logo
blue band <-
  JOURNAL "NP" ISSUES

"Nauchnoe Priborostroenie", 2021, Vol. 31, no. 2. ISSN 2312-2951, DOI: 10.18358/np-31-2-e104

"NP" 2021 year Vol. 31 no. 2.,   ABSTRACTS

ABSTRACTS, REFERENCES

O. M. Gorbenko, M. V. Zhukov, S. V. Pichahchi, I. D. Sapozhnikov, M. L. Felshtyn, A. O. Golubok

COMPACT SCANNING PROBE MICROSCOPE HEAD BASED ON INERTIAL THRUSTERS USING PIEZOPACKETS

"Nauchnoe priborostroenie", 2021, vol. 31, no. 2, pp. 3—22.
doi: 10.18358/np-31-2-i322
 

The instrumental principles of constructing a compact measuring head of a scanning probe microscope are discussed. To minimize the overall dimensions, a piezo package is used, which makes it possible to implement in one unit both the functions of the actuating element of the SPM tracking system and the functions of the module for approaching the probe to the sample. A control scheme for a piezo-inertial linear step mover is presented, and histograms of the step size distribution are measured. Diagrams of compact SPM heads operating in tunneling and semi-contact power modes using self-sensing probe sensors are presented. To increase the size of the survey SPM images, scanning over several overlapping areas was implemented with further stitching of the SPM images in a single frame. The algorithm for stitching SPM images is discussed. The deviations in the directions of the stage and probe movements, arising during the new scanning frame selection, are being corrected within the framework of the SPM image stitching algorithm. The results of capturing SPM images using a compact SPM head and stitching SPM images by means of elaborated algorithms are presented.
 

Keywords: scanning probe microscope, piezo-inertial step mover, self-sensing cantilever, automatic image stitching

Author affiliations:

Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia

 
Contacts: Gorbenko Olga Markovna, gorolga64@gmail.com
Article received by the editorial office on 27.03.2021
Full text (In Russ./ In Eng.) >>

REFERENCES

  1. Binnig G., Rohrer H., Gerber C., Weibel E. Tunneling through a controllable vacuum gap. Appl Phys Letts, 1982, vol. 40, is. 2, pp. 178—180. DOI : 10.1063/1.92999
  2. Binnig G., Rohrer H., Gerber Ch., Weibel E. Surface studies by scanning tunneling microscopy. Phys Rev Lett. 1982, vol. 49, is. 1, pp. 57—61. DOI : 10.1103/PhysRevLett.49.57
  3. Binnig G., Rohrer H. Scanning tunneling microscopy. Surface Science . 1983, vol. 126, is. 1-3 , pp. 236—244. DOI: 10.1016/0039-6028(83)90716-1
  4. Binnig G., Rohrer H. Scanning tunneling microscopy – from birth to adolescence: Nobel Lecture. Stockholm December 8, 1986.
  5. Wiesendanger R.  Scanning probe microscopy and spectroscopy: methods and applications . Cambridge University Press, 1994. DOI : 10.1017/CBO9780511524356
  6. Voigtländer B. Scanning probe microscopy. Berlin Heidelberg, Springer-Verlag, 2015.
    DOI : 10.1007/978-3-662-45240-0
  7. Bykov V.A., Golubok A.O., Sapozhnikov I.D., Kotov V.V. Inercionnyj dvigatel'. Patent RU2 297 072C1. [Patent for the Invention Inertial motor]. Proritet 2005. (In Russ.).
  8. Golubok A.O., Sapozhnikov I.D. Skaniruyushchij zondovyj mikroskop. Patent RU2366008C2. [Patent for the Invention Scanning probe microscope]. Proritet 2006. (In Russ.).
  9. Bausells J. Piezoresistive cantilevers for nanomechanical sensing. Microelectronic Engineering , 2015, vol. 145 , is. 1, pp. 9—20. DOI: 10.1016/j.mee.2015.02.010
  10. Bykov V.A., Golubok A.O., Sapozhnikov I.D., Kotov V.V. Zond na osnove p'ezokeramicheskoj trubki. Patent RU2 300 150C1. [Patent for the Invention Piezoceramic tube-based probe]. Prioritet 2005. (In Russ.).
  11. Vasiliev A.A., Kerpeleva S.Yu., Kotov V.V., Sapozhnikov I.D., Golubok A.O. [Local force and tunneling interaction sensor for a scanning probe microscope]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2005, vol. 15, no. 1, pp. 62—69. URL: http://iairas.ru/mag/2005/abst1.php#abst7 (In Russ.).
 

V. G. Krivenko, Yu. L. Khodasevich, S. N. Pantuz, V. I. Emalyanenko, N. I. Borisova, E. A. Permyakov

HIGH SPEED REGISTRATION SPECTROFLUORIMETER SFL-S

"Nauchnoe Priborostroenie", 2021, vol. 31, no. 2, pp. 23—34.
doi: 10.18358/np-31-2-i2334
 

An experimental multifunctional high speed registration spectrofluorimeter SFL-S has been developed at the Institute for Biological Instrumentation of the Russian Academy of Sciences. The spectrofluorimeter is designed to measure excitation and emission spectra of solutions and suspensions of biological molecules and cells in the ultraviolet, visible, and near infrared spectral regions in the course of fundamental and applied research in the field of physicochemical biology, biophysics, biochemistry, and medicine. Features of the instrument are: the possibility of high-speed registration of spectra by means of multichannel system (32 channels, more than 20 spectra per second); the ability to control the change of the temperature of the solution in the measuring cell according to a given algorithm (0 to 100 °C); the possibility of microtitration of the solution in the measuring cell using an automatic microtitrator.
 

Keywords: spectrofluorimeter, spectrum, luminescence, fluorescence, excitation, high speed measurements

Author affiliation:

Federal Research Center ‘Pushchino Scientific Center for Biological Research of the RAS’, Institute for Biological Instrumentation of the RAS, Pushchino, Moscow region, Russia

 
Contacts: Emelyanenko Viktor Ivanovich, emelyane@rambler.ru
Article received by the editorial office on 23.03.2021
Full text (In Russ./ In Eng.) >>

REFERENCES

  1. Parker S. Fotolyumineszenziya rastvorov [Photoluminescence of solutions]. Moscow, Mir Publ., 1972. 510 p. (In Russ.).
  2. Permyakov E.A. Luminescent Spectroscopy of Proteins. CRC Press, Boca Raton, Ann Arbor, London, Tokyo, 1993. 164 p.
  3. Permyakov E.A. Metod sobstvennoy lyumineszenzii belka [Protein intrinsic luminescence method]. Moscow, Nauka Publ., 2003. 189 p. (In Russ.).
  4. RF-6000 Fluorescence Spectrofluorometer. URL: https://www.ssi.shimadzu.com/products/fluorescence-spectroscopy/rf-6000.html
  5. Spektrofluorimetr FluoroLog 3. URL: http://www.nytek.ru/catalog/spectrofluorometers/fluorolog-3/
  6. Permyakov E.A. Parvalbumin. Nova Science Publishers. New York, 2006. 196 p.
  7. Permyakov E.A., Yarmolenko V.V., Emelyanenko V.I., Burstein E.A., Gerday C., Closset J. Fluorescence studies of the calcium binding to whiting (Gadusmerlangus) parvalbumin. Eur. J. Biochem., 1980, vol. 109, no. 1, pp. 307‑315.
  8. Cary Eclipse Fluorescence Spectrophotometer. URL: https://www.agilent.com/en/product/molecular-spectroscopy/fluorescence-spectroscopy/fluorescence-systems/cary-eclipse-fluorescence-spectrophotometer
  9. Fluorescence Spectrophotometer F-7100. URL: https://www.hitachi-hightech.com/global/product_detail/?pn=ana-f7100
 

M. P. Danilaev1, S. A. Karandashov1, V. A. Kuklin1,2, A. Zh. Sakhabutdinov1, S. M. R. H. Hussein1,3

TURBIDIMETRIC PHOTOMETER FOR STUDYING THE SEDIMENTATION OF NANOSIZED OBJECTS

"Nauchnoe Priborostroenie", 2021, vol. 31, no. 2, pp. 35—43.
doi: 10.18358/np-31-2-i3543
 

A turbidimetric photometer with a pulsed mode of operation of a light source is analyzed. The device makes it possible to conduct sedimentation studies of nanoscale object in terms of laboratory background illumination with a study duration of more than 500 hours. The functional diagram of the laboratory device sample is described and experimental surveys of some characteristics are presented.
 

Keywords: turbidimetric photometer, background illumination, zero line drift

Author affiliations:

1Kazan National Research Technical University named after A.N. Tupolev, Kazan, Russia
2Kazan (Volga Region) Federal University, Kazan, Russia
3University of Karbala, Karbala, Iraq

 
Contacts: Kuklin Vladimir Alexandrovich, iamkvova@gmail.com
Article received by the editorial office on 26.03.2021
Full text (In Russ./ In Eng.) >>

REFERENCES

  1. Gurevich M.M. Fotometrija (teorija, metody i pribory) [Photometry (theory, methods and instruments)]. Leningrad, Jenergoatomizdat Publ., 1983. 272 p. (In Russ.).
  2. Vol'kenshtejn A.A., Kuvaldin Je.V. Fotojelektricheskaja impul'snaja fotometrija (teorija, metody i pribory) [Photoelectric pulse photometry (theory, methods and instruments)]. Leningrad, Fizmatgiz Publ., 1975. 382 p. (In Russ.).
  3. Burnashev V.I., Burnasheva B.A. Fotometrija i spek-trofotometrija zvezd i galaktik [Photometry and spectrophotometry of stars and galaxies]. Simferopol, Antikva Publ., 2016. 382 p. (In Russ.).
  4. Pilipenko A.T., Pjatnickij I.V. Analiticheskaja himija. T. 1. [Analytical chemistry. Vol. 1]. Moscow, Himija Publ., 1990. 480 p. (In Russ.).
  5. Men'shikov V.V. Klinicheskaja laboratornaja analitika [Clinical Laboratory Analytics]. Moscow, Agat-Med Publ., 2002. 860 p. (In Russ.).
  6. Vaganov A.V. [Bioassay device for investigation of endotoxicosis]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2003, vol. 13, no. 3, pp. 62—66. URL: http://iairas.ru/mag/2003/abst3.php#abst10 (In Russ.).
  7. Khramtsov P.P., Vasetskii V.A., Grishchenko V.M., Doroshko M.V., Chernik M.Y., Makhnach A.I., Shikh I.A. [Diagnostics of density fields in hypersonic flows around a cone in a light-gas gun by the shadow photometric method]. Zhurnal tehnicheskoj fiziki [ Technical Physics ], 2019, vol. 89, is. 10, pp. 1506—1512. DOI: 10.1134/S1063784219100104
  8. Shmargunov V.P., Pol'kin V.V., Tumakov A.G., Panchenko M.V. [Closed volume halo photometer]. Pribory i tehnika jeksperimenta [ Instruments and Experimental Techniques ], 2010, no. 6, pp. 155—157. (In Russ.).
  9. Aduev B.P., Nurmukhametov D.R., Zvekov A.A., Nikitin A.P., Nelyubina N.V., Belokurov G.M., Kalenskii A.V. [Determining the optical properties of light-diffusing systems using a photometric sphere]. Pribory i tehnika jeksperimenta [ Instruments and Experimental Techniques ], 2015, no. 6, pp. 60—66. (In Russ.).
  10. Lyadov N.M., Valeev V.F., Nuzhdin V.I., Bazarov V.V., Faizrakhmanov I.A., Gumarov A.I. [Optical properties of ZnO and Al2O3 implanted with silver ions]. Zhurnal tehnicheskoj fiziki [ Technical Physics ], 2014, vol. 84, is. 5, pp. 62—65. (In Russ.).
  11. Belov N.P., Gaydukova O.S., Panov I.A., Patyaev A., Smirnov Y., Sherstobitova A.S., Yaskov A.D. [Laboratory spectrophotometer for ultraviolet spectral region]. Izvestiya vysshikh uchebnykh zavedeniy. Priborostroenie [News of higher educational institutions. Instrument making.], 2011, vol. 54, no. 5, pp. 81—87. (In Russ.).
  12. Krasnoperov Y.I., Sklyarenko M.S. [A photometric method for determining the diffusivity of dyes in aqueous solutions in a thin horizontal cell]. Pribory i tehnika jeksperimenta [ Instruments and Experimental Techniques ], 2017, no. 6, pp. 123—129. (In Russ.).
  13. Samsonov V.P., Murunov E.Y., Alexeev M.V. [Role of vortex structures in excitation of condensed system self-oscillatory burning]. Zhurnal tehnicheskoj fiziki [ Technical Physics ], 2008, vol. 78, is. 8, pp. 34—40. (In Russ.).
  14. Nazarov D.V., Osmolovskaya O.M., Bobrysheva N.P., Smirnov V.M., Murin I.V. [Peculiarities of phase transitions in nanosized vanadium dioxide: magnetic characteristics]. Rossijskie nanotehnologii [Nanotechnologies in Russia], 2012, no. 11-12, pp. 75—82. (In Russ.).
  15. Kuvaldin E.V. [Solar spectral region photometersfor natural objects reflectance measurements]. Nauchnoe Priborostroenie [Scientific Instrumentation]. 2005, vol. 15, no. 1, pp. 21—28.
  16. Kuvaldin E.V. [System approach to photometerenergy calculations]. Nauchnoe Priborostroenie [Scientific Instrumentation]. 2003. T. 13, ¹ 2. C. 52—56. URL: http://iairas.ru/mag/2003/abst2.php#abst8 (In Russ.).
  17. Millard M.M., Wolf W.J., Dintzis F.R., Willett J.L. The hydrodynamic characterization of waxy maize amylopectin in 90% dimethyl sulfoxide—water by analytical ultracentrifugation, dynamic, andstatic light scattering. Carbohydrate Polymers, 1999, vol. 39, pp. 315—320. DOI: 10.1016/S0144-8617(99)00021-1
  18. Hobbs F.S.D. [Amplifiers for photodiodes on operational amplifiers]. Komponenty i tehnologii [Components and Technologies], 2009, vol. 2, no. 91, pp. 46—50. (In Russ.).
 

S. P. Dmitriev1, V. E. Kurochkin2, B. P. Sharfarets2

ON THE IMPROVEMENT OF THE MATHEMATICAL MODEL OF THE ELECTROACOUSTIC TRANSDUCER UNDER THE CONDITION OF A THIN DOUBLE LAYER IN THE POROUS STRUCTURE OF THE TRANSDUCER BODY

"Nauchnoe Priborostroenie", 2021, vol. 31, no. 2, pp. 44—51.
doi: 10.18358/np-31-2-i4451
 

In the approximation of a thin double layer, simple dependences of the acoustic fields excited in an electrokinetic electroacoustic transducer on the velocity of the Helmholtz–Smolukhovsky osmotic movement are obtained. From the dependencies it follows that in the absence of losses, when the nonlinearity of the fluid motion equation does not yet affect and there is no turbulent mode of fluid motion in the transducer body, the magnitudes of the amplitudes of the acoustic velocity and pressure linearly depend on the magnitude of the Helmholtz–Smolukhovsky electroosmotic motion velocity.
 

Keywords: electro-acoustic conversion, electrokinetic phenomena, Navier–Stokes equation, non-linear regime of fluid flow, energy pumping

Author affiliations:

1Bioproduct ltd, Moscow, Russia
2Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia

 
Contacts: Sharfarets Boris Pinkusovich, sharb@mail.ru
Article received by the editorial office on 17.02.2021
Full text (In Russ./ In Eng.) >>

REFERENCES

  1. Sergeev V.A., Sharfarets B.P. [About one new method of electroacoustic transformation. Theory based on electrokinetic phenomena. Part I. Hydrodynamic aspect]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2018, vol. 28, no. 2, pp. 25—35. DOI: 10.18358/np-28-2-i2535 (In Russ.).
  2. Sergeev V.A., Sharfarets B.P. [About one new method of electroacoustic transformation. Theory based on electrokinetic phenomena. Part II. Acoustic aspect]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2018. vol. 28, no. 2, pp. 36—44. DOI: 10.18358/np-28-2-i3644 (In Russ.).
  3. Kurochkin V.E., Sergeev V.A., Sharfarets B.P., Gulyaev Yu.V. [Theoretical justification of the new electroacoustic conversion method. Linear approximation]. Doklady Akademii Nauk [Proceedings of the Academy of Sciences], 2018, vol. 483, no. 3, pp. 265—268. (In Russ.).
  4. Sharfarets B.P., Kurochkin V.E., Sergeev V.A., Gulyaev Yu.V. [On electroacoustic transformation method based on electrokinetic phenomena]. Akust. zhurn. [Acoustical Physics], 2020, vol. 66, no. 4, pp. 453—462. (In Russ.).
  5. Sharfarets B.P., Kurochkin V.E., Sergeev V.A. [On operation of electroacoustic transducer based on electrokinetic phenomena in turbulent fluid movement mode]. Akust. zhurn. [Acoustical Physics], 2020, vol. 66, no. 5, pp. 575—580. (In Russ.).
  6. Sharfarets B.P., Kurochkin V.E., Sergeev V.A., Dmitriev S.P., Telyatnik S.G. [About electroacoustic transducer based on the use of electrokinetic phenomena]. Trudy vserossiyskoy akusticheskoy konferenzii [Works of the All-Russian Acoustic Conference], SPb., Politechpress Publ., 2020, pp. 445—450. (In Russ.).
  7. Kasimzade M.S., Chalilov R.F., Balashov A.N. Elektrokineticheskie preobrazovateli informazii [Electrokinetic Data Converters]. Moscow, Energiya Publ., 1973. 136 p. (In Russ.).
  8. Shishov S.V., Andrianov S.A., Dmitriev S.P., Ruchkin D.V. Method of converting electric signals into acoustics oscillations and an electric gas-kinetic transducer. United States Patent # US 8,085,957,B2, Dec. 27, 2011.
  9. Duchin S.S., Deryagin B.V. Elektroforez [Electrophoresis]. Noscow, Nauka Publ., 1986. 332 p. (In Russ.).
  10. Guz' A.N. Vvedenie v dinamiku szhimaemoy vyazkoy zhidkosti [Introduction to compressible viscous fluid dynamics]. Saarbrucken, LAP Lambert Acad. Publ., 2017. 252 p. (In Russ.).
 

I. V. Andronov1, A. A. Lobashev2, A. Yu. Petrov3, S. N. Tropkin4

MODELING OF THE STANDARD MACHINE TO REPRODUCE FIELDS OF MECHANICAL STRESSES

"Nauchnoe Priborostroenie", 2021, vol. 31, no. 2, pp. 52—65.
doi: 10.18358/np-31-2-i5265
 

The paper concerns the problem of practical measurement of mechanical stresses in industrial objects. The signal dependencies of different nondestructive testing devices on the stresses are discussed. Results of numerical modeling of the mechanical stresses that can be reproduced by the suggested standard machine are presented. A number of questions that should be solved to turn nondestructive testing into the measurements of mechanical stresses is discussed.
 

Keywords: nondestructive testing, tensor of mechanical stress, standard machine

Author affiliations:

1St. Petersburg State University, V.A. Fock Institute in Physics, Russia
2D.I. Mendeleyev Institute for Metrology VNIIM, St. Petersburg, Russia
3Engineering company TESIS, Department in St. Petersburg, Russia
4Engineering company TESIS, Moscow, Russia

 
Contacts: Andronov Ivan Viktorovich , i.andronov@spbu.ru
Article received by the editorial office on 26.01.2021
Full text (In Russ./ In Eng.) >>

REFERENCES

  1. V mire nerazrushajushhego kontrolja [In the world of non-destructive testing], 2018, vol. 21, no. 1. (In Russ.).
  2. Lur'e A.I. Teorija uprugosti [Theory of elasticity]. Moscow, Nauka Publ., 1970. 940 p. (In Russ.).
  3. Ostrivnoy A.F., Ivanov S.Yu., Vengrinovich V.L., et al. [Mechanical stress reference device and transition from stress non-destructive evaluation to its measurement]. Kontrol'. Diagnostika [Testing. Diagnostics], 2011, vol. 6, pp. 44—51. (In Russ.).
  4. Nikitina N.E. Akustouprugost'. Opyt prakticheskogo primenenija [Acustoelastic. Practical experience]. Nizhnij Novgorod, TALAM Publ., 2005. 208 p. (In Russ.).
  5. Nikitina N.Y., Kamyshev A.V., Smirnov V.A., et al. [Determination of axial and circumferential stresses in the wall of a closed tube via an ultrasonic method using the acoustoelasticity effect]. Defektoskopija [Russian Journal of Nondestructive Testing], 2006, vol. 3, pp. 49—54. (In Russ.).
  6. Vengrinovich V.L., Vintov D.A., Prudnikov A.N., et al. [Features of measurement of stresses and deformations in ferromagnets by the Barkgausen noise]. Kontrol'. Diagnostika [Testing. Diagnostics]. 2017, vol. 8, pp. 10—17. (In Russ.). DOI: 10.14489/td.2017.08.pp.010-017
  7. Ostrivnoy A.F., Lobashev A.A. [Metrological assurance of mechanical stress measurements]. V mire nerazrushajushhego kontrolja [In the world of non-destructive testing], 2017, vol. 20, no. 3, pp. 58—61. (In Russ.). DOI: 10.12737/article_599da5c4e84b48.20152207
  8. Lobashev A.A. [Measuring mechanical stress: challenges and perspectives]. Nerazrushajushhij kontrol' i diagnostika. Belorusskij jelektronnyj centr "Nauka" [Nondestructive testing and diagnostics. Belarusian Electronic Center "Science"], 2018, vol. 4.
  9. Andronov I.V. Generalized Point Models in Structural Mechanics. Singapore–NewJersey–London–HongKong, WorldScientific, 2002. 275 p.
 

S. P. Dmitriev1, V. E. Kurochkin2, B. P. Sharfarets2

ABOUT COMPARING CONDENSER AND ELECTROKINETIC MICROPHONES

"Nauchnoe Priborostroenie", 2021, vol. 31, no. 2, pp. 66—76.
doi: 10.18358/np-31-2-i6676
 

Basing on the analysis of the physical features of the operation of the microphone on electrokinetic phenomena, it has been experimentally confirmed that this microphone works on a functional principle different from the principle of operation of a condenser microphone. It is shown that a microphone based on electrokinetic phenomena can increase its sensitivity by up to about 40 dB due to pumping. Comparison of two experimental studies shows that the sensitivity of an electrokinetic microphone can strongly depend on the size of the porosity of the dielectric placed between the electrodes of the microphone.
 

Keywords: condenser microphone, microphone on electrokinetic phenomena, pump voltage, microphone sensitivity

Author affiliations:

1Bioproduct ltd, Moscow, Russia
2Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia

 
Contacts: Sharfarets Boris Pinkusovich, sharb@mail.ru
Article received by the editorial office on 11.02.2021
Full text (In Russ./ In Eng.) >>

REFERENCES

  1. Sergeev V.A., Sharfarets B.P. [About one new method of electroacoustic transformation. Theory based on electrokinetic phenomena. Part I. Hydrodynamic aspect]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2018, vol. 28, no. 2, pp. 25—35. DOI: 10.18358/np-28-2-i2535 (In Russ.).
  2. Sergeev V.A., Sharfarets B.P. [About one new method of electroacoustic transformation. Theory based on electrokinetic phenomena. Part II. Acoustic aspect]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2018. vol. 28, no. 2, pp. 36—44. DOI: 10.18358/np-28-2-i3644 (In Russ.).
  3. Kurochkin V.E., Sergeev V.A., Sharfarets B.P., Gulyaev Yu.V. [Theoretical justification of the new electroacoustic conversion method. Linear approximation]. Doklady Akademii Nauk [Proceedings of the Academy of Sciences], 2018, vol. 483, no. 3, pp. 265—268. (In Russ.).
  4. Sharfarets B.P. [ Implementation of receiving antenna using mechanism of electrokinetic phenomenon "flow potential" ]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2019. vol. 29, no. 2, pp. 103—108. DOI: 10.18358/np-29-2-i103108 (In Russ.).
  5. Sharfarets B.P., Kurochkin V.E., Sergeev V.A., Gulyaev Yu.V. [On electroacoustic transformation method based on electrokinetic phenomena]. Akust. zhurn. [Acoustical Physics], 2020, vol. 66, no. 4, pp. 453—462. (In Russ.).
  6. Sharfarets B.P., Kurochkin V.E., Sergeev V.A. [On operation of electroacoustic transducer based on electrokinetic phenomena in turbulent fluid movement mode]. Akust. zhurn. [Acoustical Physics], 2020, vol. 66, no. 5, pp. 575—580. (In Russ.).
  7. Sharfarets B.P., Kurochkin V.E., Sergeev V.A. [About acoustoelectric transducer based on the use of electrokinetic phenomena]. Trudy vserossiyskoy akusticheskoy konferenzii [Works of the All-Russian Acoustic Conference], SPb., Politechpress Publ., 2020, pp. 439—444. (In Russ.).
  8. Sharfarets B.P., Kurochkin V.E., Sergeev V.A., Dmitriev S.P., Telyatnik S.G. [About electroacoustic transducer based on the use of electrokinetic phenomena]. Trudy vserossiyskoy akusticheskoy konferenzii [Works of the All-Russian Acoustic Conference], SPb., Politechpress Publ., 2020, pp. 445—450. (In Russ.).
  9. Sapozhkov M.A. Elektroakustika [Electroacoustics]. Moscow, Svyaz' Publ., 1978. 272 p. (In Russ.).
  10. Efrussi M.M. Mikrofony i ich primenenie [Microphones and their application]. Moscow, Energiya Publ., 1974. 89 p. (In Russ.).
  11. Vachitov Sh.Ya., Kovalgin Yu.A., Fadeev A.A., Schev'-ev Yu.P. Akustika [Acoustics]. Moscow, Goryachaya liniya-Telekom Publ., 2009. 660 p. (In Russ.).
  12. Vachitov Ya.Sh. Teoreticheskie osnovy elektroakustiki i elektroakusticheskaya apparatura [Theoretical foundations of electroacoustics and electroacoustic equipment]. Moscow, Iskusstvo Publ., 1982. 416 p. (In Russ.).
  13. Yavorskiy E.M., Detlaf A.A. Spravochnik po fizike [Physics Handbook]. Moscow, Nauka Publ., 1971. 940 p. (In Russ.).
  14. Isakovich M.A. Obschaya akustika [General acoustics]. Moscow, Nauka Publ., 1973. 496 p. (In Russ.).
  15. Kasimzade M.S., Chalilov R.F., Balashov A.N. Elektrokineticheskie preobrazovateli informazii [Electrokinetic Data Converters]. Moscow, Energiya Publ., 1973. 136 p. (In Russ.).
 

S. P. Dmitriev1, V. E. Kurochkin2, B. P. Sharfarets2

ON THE QUESTION OF THE SENSITIVITY OF A NEW TYPE OF MICROPHONE

"Nauchnoe Priborostroenie", 2021, vol. 31, no. 2, pp. 77—83.
doi: 10.18358/np-31-2-i7783
 

A new type of microphone is proposed, one of the distinguishing features of which is a variable sensitivity, which depends on the magnitude of the constant electric pumping voltage. In addition, a matching device (mediator) has been created that allows to significantly increase the sensitivity of the microphone. In the course of experiments, a significant increase in sensitivity was confirmed, both due to a charge pump and the use of a mediator. In the course of the experiments, the microphone sensitivity was obtained equal to 1990.5 mV / Pa at 1000 V pumping.
 

Keywords: microphone, pump voltage, mediator, microphone sensitivity, external noise interference

Author affiliations:

1Bioproduct ltd, Moscow, Russia
2Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia

 
Contacts: Sharfarets Boris Pinkusovich, sharb@mail.ru
Article received by the editorial office on 07.04.2021
Full text (In Russ./ In Eng.) >>

REFERENCES

  1. Sharfarets B.P., Dmitriev S.P. [ Modeling of turbulent fluid motion based on the Boussinesq hypothesis. Overview ]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2018, vol. 28, no. 3, pp. 101—108. DOI: 10.18358/np-28-3-i101108 (In Russ.).
  2. Sharfarets B.P., Kurochkin V.E., Sergeev V.A., Dmitriev S.P., Telyatnik S.G. [About electroacoustic transducer based on the use of electro-kinetic phenomena]. Trudy vserossiyskoy akusticheskoy konferenzii [Works of the All-Russian Acoustic Conference], Saint Petersburg, Politechpress Publ., 2020, pp. 445—450. (In Russ.).
  3. Sharfarets B.P. [ Implementation of receiving antenna using mechanism of electrokinetic phenomenon "flow potential" ]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2019, vol. 29, no. 2, pp. 103—108.
  4. Dmitriev S.P., Kurochkin V.E., Sharfarets B.P. [On the improvement of the mathematical model of the electroacoustic transducer under the condition of a thin double layer in the porous structure of the transducer body]. Nauchnoe Priborostroenie [Scientific Instru­mentation], 2021, vol. 31, no. 2, pp. 44—51. (In Russ.).
  5. Shishov S.V., Andrianov S.A., Dmitriev S.P., Ruchkin D.V. Method of converting electric signals in to acoustics oscillations and an electric gas-kinetic transducer. United States Patent # US 8,085,957,B2 Dec. 27, 2011.
  6. Vikipedia: Mikrofon [Vikipedia: Mikrofon]. URL: https://en.wikipedia.org/wiki/Microphone
 

R. Yu. Antonov

GRAIN DESCRIPTION BY A RANDOMLY INHOMOGENEOUS OPTICAL MEDIUM MODEL FOR THE INTERLABORATORY MATCHING OF VITREOUSNESS MEASUREMENTS

"Nauchnoe Priborostroenie", 2021, vol. 31, no. 2, pp. 84—92.
doi: 10.18358/np-31-2-i8492
 

Currently, due to the appearance of instrumental objective methods for determining grain vitreousness, it is possible to ensure the uniformity of measurements of this indicator in a number of laboratories. The article proposes a model for describing grain as an inhomogeneous optical medium and an interpretation of the vitreousness index as a characteristic of light scattering. A method for calculating the parameters of mathematical model and estimating the scattering coefficient using an RGB camera is presented. It is shown that the implementation of the grain vitreousness measurements based on the scattering coefficient makes possible to obtain a satisfactory reproducibility in between-lab measurements.
 

Keywords: measurement automation, measurement matching, vitreousness, math simulation, optical properties of grain

Author affiliations:

Ekan Ltd, Saint Petersburg, Russia

 
Contacts: Antonov Roman Yurievitch, roman.ekan@yandex.ru
Article received by the editorial office on 03.03.2021
Full text (In Russ./ In Eng.) >>

REFERENCES

  1. Dowel F.E. Differentiating vitreous and non-vitreous durum wheat kernels by using near-infrared spectroscopy. Cereal Chem., 2000, vol. 77, no. 2, pp. 155—158. DOI: 10.1094/CCHEM.2000.77.2.155
  2. Troshkin D.E., Gorbunova E.V., Chertov A.N., et al. [Determination of wheat vitreosity with machine vision in the near ir wavelength range]. Izvestiya vysshikh uchebnykh zavedeniy. Priborostroenie [Journal of Instrument Engineering], 2020, vol. 63, no. 7, pp. 666—672. (In Russ.).
  3. Neethirajan S., Karunakaran C., Symons S., Jayas D.S. Classification of vitreousness in durum wheat using soft X-rays and transmitted light images. Computers and electronics in agriculture, 2006, vol. 53, is. 1, pp. 71—78. DOI: 10.1016/j.compag.2006.03.001
  4. Zajcev V.B., Zverev S.V. Sposob razdelenija zerna mukomol'no-krupjanyh kul'tur po pokazatelju steklovidnosti. Patent RF no. 2708159 C1 B07C 5/342. [Patent for Processing Grain Separation Method by Glassy Index]. Prioritet 04.12.2019. (In Russ.).
  5. Antonov R.Yu. [Possibilities of automatic wheat vitreousness determination by digital image analysis]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2020, vol. 30, no. 3, pp. 63—74. DOI: 10.18358/np-30-3-i6374. (In Russ.).
  6. GOST 10987-76. Zerno. Metody opredeleniya steklovidnosti [Grain. Methods for determination of vitreousness]. Moscow, Standards Publ., 1976. 5 p. (In Russ.).
  7. Kubelka P., Munk F. Ein Beitrag zur Optik der Farbanstriche. Zs. Tech. Phys., 1931, vol. 12, pp. 593—601.
  8. Isimaru A. Rasprostranenie i rassejanie voln v sluchajno-neodnorodnyh sredah, tom. 1 [Wave propagation and scattering in randomly heterogeneous environments, vol. 1]. Moscow, Mir Publ., 1981. 280 p. (In Russ.).
  9. GOST R 50779.60-2017 (ISO 13528:2015) Statisticheskie metody. Primenenie pri proverke kvalifikazii posredstvom mezhlaboratornych ispytaniy [Statistical methods. Application in qualification testing by inter-laboratory tests]. (In Russ.).
  10. GOST ISO/IEC 17043-2013 Ozenka sootvetstviya. Obschie trebovaniya k proverke kvalifikazii laboratoriy Conformity Assessment [General requirements for laboratory qualification verification]. (In Russ.).
 

D. L. Osipov, A. A. Gavrishev

ANALYSIS OF THE USE OF CHAOTIC SIGNALS FILTERED
WITH A BANDPASS FILTER FOR DATA TRANSFER OPERATION IN RADIO COMMUNICATION SYSTEMS

"Nauchnoe Priborostroenie", 2021, vol. 31, no. 2, pp. 93—104.
doi: 10.18358/np-31-2-i93104
 

The analysis of the use of chaotic signals filtered through a broadband bandpass filter to ensure stealth and reliability of data transmission operations in radio communication systems is carried out. Time realizations of chaotic signals generated by the well-known Chua and Rikitake generators are obtained. They were filtered using a broadband bandpass filter, and the data obtained was studied using BDS-statistic and crest factor. As a result of the studies, it was found that under certain research conditions, time realizations of Chua generator and Rikitake generator, obtained by broadband filtering, are suitable. Other considered time realizations are not suitable for radio communication systems, since either they have low stealth from the outside observer, or they have an unacceptable crest factor value for radio communication systems. From this we can conclude that filtering chaotic signals using a broadband bandpass filter as a whole is a promising approach to ensure the stealth and reliability of data transmission in radio communication systems. The authors, basing on the conducted research and conclusions from well-known works, consider it appropriate to use broadband filtering to ensure the stealth and reliability of data transmission in radio communication systems when using chaotic signals, along with widely used methods.
 

Keywords: bandpass filtering, chaotic signals, communication systems, stealth, reliability

Author affiliations:

North-Caucasus Federal University, Stavropol, Russia

 
Contacts: Gavrishev Aleksej Andreevich, alexxx.2008@inbox.ru
Article received by the editorial office on 24.01.2021
Full text (In Russ./ In Eng.) >>

REFERENCES

  1. Varakin L.E. Sistemy svjazi s shumopodobnymi signalami [Noise-like communication systems]. Moscow, Radio i svjaz' Publ., 1985. 384 p. (In Russ.).
  2. Emel'yanov R.Y., Kuz'min L.V. [Compensation of a narrowband interference in an ultrawideband communication system based on chaotic radio pulses]. Radiotehnika i jelektronika [Journal of communications technology and electronics], 2011, vol. 56, no. 1, pp. 67—76. (In Russ.). DOI: 10.1134/S1064226910121095
  3. Kuz'min L.V., Emel'yanov R.Y. [Orthogonal basis for non-coherent reception of ultra-wideband chaotic radio pulses]. Materialy IV Vserossijskoj nauchnoj konferencii "Sverhshirokopolosnye signaly v radiolokacii, svjazi i akustike" [Materials of the IV All-Russian Scientific Conference "Ultra-wideband signals in radar, communications and acoustics"]. Murom, 2013. pp. 49—54. (In Russ.).
  4. Vasyta K.S., Ozerov S.V., Malyshev A.A. [Improving communication stealth binary messages in chaotic radio communications system by filtering chaotic carrier]. Zb³rnik naukovih prac' Hark³vs'kogo un³versitetu Pov³trjanih Sil [Scientific Works of Kharkiv National Air Force University], 2013, no. 2 (35), pp. 71—74. (In Russ.).
  5. Kipchatov A.A., Krasichkov L.V. [Changing the structure of a strange attractor during band filtering of chaotic oscillations]. Pis'ma v ZhTF [Applied Physics Letters], 1993, vol. 19, no. 17, pp. 68—71. (In Russ.).
  6. Badii R., Broggi G., DerighettiB., et al. Dimension increase in filtered chaotic signals. Phys. Rev. Lett., 1988, vol. 60, no. 11, pp. 979. DOI: 10.1103/PhysRevLett.60.979
  7. Rapp P.E., Albano A.M., Schmah T.I., Farwell L.A. Filtered Noise Can Mimic Low-Dimensional Chaotic Attractors. Phys. Rev. E, 1993, vol. 47, no. 4, pp. 2289—2297. DOI: 10.1103/PhysRevE.47.2289
  8. Efimov I.P. Proektirovanie elektronnyh fil'trov: metodicheskie ukazanija po kursovomu proektirovaniju dlja studentov [Electronic Filter Design: Course Design Guidelines for Students]. Ul'janovsk, UGTU Publ., 1999. 33 p. (In Russ.).
  9. Layec A. "Modnum". Scilab toolbox for the communication systems. User's guide. IRCOM Group, 2006. 100 p.
  10. Gavrishev A.A., Osipov D.L. [Application of the scicoslab software package for construction and analysis wireless communication systems on the example of chaotic signal generators]. Innovacii v obrazovanii [Innovation in Education], 2020, no. 3, pp. 122—136. (In Russ.).
  11. Pehlivan I., Rikitake Y.U. Attractor and It’s Synchronization Application for Secure Communication Systems. Journal of Applied Sciences, 2007, vol. 7, no. 2, pp. 232—236. DOI: 10.3923/jas.2007.232.236 .
  12. Vasyta K.S., Ozerov S.V., Zots F.F. [Throughput analysis and secrecy mimo-radio system for chaotic carrier]. Sistemi obrobki ³nformac³¿ [Information Processing Systems], 2012, no. 9 (107), pp. 21—24. (In Russ.).
  13. Vasyta K.S. [Classification of Processes in Information and Communication Radio Systems Using BDS Statistics]. Problemy telekommunikacij [Telecommunications problems], 2012, no. 4 (9), pp. 63—71. (In Russ.).
  14. Vasyta K.S., Ozerov S.V., Koroljuk A.N. [Features of construction of steganographic radio communication systems]. Problemy telekommunikacij [Telecommunications problems], 2012, no. 3 (8), pp. 94—104. (In Russ.).
  15. Gavrishev A.A. [Modeling and quantitative analysis of common secure communication systems]. Prikladnaja informatika [Journal of Applied Informatics], 2018, vol. 13, no. 5 (77), pp. 84—122. (In Russ.).
  16. Loginov S.S. Cifrovye radiojelektronnye ustrojstva i sistemy s dinamicheskim haosom i variaciej shaga vremennoj setki. Diss. dr. techn. nauk [Digital avionics and systems with dynamic chaos and time grid pitch variation dr. techn. sci. diss.]. Kazan, 2015. 228 p. (In Russ.).
  17. Gavrishev A.A., Gavrishev A.N. [To the question of calculating the crest factor values of signals generated by common hidden communication systems]. Vestnik NTsBZhD [Bulletin of NCBJD], 2020, no. 3 (45), pp. 149—157. (In Russ.).
 

Ulitsa Ivana Chernykh, 31-33, lit. A, St. Petersburg, Russia, 198095, P.O.B. 140
tel: (812) 3630719, fax: (812) 3630720, mail: iap@ianin.spb.su

content: Valery D. Belenkov design: Banu S. Kuspanova layout: Anton V. Manoilov