logo
blue band <-
  JOURNAL "NP" ISSUES

"Nauchnoe Priborostroenie", 2018, Vol. 28, no. 3. ISSN 2312-2951, DOI: 10.18358/np-28-3-0054

"NP" 2018 year Vol. 28 no. 3.,   ABSTRACTS

ABSTRACTS, REFERENCES

I. M. Aleshin1,2, V. G. Getmanov1,2, A. A. Grudnev1,2, M. N. Dobrovolsky1,
S. D. Ivanov2, V. N. Koryagin2, R. I. Krasnoperov1, D. V. Kudin1,
F. V. Perederin2, A. A. Soloviev1,2, K. I. Kholodkov2

COMPACT ENERGY EFFICIENT ONLINE DATA LOGGER
FOR REAL TIME GEOMAGNETIC MEASUREMENTS

"Nauchnoe priborostroenie", 2018, vol. 28, no. 3, pp. 5—13.
doi: 10.18358/np-28-3-i513
 

This paper describes an online realtime data acquisition system. The design utilizes ARM singleboard computers that bring very low power requirements, portability and lightweightness. We have implemented a unified approach to acquire, transfer and store the measurements. The approach takes advantages of SeedLink protocol to establish online realtime data flows between the components of the system. Communication over IPv4 rely on secure virtual private networks. The system features remote management of data logger and all connected devices. For purposes of testing and technology showcase we’ve implemented support for a range of variometer-type magnetometers.
 

Keywords: data acquisition, realtime data transfer, ARM processor, SeedLink

Author affiliations:

1The Geophysical Center of the Russian Academy of Sciences, Moscow, Russia
2Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences, Moscow, Russia

 
Contacts: Aleshin Igor' Michaylovich, ima@ifz.ru
Article received in edition 28.06.2018
Full text (In Russ.) >>

REFERENCES

  1. Morschhauser A., Haseloff J., Bronkalla O. et. al. A low-power data acquisition system for geomagnetic observatories and variometer stations. Geoscientific Instrumentation. Methods and Data Systems, 2017, vol. 6, no. 2, pp. 345—352.
  2. Richardson T., Stafford-Fraser Q., Wood K.R. and Hopper A. Virtual network computing. IEEE Internet Computing, 1998, vol. 2, no.1, pp. 33—38.
  3. Perederin F.V., Aleshin I.M., Holodkov K.I. et. al. [Program realization of remote management of processes of registration and operational transfer of geomagnetic measurements]. Sejsmicheskie pribory [Seismic instruments], 2016, vol. 52, no. 4, pp. 76—82. (In Russ.).
  4. Sapunov V.A., Denisov A.Yu., Savel'ev D.V. et. al. [The absolute Overkhauzerovsky magnetometer POS-1 and experience of its application on magnetic observatories]. Metrologicheskie osnovy magnitnyh nablyudenij Sibiri i Dal'nego Vostoka. Sb. dokladov [Metrological bases of magnetic observations of Siberia and the Far East. Collection of reports]. Petropavlovsk-Kamchatskij, IKIR DVO RAN Publ., 2003. pp. 22—31. (In Russ.).
  5. Aleshin I.M., Burguchev S.S., Kholodkov K.I. et. al. Software for realtime acquisition of geomagnetic data and station management. Russ. J. Earth. Sci., vol. 16. ES5004. Doi: 10.2205/2016ES000582.
  6. Fluxgate magnetometer. Manual. Technical University of Denmark, 2014. Rev. 01/4-2014.
  7. 24-bit fast A/D converter module for analog output magnetometers. URL: http://www.mingeo.com/prod-obsdaq.html (accessed 25.05.2018).
  8. USB data acquisition module with GPS time synchronization. URL: http://www.mingeo.com/prod-palmacq.html (accessed: 25.05.2018).
  9. LINUX based geomagnetic acquisition system. URL: http://www.mingeo.com/prod-legacy.html#tabs-3 (accessed: 25.05.2018).
  10. BeagleBoard.org Foundation. About us.
  11. O kompanii NTC "Modul" [About the STC Modul company]. URL: http://www.module.ru/company. (In Russ.).
  12. Raspberry Pi Foundation. About us.
  13. Arch Linux. URL: http://www.archlinux.org (accessed 25.05.2018).
  14. SeedLink. IRIS. URL:
  15. Ahern T., Casey R., Barnes D. et al. SEED Reference Manual. International Federation of Digital Seismograph Networks Incorporated Research Institutions for Seismology United States Geological Survey, 2014. Version 2.4.
  16. SeisComP. Applications. Seedlink. URL:
  17. Il'inskij D.A., Aleshin I.M., Burguchev S.S. et. al. [Experience of creation of the portable autonomous seismological station working under the protocol of real time]. Sejsmicheskie pribory [Seismic instruments], 2011, vol. 47, no. 1, pp. 52—67. (In Russ.).
  18. Aleshin I.M., Ivanov S.D., Koryagin V.N. et. al. [The operational publication of these tiltmeters of the NS series on the basis of the protocol SeedLink]. Sejsmicheskie pribory [Seismic instruments], 2017, vol. 53, no. 3, pp. 31—41. (In Russ.).
  19. Geopsy project. URL: http://www.geopsy.org (accessed 25.05.2018).
  20. Aleshin I.M., Vasil'ev A.E., Holodkov K.I., Perederin F.V. [Use of technologies of virtual private networks for the organization of operational systems of geophysical observations]. Sejsmicheskie pribory [Seismic instruments], 2014, vol. 50, no. 1, pp. 63—69. (In Russ.).
  21. OpenVPN. URL: http://openvpn.net (accessed 25.05.2018).
  22. Influxdata. URL: https://www.influxdata.com/time-series-platform/influxdb/ (accessed 25.05.2018).
  23. Grafanalabs. URL: http://grafana.com (accessed 25.05.2018).
 

M. A. Barulina1, A. V. Golikov1, V. M. Pankratov1, M. V. Efremov2

NUMERICAL STUDY OF THREE-DIMENSIONAL UNSTEADY
THERMAL FIELDS OF AEROSPACE HIGH-PRECISION
SENSORS AND SYSTEM

"Nauchnoe Priborostroenie", 2018, vol. 28, no. 3, pp. 14—23.
doi: 10.18358/np-28-3-i1423
 

The application of the method of thermal balances to the modeling of three-dimensional non-stationary temperature fields of precision sensors and devices are considered. The algorithms constructed using the thermal balances method make it possible to calculate the temperature fields of the device considering the specific features of its design and operating conditions - high-frequency vibrations, shock loads, vacuum, zero gravity. Such modeling allows solving some critical problems at the design stage, for example, the problem in providing comfortable conditions for the functioning of precision aerospace devices from the thermal point of view.
The mathematical model of the thermal balances method for high precision sensors and system and algorithm for calculating temperature fields are given in the article. The application of the thermal balances method to the study of temperature fields in precision sensors and systems was considered using the example of the angular velocity measuring unit with fiber optic gyroscopes and the electronic board of the nanosatellite payload module.
 

Keywords: thermal fields, numerical simulation, high-precision sensors, gyroscopic sensors, microsatellite

Author affiliations:

1Institute of Precision Mechanics and Control, Russian Academy of Sciences, Saratov, Russia
2Scientific Production Enterprise ANTARES, Saratov, Russia

 
Contacts: Barulina Marina Aleksandrovna, marina@barulina.ru
Article received in edition 26.06.2018
Full text (In Russ.) >>

REFERENCES

  1. Jashitov V.E., Pankratov V.M. Datchiki, pribory i sistemy aviakosmicheskogo i morskogo priborostroeniya v usloviyah teplovyh vozdejstvij [Sensors, devices and the systems of aerospace and sea instrument making in the conditions of thermal influences]. Ed. acad. of RAS V.G. Peshekhonov. Saint-Petersburg, GNC RF CNII "Elektropribor" Publ., 2005. 404 p. (In Russ.).
  2. Barulina M.A., Jashitov V.E. [Research of temperature and technological drift of a micromechanical gyroscope a type tuning fork-nogo on the vibrating basis]. Giroskopiya i navigaciya [Giroskopy and navigation], 2005, vol. 48, no. 1, pp. 93. (In Russ.).
  3. Barulina M.A., Pankratov V.M., Efremov M.V. The temperature effect on fiber optic gyroscopes based on air-core photonic crystal fiber. Proceedings of 23rd Saint Petersburg International Conference on Integrated Navigation Systems, ICINS 2016, pp. 93—97.
  4. Jashitov V.E., Pankratov V.M., Barulina M.A., Golikov A.V. [Harmonic solid-state inertial information sensor in temperature disturbances conditions]. Datchiki i sistemy [Sensors and systems], 2010, no. 5, pp. 57—61. (In Russ.).
  5. Barulina M.A., Galkina S.A. Svidetel'stvo ¹ 2018610059 ot 09.01.2018 Federal'noj sluzhby po intellektual'noj sobstvennosti o gosudarstvennoj registracii programm dlya EVM [Certificate No. 2018610059 from 01.09.2018 Federal Service for Intellectual Property about the state registration of the computer programs]. (In Russ.).
  6. Golikov A.V., Pankratov V.M., Pylaev Yu.K., Efremov M.V. Svidetel'stvo ¹ 2018611517 ot 02.02.2018 Federal'noj sluzhby po intellektual'noj sobstvennosti o gosudarstvennoj registracii programm dlya EVM [Certificate No. 2018611517 from 02.02.2018 of Federal Service for Intellectual Property on the state registration of the computer programs]. (In Russ.).
  7. Jashitov V.E., Pankratov V.M., Golikov A.V., Nikolaev S.G., Kolevatov A.P., Plotnikov A.D., Koffer K.V. [Hierarchical thermal models none platform the inertial navigation system with fiber-optical gyroscopes and accelerometers]. Giroskopiya i navigaciya [Giroskopy and navigation], 2013, vol. 80, no. 1, pp. 49—63. (In Russ.).
  8. Fomin D.V., Strukov D.O., German A.S. [The universal platform of payload for small satellites of the standard CubeSat]. Izvestiya vysshih uchebnyh zavedenij. Priborostroenie [News of higher educational institutions. Instrumentation], 2018, no. 5. (In Russ.).
 

D. V. Novikov1, A. S. Stankevich2, E. G. Silkis2, A. M. Torubarov3, G. A. Perepelkin3

THE MORS-4 SPECTRA RECORDING SYSTEM
WITH THE RASPBERRY PI 3 MODEL B MICROCOMPUTER

"Nauchnoe Priborostroenie", 2018, vol. 28, no. 3, pp. 24—28.
doi: 10.18358/np-28-3-i2428
 

The device MORS-4 with addition of the serial microcomputer (MC) with wide operational possibilities and the developed software is created. MC is an extremely convenient part of the electronic of modern systems for recording spectra on linear charge-coupled devices (CCDs). When the MC is included into the MORS-4 electronics, it is possible to use a number of advantages of the MC – the ability to work with flash memory, a significant number of inputs/outputs that allow easy connection of the MC to a typical CCD control electronics board and indication of the device modes. The device allows to remotely operate on 4 sensors on linear CCD, powered by a battery. The technical task for controlling the CCD and the obtained data are recorded on a flash drive. The device MORS-4 + MC was used to control the mechanical stresses of aviation components by the reflected X-ray radiation of the Fe-55 radionuclide with a photon energy of 5.89 and 6.45 keV. To register them the glass must be removed from the CCD of the TCD1304DG type.
 

Keywords: linear charge coupled devices, linear CCD registration systems, microcomputer, software

Author affiliations:

1MORS-limited, Troitsk, Russia
2Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Russia
3National Institute of Aviation Technologies, Moscow, Russia

 
Contacts: Silkis Emmanuil Gershovich, esilkis@mail.ru
Article received in edition 27.06.2018
Full text (In Russ.) >>

REFERENCES

  1. Silkis E.G., Stankevich A.S., Krashenninikov V.N. [Systems of registration of ranges, minispectrometers and issue spectrometers]. Vuzovsko-akademicheskij sbornik nauchnyh trudov "Problemy spektroskopii i spektrometrii" [High school and academic collection of scientific works "Problem of spectroscopy and spectrometry"], Ekaterinburg, 2014, pp. 43—67. (In Russ.).
  2. Perepelkin G.A., Torubarov A.M., Chugaev B.N. [The device interface for nondestructive control of residual superficial tension]. Prikladnaya informatika [Applied informatics], 2016, no. 1, pp. 70—73. (In Russ.).
  3. Kalmykov E.A., Torubarov A.M. Sposob ehkspress-analiza mekhanicheskih poverhnostnyh napryazhenij polikristallicheskih mate-rialov i parametrov ih kristallicheskoj reshetki i ustrojstvo dlya ego osushchestvleniya [Way of the express analysis of mechanical superficial tension of polycrystalline materials and parameters of their crystal lattice and the device for his implementation]. Patent of the Russian Federation no. 2387980. Prioritet 27 April 2010. (In Russ.).
 

O. C. Agafonov, S. M. Prudnikov

EXTENSION OF FUNCTIONAL OPPORTUNITIE
NMR ANALYZER AM V-1006M

"Nauchnoe Priborostroenie", 2018, vol. 28, no. 3, pp. 29—35.
doi: 10.18358/np-28-3-i2935
 

The article is devoted to the improvement of the complex system for the determination of oilseed quality indicators, using the nuclear magnetic resonance method for the example of sunflower seeds. The improvement consists in the development of an instrumental non-destructive express method of simultaneously determining the three main indicators of the quality of sunflower seeds: the mass fraction of oleic acid in the oil of sunflower seeds, the mass fraction of oil and moisture. In addition, the results of a study on the development of a set of standard samples allowing the reproduction of the envelope signals of the spin echo of sunflower seed oil protons with different contents of oleic acid, used for calibrating quantitative MRM-analyzers, are conducted. As substances of simulators magnetic resonance of relaxation characteristics of oil protons with different mass fraction of oleic acid, it is proposed to use organosilicon fluids with spin-spin relaxation times of protons in the ranges from 150 to 160 ms and from 180 to 200 ms, respectively. This allowed the development of standard samples of the mass fraction of oleic acid in the range from 30 to 90 % for quantitative magnetic resonance method analyzers, characterized by high long-term stability of the physic-chemical parameters, and, consequently, by considerably higher stability of the metrological values attained. Developed standards, samples are less susceptible to temperature, greatly simplify the process of grading quantitative samples. At the end of the article, the metrological characteristics of the modernized quantitative magnetic resonance method analyzer are presented.
 

Keywords: nuclear magnetic resonance, express method, imitation samples, sunflower seeds, mass fraction, oleic acid

Author affiliations:

All-Russian Research Institute of oil-bearing crops of V.S. Pustovoyt, Krasnodar, Russia

 
Contacts: Agafonov Oleg Sergeyevich, sacred_jktu@bk.ru
Article received in edition 9.02.2018
Full text (In Russ.) >>

REFERENCES

  1. GOST 22391-2015 Sunflower. Specifications. Moscow, Publishing house of standards, 2015. 7 p. (In Russ.).
  2. GOST 10856-96 Oilseeds. Method of determination of humidity. Moscow, Standartinform Publ., 2010. 6 p. (In Russ.).
  3. GOST 10857-64 Oilseeds. Method of definition of a maslichnost. Moscow, Standartinform Publ., 2010. 6 p. (In Russ.).
  4. Gorlov S.L., Bochkaryova E.B., Gorlova L.A., Serdyuk V.V. [The high oleic variety of spring rapeseed Amulet]. Maslichnye kul'tury. Nauchn.-tekh. byul. VNIIMK [Oil crops. Scientific and Technical Bulletin VNIIMK], 2015, vol. 162, no. 2, pp. 127—128. (In Russ.).
  5. Sventickij E.N., Chizhik V.I. [Application of a method of a nuclear magnetic resonance for the quantitative analysis]. Sbornik "Yadernyj magnitnyj rezonans" [Collection "Nuclear magnetic resonance"], Leningrad, LGU Publ., 1965, vol. 1. pp. 1—215 (In Russ.).
  6. Prudnikov S.M., Dzhioev T.E., Panyushkin V.T. [Express method of determination of quality of olive raw materials on the basis of regularities of nuclear magnetic relaxation characteristics]. IV tradicionnaya nauchno-tekhnicheskaya konferenciya stran SNG "Processy i oborudovanie" [IV traditional scientific and technical conference of the CIS countries "Processes and equipment"]. Volgograd, 1998. 34 p. (In Russ.).
  7. Kornena E.P., Prudnikov S.M., Vityuk B.Ya., Zverev L.V., Dzhioev T.E., Sherbakov V.G. [Tool quality control of oilseeds and products of their processing]. Masla i zhiry [Oils and fats], 2010, no. 5, pp. 42—47. (In Russ.).
  8. GOST 30418-96. Vegetable oils. Method of determination of fat and acid structure. Moscow, Standartinform Publ., 2013. 7 p. (In Russ.).
  9. GOST 8.597-2010 "GSI. Seeds of oil-bearing crops and products of their processing. Technique of performance of measurements olive and humidity by method of pulse nuclear magnetic resonance". Moscow, Standartinform Publ., 2011. 8 p. (In Russ.).
  10. Prudnikov S.M., et al. Sistema priema i obrabotki signalov impul'snyh relaksometrov yadernogo magnitnogo rezonansa. Certificate on official registration of the computer program ¹ 2001610425. [System of reception and processing of signals of pulse relaksometr of nuclear magnetic resonance]. Moscow, 17 April 2001. (In Russ.).
  11. Vityuk B.Ya., Gorelikova I.A. Sposob opredeleniya soderzhaniya oleinovoj kisloty v masle semyan podsolnechnika. Patent RF no. 2366935 C1, MÏK G01N 24/00, application ¹ 2008116369/04; declare 24.04.2008. [Way of determination of content of olein acid in oil of seeds of sunflower]. Proritet 10.09.2009, Bull. ¹ 25. (In Russ.).
  12. Agafonov O.S., et al. [High-olein sunflower and modern control methods of content of oleic acid]. Pishchevaya promyshlennost': nauka i tekhnologiya [Food industry: science and technology], 2013, no. 4, pp. 91—94. (In Russ.).
  13. Agafonov O.S., et al. [Application of the nuclear magnetic resonance method for determination of content of oleic acid in oil of seeds of sunflower]. Materialy 18 Mezhdunarodnoj nauchno-prakticheskoj konferencii, posvyashchennoj pamyati V.M. Gorbacheva "Razvitie biologicheskih i postgenomnyh tekhnologij dlya ocenki kachestva sel'sko-hozyajstvennogo syr'ya i sozdaniya produktov zdorovogo pitaniya" [Materials 18 of the International scientific and practical conference devoted to V.M. Gorbachev's memory "Development of biological and post-genomic technologies for assessment of quality of agricultural raw materials and creation of products of healthy food"]. Moscow, 2015, pp. 24—27. (In Russ.).
  14. Vityuk B.Ya. Vliyanie fiziko-himicheskih svojstv maslichnyh semyan na parametry yadernoj magnitnoj relaksacii i povyshenie tochnosti opredeleniya ih kachestva metodom yadernogo magnitnogo rezonansa. Diss. kand. tekhn. nauk [Influence of physical and chemical properties of oilseeds on parameters of a nuclear magnetic relaxation and increase in accuracy of determination of their quality by method of nuclear magnetic resonance. Cand. techn. sci. diss.]. Krasnodar, VNIIMK Publ., 1986. 148 p. (In Russ.).
  15. Bazhant V., Hvalovski V., Ratouski I. Silikony. Kremnijorganicheskie soedineniya, ih poluchenie, svojstva i primenenie [Silicones. Kremniyorganichesky connections, their receiving, properties and application]. Moscow, 1960. 710 p. (In Russ.).
  16. Dolgov O.N., Voronkov M.G., Grinblat M.P. Kremnijorganicheskie zhidkie kauchuki i materialy na ih osnove [Silicon organic liquid rubbers and materials on their basis]. Leningrad, 1975. 175 p. (In Russ.).
  17. Prudnikov S.M., et al. Imitator svobodnoj processii yadernogo magnitnogo rezonansa i spinovogo ehkho masla s razlichnoj massovoj dolej oleinovoj kisloty v semenah podsolnechnika [The simulator of a free procession of a nuclear magnetic resonance and spin an oil echo with various mass fraction of oleic acid in sunflower seeds]. Patent application of the RF ¹ 2018106389/20.02.2018. 3 p. (In Russ.).
  18. Agafonov O.S., Rusnak G.V. [Influence of temperature on parameters of signals of the nuclear magnetic resonance (NMR) of protons of oil in sunflower seeds with various content of oleic acid]. Materialy II nauchno-prakticheskoj konferencii studentov, aspirantov i molodyh uchenyh "Sovremennye aspekty proizvodstva i pererabotki sel'skohozyajstvennoj produkcii" [Materials II of a scientific and practical conference of students, graduate students and young scientists "Modern aspects of production and processing of agricultural production"]. Krasnodar, 2016. 253—261 pp. (In Russ.).
  19. Prudnikov S.M., Agafonov O.S., Zverev L.V. [Influence of hardware factors on results of measurement of a maslichnost, humidity and mass share of oleic acid in sunflower seeds by nuclear magnetic resonance method]. Maslichnye kul'tury. Nauchn.-tekh. byul. VNIIMK [Oil crops. Scientific and Technical Bulletin VNIIMK], 2016, no. 4, pp. 31—35. (In Russ.).
  20. YAMR-analizator AMV-1006M. Rukovodstvo po ehkspluatacii MP 2.00495.964 RE [AMV-1006M nuclear magnetic resonance analyzer. Operation manual MP2.00495.964 RE]. Krasnodar, VNIIMK, 2016. 46 p. (In Russ.).
 

M. G. Fomkina1, S. Zh. Ibadullaeva2

DEVELOPMENT OF UREA BIOSENSOR USING POLYMER
TECHNOLOGIES FOR BLOOD AND URINE TESTS

"Nauchnoe Priborostroenie", 2018, vol. 28, no. 3, pp. 36—43.
doi: 10.18358/np-28-3-i3643
 

Based on polymeric nanotechnologies, enzyme sensors and microreactors have been developed that can determine urea in liquids. It is shown that urea biosensor is able to work for a long time (up to 2 months) without significant loss of enzyme activity. Polymer technology for manufacturing sensors is less laborious and expensive compared to other similar technologies. We propose to develop biosensor devices - urea analyzers with polymer enzyme chips for express diagnostics of biological fluids (blood, urine).
 

Keywords: enzyme biosensors, polymeric nanomaterial, portable analyzer, microreactor, microcapsules, urea

Author affiliations:

1Institute of Theoretical and Experimental Biophysics, RAS, Pushchino, Moscow Region, Russia
2Korkyt Ata Kyzylorda State University, Kyzylorda city, Republic of Kazakhstan

 
Contacts: Mariya Grigor'evna Fomkina, mfomkina@mail.ru
Article received in edition 28.06.2018
Full text (In Russ.) >>

REFERENCES

  1. Montrel' M.M., Ternovskij V.I., Fomkina M.G., Petrov A.I. Ul'tratonkoe polimernoe pokrytie, sposob ego izgotovleniya i fermentativnyj biosensor na ego osnove [Ultrathin polymeric covering, way of his production and enzymatic biosensor on its basis]. Patent no. 2333231. Prioritet 10.09. 2008. Bulletin no. 25, Application 2006136254/04, Prioritet 16.10.2006. (In Russ.).
  2. Ternovskij V.I., Chernohvostov Yu.V., Fomkina M.G., Montrel' M.M. [Electrometric sensor on the basis of the urease immobilized in polyelectrolytic microcapsules]. Biofizika [Biophysics], 2007, vol. 52, no. 5, pp. 825—829. (In Russ.).
  3. Fomkina M.G., Minkabirova G.M., Montrel' A.M. Sposob polucheniya podlozhek s mnogoslojnym pokrytiem na osnove poliehlektrolitnyh mikrokapsul, soderzhashchih biologicheski aktivnye materialy [Way of receiving substrates with a multilayered covering on the basis of the polyelectrolytic microcapsules containing biologically active materials]. Patent No. 2567320.  Bulletin no. 31 Prioritet 10.11.2015. Application 2011103074/05 Prioritet 28.01.2011. (In Russ.).
  4. Sukhorukov G.B., Volodkin D.V., Günther A.M., Shenoy D.B., Möhwald H., Petrov A.I. Porous calcium carbonate microparticles as templates for encapsulation of bioactive compounds. Journal of Materials Chemistry, 2004, vol. 14, no. 14, pp. 2073—2081. Doi: 10.1039/B402617A.
  5. Volodkin D.V., Prevot M., Sukhorukov G.B., Petrov A.I.Matrix polyelectrolyte microcapsules: new system for macromolecule encapsulation. Langmuir, 2004, vol. 20, no. 8, pp. 3398—3406. Doi: 10.1021/la036177z.
  6. Petrov A.I., Volodkin D.V., Sukhorukov G.B. Protein-calcium carbonate coprecipitation: a tool for protein encapsulation. Biotechnology Progress, 2005, vol. 21, no.10.1021/bp0495825.
  7. Fomkina M.G., Grokhlina T.I., Minkabirova G.M., Montrel A.M., Mayevsky E.I. [Express-diagnosis of urea concentration in the biological fluid by novel polymeric sensor]. Medline.ru: Rossijskij biomedicinskij zhurnal [Medline.ru: Russian biomedical magazine], 2011, vol. 12, no. 3, pp. 701—710. (In Russ.).
  8. Suhorukov B.I., Tihonenko S.A., Saburova E.A., Dubrovskij A.V., Dybovskaya Yu.N., Shabarchina L.I. [Encapsulation of proteins in polyelectrolytic nano - and microcapsules and problems of development of a fermental mikrodiagnostikum]. Biofizika [Biophysics], 2007, vol. 52, no. 6, pp. 1041—1048. (In Russ.).
  9. Pachariyanon P., Barth E., Agar D.W. Enzyme immobilisation in permselective microcapsules. Micro and Nano Carriers Journal of Microencapsulation, 2011, vol. 28, no. 5, pp. 370—383. Doi: <10.3109/02652048.2011.576781.
  10. Useinov A., Kravchuk K., Maslenikov I., Reshetov V., Fomkina M. [Research of durability of microobjects by means of the scanning NANOSCAN nanohardness gage]. Nanoindustriya [Nanoindustry], 2015, vol. 58, no. 4, pp. 54—61. (In Russ.).
 

Yu. M. Yevdokimov1, O. N. Kompanets2

PORTABLE BIOSENSORS ON THE BASE OF DNA BIOSENSING
UNITS FOR APPLICATION IN MEDICINE AND BIOTECHNOLOGIES

"Nauchnoe Priborostroenie", 2018, vol. 28, no. 3, pp. 44—53.
doi: 10.18358/np-28-3-i4453
 

The developments of biosensor analytical systems based on double-stranded DNA nanoconstructions as biosensing units and a portable dichrometer are presented. Such systems can be used for high sensitive detection of different biologically active and toxic compounds in liquids. The properties of particles of DNA nanoconstructions and different dichrometer constructions are described, mainly, from the point of view using such biosensors in medicine and biotechnologies.
 

Keywords: biosensor, nanoconstructions DNA, circular dichroism, biologically active substances

Author affiliations:

1Engelhardt Institute of Molecular Biology, RAS, Moscow, Russia
2Institute of Spectroscopy of the RAS, Moscow, Russia

 
Contacts: Kompanets Oleg Nikolaevich, onkomp@isan.troitsk.ru
Article received in edition 28.06.2018
Full text (In Russ.) >>

REFERENCES

  1. Yevdokimov Yu.M., Salyanov V.I., Semenov S.V., Skuridin S.G. Zhidkokristallicheskie dispersii i nanokonstrukcii DNK [Liquid crystal dispersions and nanodesigns of DNA]. Ed. Yu.M. Evdokimov. Moscow, Radiotekhnika Publ., 2008. 294 p. (In Russ.).
  2. Yevdokimov Yu.M., Salyanov V.I., Skuridin S.G. Nanostruktury i nanokonstrukcii na osnove DNK [Nanostructures and nanodesigns on the basis of DNA]. Ed. Yu.M. Evdokimov. Moscow, SAINS-PRESS Publ., 2010. 254 p. (In Russ.).
  3. Yevdokimov Yu.M., Kompanets O.N. [Structural nanotechnology of nucleinic acids: nanocrystal approach]. Uspekhi fizicheskih nauk [Achievements of physical sciences], 2014, vol. 184, no. 6, pp. 665—672. Doi: 10.3367/UFNr.0184.201406i.0665.(In Russ.).
  4. Kompanets O.N., Yevdokimov Yu.M. [Optical biosensors of genotoksikant on the basis of nanokonstrution of DNA and portable dichrometr]. Uspekhi fizicheskih nauk [Achievements of physical sciences], 2009, vol. 179, no. 3, pp. 329—334.
  5. Yevdokimov Yu.M., Skuridin S.G. Vereshchagin F.V., Gusev V.M., Kompanets O.N., Chulkov D.P. [Nanodesigns on the basis of two-chained molecules DNA and their optical properties]. XXV s’ezd po spektroskopii: Sbornik tezisov [The XXV congress on spectroscopy: Collection of theses], Troitsk-Moscow, on October 3—7, 2016. Moscow, MGPU Publ., 2016, pp. 219—220. (ISBN 978-5-4263-0368-3). (In Russ.).
  6. Vereshchagin F.V., Gusev V.M., Kompanets O.N., Chulkov D.P., Yevdokimov Yu.M., Skuridin S.G. [Compact two-wave dichrometer for the optical biotouch analytical system of medical appointment]. XXV s’ezd po spektroskopii: Sbornik tezisov [The XXV congress on spectroscopy: Collection of theses], Troitsk, Moscow, on October 3-7, 2016. Moscow, MGPU, 2016, pp. 284—285. (ISBN 978-5-4263-0368-3). (In Russ.).
 

F. V. Vereshchagin1, V. M. Gusev1, O. N. Kompanets1, M. A. Pavlov1,
D. P. Chulkov2, Yu. M. Yevdokimov3, S. G. Skuridin3

A COMPACT OPTICAL BIOSENSOR ANALYTICAL
SYSTEM FOR MEDICINE

"Nauchnoe Priborostroenie", 2018, vol. 28, no. 3, pp. 54—58.
doi: 10.18358/np-28-3-i5458
 

An experimental sample of a compact highly sensitive biosensor analytic system for the rapid detection of the presence and concentration of antibiotics (daunomycin and its analogues) used in oncology clinics is created. The optimization of the operation modes of the dichrometer and the elements of the biosensor software was carried out, the biosensor system was calibrated for the example of recording the CD optical signal of containing DAU laboratory solutions.
 

Keywords: biosensor, circular dichroism, DNA based biosensing units, dichrometer, daunomycin

Author affiliations:

1Institute of Spectroscopy of the RAS, Moscow, Russia
2RMP "Medtechnika", Moscow, Russia
3Engelhardt Institute of Molecular Biology, RAS, Moscow, Russia

 
Contacts: Kompanets Oleg Nikolaevich, onkomp@isan.troitsk.ru
Article received in edition: 28.06.2018
Full text (In Russ.) >>

REFERENCES

  1. Evdokimov Yu.M., Salyanov V.I., Semenov S.V., Skuridin S.G., Yu.M Evdokimov ed. Zhidko-kristallicheskie dispersii i nanokonstrukcii DNK [Liquid crystal dispersions and nanodesigns of DNA]. Moscow, Radiotekhnika Publ., 2008. 294 p. (In Russ.).
  2. Evdokimov Yu.M., Salyanov V.I., Skuridin S.G., Yu.M Evdokimov ed. Nanostruktury i nanokonstrukcii na osnove DNK [Nanostructures and nanodesigns on the basis of DNA]. Moscow, SSAJNS-PRESS Publ., 2010. 254 p. (In Russ.).
  3. Evdokimov Yu.M., Skuridin S.G., Vereshchagin F.V., Gusev V.M., Kompanets O.N., Chulkov D.P. [Nanodesigns on the basis of two-chained molecules DNA and their optical properties]. XXV s'ezd po spektroskopii: Troick-Moskva, 3—7 oktyabrya 2016 g. Sbornik tezisov [The XXV congress on spectroscopy: Troitsk, Moscow, on October 3—7, 2016. Collection of theses]. Moscow, MPGU, 2016 (ISBN 978-5-4263-0368-3), pp. 219—220. (In Russ.).
  4. Vereshchagin F.V., Gusev V.M., Kompanets O.N., Chulkov D.P., Evdokimov Yu.M., Skuridin S.G. [Compact two waves dichrometer for the optical biotouch analytical system of medical appointment]. XXV s'ezd po spektroskopii: Troick-Moskva, 3—7 oktyabrya 2016 g. Sbornik tezisov [The XXV congress on spectroscopy: Troitsk, Moscow, on October 3—7, 2016. Collection of theses]. Moscow, MPGU Publ., 2016 (ISBN 978-5-4263-0368-3), pp. 284—285. (In Russ.).
  5. Vereshchagin F.V., Gusev V.M., Kompanets O.N., Pavlov M.A., Chulkov D.P. [Portable multifunctional dichrometer the new biotouch analytical system of biomedical appointment on the basis of DNA biosensors]. Biomedicinskaya radioehlektronika [Biomedical Radioelectronics], 2013, no. 3, pp. 58—68. (In Russ.).
 

S. P. Moiseyeva1, G. V. Kotelnikov1, O. I. Grabelnykh2,
T. P. Pobezhimova2, V. K. Voinikov2

CALORIMETRIC MEASUREMENTS OF HEAT PRODUCTION
IN PLANT CELL MITOCHONDRIA

"Nauchnoe Priborostroenie", 2018, vol. 28, no. 3, pp. 59—62.
doi: 10.18358/np-28-3-i5962
 

Measurements of heat production in the plant cell mitochondria were performed on the experimental sample of the nanocalorimeter. The addition was carried out without delay and with a delay of 1.5 hours at a temperature of 24 °C. The results of measurements of heat production in freshly isolated mitochondria of winter wheat in a suspension medium showed a 6-fold decrease in heat production in the case of a delayed experiment, which confirmed the need for measurements without delay in time to ensure precise measurements.
 

Keywords: nanocalorimeter, precision measurements, heat production, plant mitochondria

Author affiliations:

1Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
2Siberian Institute of Plant Physiology and Biochemistry Siberian Division RAS, Irkutsk, Russia

 
Contacts: Moiseeva Sof'ya Petrovna, spmoiseewa@yandex.ru
Article received in edition 18.06.2018
Full text (In Russ.) >>

REFERENCES

  1. Nakamura T., Matsuoka I. Calorimetric studies of heat of respiration of mitochondria. Journal of Biochemistry, 1978, vol. 84, no. 1, pp. 39–46. Doi: 10.1093/oxfordjournals.jbchem.a132117.
  2. Zhou P.-J., Zhou H.-T., Liu Y., Qu S.-S., Zhu Y.-G., Wu Z.-B. Studies on the energy release of rice mitochondria under different conditions by means of microcalorimetry. Journal of Biochemical and Biophysical Methods, 2001, vol. 48, pp. 1–11.
  3. Velazquez-Campoy A., Lopez-Mayorga O., Cabrerizo-Vilchez M.A. Development of an isothermal titration microcalorimetric system with digital control and dynamic power Peltier compensation. I. Description and basic performance. Review of Scientific Instruments, 2000, vol. 71, no. 4, pp. 1824–1831. Doi: 10.1063/1.1150543.
  4. Garcia-Fuentes L., Baron C., Mayorga O.L. Influence of dynamic power compensation in an isothermal titration microcalorimeter. Analytical Chemistry, 1998, vol. 70, no. 21, pp. 4615–4623. Doi: 10.1021/ac980203u.
  5. Wiseman Ò., Williston S., Brandts J.F., Lin L.-N. Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Analytical Biochemistry, 1989, vol. 179, no. 1, pp. 131–137.
  6. Kotelnikov G.V., Moiseyeva S.P., Mezhburd E.V., Krayev V.P. New isothermal titration calorimeter for investigationson very small samples. Theoretical and experimental studies. Journal of Thermal Analysis and Calorimetry, 2002, vol. 68, no. 3, pp. 803–818.
  7. Kotelnikov G.V., Moiseyeva S.P., Mezhburd E.V. Maevsky E.I., Grishina E.V. Studying dispersoid systems method of introducing an injecting needle into calorimetric chamber of capillary titration calorimeter. Journal of Thermal Analysis and Calorimetry, 2005, vol. 81, no. 2, pp. 255–259. Doi: 10.1007/s10973-005-0775-6.
  8. Kotelnikov G.V., Moiseyeva S.P., Mezhburd E.V., Krayev V.P. Method of separating the sensitive volume of calorimetric cells in a differential titration calorimeter. Journal of Thermal Analysis and Calorimetry, 2000, vol. 62, no. 1, pp. 39–50. Doi: 10.1023/A:1010150409126.
  9. Pobezhimova T.P., Kolesnichenko A.V., Grabel#39;nyh O.I. Metody izucheniya mitohondrij rastenij. Polyarografiya i ehlektroforez [Methods of studying of mitochondrions of plants. Polyarografiya and electrophoresis]. Moscow, OOO NPK Promehkspobezopasnost Publ., 2004. 98 p. (In Russ.).
  10. Kotelnikov G.V., Moiseyeva S.P. [Nanocalorimeter for measuring the heat production in mitochondria]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2016, vol. 26, no. 3, pp. 3–9. Doi: 10.18358/np-26-3-i39. (In Russ.).
 

O. A. Keltsieva1, A. S. Gladchuk2, P. S. Dubakova2, N. V. Krasnov1, E. P. Podolskaya2,1

CO3O4-BASED METAL AFFINITY SORBENT:
STUDY OF SURFACE AND SORPTION PROPERTIES

"Nauchnoe Priborostroenie", 2018, vol. 28, no. 3, pp. 63—71.
doi: 10.18358/np-28-3-i6371
 

The work is devoted to the studied of cobalt (III) oxide particles and determination of their sorption properties to diclofenac in water. The specific surface area of particles was 26 m2/g, the pore volume was 0.056 cm3/g. The sorption capacity for diclofenac was 2.1 ± 0.1 μg/mg and recovery reached 98 % for ammonia-acetonitrile mixture as eluent.
 

Keywords: metal affinity chromatography, sorbents, cobalt oxide (III), diclofenac

Author affiliations:

1Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia
2Institute of Toxicology of FMBA, Saint-Petersburg, Russia

 
Contacts: Gladchuk Aleksey Sergeevich, aleglad24@gmail.com
Article received in edition: 29.05.2018
Full text (In Russ.) >>

REFERENCES

  1. Pharmaceuticals in the environment – result of an EEA workshop. Technical report No 1/2010. URL: https://publications.europa.eu/en/publication-detail/-/publication/29affe43-b703-458b-80ca-1af782dc8198/language-en.
  2. Barenboim G.M., Chiganova M.A. Zagryaznenie prirodnyh vod lekarstvami [Drug pollution of the natural waters]. Moscow, Nauka Publ., 2015, 283 p. (In Russ.).
  3. Aus der Beek T., Weber F.-A., Bergmann A., Hickmann S., Ebert I., Hein A. et al. Pharmaceuticals in the environment — global occurrences and perspectives. Environ Toxicol Chem., 2016, vol. 35, no. 4, pp. 823—835.
  4. Vieno N., Sillanpää M. Fate of diclofenac in municipal wastewater treatment plant – a review. Environment International, 2014, vol. 69, pp. 28—39.
  5. Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. URL: http://data.europa.eu/eli/dir/2013/39/oj (accessed 15 February 2018).
  6. Keltsieva O.A., Gladilovich V.D., Podolskaya E.P. [Immobilized metal ion affinity chromatography (IMAC). Principle and applications]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2013, vol. 23, no. 1, pp. 74—85.
  7. Cheung R.C., Wong J.H., Ng T.B. Immobilized metal ion affinity chromatography: a review on its applications. Appl. Microbiol. Biotechnol., 2012, vol. 96, no. 6,
    pp. 1411—1420. Doi: 10.1007/s00253-012-4507-0.
  8. Feng S., Ye M., Zhou H., Jiang X., Jiang X., Zou H. et al. Immobilized zirconium affinity chromatography for specific enrichment of phosphopeptides in phosphoproteome analysis. Mol. Cell. Proteomics., 2007, vol. 6, no. 9, pp. 1656—1665. Doi: 10.1074/mcp.T600071-MCP200.
  9. Tsai C.F., Hsu C.C., Hung J.N., Wang Y.T., Choong W.K., Zeng M.Y. et al. Sequential phosphoproteomic enrichment through complementary metal-directed immobilized metal ion affinity chromatography. Anal. Chem., 2014, vol. 86, no. 1, pp. 685—693. Doi: 10.1021/ac4031175
  10. 10. Lai A.C., Tsai C.F., Hsu C.C., Sun Y.N., Chen Y.J. Complementary Fe3+- and Ti4+-immobilized metal ion affinity chromatography for purification of acidic and basic phosphopeptides. Rapid Commun. Mass Spectrom., 2012, vol. 26, no. 18, pp. 2186–2194. Doi: 10.1002/rcm.6327.
  11. Yu Z., Han G., Sun S., Jiang X., Chen R., Wang F. et al. Preparation of monodisperse immobilized Ti4+ affinity chromatography microspheres for specific enrichment of phosphopeptides. Analytica Chimica Acta, 2009, vol. 636, no. 1, pp. 34—41. Doi: 10.1016/j.aca.2009.01.033.
  12. Nelson C.A., Szczhech J.R., Xu Q., Lawrence M.J., Jin S., Ge Y. Mesoporous zirconium oxide nanomaterials effectively enrich phosphopeptides for mass spectrometry-based phosphoproteomics. Chem. Commun. (Camb.), 2009, vol. 43, pp. 6607—6609. Doi: 10.1039/b908788e.
  13. Han L., Shan Z., Chen D., Yu X., Yang P., Tu B. et al. Mesoporous Fe2O3 microspheres: rapid and effective enrichment of phosphopeptides for MALDI-TOF MS analysis. J. Colloid. Interface Sci., 2008, vol. 318, no. 2,
    pp. 315—321. Doi: 10.1016/j.jcis.2007.10.026.
  14. Choi S., Kim J., Cho K., Park G., Yoon J.H., Park S. et al. Sequential Fe3O4/TiO2 enrichment for phosphopeptide analysis by liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom., 2010, vol. 24, pp. 1467—1474. Doi: 10.1002/rcm.4541.
  15. Kurdyukov D., Chernova E., Russkikh Y., Eurov D., Sokolov V., Bykova A. et al. Ni-functionalized submicronmesoporous silica particles as a sorbent for metal affinity chromatography. J. Chromatogr. A, 2017, vol. 1513, pp. 140—148. Doi: 10.1016/j.chroma.2017.07.043.
  16. Pearson R. Hard and soft acids and bases. J. Am. Chem. Soc., 1963, vol. 85, no. 22, pp. 3533—3539.
  17. Kolonitskiy P.D., Shustov V.E., Mozgushin I.A., Podolskaya E.P. [Microwave-assisted synthesis of NiO particles, characterization its surface properties]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2015, vol. 25, no. 2, pp. 102—107. (In Russ.).
  18. Brunauer S., Emmett P., Teller E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc., 1938, vol. 60, no. 2, pp. 309—319.
  19. Barrett E., Joyner L., Halenda P. The determination of pore volume and area distributions in porous substances. I Computations from nitrogen isotherms. J. Am. Chem. Soc., 1951, vol. 73, no. 1, pp. 373—380.
 

D. O. Kuleshov1, T. E. Kuleshova2, D. E. Bobkov3,
A. A. Diachenko1, N. R. Gall1,2, L. N. Gall1

MASS-SPECTROMETRIC STUDY OF UNITHIOL
WATER-ACETONITRIL SOLUTIONS

"Nauchnoe Priborostroenie", 2018, vol. 28, no. 3, pp. 72—83.
doi: 10.18358/np-28-3-i7283
 

Unithiol test is widely used for study of biological effect on living organisms of geomagnetic and space physical factors; the test is based on semi oxidation time measurements done electrochemically or photo metrically. To measure the products of unithiol oxidation reaction and rates of their production, ESI mass-spectrometric study has been made. Unithiol associates cathionated with Na+ have been found in mass-spectra of its water-acetonitrile solutions with general formula (C3H7O3S3Na)nNa+ with n up to 8; they present in essential amount together with Na+ cathionated monomer ion. Associate peak intensities were decreased with the molecular number, but their total intensity was higher than that of monomer. The associate total intensity grows with increase in concentration, this is an evidence for their production directly in the solution. Unithiol oxidation process study can give additional information about the outer factor effect on oxidation and reduction processes in a living body.
 

Keywords: done physical factors, unithiol test, ESI mass-spectrometric study, associate

Author affiliations:

1Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia
2Ioffe Institute, Saint-Petersburg, Russia
3Institute of Cytology RAS, Saint-Petersburg, Russia

 
Contacts: Kuleshov Denis Olegovich, hellchemist@yandex.ru
Article received in edition 23.04.2018
Full text (In Russ.) >>

REFERENCES

  1. Sokolovskij V.V. Tioldisul'fidnaya sistema v reakcii organizma na faktory okruzhayushchej sredy [Tioldisulfidny system in reaction of an organism to environment factors]. Saint-Petersburg, Nauka Publ., 2008. 112 p. (In Russ.).
  2. Jocelyn P. Biochemistry of the SH-group. The occurrence, chemical properties, metabolism and biological function of thiol and disulphides. London, N.Y., Acad. Press, 1972. 404 p.
  3. Essex D. Redox control of platelet function. Antioxidants and redox signaling, 2009, vol. 11, no. 5, pp. 1191—1225.
  4. Daynes R., Enioutina E., Jones D. Role of redox imbalance in the molecular mechanisms responsible for immunosenescence. Antioxidants and redox signaling, 2003, vol. 5, no. 5, pp. 537—548.
  5. Sokolovskij V.V. [Tiolovy antioxidants in molecular mechanisms of nonspecific reaction of an organism to extreme influence]. Voprosy medicinskoj himii [Questions of medical chemistry], 1988, vol. 34, no. 6, pp. 200—210. (In Russ.).
  6. Sokolovskij V.V., Sokolovskaya T.M., Shubina L.N. [About the biochemical mechanism of toxic effect of nitrogen dioxide]. Farmakologiya i toksikologiya [Pharmacology and toxicology], 1974, vol. 37, no. 4, pp. 469—471. (In Russ.).
  7. Gorshkov E.S., Ivanov V.V., Sokolovskij V.V. Redoks reakcii v kosmobiologii [Redox reactions in a kosmobiology], Saint-Petersburg, Polytechnical university, 2014. 194 p. (In Russ.).
  8. Kuleshov D.O., Berezkina T.E., Russkikh Y.V., et al. Application of high-performance liquid chromatography / high-resolution mass spectrometry to the investigation of sodium 2, 3-disulfanyl-1-propanesulfonate (unithiol) and products of its oxidation with hydrogen peroxide. Journal of Analytical Chemistry, 2016, vol. 71, no. 14, pp. 1381—1388. Doi: 10.1134/S1061934816140082.
 

M. I. Yavor1, A. N. Verenchikov2, R. G. Guluev3

MULTITURN SPIRAL TIME-OF-FLIGHT MASS ANALYZER
BASED ON CYLINDRICAL SECTOR FIELDS AND PERIODIC LENSES

"Nauchnoe Priborostroenie", 2018, vol. 28, no. 3, pp. 84—89.
doi: 10.18358/np-28-3-i8489
 

Based on numerical simulation investigated is a possibility to use in multiturn sector time-of-flight mass analyzers with spiral ion motion of an array of periodic lenses, similar to used in mirror multireflecting time-of-flight analyzers. It is shown that this solution retains the resolving power of the mass analysis while considerably simplifying the design of the device because of using cylindrical sector fields and adding a possibility to double ion flight path length with the aid of reflecting ions in the direction of the spiral drift.
 

Keywords: time-of-flight mass analyzer, periodic lenses, cylindrical deflector, resolving power, flight time focusing

Author affiliations:

1Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia
2MSC-CG D.O.O., Bar, Montenegro
3Peter the Great Polytechnical University, Saint-Petersburg, Russia

 
Contacts: Yavor Michail Igorevich, mikhail.yavor@gmail.com
Article received in edition 26.04.2018
Full text (In Russ.) >>

REFERENCES

  1. Yavor M.I., Verenchikov A.N. [Comparative analysis of multipass time-of-flight mass analyzers based on mirrors and sector fields]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2006, vol. 16, no. 3, pp. 21—29. URL: http://213.170.69.26/mag/2006/abst3.php#abst2. (In Russ.).
  2. Toyoda M., Okumura D., Ishihara M., Katakuse I. Multi-turn time-of-flight mass spectrometers with electrostatic sectors. J. Mass Spectrom., 2003, vol. 38, no. 11, pp. 1125—1142. Doi: 10.1002/jms.546.
  3. Satoh T., Tsuno H., Iwanaga M., Kammei Y. The design and characteristic features of a new time-of-flight mass spectrometer with a spiral ion trajectory. J. Am. Soc. Mass Spectrom., 2005, vol. 16, pp. 1969—1975. Doi: 10.1016/j.jasms.2005.08.005.
  4. Yavor M., Verentchikov A., Hasin Ju., Kozlov B., Gavrik M., Trufanov A. Planar multi-reflecting time-of-flight mass analyzer with a jig-saw ion path. Physics Procedia, 2008, vol. 1, no. 1, pp. 391—400.
  5. Verenchikov A., Yavor M. Mass analyzer having extended flight path. Patent PCT WO2018033494, 2018.
  6. Yavor M. Optics of charged particle analyzers. Acad. Press, Amsterdam, 2009.
  7. Wollnik H., Harmann B., Berz M. Principles of GIOS and COSY. AIP Conf. Proc., 1988, vol. 177, pp. 74—85. Doi: 10.1063/1.37817.
  8. Manura D.J., Dahl D.A. SIMIONTM 8.0 User Manual. Sci. Instrument Services, Inc., Idaho Nat. Lab., 2006.
  9. Verenchikov A., Kirillov S., Khasin Yu., Makarov V., Yavor M., Artaev V. Multiplexing in multi-reflecting TOF MS. J. Applied Solution Chemistry and Modeling, 2017, vol. 6, pp. 1—22. Doi: 10.6000/1929-5030.2017.06.01.1.
 

A. S. Berdnikov, A. G. Kuzmin, S. V. Masyukevich

ON THE USE OF STROBOSCOPIC SAMPLES
IN THE ANALYSIS OF THE MOTION OF IONS IN QUADRUPOLE RADIO-FREQUENCY FIELDS .
I. CRITICAL ANALYSIS OF THE CONCEPT

"Nauchnoe Priborostroenie", 2018, vol. 28, no. 3, pp. 90—100.
doi: 10.18358/np-28-3-i90100
 

A new concept of effective potential, proposed by M.Yu. Sudakov and M.V. Apatskaya, is analyzed. The said concept is based on the envelopes of stroboscopic samples of coordinates and ion velocities in a radio-frequency quadrupole field and seems rather interesting. However, it is shown that the proposed formulas are not completely correct and require some elaboration.
 

Keywords: high-frequency electric fields, quadrupole mass filter, secular oscillations, pseudopotential

Author affiliations:

Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia

 
Contacts: Berdnikov Aleksandr Sergeevich, asberd@yandex.ru
Article received in edition 25.06.2018
Full text (In Russ.) >>

REFERENCES

  1. Landau L.D., Lifshic E.M. Teoreticheskaya fizika. T. I. Mekhanika [Theoretical physics. Vol. I. Mechanics]. Moscow, Fizmatgiz Publ., 1958. 202 p. (In Russ.).
  2. Gaponov V.A., Miller M.A. [About potential holes for charged particles in the high-frequency field]. Zhurnal ehksperimental'noj i tekhnicheskoj fiziki [Journal of experimental and technical physics], 1958, vol. 34, no. 2,
    pp. 242—243. (In Russ.).
  3. Miller M.A. [The movement of charged particles in high-frequency electromagnetic fields]. Izvestiya Vuzov, ser. Radiofizika [News of Higher education institutions, Radiophysics series], 1958, vol. 1, no. 3, pp. 110—123. (In Russ.).
  4. Litvak A.G., Miller M.A., Sholohov N.V. [Specification of the average equation of the movement of charged particles in the field of a standing electromagnetic wave]. Izvestiya Vuzov, ser. Radiofizika [News of Higher education institutions, Radiophysics series], 1962, vol. 5, no. 6, pp. 1160—1174. (In Russ.).
  5. Sivuhin D.V. [The drift theory of the movement of charged particle in electromagnetic fields]. Voprosy teorii plazmy [Questions of the theory of plasma]. Moscow, Gosatomizdat Publ., 1963, vol. 1, pp. 7—97. (In Russ.).
  6. Morozov A.I., Solov'ev L.S. [The movement of charged particle in electromagnetic fields]. Voprosy teorii plazmy [Questions of the theory of plasma]. Moscow, Gosatomizdat Publ., 1963, vol. 2, pp. 177—261. (In Russ.).
  7. Geyko V.I., Frayman G.M. [About the accuracy of the average description of the movement of charged particles in high-frequency fields]. Zhurnal ehksperimental'noj i tekhnicheskoj fiziki [Journal of experimental and technical physics], 2008, vol. 134, no. 6, pp. 1125—1129. (In Russ.).
  8. Kapica P.L. [Electronics of big capacities]. Uspekhi fizicheskih nauk [Achievements of physical sciences], 1962, vol. 78, no. 2, pp. 181—265. (In Russ.).
  9. Chirkov A.G. Asimptoticheskaya teoriya vzaimodejstviya zaryazhennyh chastic i kvantovyh sistem s vneshnimi ehlektromagnitnymi polyami [The asymptotic theory of interaction of charged particles and quantum systems with external electromagnetic fields]. Saint-Petersburg, Nestor Publ., 2001. 257 p. (In Russ.).
  10. Gerlich D. Inhomogeneous RF fields: a versatile tool for the study of processes with slow ions. State-Selected and State-to-State Ion—Molecule reaction Dynamics. Part 1: Experiment, Advances in Chemical Physics Series. C.-Y. Ng, M. Baer (Eds.). New York, John Wiley & Sons Inc., 1992, vol. LXXXII, pp. 1—176.
  11. Slobodenyuk G.I. Kvadrupol'nye mass-spektrometry [Quadrupole mass spectrometer]. Moscow, Atomizdat Publ., 1974. 271 p. (In Russ.).
  12. Dawson P.H., ed. Quadrupole Mass Spectrometry and Its Applications. Woodbury, American Institute of Physics, 1995. 349 p.
  13. Dawson P.H. Ion optical properties of quadrupole mass filters. Advances in Electronics and Electron Physics. Academic Press. Inc., 1980, vol. 53, pp. 153—208.
  14. March R.E., Hughes R.J. Quadrupole Storage Mass Spectrometry. New York, John Wiley and Sons, 1989. 24 p.
  15. Major F.G., Gheorghe V.N., Werth G. Charged Particle Traps. Physics and Techniques of Charged Particle Field Confinement. Berlin, Heidelberg, New York, Springer-Verlag, 2005. 370 p.
  16. Werth G., Gheorghe V.N., Major F.G. Charged Particle Traps II. Applications. Berlin, Heidelberg: Springer-Verlag, 2009. Doi: 10.1007/978-3-540-92261-2.
  17. Sudakov M. Effective potential and the ion axial beat motion near the boundary of the first stable region in a nonlinear ion trap. International Journal of Mass Spectrometry, 2001, vol. 206, pp. 27—43. Doi: 10.1016/S1387-3806(00)00380-8.
  18. Baranov V.I., Bandura D.R., Tanner S.D. Limitations of the effective potential for the evaluation of the ion energy in the rf-driven quadrupole field. International Journal of Mass Spectrometry, 2005, vol. 247, pp. 40—47. Doi: 10.1016/j.ijms.2005.08.011.
  19. Sudakov M.Yu., Apackaya M.V. [The concept of effective potential for the description of the movement of ions in the kvadrupolny filter of masses]. Zhurnal ehksperimental'noj i tekhnicheskoj fiziki [Journal of experimental and technical physics], 2012, vol. 142, pp. 222—229. (In Russ.).
  20. Gao C., Douglas D.J. Can the effective potential of a linear quadrupole be extended to values of the Mathieu parameter q up to 0.90? Journal of American Society for Mass Spectrometry, 2013, vol. 24, pp. 1848—1852. Doi: 10.1007/s13361-013-0738-2.
  21. Douglas D.J., Berdnikov A.S., Konenkov N.V. The effective potential for ion motion in a radio frequency quadrupole field revisited. International Journal of Mass Spectrometry, 2015, vol. 377, pp. 345—354. Doi: 10.1016/j.ijms.2014.08.009.
  22. Reilly P.T.A., Brabeck G.F. Mapping the pseudopotential well for all values of the Mathieu parameter q in digital and sinusoidal ion traps. International Journal of Mass Spectrometry, 2015, vol. 392, pp. 86—90. Doi: 10.1016/j.ijms.2015.09.013.
  23. Brabeck G.F., Reilly P.T.A. Computational Analysis of Quadrupole Mass Filters Employing Nontraditional Waveforms. Journal of American Society for Mass Spectrometry, 2016, vol. 27, pp. 1122—1127. Doi: 10.1007/s13361-016-1358-4.
  24. Berdnikov A.S., Douglas D.J., Konenkov N.V. The pseudopotential for quadrupole fields up to q = 0.9080. International Journal of Mass Spectrometry, 2017, vol. 421, pp. 204—223. Doi: 10.1016/j.ijms.2017.04.003.
  25. Bondarenko G.V. Uravnenie Hilla i ego primenenie v oblasti tekhnicheskih kolebanij [Hill's equation and his application in the field of technical fluctuations]. Moscow, Leningrad, AN USSR Publ., 1936. 50 p. (In Russ.).
  26. Mak-Lahlan N.V. Teoriya i prilozheniya funkcij Matye [Theory and applications of functions of Mathieu]. Moscow, Inostrannaya literatura Publ., 1953. 476 p.
    (In Russ.).
  27. Konenkov N.V., Sudakov M., Douglas D.J. Matrix methods to calculate stability diagrams in quadrupole mass spectrometry. Journal of American Society for Mass Spectrometry, 2002, vol. 13, pp. 597—613. Doi: 10.1016/S1044-0305(02)00365-3.
  28. Gantmaher F.R. Teoriya matric. Izd. 2-e, dop. [Theory of matrixes. The edition 2 added]. Moscow, Nauka Publ., 1966. 576 p. (In Russ.).
  29. Erugin N.P. Metod Lappo-Danilevskogo v teorii linejnyh differencial'nyh uravnenij [Lappo-Danilevsky's method in the theory of the linear differential equations]. Leningrad, Leningradskij universitet, 1956. 109 p. (In Russ.).
  30. Erugin N.P. Linejnye sistemy obyknovennyh differencial'nyh uravnenij s periodicheskimi i kvaziperiodicheskimi koehfficientami [The linear systems of the ordinary differential equations with periodic and quasiperiodic coefficients]. Minsk, Akademiya nauk BSSR, 1963. 273 p. (In Russ.).
  31. Krasnosel'skij M.A. Operator sdviga po traektoriyam differencial'nyh uravnenij [The operator of shift on trajectories of the differential equations]. Moscow, Glavnaya redakciya fiziko-matematicheskoj literatury Publ., 1966. 332 p. (In Russ.).
  32. Yakubovich V.A., Starzhinskij V.M. Linejnye differencial'nye uravneniya s periodicheskimi koehfficientami i ih prilozheniya [The linear differential equations with periodic coefficients and their applications]. Moscow, Nauka Publ., 1972. 720 p. (In Russ.).
  33. Sheretov E.P., Philippov I.V., Karnav T.B., Kolotilin B.I., Ivanov V.W. Spiking structure of amplitude characteristics for ion trajectories in hyperboloidal mass spectrometers: the theory. Rapid Communications in Mass Spectrometry, 2002, vol. 16, pp. 1652—1657. Doi: 10.1002/rcm.763.
  34. Lezhen Dirihle P.G. Lekcii po teorii chisel [Lectures on the theory of numbers]. Moscow–Leningrad, ONTI NKTP OF THE USSR Publ., 1936. 404 p. (In Russ.).
  35. Shmidt V. Diofantovy priblizheniya [Diophantine approximation]. Moscow, Mir Publ., 1983. 230 p.
  36. Shidlovskiy A.B. Diofantovy priblizheniya i transzendentnye chisla [Diophantine approximations and transcendental numbers]. Moscow, Fizmatlit Publ., 2007. 272 p.
  37. Berdnikov A.S., Verenchikov A.N., Konenkov N.V. [About methodological problems when replacing discrete mass and spectrometer models by continual models]. Mass-spektrometriya [Mass-spectrometry], 2017, vol. 14, no. 3, pp. 176—189. (In Russ.).
  38. Boss V. Uravneniya matematicheskoj fiziki. Seriya "Lekcii po matematike". T. 11. Izd. 4-e [Equations of mathematical physics. Lectures on Mathematics series, vol. 11, ed. 4]. Moscow, URSS, 2016. 224 p. (In Russ.).
 

B. P. Sharfarets1, S. P. Dmitriev2

MODELING OF TURBULENT FLUID MOTION
BASED ON THE BOUSSINESQ HYPOTHESIS.
OVERVIEW

"Nauchnoe Priborostroenie", 2018, vol. 28, no. 3, pp. 101—108.
doi: 10.18358/np-28-3-i101108
 

A mathematical simulation of a turbulent flow in a compressible and incompressible viscous fluid is considered using the example of the simplest model of turbulent motion, obtained as a result of averaging the Navier–Stokes equations from Reynolds and Favre in conjunction with the Boussinesq hypothesis on the presence of turbulent viscosity. Algorithms for averaging the Navier–Stokes equations for a compressible and incompressible fluid are given. Appropriate equations for the averaged and pulsating field parameters for incompressible and compressible liquids are given. The results obtained are useful in the design of a new type of radiator, described in [1, 2], when operating in the turbulent regime of fluid motion.
 

Keywords: turbulent flow, Navier–Stokes equations system, Boussinesq hypothesis, compressible and incompressible viscous liquid, Reynolds averaging, Favre averaging, the averaged and pulsating flow

Author affiliations:

1Institute for Analytical Instrumentation of RAS, Saint- Petersburg, Russia
2OOO "BIOPRODUKT", Moscow, Russia

 
Contacts: Sharfarets Boris Pinkusovich, sharb@mail.ru
Article received in edition 15.06.2018
Full text (In Russ.) >>

REFERENCES

  1. Sergeev V.A., Sharfarets B.P. [About one new method of electroacoustic transformation. A theory based on electrokinetic phenomena. Part I. The hydrodynamic aspect]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2018, vol. 28, no. 2, pp. 25—35. Doi: 10.18358/np-28-2-i2535.
  2. Sergeev V.A., Sharfarets B.P. [About one new method of electroacoustic transformation. A theory based on electrokinetic phenomena. Part II. The acoustic aspect]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2018, vol. 28, no. 2, pp. 36—44. Doi: 10.18358/np-28-2-i3644.
  3. Bradshaw P. An Introduction to Turbulence and its Measurement. Oxford, Pergamon Press., 1975. 218 p. (Russ. ed.: Bradshaw P. Vvedenie v turbulentnost' i ee izmerenie. Translate G.S. Glushko, Moscow, Mir Publ., 1974. 278 p.).
  4. Zaslavskij G.M., Sagdeev R.Z. Vvedenie v nelinejnuyu fiziku: ot mayatnika do turbulentnosti i haosa [Introduction to nonlinear physics: from the pendulum to turbulence and chaos]. Moscow, Nauka Publ., 1988. 368 p. (In Russ.).
  5. Frik P.G. Turbulentnost': modeli i podhody. Kurs lekcij. Ch. 1 [Turbulence: models and approaches. Course of lectures. Part 1], Perm, Perm National Research Polytechnic University, 1998. 108 p. (In Russ.).
  6. Landau L.D., Lifshits E.M. Teoreticheskaya fizika. T. 6. Gidrodinamika [Theoretical physics. Vol. 6. Hydrodynamics], Moscow, Nauka Publ., 1988. 736 p. (In Russ.).
  7. Wilcox C.D. Turbulence Modeling for CFD. DCW Industries, Inc. La Canada, California, 1994. 460 p.
  8. Monin A.S., Yaglom A.M. Statisticheskaya gidromekhanika. Mekhanika turbulentnosti. Ch. 1 [Statistical hydromechanics. Mechanics of turbulence. P. 1]. Moscow, Nauka Publ., 1965. 640 p. (In Russ.).
  9. Monin A.S., Yaglom A.M. Statisticheskaya gidromekhanika. Mekhanika turbulentnosti. Ch. 2 [Statistical hydromechanics. Mechanics of turbulence. P. 2]. Moscow, Nauka Publ., 1967. 720 p. (In Russ.).
  10. Volkov K.N., Emel'yanov V.N. Modelirovanie krupnyh vihrej v raschetah turbulentnyh techenij [Modeling of large whirlwinds in calculations of turbulent flows]. Moscow, Fizmatlit Publ., 2008. 368 p. (In Russ.).
  11. Velikanov M.A., Shvejkovskij N.T., eds. Problemy turbulentnosti [Turbulence problems]. Moscow, NKTP OF THE USSR Publ., 1936. 332 p. (In Russ.).
  12. Belov I.A., Isaev S.A. Modelirovanie turbulentnyh techenij [Modeling of turbulent flows]. Saint-Petrsburg, Baltic State Technical University, 2001. 108 p. (In Russ.).
  13. Uprazhneniya po kursu "Modelirovanie turbulentnosti" [Exercises at the rate "Modelling of Turbulence"]. Kurs lekcij "Modeli turbulentnosti" [Course of lectures of "Turbulence model"], Saint-Petersburg, St. Petersburg State Polytechnical University, Institute of applied mathematics and mechanics, department of hydroaerodynamics. (In Russ.).
  14. Larsson J. Numerical simulation of turbulent flows for turbine blade heat transfer applications. Doctoral Thesis for the degree of Doctor of Philosophy. Department of Thermo and Fluid Dynamics Chalmers University of Technology, Göteborg, Sweden, 1998. 57 p.
 

O. M. Gorbenko1, M. L. Felshtyn1, S. Yu. Lukashenko1,2,
I. D. Sapozhnikov1, A. O. Golubok1,2

MEASUREMENT OF AMPLITUDE-FREQUENCY CHARACTERISTICS
OF NANOMECHANICAL OSCILLATORS BY VISUALIZATION
OF THEIR OSCILLATIONS IN A SCANNING ELECTRON MICROSCOPE

"Nauchnoe Priborostroenie", 2018, vol. 28, no. 3, pp. 109—117.
doi: 10.18358/np-28-3-i109117
 

In this article we propose and test the method of automated measurement of amplitude-frequency characteristics (AFC) of nanomechanical oscillators (NMOS) in the form of carbon nanoviskers (CNV) with a diameter of ~ 100 nm, a length of ~ (1—2) µm and a resonance frequency of ~ (5—10) MHz localized at the top of the W needle is proposed and tested. The frequency response of NMOS was measured by visualizing their forced oscillations in a scanning electron microscope (SEM) and recording the corresponding video file when the frequency of the exciting generator changed. The resulting video sequence is analyzed by machine vision. The result of the processing of SEM images are the graph of frequency response, numerical values of the resonance frequency and quality factor of NMOS. We analyze two methods of measuring the frequency response: scanning alone the line crossing the CNV near its peak and scanning across the frame, including the entire CNV. We suggest the method of the NMO resonance frequency shift `resulting from the deposition of carbon atoms on the surface of the UNV under the action of a focused electron beam in the process of visualization of oscillations in the SEM is estimated. It is shown that the one line scanning during 60 s leads to a decrease in the resonant frequency by ~ 1.5 %, while scanning through the frame during 60 s leads to its increase of ~ 3 %.
 

Keywords: nanomechanical oscillators, carbon nanovisker, image analysis, amplitude-frequency characteristic

Author affiliations:

1Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia
2Department of Nano-Photonics and Metamaterials, ITMO University, Saint-Petersburg, Russia

 
Contacts: Gorbenko Ol'ga Markovna, gorolga64@mail.ru
Article received in edition 25.06.2018
Full text (In Russ.) >>

REFERENCES

  1. Jensen K., Kim K., Zettl A. An atomic-resolution nanomechanical mass sensor. Nature Nanotechnology, 2008, vol 3, no. 9, pp. 533—537. Doi: 10.1038/nnano.2008.200.
  2. Stapfner S., Favero I, Hunger D., Paulitschke P., Reichel J. Cavity nano-optomechanics: a nanomechanical system in a high finesse optical cavity. Proc. of SPIE, 2010, vol. 7727. Doi: 10.1117/12.854066.
  3. Ishida M., Fujita J.-ichi, Ochiai Y. Density estimation for amorphous carbon nanopillars grown by focused ion beam assisted chemical vapor deposition. Journal Vacuum Science Technology B, 2002, vol. 20, no. 6, pp. 2784—2787. Doi: 10.1116/1.1526699.
  4. Mukhin I., Fadeev I., Zhukov M., Dubrovskii V., Golubok A.O. Framed carbon nanostructures: Synthesis and applications in functional SPM tips. Ultramicroscopy, 2015, vol. 148, pp. 151—157.
  5. Fujita J.-ichi, Okada S., Ueki R. Elastic double structure of amorphous carbon pillar grown by focused-ion-beam chemical vapor deposition. Japanese Journal of Applied Physics, 2007, vol. 46. pp. 6286—6289. Doi: 10.1143/JJAP.46.6286.
  6. Gonzales R.C., Woods R.E. Digital image processing. 2nd edition. Pearson Education, Inc, Prentice Hall, 2002. 793 p.
  7. Madsen K., Nielsen H.B., Tingleff O. Methods for non-linear least squares problems. 2nd edition. Informatics and Mathematical Modelling Technical University of Denmark, April 2004. 58 p.
  8. Weaver-jr. W., Timoshenko S.P., Young D.H. Vibration Problems in Engineering. 5th edition. Wiley & Sons Inc., New Jersey, USA, 1990. 624 p.
 

I. V. Kurnin

MODEL FOR SIMULATION OF ION DYNAMICS
IN A DENSE GAS AND STRONG ELECTRIC FIELDS

"Nauchnoe Priborostroenie", 2018, vol. 28, no. 3, pp. 118—123.
doi: 10.18358/np-28-3-i118123
 

A model that allows to simulate the dynamics of ions in a dense gas and in strong electric fields is presented. The method is based on a combination of the directed motion of an ion in a dense gas with adding diffusion component. The mobility coefficient based on the frequency of ion-molecular collisions depending on ion velocities is used. Through this mobility coefficient a coefficient of diffusion is described. Comparison of the results of test calculations obtained with the help of the proposed method with the results obtained from the model taking into account individual ion-molecular collisions and a modified statistical diffusion model shows good accuracy of the method over a wide range of gas pressures and electric field strengths.
 

Keywords: ion mobility, ion-molecular collisions, viscous matter, hard sphere method

Author affiliations:

Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia

 
Contacts: Kurnin Igor' Vasil'evich, igor.kurnin@gmail.com
Article received in edition 8.06.2018
Full text (In Russ.) >>

REFERENCES

  1. Eiceman G.A, Karpas Z, Hill H.H. Jr. Ion mobility spectrometry. 3rd edn. USA, CRC Press, Boca Raton, 2013. 428 p.
  2. Appelhans A.D., Dahl D.A. SIMION ion optics simulations at atmospheric pressure. International Journal of Mass Spectrometry, 2005, vol. 244, no. 1, pp. 1—14. Doi: 10.1016/j.ijms.2005.03.010.
  3. Manura D., Dahl D.A. SIMION 8.0 User’s Manual. Sci. Instrument Services, Inc. Idaho Nat. Lab, 2006.
  4. Prasad S., Tang K., Manura D., Papanastasiou D., Smith R.D. Simulation of ion motion in FAIMS through combined use of SIMION and modified SDS. Anal. Chem., 2009, vol. 81, no. 21, pp. 8749—8757. Doi: 10.1021/ac900880v.
  5. Kurnin I.V., Yavor M.I. [Model of motion in a viscous media with a statistic diffusion for calculation of ion dynamics in a dense gas and strong electric fields]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2015, vol. 25, no. 3, p. 29—34. (In Russ.).
    URL: http://213.170.69.26/en/mag/2015/abst3.php#abst4.
    Mak-Daniehl I., Mezon D. Podvizhnost' i diffuziya ionov v gazah [Mobility and diffusion of ions in gases]. Moscow, Mir Publ., 1976, 422 p. (In Russ.).
 

L. V. Novikov

DETECTION OF PEAKS NANOSCALE IMAGES IN NOISES

"Nauchnoe Priborostroenie", 2018, vol. 28, no. 3, pp. 124—129.
doi: 10.18358/np-28-3-i124129
 

A new noise-immune algorithm for estimating the position and intensity of the peaks of nanoobjects is proposed. The method is based on image processing by columns and rows using the algorithm of three-point extremes search in a sliding data window. The method allows to estimate the position and intensity of peaks with a signal-to-noise ratio up to three with probability of detection up to unity, zero probability of peak miss and false alarm.
 

Keywords: nanoscale images, image processing, detection of peaks

Author affiliations:

Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia

 
Contacts: Novikov Lev Vasil'evich, novik38@mail.ru
Article received in edition 7.05.2018
Full text (In Russ.) >>

REFERENCES

  1. Ofner J., Brenner F., Wieland K. et al. Image-based chemical structure determination. Scientific reports, 2017. Doi: 10.1038/s41598-017-07041-x.
  2. Ofner J., Kamilli K.A., Eitenberger E. et al. Chemometric analysis of multisensor hyperspectral images of precipitated atmospheric particulate matter. Anal. Chem., 2015, vol. 87, no. 18, pp. 9413—9420.
  3. Gowen A.A., Dorrepaal R.M. Multivariate chemical image fusion of vibrational spectroscopic imaging modalities. Molecules, 2016, vol. 21, no. 7.
  4. Sobol O., Holzlechner G., Holzweber M. et al. First use of data fusion and multivariate analysis of ToF-SIMS and SEM image data for studying deuterium-assisted degradation processes in duplex steels. Surf. Interface Anal., 2016, Wiley Online Library. Doi: 10.1002/sia.6015.
  5. Kaur B., Kaur S.P. Applications of mathematical morphology in image processing: a review. International Journal of Electronics & Communication Technology, 2013, vol.4, no. 3, pp. 15—17.
  6. Tolstihina A.L. Atomno-silovaya mikroskopiya kristallov i plenok so slozhnoj morfologiej poverhnosti. Diss. … d-ra fiz.-mat. nauk [Atomic and power microscopy of crystals and films with difficult morphology of a surface. Drs. phys.-mat. sci. diss.]. Moscow, FGBUN Institute of a crystallography A.V. Shubnikova of RAS, 2013. 332 p. (In Russ.).
  7. Orlov A.A., Antonov L.V. [Image processing algorithms of the industrial products]. Sovremennye problemy nauki i obrazovaniya [Modern problems of science and education], 2012, no. 6. (In Russ.). URL: http://science-education.ru/ru/article/view?id=7844.
  8. Soifer V.A., Kupriyanov A.V. [Analysis and recognition of the nanoscale images: conventional approach and novel problem statement]. Komp'yuternaya optika [Computer Optics], 2011, vol. 35, no. 2, pp. 136—144. URL: http://www.computeroptics.smr.ru/KO/PDF/KO35-2/01.pdf. (In Russ.).
  9. Chuklanov A.P., Borodin P.A., Ziganshina S.A., Buha-raev A.A. [Algorithm for the analysis of ASM-images of surfaces with difficult morphology]. Uchenye Zapiski Kazanskogo Universiteta [Scientific notes of the Kazan state university], 2008, vol. 150, no. 2, pp. 220—227. (In Russ.).
  10. Reichelt W.N., Kaineder A., Brillmann M. et al. High throughput inclusion body sizing: Nano particle tracking analysis. Biotechnol. J., 2017, vol. 12, ¹ 6. Doi: 10.1002/biot.201600471.
  11. Novikov L.V., Kurkina V.V. [The method for estimation of spectral peak parameters]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2017, vol. 27, no. 3,
    pp. 99—106. Doi: 10.18358/np-27-3-i99106. (In Russ.).
  12. Dong W., Li X., Lin X. and Li Z. A bidimensional empirical mode decomposition method for fusion of multispectral and panchromatic remote sensing images. Remote Sens., 2014. vol. 6, no. 9, pp. 8446—8467. Doi: 10.3390/rs6098446.
  13. MathWorks. URL: http://www.mathworks.com/matlabcentral/fileexchange.
  14. Rahman M.A., Khan A.S. A spatial spectral filtration (SSF) based correlated coefficients thresholding approach for image denoising. International Journal of Computer Science and Information Technologies, 2016. vol. 7, no. 3, pp. 1097—1101.
 

A. V. Mironov, O. A. Mironova, V. K. Popov

LABORATORY INJECT 3D PRINTER
FOR POWDER MATERIALS

"Nauchnoe Priborostroenie", 2018, vol. 28, no. 3, pp. 130—136.
doi: 10.18358/np-28-3-i130136
 

The paper presents the results of development and testing of a laboratory 3D inkjet printer with an open architecture. The ability of designed 3D printer to forming structures with defined architectonics from different powder substances with an average particle size of 50—150 μm were shown. Installed drop-on-demand system allows dispensing dropwise liquids with a pH of 2 to 9 and a viscosity of 1 to 1000 mPa·s as a binder components. The printing resolution of the developed system is 100 microns, which is comparable to the resolution of commercially available powder 3D inkjet printers.
 

Keywords: 3D printer, additive techniques, rapid prototyping, drop-on-demand, laboratory equipment

Author affiliations:

Institute of Photonic Technologies, Federal Scientific Research Centre
"Crystallography and Photonics", RAS, Moscow, Russia

 
Contacts: Mironov Anton Vladimirovich, scftlab@gmail.com
Article received in edition 8.06.201
Full text (In Russ.) >>

REFERENCES

  1. Lee J.-Y., An J., Chua Ch.K. Fundamentals and applications of 3D printing for novel materials. Applied Materials Today, 2017, vol. 7, pp. 120—133. Doi: 10.1016/j.apmt.2017.02.004.
  2. Barinov S.M., Vakhrushev I.V., Komlev V.S., Mironov A.V., Popov V.K., Teterina A.Yu., Fedotov A.Yu., Yarygin K.N. 3D Printing of ceramic scaffolds for engineering of bone tissue. Inorganic Materials: Applied Research, 2015, vol. 6, pp. 316—322.
  3. Bertol L.S., Schabbach R., Santos L.A.L. Different post-processing conditions for 3D bioprinted α-tricalcium phosphate scaffolds. Journal of Materials Science: Materials in Medicine, 2017, vol. 28, no 10, art. 168. Doi: 10.1007/s10856-017-5989-1.
  4. Schrepfer I., Wang X.H. Progress in 3D printing technology in health care. Organ Manufacturing, Nova Science Publishers Inc., Hauppauge, N.Y., USA, 2015, pp. 29—74.
  5. Gudapati H., Dey M., Ozbolat I. A comprehensive review on droplet-based bioprinting: Past, present and future. Biomaterials, 2016, vol. 102, pp. 20—42. Doi: 10.1016/j.biomaterials.2016.06.012
  6. Gao G., Yonezawa T., Hubbell K., Dai G., Cui X. Inkjet-bioprinted acrylated peptides and PEG hydrogel with human mesenchymal stem cells promote robust bone and cartilage formation with minimal printhead clogging. Biotechnol. J., 2015, vol. 10, no. 10, pp. 1568–1577. Doi: 10.1002/biot.201400635
  7. Yun I. Printed electronics: current trends and application. 2016. 146 p. URL: http://www.ebook777.com/printed-electronics-current-trends-applications/.
  8. Kamyshny A., Steinke J., Magdassi S. Metal-based inkjet inks for printed electronics. The Open Applied Physics Journal, 2011, vol. 4, pp. 19—36. Doi:
  9. Wang X., Ao Q., Tian X., Fan J., Wei Y., Hou W., Tong H., Bai S. 3D bioprinting technologies for hard tissue and organ engineering. Materials, 2016, vol. 9, no. 10, art. 802. Doi: 10.3390/ma9100802.
  10. Kruth J‐P., Mercelis P., Van Vaerenbergh J., Froyen L., Rombouts M. Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyping Journal, 2005, vol. 11, pp. 26—36.
  11. Budding A., Vaneker T.H.J., Winnubst A.J.A. Open source powder based rapid prototyping machine for ceramics. Procedia CIRP, 2013, vol. 6, pp. 533—538. Doi: 10.1016/j.procir.2013.03.101.
  12. Lee J., Kim K.E., Bang S., Noh I., Lee C. A desktop multi-material 3D bio-printing system with open-source hardware and software. International journal of precision engineering and manufacturing, 2017, vol. 18, pp. 605—612. Doi: 10.1007/s12541-017-0072-x.
  13. Kinstlinger I.S., Bastian A., Paulsen S.J., Hwang D.H., Ta A.H., Yalacki D.R., Schmidt T., Miller J.S. Open-source selective laser sintering (open SLS) of nylon and biocompatible polycaprolactone. PLoS ONE, 2015, vol. 11, art. e0147399. Doi: 10.1371/journal.pone.0147399.
  14. Gao Q., He Y., Fu J.Z., Liu A., Ma L. Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery. Biomaterials, 2015, vol. 61, pp. 203—215. Doi: 10.1016/j.biomaterials.2015.05.031.
  15. Bégin-Drolet A., Dussault M.A., Fernandez S.A., Larose-Dutil J., Leask R.L., Hoesli C.A., Ruel J. Design of a 3D printer head for additive manufacturing of sugar glass for tissue engineering applications. Additive Manufacturing, 2017, vol. 15, pp. 29—39.
  16. Kun K. Reconstruction and development of a 3D printer using FDM technology. Procedia Engineering, 2016, vol. 149, pp. 203—211. Doi: 10.1016/j.proeng.2016.06.657.
 

S. A. Kazakov, A. V. Sokolov, M. A. Grevtsev, N. V. Sharenkova, V. V. Kaminsky

SEMICONDUCTOR GAS SENSORS OF METHANE
AND PROPANE CONCENTRATIONS BASED
ON POLYCRYSTALLINE FILMS SMS

"Nauchnoe Priborostroenie", 2018, vol. 28, no. 3, pp. 137—140.
doi: 10.18358/np-28-3-i137140
 

The article presents experimental data on the detection of propane and methane microimpurities in atmospheric air, obtained with the help of semiconductor gas sensors located in explosion-proof housings. Thin films of samarium monosulfide, made using sol-gel technology, were used as the working materials of the sensors. The possibility of measuring propane and methane concentrations using a single sensor by changing its operating temperature is shown.
 

Keywords: samarium sulfide, gassensors, methane, propane, sol-gel process

Author affiliations:

Ioffe Institute, Saint-Petersburg, Russia

 
Contacts: Kazakov Sergey Alekseevich, Kazakov59@mail.ioffe.ru
Article received in edition 1.06.2018
Full text (In Russ.) >>

REFERENCES

  1. Krivezkiy V.V., Rumyanzeva M.N., Gas'kov A.M. [Chemical modification of nanocrystalline tin dioxide for selective gas sensors]. Uspechi chimii [RUSS CHEM REV.], 2013, vol. 82, no. 10, pp. 917—941. Doi: 10.1070/RC2013v082n10ABEH004366.
  2. Kazakov S.A., Kaminski V.V., Soloviev S.M., Sharenkova N.V. [Semiconductor gas oxygen sensors based on polycrystalline films of samarium sulfide]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2015, vol. 25, no.3, pp. 116—123. Doi: 10.18358/np-25-3-i116123. (In Russ.).
  3. Kaminskiy V.V., Kazakov S.A. Patent RF no. 2546849. Byul. izobr. [Bulletin of inventions], 2015, no. 10. (In Russ.).
 

Ulitsa Ivana Chernykh, 31-33, lit. A, St. Petersburg, Russia, 198095, P.O.B. 140
tel: (812) 3630719, fax: (812) 3630720, mail: iap@ianin.spb.su

content: Valery D. Belenkov design: Banu S. Kuspanova layout: Anton V. Manoilov