logo
blue band <-
  JOURNAL "NP" ISSUES

"Nauchnoe Priborostroenie", 2020, Vol. 30, no. 3. ISSN 2312-2951, DOI: 10.18358/np-30-3-2049

"NP" 2020 year Vol. 30 no. 3.,   ABSTRACTS

ABSTRACTS, REFERENCES

B. P. Sharfarets, V. E. Kurochkin

ON THE ISSUE OF LINEAR ELECTROPHORESIS
OF IONS IN AN ELECTROLYTE

"Nauchnoe priborostroenie", 2020, vol. 30, no. 3, pp. 3—8.
doi: 10.18358/np-30-3-i38
 

Based on materials from classical sources, the features of linear electrophoresis of ions in an electrolyte in a constant electric field for the cases of a thin and thick double layer in the vicinity of ions are described. It is shown by the example of a spherical ion that his ζ-potential does not depend on whether the ion is charged with a space charge or its surface is charged with a surface charge provided that the total charges of the volume or surface of the ion are equal. The results can be useful in the theory and practice of biopolymer sequencing.
 

Keywords: constant electric field, electrophoresis, surface electric potential, zeta potential of the ion, ion space charge, surface charge of ion, thin double layer, thick double layer

Authors affiliation:

Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia

 
Contacts: Sharfarets Boris Pinkusovich, sharb@mail.ru
Article received by the editorial office on 29.05.2020
Full text (In Russ.) >>

REFERENCES

  1. Duhin S.S., Deryagin B.V. Elektroforez [Electrophoresis]. Moscow, Nauka Publ., 1976. 328 p. (In Russ.).
  2. James A.M., Davies C.W. A Dictionary of Electrochemistry. Palgrave Macmillan, UK, 1976. 246 p. (Russ. Ed.: Davis S., James A. Elektrohimicheskij slovar. Moscow, Mir Publ., 1979. 287 p.). DOI: 10.1007/978-1-349-02820-7
  3. Bruus H. Theoretical Microfluidics. Oxford University Press, 2008. 346 p.
  4. Yavorsky B.M., Detlaf A.A. Spravochnik po fizike [Reference book on physics]. Moscow, Nauka Publ., 1968. 940 p. (In Russ.).
  5. Sivukhin D.V. Obshchij kurs fiziki. T. III. Elektrichestvo [General course in physics, Vol. 3. Electricity]. Moscow, Fizmatlit Publ., 2004. 656 p. (In Russ.).
  6. Newman J. Electrochemical Systems. Wiley-Interscience, 672 p. (Russ. Ed.: Nyumen Dzh. Elektrohimicheskie sistemy. Moscow, Mir Publ., 1977. 464 p.).
 

B. P. Sharfarets, V. E. Kurochkin

ELECTROPHORESIS ON THE TOTAL CONSTANT AND HARMONIC ELECTRIC FIELD.
I. HARMONIC ELECTRIC FIELD, A REVIEW OF THE STATE OF THE ISSUE

"Nauchnoe Priborostroenie", 2020, vol. 30, no. 3, pp. 9—18.
doi: 10.18358/np-30-3-i918
 

The previously proposed mechanisms for creating an alternating electric field of nonlinear stationary flows near dispersed particles: inertial and polarizing, are analyzed. Such a consideration was undertaken by the authors in order to study in the following works the effect of the joint use of electrophoresis in a constant and an alternating electric field. In the process of considering the existing models of the appearance of stationary flows under the influence of an alternating field due to the presence of polarization effects, it was found that in addition to the stationary flow and the sinusoidal flow at the frequency of the driving sinusoidal field, an sinusoidal flow occurs at a dual frequency. These results may be useful in the possible implementation of electrophoresis in the total constant and alternating electric field.
 

Keywords: electrophoresis, electric field, dispersed particle, variable flows, stationary flows,
the Navier-Stokes equation, double frequency flows

Authors affiliation:

Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia

 
Contacts: Sharfarets Boris Pinkusovich, sharb@mail.ru
Article received by the editorial office on 8.05.2020
Full text (In Russ.) >>

REFERENCES

  1. Zhukov A.N., Kurochkin V.E., Sharfarets B.P. [On the nonlinearity of electrokinetic phenomena. Overview]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2020, vol. 30, no. 1, pp. 17—21. DOI: 10.18358/np-30-1-i1721 (In Russ.).
  2. Kurochkin V.E., Sharfarets B.P. [On the mobility of ions during electrophoresis in a homogeneous liquid and in porous media in the case of a linear dependence of the velocity on the amplitude of the electric voltage vector]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2020, vol. 30, no. 2, pp. 33—40. DOI: 10.18358/np-30-2-i3349 (In Russ.).
  3. Mishchuk N.A., Barinova N.O. [Theoretical and experimental study of nonlinear electrophoresis]. Kolloidnyj zhurnal [ Colloid Journal ], 2011, vol. 73, no. 1, pp. 74—82. DOI: 10.1134/S1061933X11010133
  4. Duhin S.S., Deryagin B.V. Elektroforez [Electrophoresis]. Moscow, Nauka Publ., 1976. 328 p. (In Russ.).
  5. Murtcovkin V.A. Elektrogidrodinamicheskie effekty v poverhnostnyh yavleniyah. Diss. dok. fiz. mat. nauk [Electrohydrodynamic effects in the superficial phenomena. dock. phys. math. sci. diss.]. Moscow, Frumkin Institute of Physical chemistry and Electrochemistry Russian academy of sciences, 1992. 300 p. (In Russ.).
  6. Murtcovkin V.A. [Nonlinear flows near polarized particulate matter]. Kolloidny zhurnal [Colloidal journal], 1996, vol. 58, no. 3, pp. 358—367. (In Russ.).
  7. Landau L.D., Lifshiz E.M. Teoreticheskaya fizika. T. 6. Gidrodinamika [Theoretical physics. Vol. 6. Hydrodynamics]. Moscow, Nauka Publ., 1986. 736 p. (In Russ.).
  8. Happel J., Brenner H. Low Reynolds number hydrodynamics. Springer, Netherlands, 1983. 553 p. (Russ. Ed.: Happel Dzh., Brenner G. Gidrodinamika pri malyh chislah Rejnoldsa. Moscow, Mir Publ., 1976. 630 p. DOI: 10.1007/978-94-009-8352-6
  9. Levich V.G. Fiziko-himicheskaya gidrodinamika [Physical and chemical hydrodynamics]. Moscow–Izhevsk, Institute of Computer Science, 2016. 708 p. (In Russ.).
  10. Dukhin S.S., Shilov V.N. Dielektricheskie yavleniya i dvojnoj sloj v dispersnyh sistemah i polielektrolitah [Dielectric phenomena and double layer in disperse systems and polyelectrolytes]. Kiev, Naukova dumka Publ., 1972. 207 p. (In Russ.).
  11. Shilov V.N., Dukhin S.S. [Theory of polarization of the diffuse part of the double layer of a spherical particle in a variable electric field]. Kolloidny zhurnal [Colloidal journal], 1970, vol. 32, no. 1, pp. 117—123. (In Russ.).
  12. Simonov I.N., Shilov V.N. [Theory of polarization of the diffuse part of the thin double layer of spherical conducting particles in an alternating electric field]. Kolloidny zhurnal [Colloidal journal], 1973, vol. 35, no. 2, pp. 381—385. (In Russ.).
  13. Simonova T.S., Dukhin S.S. [Nonlinear polarization of diffuse part of thin double layer of spherical particle]. Kolloidny zhurnal [Colloidal journal], 1976, vol. 38, ¹1. C. 79—85. (In Russ.).
  14. Continuity equation // Wikipedia.
  15. Bruus H. Theoretical microfluidics. Oxford University Press, 2008. 346 p.
  16. Newman J. Electrochemical Systems. Wiley-Interscience, 672 p. (Russ. Ed.: Nyumen Dzh. Elektrohimicheskie sistemy. Moscow, Mir Publ., 1977. 464 p.).
 

V. B. Khabarov, A. K. Buryak

INFLUENCE OF LIGHT WAVE LENGTH ON SENSITIVITY
OF REFRACTOMETRIC DETECTOR FOR HPLC

"Nauchnoe priborostroenie", 2020, vol. 30, no. 3, pp. 19—28.
doi: 10.18358/np-30-3-i1928
 

The object of analysis is the sensitivity of a refractometric detector for HPLC. The detector is equipped with a quartz cell with two and three end-to-end channels, given the aperture width of 50, 75, 100 microns and light sources with a wavelength of light of λ = 650 nm from laser module; of λ = 430—520 nm (max=460 nm) and λ = 610—760 nm (max=650 nm) from LEDs and of λ = 450—530 nm from a tungsten filament with a filter. It’s shown that a refractometric detector developed for HPLC and provided with a laser module and quartz cuvette with three end-to-end channels on conditions that a diaphragm width is 75 μm and a chromatographic path is of fluoroplastic has an optical scheme that increases a sensitivity of determination of organic and inorganic compounds in comparison to a prototype in 6—7 times, an analogue – in 16—17 times.
 

Keywords: HPLC, refractometric detector, quartz cuvette, laser module, LED module, light bulb, tungsten filament

Captions to figures and tables:

Fig. 1. Optical-mechanical block of RD (refract. detector), view a, b.

1 – laser module (15 × 8 mm, 3 V, 1 mW, λ = 650 nm); 2 – objective; 3—5 – objective lenses; 6 – diaphragm in the form of a slit 75 microns wide; 7 – a flowthrough quartz cell with three end-to-end channels (7 ', 7 ", 7'") is mounted between the plates of fluoroplastic in the body of the cell 8 with the use of the cover 9 and four screws 10; 11—13 – channels for attaching fluoroplastic capillaries in the lower part of the cuvette body; 14—16 – channels for attaching fluoroplastic capillaries in the upper part of the cuvette body; 17 – a prism for aligning the detector with reference substances; 18 – plane-parallel quartz grounding plate; 19 – a photodiode with two photosensitive pads; 20, 21 – pipes of the heat exchanger

Tab. 1. The results of the analysis of aqueous solutions of glucose and potassium chloride at a flow rate of 0.1 ml / min of distilled water as eluent and detection of the RIDK 102 RD equipped with a quartz cuvette with two end-to-end channels. The light source is a bulb with a tungsten filament [2]

Tab. 2. The results of the analysis of aqueous solutions of glucose and potassium chloride with a flow rate of distilled water as eluent of 0.1 ml / min and while detecting with the use of a RD equipped with a laser module, a LED module, a bulb with a tungsten filament. The analysis is fulfilled in a quartz cuvette with three end-to-end channels and with a diaphragm width of 50, 75 and 100 microns

Fig. 2. The dynamic range of detection of potassium chloride and glucose with the use of a refractometric detector equipped with a quartz cuvette with three end-to-end channels, a laser module and a fluoroplastic liquid path. A diaphragm width is 75 μm and a flow rate of distilled water is 0.08 ml / min. Sample loop volume is 10 μl

Tab. 3. The results of analysis carried out on a glass column (150 × 3 mm) with a polydivinylbenzene sorbent (FR. 10 μm) of aqueous solutions of glucose and potassium chloride. The detecting RD was equipped with a laser module (λ = 650 nm, 1 mW, point 3 mm in diameter), quartz cuvette with three end-to-end channels. Diaphragm width – 75 μm

Tab. 4. Metrological characteristics of the RD with a laser modulus (γ = 650 nm, 1 mW, point with a diameter of 3 mm), a quartz cuvette with three through channels, with a diaphragm width of 75 μm, detector temperature 20ºC when analyzing aqueous solutions of glucose and potassium chloride [20]

Authors affiliation:

A.N. Frumcin Institute of Physical Chemistry and Electrochemistry of RAS, Moscow, Russia

 
Contacts: Khabarov Victor Borisovitch, Victor.Khabarov2013@yandex.ru
Article received by the editorial office on 12.05.2020
Full text (In Russ.) >>

REFERENCES

  1. Khabarov V.B., Lvov A.I., Buryak A.K., Khabarov M.V. Refraktometricheskij detektor s lazernym modulem i hromatograficheskim traktom v bezmetallicheskom ispolnenii dlya zhidkostnoj hromatografii i sposob detektirovaniya organicheskih i neorganicheskih veshchestv refraktometricheskim detektorom [The refractometric detector with laser modulus and chromatographic path in metal-free design for liquid chromatography and method for detection of organic and inorganic substances by refractometric detector]. Patent RF no. 2589374. Prioritet 27.03.2015. (In Russ.).
  2. Khabarov V.B., Pronin A.Ya., Panina L.I., Buryak A.K. Ustrojstvo krepleniya i germetizacii kvarcevoj kyuvety v refraktometricheskom detektore dlya zhidkostnoj hromatografii [The device for fixation and sealing of quartz cuvette in refractometric detector for liquid chromatography]. Patent RF no. 2362143. Prioritet 10.04.2008. (In Russ.).
  3. Khabarov V.B., Lvov A.I., Khabarov M.V., Buryak A.K. [Highly sensitive laser modulated refractometric detector for analysis of reaction organic and inorganic compounds by HPLC]. Sbornik materialov 2-y Vserossijskoj nauchno-prakticheskoj konferencii "Nauchnoe priborostroenie – sovremennoe sostoyanie i perspektivy razvitiya" [Proc. of the 2nd All-Russian Scientific and Practical Conference "Scientific Development – Modern State and Development Prospects"]. Kazan, 2018, pp. 303—305. (In Russ.).
  4. Anisimov A.V., Bulat O.E., Popkovich G.B., Lobazov A.F., Khadzhinov E.M. Refraktometricheskij detektor dlya zhidkostnoj hromatografii [Refractometric detector for liquid chromatography]. Patent RB no. 9391. Prioritet 30.06.2007. (In Russ.).
  5. Khabarov V.B., Pronin A.Ya., Ermakov V.V., Buryak A.K., Khabarov M.V. Sposob prigotovleniya vysokoeffektivnyh kolonok s polimernymi sorbentami dlya zhidkostnoj hromatografii [Method of preparing high-performance columns with polymer sorbents for liquid chromatography]. Patent RF no. 2278379. Prioritet 07.02.2005. (In Russ.).
  6. Pronin A.Ya., Khabarov V.B., Ospennikova O.G., Pikulina L.V., Antipin L.M., Larionov O.G. Sposob opredeleniya molekulyarno-massovogo raspredeleniya oligomerov etoksisiloksanov v gidrolizovannyh i negidrolizovannyh etilsilikatah [Method of determining molecular weight distribution of ethoxysiloxanes oligomers in hydrolyzed and non-hydrolyzed ethyl silicates]. Patent RF no. 2280252. Prioritet 16.12.2004. (In Russ.).
  7. Khabarov V.B., Pronin A.Ya., Ospennikova O.G., Pikulina L.V. Sposob izgotovleniya keramicheskih obolochkovyh form dlya tochnogo lit'ya metallov po vyplavlyaemym modelyam [Method of making ceramic shell molds for accurate casting of metals according to alloy models]. Patent RF no. 2296645. Prioritet 27.09.2005. (In Russ.).
  8. Khabarov V.B., Pronin A.Ya., Samuylenko A.Ya., Grin A.V. Sposob opredeleniya polimernyh molekul hitozana v preparatah hitozana. [Method of determining chitozan polymer molecules in chitosan preparations].Patent RF no. 2295127. Prioritet 31.10.2005. (In Russ.).
  9. Khabarov V.B., Pronin A.Ya., Buryak A.K. Sposob opredeleniya form sushchestvovaniya i molekulyarno-massovogo raspredeleniya polimernyh molekul kremnievoj kisloty v geotermal'nyh vodnyh rastvorah [Patent for method of determining forms of existence and molecular weight distribution of polymeric molecules of silicic acid in geothermal aqueous solutions]. Patent RF no. 2330280. Prioritet 20.11.2006. (In Russ.).
  10. Khabarov V.B., Pronin A.Ya., Buryak A.K., Samuylenko A.Ya. [Possibilities of molecular chemical analysis by HPLC using a polymer sorbent based on highly crosslinked polydiv-nylbenzene]. Doklady Akademii nauk [Reports of Academy of Sciences], 2009, vol. 427, no. 1, pp. 57—60. DOI: 10.1134/S0012500809070039 (In Russ.).
  11. Khabarov V.B., Pronin A.Ya., Buryak A.K., Ospennikova O.G., Pikulina L.V. [Molecular chemical analysis by HPLC of ethoxysiloxane oligomers obtained by acid hydrolysis of ethyl silicate]. Doklady Akademii nauk [Reports of Academy of Sciences], 2009, vol. 429, no. 4, pp. 496—499. DOI: 10.1134/S0012500809120039 (In Russ.).
  12. Khabarov V.B., Pronin A.Ya., Samuylenko A.Ya., Buryak A.K., Grin A.V. [Study by HPLC of physicochemical characteristics of chitosan preparations during their manufacture and storage]. Doklady Rossijskoj akademii sel'skohozyajstvennyh nauk [Reports of the Russian Academy of Agricultural Sciences], 2009, no. 4, pp. 58—60. (In Russ.).
  13. Khabarov V.B., Pronin A.Ya., Buryak A.K. [The investigation of the chitosan and admixtures by method of the high—performance liquid chromatography at usage of the chromatographic channel of liquid chromatograph in metallic and metalless fulfilment]. Sorbtsionnye i Khromatograficheskie Protsessy [Sorption and chromatography process], 2011, vol. 11, no. 3, pp. 292—298. (In Russ.).
  14. Khabarov V.B., Panina L.I., Buryak A.K., Khabarov M.V. [Porous polymer sorbents in chromatography]. Biologicheski aktivnye veshchestva: hitozan i ego proizvodnye [Biologically active substances: chitosan and its derivatives], Samuylenko A.Ya., ed., Krasnodar, KubGAU Publ., 2018, pp. 64—168. (In Russ.).
  15. Khabarov V.B., Khabarov M.V., Buryak A.K. [Laser module refractometric detector for HPLC. Determination of physicochemical characteristics of chitosan on a column with a highly crosslinked polydivinylbenzene sorbent]. Sbornik mezhdunarodnoj nauchno-prakticheskoj konferencii, posvyashchennoj 90-letiyu so dnya rozhdeniya prof. V.A. Kirsha "Aktual'nye problemy veterinarnoj mediciny" [Proc. of the international scientific and practical conference dedicated to the 90th anniversary of the birth of prof. V.A. Kirsch "Current problems of veterinary medicine"], Kazan, FGBNU "FCTRB-VNIVI" Publ., 2018, pp. 200—205. (In Russ.).
  16. Khabarov V.B., Khabarov M.V., Buryak A.K., Pytsky I.S. [Mechanism for separation of hydrated sodium sulfate molecules on a column with a polydivinylbenzene sorbent]. Tezisy dokladov VI Vserossijskogo simpoziuma i shkoly-konferencii molodyh uchenyh "Kinetika i dinamika obmennyh processov. Rol' separation science v ekologii" [Reports of the VI All-Russian Symposium and school-conference of young scientists "Kinetics and dynamics of exchange processes. The role of separation science in ecology "], Sochi, 2017, pp. 135—138. (In Russ.).
  17. Khabarov V.B., Buryak A.K. [Separation of hydrated ethanol molecules by exclusive HPLC]. Tezisy dokladov VIII Vserossijskogo simpoziuma "Kinetika i dinamika obmennyh processov. Fundamental'nye problemy. Rol' Separation" [Reports of the VIII All-Russian Symposium "Kinetics and dynamics of exchange processes. Fundamental problems. Separation role"], Moscow, 2019, pp. 102—106. (In Russ.).
  18. Khabarov V.B., Busev S.A., Sterkhov N.V., Buryak A.K. [Determination of polyaromatic compounds in di-gel fuel by HPLC on a hyper-carb column and detection by a laser modulus refractometric detector]. Tezisy dokladov VI Vserossijskogo simpoziuma i shkoly-konferencii molodyh uchenyh "Kinetika i dinamika obmennyh processov. Rol' separation sci-ence v ekologii" [Reports of the VI All-Russian Symposium and school-conference of young scientists "Kinetics and dynamics of exchange processes. The role of separation science in ecology "], Sochi, 2017, pp. 79—81. (In Russ.).
  19. Khabarov V.B., Busev S.A., Sterkhov N.V., Buryak A.K. [Determination of polyaromatic compounds in di-gel fuel by HPLC on a hyper-carb column and detection by a laser modulus refractometric detector]. Tezisy dokladov VI Vserossijskogo simpoziuma i shkoly-konferencii molodyh uchenyh "Kinetika i dinamika obmennyh processov. Rol' separation sci-ence v ekologii" [Reports of the VI All-Russian Symposium and school-conference of young scientists "Kinetics and dynamics of exchange processes. The role of separation science in ecology "], Sochi, 2017. pp. 79—81. (In Russ.).
  20. Khabarov V.B., Lvov A.I., Khabarov M.V., Busev S.A., Buryak A.K. [Metrological characteristics of a re-fractional detector with a laser module when analyzed by HPLC of organic and inorganic compounds]. Tezisy dokladov VI Vserossijskogo simpoziuma i shkoly-konferencii molodyh uchenyh "Kinetika i dinamika obmennyh processov. Rol' separation science v ekologii" [Reports of the VI All-Russian Symposium and school-conference of young scientists "Kinetics and dynamics of exchange processes. The role of separation science in ecology "], Sochi, 2017, pp. 248—251. (In Russ.).
 

A. L. Bulyanitsa1, I. S. Cherniakov2, A. A. Evstrapov1

MODELING THE PROCESS OF BLOOD CLOT FORMATION
IN THE "ORGAN-ON-CHIP" MICROSYSTEMS

"Nauchnoe Priborostroenie", 2020, vol. 30, no. 3, pp. 29—37
doi: 10.18358/np-30-3-i 2937
 

A variant of simulating the formation of a blood clot and studying the influence of hydrodynamic and temperature conditions of the flow of a liquid medium using a microfluidic device made in accordance with the principles of creating microsystems "organ-on-a-chip" is considered. The actual formation of a blood clot is physically imitated by the formation of an insoluble precipitate of calcium phosphate.
The possibility of using such methods of varying the rate of chemical reaction as dilution/concentration of reagents, temperature changes and their influence on the formation of this precipitate is evaluated. In the first case, the reaction rate changes, but not the rate constant; in the second – the speed constant (according to the Arrhenius dependence) along with the speed.
The necessary characteristics of the buffer corresponding to the physical and chemical parameters venous system of the lower limb Vena cava (femoral vein) and venous blood, diameter and average speed of convective movement, density and viscosity coefficient are given. This information allows, based on a set of similarity criteria for hydrodynamic phenomena, to provide maximum simulation of the real dynamics of thrombosis with a possible reduction in the time scale: from the average clot formation period of 29 months to up, for example, 29 hours.
 

Keywords: organ-on-a-chip, formation of insoluble precipitate, thrombosis, vascular access graft,
coefficient of determination, Arrhenius formula, chemical reaction kinetics, patient characteristics

Captions to figures and tables:

Tab. 1. Comparison of the time of clot formation with an estimate (1) for various patients of the studied sample

Tab. 2. Patient model characteristics

Tab 3. Necessary correction of thrombogenesis conditions when simulated on an organ-on-chip device in relation to 1st, 3rd and 4th patients

Authors affiliation:

1Institute for analytical instrumentation of RAS, St. Petersburg, Russia
2Leningrad regional clinical hospital, Saint Petersburg, Russia

 
Contacts: Bulyanitsa Anton Leonidovich, antbulyan@yandex.ru
Article received by the editorial office on 15.06.2020
Full text (In Russ.) >>

REFERENCES

  1. Buryachkovskaya L.I., Lomakin N.V., Sumarokov A.B., Shirokov E.A. Algoritmy i shkaly riska tromboza i krovotecheniya v kardiologii i nevrologii [Algorithms and risk scales for thrombosis and bleeding in cardiology and neurology]. 2018. 104 p. URL:
  2. Barinov V.E., Lobastov K.V., Boyarinzev V.V., Schastlivzev I.V. [Clinical assessment of the caprini scale for individual prediction of risk of postoperative venous thromboembolism in surgical patients]. Fundamental'nye issledovaniya [Basic researches], 2013, no. 12-1, pp. 11—16. (In Russ.). URL:
  3. Grinyev K.M., Karpov S.A., Alfyerov S.V. [Non-thrombotic complications of persistent vascular access in program hemodialysis and methods of their surgical correction]. Vestnik SPbGU. Medizina [St.Petersburg State University bulletin. Medicine], 2017, vol. 12, is. 4, pp. 340—353. DOI: 10.21638/11701/spbu11.2017.404 (In Russ.).
  4. Lotz V.I., Osipov L.E., Sergeev V.N. [Reconstructive-restorative operations on permanent vascular access for hemodialysis]. Vestnik transplantologii i iskusstvennych organov [Bulletin of Transplantology and Artificial Organs], 2010, vol. 12, no. 2, pp. 54—57. URL: https://journal.transpl.ru/vtio/article/view/306 (In Russ.).
  5. Shanchenko N.I. Ekonometrika: laboratornyy praktikum [Econometrics: laboratory workshop]. Ul'yanovsk, UlGTU, 2004. 79 p. (In Russ.).
  6. Gurkov A.S. Krovotok v sosudach predplech'ya i kisti u pazientov s arteriovenoznoy fistuloy dlya gemodializa [Blood flow in forearm and hand vessels in patients with arteriovenous fistula for hemodialysis]. Dock. med. sci. diss. Institute of physiology. of Pavlov, 2014. URL: https://www.infran.ru/Diss-Sovet/Gurkov/Gurkoc-text-diss.pdf (In Russ.).
  7. Dorozhkin S.V. Calcium orthophosphates in dentistry. J Mater Sci Mater Med., 2013, vol. 24, is. 6, pp. 1335—1363. DOI: 10.1007/s10856-013-4898-1
  8. Jinawath S., Pongkao D., Suchanek W.,  Yoshimura M. Hydrothermal synthesis of monetite and hydroxyapatite from monocalcium phosphate monohydrate. Int. J. Inorg. Mater., 2001, vol. 3, is. 7, pp. 997—1001. DOI: 10.1016/S1466-6049(01)00199-4
  9. Veresov A.G., Putlyaev V.I., Tret'yakov Yu.D. [Chemistry of inorganic biomaterials based on calcium phosphates]. Rossiyskiy chimicheskiy zhurnal [Russian chemical magazine], 2004, vol. XLVIII, no. 4, Bioinorganic chemistry, pp. 52—64. (In Russ.).
  10. Golovanova O.A., Kutuzova Yu.A. [Study of characteristics of calcium phosphates synthesized from model blood plasma solutions]. Vestnik Omskogo un-ta [Bulletin of Omsk University], 2016, no. 1, pp. 56—62. (In Russ.).
  11. Balabanova S.S., Scheglova I.V., Vereschagin A.L. Opredelenie energii aktivazii reakziy v rastvore. Metodicheskie rekomendazii po vypolneniyu laboratornoy raboty [Determination of activation energy of reactions in solution. Methodological recommendations for laboratory work]. Biysk, Izd- vo Alt. gos. techn. un-ta, 2013. 28 p.
 

B. P. Sharfarets, V. E. Kurochkin

ON THE ATTEMPT TO USE THE GIANT DISPERSION
OF THE DIELECTRIC CONSTANT
OF A DISPERSE SYSTEM
TO INCREASE THE SPEED OF ELECTROPHORESIS
OF DISPERSED PARTICLES

"Nauchnoe Priborostroenie", 2020, vol. 30, no. 3, pp. 38—44.
doi: 10.18358/np-30-3-i3844
 

In the thin double layer approximation, all the necessary expressions are given for estimating the dispersion of the dielectric constant of a dispersed system, consisting of a suspension of the dispersed phase in the form of homogeneous spherical particles and a liquid homogeneous dispersion medium. Based on the Maxwell-Wagner theory of polarization as applied to such a dispersed system, the above expressions allow one to establish possible ways of using the phenomenon of giant dispersion of the dielectric constant of the indicated heterogeneous system to increase the electrophoresis rate in the process of biomaterial sequencing using capillary electrophoresis.
 

Keywords: the dielectric constant, giant dispersion of the dielectric constant, sequencing, capillary electrophoresis, thin double layer approximation, heterogeneous environment, Maxwell-Wagner polarization, dispersion system

Captions to figures and tables:

Fig. 1. Heterogeneous structure of two layers.
Two real layers (a) and one virtual (b) with equivalent parameters; d1 and d2 are the thicknesses of the real layers; ε1 and ε2 — values of relative dielectric permeabiltyof the layers; σ1 and σ2 — specific conductivities of the layers

Fig. 2. Equivalent schemes of real and virtual layers of Fig. 1.
C1, C2, C — are the corresponding capacities, and R1, R2, R are the resistances

Fig 3. Spherical inclusion assemblage in a limitless homogeneous environment

Fig. 4. Graphs of changes in the electrical characteristics of dielectrics as a function of the frequency of the electric field.
The decimal logarithm t of the ratio of the current frequency ω to the dispersion frequency ωcr is plotted on the horizontal axis, and the relative values of the functions on the vertical axis: 1 — , 2 — , 3 —

Authors affiliation:

Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia

 
Contacts: Sharfarets Boris Pinkusovich, sharb@mail.ru
Article received by the editorial office on 29.06.2020
Full text (In Russ.) >>

REFERENCES

  1. Duhin S.S., Shilov V.N. Dielektricheskie yavleniya i dvojnoj sloj v dispersnyh sistemah i polielektrolitah [Dielectric phenomena and a double layer in disperse systems and polyelectrolytes]. Kiev, Naukova dumka, 1972. 206 p. (In Russ.).
  2. Yavorsky B.M., Detlaf A.A. Spravochnik po fizike [Reference book on physics]. Moscow, Nauka Publ., 1971. 939 p. (In Russ.).
  3. Truhan E.M. Elektronnyj transport v subkletochnyh strukturah i ih modelyah. Razrabotka radiofizicheskih metodov issledovaniya i kvantovo-elektronnyj analiz. Dis. … dokt. fiz-mat. nauk [Electronic transport in subcellular structures and their models. Development of radiophysical research methods and quantum-electron analysis. Dock. phys. math. sci. diss.]. Moscow, Moscow State University, 1980. 44 p.
  4. Maxwell J.C. A Treatise on electricity and magnetism . Vol. 1. Dover Publications, 1954 (Russ. Ed.:: Maksvell Dzh. K. Traktat ob elektrichestve i magnetizme. T. 1. Moscow, Nauka, 1989. 416 p.) (In Russ).
  5. Wagner K.W. Erklärung der dielektrischen Nachwirkungsvorgänge auf Grund Maxwellscher Vorstellungen. Archiv f. Elektrotechnik, 1914, No. 2, pp. 371—387. DOI: 10.1007/BF01657322
  6. Truhan E.M. Elektrofizicheskie metody issledovaniya. Konduktometriya neodnorodnyh materialov. Uchebno-metodicheskoe posobie [Electrophysical research methods. Conductometry of heterogeneous materials. Teaching aid]. M, MFTI. 26 p.
  7. Duhin S.S., Deryagin B.V. Elektroforez [Electrophoresis]. Moscow, Nauka Publ., 1976. 328 p. (In Russ.).
 

N. D. Arkhipov1, D. B. Arkhipov2

CURRENT STATE FOR RNA SEQUENCE OF COVID-19

"Nauchnoe Priborostroenie", 2020, vol. 30, no. 3, pp. 47—48.
doi: 10.18358/np-30-3-i4548
 

The epidemic of coronavirus C0VID-19 started in Wuhan (China) in December 2019. By March 2020, the Chinese government could suspend the new pandemic but tens of thousands of people outside China already got sick of the new type of a severe acute respiratory syndrome. Pioneer articles on the sequence of COVID-19 were published in the Chinese scientific journals in January 2020. On March 12, 2020 Nature (London) presented two comprehensive and free-of-charge papers on the RNA sequence of this virus.
We report in our short review the current state of the RNA sequence technique and its application to COVID-19. Massive parallel DNA sequence was presented by Rothberg and his groop in 2005. The instrument was named 454 Life Sciences. Through a decade, massive parallel sequence in nanopores has been invented. No later than 2017 similar instrument for the RNA sequence was created. It was the massively parallel sequence in nanopores that was used by the Chinese scientists for C0VID-19 study. Additionally, polymerase chain reaction in real-time was performed. As a result, within three months the sequence of 29 303 nucleotides of COVID-19 has been detected. Modern sequencers are expensive instruments. For example, the cost of pyrosequenucer 454 Life Sciences was $ 500 000. For this reason, there is still no information about the difference between the Wuhan, Moscow and American coronaviruses. Our results were obtained by study of Nature, Science, and journals of the American Chemical Society.

Keywords: analytical instrumentation, RNA sequence, COVID-19

Captions to figures and tables:
 

Tab. Number of references to articles by COVID-19

Author affiliation:

1University of Information Technologies, Mechanics and Optics, Saint Petersburg, Russia
2Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia

 
Contacts: Arkhipov Nikolay Dmitrievich, nikolos.kage97@mail.ru
Article received by the editorial office on 03.05.2020
Full text (In Engl.) >>

REFERENCES

  1. Margulies M., Egholm M., Altman W.E. et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature, 2005, vol. 437, no. 7057, pp. 376—380. DOI: 1038/nature03959
  2. Garalde D.R., Snell E.A., Jachimowicz D. et al. Highly parallel direct RNA sequencing on an array of nanopore. Nature Methods, 2018, vol. 15, no. 3, pp. 201—206. DOI: org./1038/nmeth 4577
  3. Wu F., Zhao Su, Yu B. et al. A new coronavirus associated with human respiratory disease in China. Nature, 2020, vol. 579, no. 7798, pp. 265—269. DOI: 10.1038/s41586-020-2008-3
  4. Zhou P., Yang X.-L., Wang X.-G. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, vol. 579, no. 7798, pp. 270—273. DOI: 10.1038/s41586-020-2012-7
  5. Mao K., Zhang H., Yang Z. Can a paper-based device trace COVID-19 sources with wastewater-based epidemiology. Environmental Science and Technology, 2020, vol. 54, no. 7, pp. 3733—3735. DOI: 10.1021/acs.est.0c01174
 

B. V. Sokolov, V. V. Zakharov, D. I. Nazarov

MODEL AND A SOFTWARE FOR THE DECISION OF TASKS
OF PLANNING, MEASURING AND COMPUTING OPERATIONS
IN CYBER-PHYSICAL SYSTEMS

"Nauchnoe Priborostroenie", 2020, vol. 30, no. 3, pp. 49—62.
doi: 10.18358/np-30-3-i4962
 

In the article polimodel description of the functioning of cyber-physical systems (CFSs) is given. CFSs are equipped with multifunctional hardware-software tools for the reception (transfer), storage, processing and generation of control actions and are intended for determination of the state of both serviced objects which are not part of the CFS and of their own. The basis of this description is the original dynamic interpretation of the relevant processes. For concretization, the article considers the stage of planning of measuring and computational operations (MCO), carried out by the CFSs both to determine their location and position of the serviced objects. Consideration of MCO is caused by their special importance in the decision of problems of the serviced objects management. The information is given on the the software package (SP) that provides solutions to the problem of operational planning of MCO, as well as the analysis of the results of computer experiments with the developed models and planning algorithms is carried out.
 

Keywords: integrated scheduling, dynamics models, optimal program control

Captions to figures and tables:

Fig. 1. Flowchart of the heuristic and optimal planning due to measuring and computational operations performed by CFS

Fig. 2. The results of heuristic and optimal planning of measuring and computational operations performed by CFS

Fig. 3. Graph of changes in coordinate measurement errors depending on the service session for different serviced objects

Fig. 4. Graphs of changes in coordinate measurement errors depending on the interaction session for the selected serviced object

Tab. 1. Input parameters of experiments with a change in the correlation matrix of meter errors

Fig. 5. Graphs of the results of the experiments, during which the coefficients in the correlation matrix of the meter errors were changed

Tab. 2. The results of planned measurements for the 1st experiment of group 1

Fig. 6. The experiment input parameters with variance of the meter

Tab. Ï1. The results of planned measurements for the 2nd experiment

Tab. Ï2. The results of planned measurements for the 3rd experiment

Tab. Ï3. The results of planned measurements for the 4th experiment

Tab. Ï4. The results of planned measurements for the 1st experiment

Tab. Ï5. The results of planned measurements for the 2nd experiment

Tab. Ï6. The results of planned measurements for the 3rd experiment

Tab. Ï7. The results of planned measurements for the 4th experiment

Authors affiliation:

St. Petersburg Institute for Informatics and Automation of RAS

 
Contacts: Zakharov Valeriy Vyacheslavovich, valeriov@yandex.ru
Article received by the editorial office on 01.07.2020
Full text (In Russ.) >>

REFERENCES

  1. Kupriyanovsky V.P., Namiot D.E., Sinyagov S.A. [Cyber-physical systems as a base for digital economy]. International Journal of Open Information Technologies, 2016, vol. 4, no. 2, pp. 18—24.
  2. Wolf W. Cyber-physical systems. Computer, 2009, no. 3, pp. 88—89. DOI: 10.1109/MC.2009.81
  3. Zakharov V.V. [Dynamic interpretation of formal description and solution of the problem of complex object modernization]. Priborostroenie [Journal of Instrument Engineering], 2019, no. 10, pp. 914—920. DOI: 10.17586/0021-3454-2019-62-10-914-920 (In Russ.).
  4. Malyshev V.V., Krasilhchikov M.N., Karlov V.I. Optimizaciya nablyudeniya i upravleniya letatelnyh apparatov [Optimization of aircraft surveillance and control]. Moscow, Mashinostroenie Publ., 1989. 311 p. (In Russ.).
  5. Nazarov D.I. [Models and program complex for solving planning problems of measuring and computing operations in cyber-physical systems]. Priborostroenie [Journal of Instrument Engineering], 2018, no. 11, pp. 947—955. DOI: 10.17586/0021-3454-2018-61-11-947-955 (In Russ.)
  6. Ohtilev M.Yu., Sokolov B.V., Yusupov R.M. Intellektualnye tekhnologii monitoringa i upravleniya strukturnoj dinamikoj slozhnyh tekhnicheskih objektov [Intelligent technologies for monitoring and managing the structural dynamics of complex technical facilities]. Moscow, Nauka Publ., 2006. 408 p. (In Russ.).
  7. Sokolov B.V., Yusupov R.M. [Integrated simulation of the operation of the automated navigation spacecraft control system]. Problemy upravleniya i informatiki [Management and informatics issues], 2002, no. 5, pp. 103—117. (In Russ.).
  8. Lee E.B., Markus L. Foundations of Optimal Control Theory. Krieger Pub Co, 1986. 576 p. (Russ. Ed.: Li E.B., Markus L. Osnovy teorii optimalnogo upravleniya. Moscow, Nauka Publ., 1972. 576 p.).
  9. Mikoni S.V., Sokolov B.V., Yusupov R.M. Kvalimetriya modelej i polimodelnyh kompleksov. Monografiya [Qualimetry of models and polymodel complexes. Monograph]. Moscow, Nauka Publ., 2018. 314 p. (In Russ.).
  10. Pavlov A.N., Zakharov V.V. [Model and algorithmic support for planning of modernization of shipbuilding facilities]. Pyataya mezhdunarodnaya nauchno-prakticheskaya konferenciya "Imitacionnoe i kompleksnoe modelirovanie morskoj tekhniki i morskih transportnyh sistem" (IKM MTMTS-2019). Trudy konferencii [Fifth International Scientific and Practical Conference "Simulation and Integrated Modeling of Marine Equipment and Marine Transport Systems" (PCM MTMTS-2019). Proceedings of the conference]. (ISBN 978-5-00150-311-8). Moscow, Pero Publ., 2019. 133—137 pp. (In Russ.).
  11. Sokolov B., Pavlov A., Potriasaev S., Zakharov V. [Methodology and technologies of the complex objects proactive intellectual situational management and control in emergencies]. Proceedings of the Fourth International Scientific Conference "Intelligent Information Technologies for Industry" (IITI’19). Part of the  Advances in Intelligent Systems and Computing  book series (AISC, volume 1156). Springer, 234—243 p. DOI: 10.1007/978-3-030-50097-9_24
  12. Kalinin V.N., Sokolov B.V. [A dynamic model and an optimal scheduling algorithm for a set of activities with bans on interrupts]. Avtomatika i Telemekhanika [Automatic equipment and telemechanics], 1987, no. 1, pp.106—114. URL: http://www.mathnet.ru/links/ 70dffa56de8e4 d270555885c22be3347/at4360.pdf (In Russ.).
  13. Boltyanskiy V.G. Matematicheskie metody optimal'nogo upravleniya [Mathematical methods of optimal control]. Moscow, Nauka Publ., 1969. 408 p. (In Russ.).
  14. Lyubushin A.A. [Modifications and convergence of successive approximations for optimal control problems]. Zh. Vychisl. Mat. Mat. Fiz [Journal of Computational Mathematics and Mat. physics], 1979, vol. 19, no. 6, pp. 1414—1421. URL:
  15. Chernousko F.L., Kolmanovskiy V.B. Optimalnoe upravlenie pri sluchajnyh vozmushcheniyah [Optimal control in case of random disturbances]. Moscow, Nauka Publ., 1978. 351 p. (In Russ.).
  16. Tanaev V.S., Shkurba V.V. Vvedenie v teoriyu raspisaniy [Introduction to Schedule Theory]. Moscow, Nauka Publ., 1975. 256 p. (In Russ.).
  17. Ackoff R.L. The Art of Problem Solving. Wiley-Interscience. NewYork, 1978. 232 p.
  18. Laboratoriya informacionnyh tekhnologij v sistemnom analize i modelirovanii (LITSAM). [Information Technology Laboratory in System Analysis and Modeling (LITSAM)]. http://litsam.ru (In Russ.)
 

R. Yu. Antonov

POSSIBILITIES OF AUTOMATIC WHEAT VITREOUSNESS
DETERMINATION BY DIGITAL IMAGE ANALYSIS

"Nauchnoe Priborostroenie", 2020, vol. 30, no. 3, pp. 69—74.
doi: 10.18358/np-30-3-i6374
 

Organoleptic methods for the analysis of products lead to a high error and a long duration of such measurements. Therefore, the development of instrumental express methods for determining the quality of products is a relevant task. The paper explores the possibilities of a program evaluating the wheat vitreousness. The studies were made using Yantar and DSZ-2 diaphanoscopes. The stability of the measurement results and the time spent on analysis were compared. We selected samples of soft and durum wheat with vitreousness in the range of 12—97% for the measurement. The program evaluatingwheat vitreousness made it possible to reduce the standart deviation of the vitreousness measurements from 5.5% to 1.3%. The average measurement time has decreased by more than 10 times.
 

Keywords: measurement automation, image processing,wheat, vitreousness

Captions to figures and tables:

Fig. 1. Diaphanoscope DCÇ-2 with a cartridge

Fig. 2. Diophanoscope "Yantar" with a cartridge and a computer

Fig. 3. The image of the translucent grain

Fig. 4. The effects of ambient illumination.
1 — common component, 2 — local component

Fig. 5. The area around the grain used to compensate for the local ambient illumination of the grain (the analyzed grain is marked *).
On the left is the original image, on the right is the binary image used in the calculations

Tab. 1. Vitreousness measurement results at the Yantar diaphanoscope

Tab. 2. Vitreousness measurement results at the DCÇ-2 diaphanoscope

Tab. 3. Grubbs statistics for vitreousness measurements on the Yantar diaphanoscope

Tab. 4. Grubbs statistics for vitreousness measurements on the DCÇ-2 diaphanoscope

Fig. 6. Repeatability standard deviations as vitreousness function

Tab. Ï 1. Vitreous measurement time on Amber diaphanoscope

Tab. Ï 2. Vitreous measurement time on diaphanoscope DCÇ-2

Author affiliation:

Ekan Ltd, Saint Petersburg

 
Contacts: Antonov Roman Yurievitch, roman.ekan@yandex.ru
Article received by the editorial office on 13.05.2020
Full text (In Engl.) >>

REFERENCES

  1. GOST 9353-2016. Wheat. Specifications. Moscow, Standartinform Publ., 2019. (In Russ.).
  2. GOST 10987-76. Grain . Methods for determination of vitreousness. Moscow, Standards Publ., 1976. 5 p. (In Russ.).
  3. Steinberg T.S., Morozova O.V., Semikina L.I., Amatuni A.L. [A method of analyzing a digital image of grain to its quality determination]. Hranenie i pererabotka selhozsyrya [Storage and processing of agricultural materials], 2014, no. 310, pp. 47—51. (In Russ.).
  4. Dowell F.E. Differentiating vitreous and non-vitreous durum wheat kernels by using near-infrared spectroscopy. Cereal Chem., 2000, vol. 77, is. 2, pp. 155—158. DOI: 10.1094/CCHEM.2000.77.2.155
  5. Neethirajan S., Karunakaran C., Symons S., Jayas D.S. Classification of vitreousness in durum wheat using soft X-rays and transmitted light images. Computers and electronics in agriculture, 2006, vol. 53, is. 1, pp. 71—78. DOI: 10.1016/j.compag.2006.03.001
  6. Wang N., Dowell F., Zhang N. Determining wheat vitreousness using image processing and a neural network. ASAE meeting paper No. 026089. St. Joseph, Mich, 2002. 25 p. URL.:
  7. Fitzgibbon A., Fisher R.B. A buyer's guide to conic fitting // British Machine Vision Conference, 1995. P. 513—522. DOI: 10.5244/C.9.51
  8. Suzuki S., Abe K. Topological structural analysis of digitized binary images by border following // CVGIP. 1985. Vol. 30, is. 1. P 32—46. DOI: 10.1016/0734-189X(85)90016-7
  9. GOST R ISO 5725-3-2002. Accuracy (trueness and precision) of measurement methods and results. Part 3. Intermediate measures of the precision of a standard measurement method. Moscow, Standartinform Publ., 2009. (In Russ.).
  10. GOST R ISO 5725-2-2002. Accuracy (trueness and precision) of measurement methods and results. Part 2. Basic method for the determination of repeatability and reproducibility of a standard measurement method. Moscow, Standartinform Publ., 2009. (In Russ.).

Ulitsa Ivana Chernykh, 31-33, lit. A, St. Petersburg, Russia, 198095, P.O.B. 140
tel: (812) 3630719, fax: (812) 3630720, mail: iap@ianin.spb.su

content: Valery D. Belenkov design: Banu S. Kuspanova layout: Anton V. Manoilov