specific technological operations. It is demonstrated that these theoretical guidelines play a crucial role in the current shift from analog to digital control of technological processes.
 

Keywords: technological process, reliability, production digitalization, production management systems,
industry 4.0

Author affiliations:

Moscow Aviation Institute (National Research University), Russian Federation

 
Contacts: Khomutskaya Olga Vladislavovna, khomutskayaov@gmail.com
Article received by the editorial office on 09.06.2022

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Scopus Preview. URL: https://www.scopus.com/
  2. Tague C.B., Bartels H.C. Manufacture and Control of High Frequency Transistors for Consumer Products. IRE Transactions on Reliability and Quality Control, 1961, vol. RQC-10, no. 3, pp. 1—6. DOI: 10.1109/IRE-PGRQC.1961.5009570
  3. Zhong J., Liu J., Shi J. Predictive Control Considering Model Uncertainty for Variation Reduction in Multistage Assembly Processes. IEEE Transactions on Automation Science and Engineering, 2010, vol. 7, no. 4, pp. 724—735. DOI: 10.1109/TASE.2009.2038714
  4. Jin R., Shi J. Reconfigured piecewise linear regression tree for multistage manufacturing process control. IIE Transactions, 2012, vol. 44, no. 4, pp. 249—261. DOI: 10.1080/0740817X.2011.564603
  5. Nekrasov S.I., Nekrasova N.A. Filosofiya nauki i tekhniki: tematicheskii slovar' [Philosophy of Science and Technology: Thematic Dictionary]. Orel: OGU, 2010. 289 p. (In Russ.).
  6. Gludkin O.P., Chernyaev V.N. Analiz i kontrol' tekhnologicheskikh protsessov proizvodstva REHA: uchebnoe posobie dlya vuzov [Analysis and control of technological processes of production of REA: a textbook for universities]. Moscow: Radio i svyaz' Publ., 1983. 296 p. (In Russ.).
  7. Fedyukin V.K. Upravlenie kachestvom protsessov [Process Quality Management]. Saint Petersburg: Piter Publ., 2004. 208 p. (In Russ.).
  8. Alekseev A.V. Diagnostika i nadezhnost' avtomatizirovannykh system [Diagnostics and reliability of automated systems]. (In Russ.). URL:
    http://repo.ssau.ru/handle/Uchebnye-izdaniya/Diagnostika-i-nadezhnost-avtomatizirovannyh-sistem-Elektronnyi-resurs-elektron-obrazovat-kontent-v-sisteme-distanc-obucheniya-Moodle-71193?mode=full
  9. Trofimova E.A., Kislyak N.V., Gilev D.V. Teoriya veroyatnostei i matematicheskaya statistika: uchebnoe posobie [Probability Theory and Mathematical Statistics: A Textbook]. Trofimova E.A., ed. Yekaterinburg: UrFU Publ., 2018. 160 p. (In Russ.).
  10. GOST R ISO 11462-1-2007 Statistical methods. Implementation Guide for Statistical Process Management. Part 1. Elements. Moscow: Standartinform, 2020. 38 p. URL: https://docs.cntd.ru/document/1200051018 (In Russ.).
  11. Medvedev A.M. [Printed circuit boards. Mechanical drilling]. Tekhnologii v ehlektronnoi promyshlennosti [Technologies in the Electronics Industry], 2012, no. 8, pp. 10—17. (In Russ.).
  12. Vantsov S.V., Sokolov V.A., Khomutskaya O.V. [Comprehensive control system for industrial robots]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2021, vol. 31, no. 1, pp. 96—106. DOI: 10.18358/np-31-1-i96106 (In Russ.).
  13. Mozharov V.A. [A mathematical model of relation between shrink of laminate and its structural parameters]. Trudy MAI [Proceedings of the Moscow Aviation Institute], 2013, no. 65, pp. 36. URL:
    https://trudymai.ru/published.php?ID=40666 (In Russ.).
  14. Medvedev A., Vasilyev F., Sokolsky M. Testing of hidden defects in interconnections. Amazonia Investiga, 2019, vol. 8, no. 22, pp. 746—756. URL: https://www.amazoniainvestiga.info/index.php/amazonia/article/view/829
  15. Medvedev A.M., Mozharov V.A. [Multilayer printed circuit boards. Methods for Improving Dimensional Stability of Layer Materials]. Proizvodstvo ehlektroniki [Electronics manufacturing], 2011, no. 5, pp. 30—34.
    URL: https://russianelectronics.ru/files/57165/pe2011-05_30-35.pdf (In Russ.).
 

Ulitsa Ivana Chernykh, 31-33, lit. A, St. Petersburg, Russia, 198095, P.O.B. 140
tel: (812) 3630719, fax: (812) 3630720, mail: iap@ianin.spb.su

content: Valery D. Belenkov design: Banu S. Kuspanova layout: Anton V. Manoilov