logo
blue band <-
  JOURNAL "NP" ISSUES

"Nauchnoe Priborostroenie", 2018, Vol. 28, no. 2. ISSN 2312-2951, DOI: 10.18358/np-28-2-0054

"NP" 2018 year Vol. 28 no. 2.,   ABSTRACTS

ABSTRACTS, REFERENCES

A. G. Varekhov

MEASUREMENT OF PULSE ELECTRIC PARAMETERS
OF BIOLOGICAL LIQUIDS

"Nauchnoe priborostroenie", 2018, vol. 28, no. 2, pp. 3—10.
doi: 10.18358/np-28-2-i310
 

Results of measurements of impulse parameters (conductivity, loss, permittivity and others) of the conducting liquids (distilled water, buffer solution TrisH2SO4, pH 7.5 and physiological solution 0.154 M NaCl) in case of action of rapidly damping almost harmonic signal (wavelet) of duration 5—10 µs and amplitude (without loading) of up to 30 kV are given in the article. It is shown that the high electric conduction for buffer and physiological solutions strongly reduces pulse amplitude, but leads to heat release reduction that allows to exclude thermal effects in studies of pulse electrical action on biological systems.
 

Keywords: conducting liquids, high-voltage pulse, impulse electrical parameters

Author affiliations:

St. Petersburg State University of Aerospace Instrumentation, Russia

 
Contacts: Varekhov Aleksey Grigor'evich, varekhov@mail.ru
Article received in edition 16.04.2018
Full text (In Russ.) >>

REFERENCES

  1. Johnstone P.T., Bodger P.S. High voltage disinfection of liquids. IPENZ Transactions, 1997, vol. 24, no. 1, pp. 30—35.
  2. Jaffe L.F., Vanable J.W. Electric fields and wound healing. Clinics in Dermatology, 1984, vol. 2, no. 3, pp. 34—44. Doi: 10.1016/0738-081X(84)90025-7.
  3. Wexler A.D., Lopez S.M., Schreer O., Woisetschlaeger J., Fuchs E.S. The preparation of electrohydrodynamic bridges from polar dielectric liquids. J. of Visual. Exp., 2014, no. 91, e51819. Doi: 10.3791/51819.
  4. Pliquett V., Schoenbach K. Changes in electrical impedance of biological matter due to the application of ultrashort high voltage pulses. IEEE Trans. Dielectrics and Electrical Insulation, 2009, vol. 16, no. 5, pp. 1273—1279. Doi: 10.1109/TDEI.2009.5293938.
  5. Warindi, Hadi S.P., Berahim H., Suharyanto. Impedance measurement system of a biological material undergoing pulsed electric field exposed. Procedia Engineering, 2017, vol. 170, pp. 410—415.
  6. Lukyanova S., Grigoriev O., Koklin A., Andrianova T. Biological effects of high-voltage pulse current at medical-biological tests for safety of electroshock devices. Proc. of 5th European Symp. on non-lethal weapons. Ettlingen, Germany, May 10—15, 2009, pp. 161—164.
  7. Grigor'ev O.A., Koklin A.E., Luk'yanova S.N., Alekseeva V.A. [Biological effects of an impulse current according to laboratory tests of electroconvulsive devices]. Saratovskiy nauchno-medizinskiy zhurnal [Saratov scientific and medical journal], 2013, vol. 9, no. 4, pp. 828—830. (In Russ.).
  8. Grill W.M. Modeling the effects of electric fields on nerve fibers: influence of tissue electrical properties. IEEE Trans. Biomed. Eng., 1999, vol. 46, no. 8, pp. 918—928. Doi: 10.1109/10.775401.
  9. Fryungel' F. Impul'snaya technika. Generirovanie i primenenie razryada kondensatorov [Impulse technique. Generation and application of discharge of condensers]. Moscow, Leningrad, Energiya Publ., 1965. 488 p. (In Russ.).
  10. Charkevich A.A. Spektry i analiz. Izd. 4-e [Spectrums and analysis. 4th issuing]. Moscow, Fizmatgiz Publ., 1962. 236 p. (In Russ.).
  11. Achadov A.Yu. Dielektricheskie svoystva binarnych rastvorov [Dielectric properties of binary solutions]. Moscow, Nauka Publ., 1977. 399 p. (In Russ.).
  12. I.K. Kikoin, ed. Tablizy fizicheskich velichin. Spravochnik [Tables of physical quantities. Reference manual]. Moscow, Atomizdat Publ., 1976. 1008 p. (In Russ.).
 

D. A. Belov, Yu. V. Belov, A. L. Shirokorad

DEVELOPMENT OF THE EXPERIMENTAL VERSION SOFTWARE,
BASED ON THE NEW DNA MELTING TEMPERATURE
DETERMINATION TECHNIQUE

"Nauchnoe Priborostroenie", 2018, vol. 28, no. 2, pp. 11—19.
doi: 10.18358/np-28-2-i1119
 

The new technique of automatic DNA melting temperature (Tm) identification, based on approximation of DNA melting signals fluorescent was suggested. The limits of approximation area is specified automatically and is used to calculate the value of Tm. The component of error that is determined by signals discreteness is completely excluded. The possibility of reducing the analysis time is presented. The experimental version of high resolution DNA melting software for nucleic acid analyzers ANK-32, ANK-48 and experimental prototype of ANK-96 was developed on the basis of the offered technique. Random and systematic errors of Tm value measurement were determined experimentally.
 

Keywords: DNA, genetic analyzer, fluorescent detection

Author affiliations:

Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia

 
Contacts: Belov Dmitriy Anatol'evich, onoff_10@mail.ru
Article received in edition 16.04.2018
Full text (In Russ.) >>

REFERENCES

  1. Vedenov A.A., Dychne A.M., Frank-Kamenezkiy M.D. [Transition a spiral – a ball in DNA]. Uspechi fizicheskich nauk [Achievements of physical sciences], 1971, vol. 105, no. 11, pp. 479—519. (In Russ.). Doi: 10.3367/UFNr.0105.197111d.0479.
  2. Lavrova O.I. Figeroa M.V.A., Tvorogova M.G. [HRM – íoâûé ìoëeêóëÿpíûé ìeòoä oïpeäeëeíèÿ ëeêapcòâeííoé ócòoé÷èâocòè ìèêoáaêòepèé òóáepêóëeça]. Klinicheskaya laboratornaya diagnostika [Clinical laboratory diagnostics], 2014, no. 7, pp. 62—64. (In Russ.).
  3. Kalendar' R.N., Sivolap Yu.M. [Polymerase chain reaction with arbitrary primers]. Biopolimery i kletka [Biopolymers and cell], 1996, vol. 11, no. 3-4, pp. 55—65. (In Russ.). URL:
  4. Sivolap Yu.M., Kalendar' R.N., Chebotar' S.V. [Genetic polymorphism of cereals by means of PCR with arbitrary primers]. Zitologiya i genetika [Cytology and genetics], 1994, vol. 28, no. 6, pp. 54—61. (In Russ.). URL: http://www.biocenter.helsinki.fi/bi/genomedynamics/Pdfs/zyt.pdf.
  5. Gibridizaziya DNK. Vychislenie temperatury plavleniya [DNA hybridization. Computation of a melting temperature]. (In Russ.). URL: https://ru.wikipedia.org/wiki/Ãèápèäèçaöèÿ_ÄHK.
  6. Rebrikov D.V., Samatov G.A., Trofimov D.Yu. Semenov P.A., Savilova A.M., Kofiadi I.A., Abramov D.D. PCR "v real'nom vremeni" [PCR "in real time"],. Moscow, BINOM, Laboratoriya znaniy Publ., 2009. 224 p. (In Russ.). URL: http://nashol.com/2014072579193/pcr-v-realnom-vremenirebrikov-d-vsamatov-g-a-trofimov-d-u-2009.html.
  7. Belov D.A., Belov Yu.V., Manoylov V.V. [Method of processing data in melting of real-time polymerase chain reactions]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2016, vol. 26, no. 3, pp. 10—14. Doi: 10.18358/np-26-3-i1014. (In Russ.).
  8. Belov D.A., Belov Yu.V., Manoylov V.V. [DNA melting data processing techniques development]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2017, vol. 27, no. 1, pp. 83—89. Doi: 10.18358/np-27-1-i8389. (In Russ.).
  9. Belov D.A., Korneva N.A., Al'dekeeva A.C., Belov Yu.V., Kiselev I.G. [Genetic analyzer resolution increasing at DNA melting temperature determination]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2016, vol. 26, no. 2, pp. 17—22. Doi: 10.18358/np-26-2-i1722. (In Russ.).
  10. Nikitina D.I., Maretina M.A, Egorova A.A., Mas-lennikov A.B., Kiselev A.V. [Use of the high-allowing analysis of curves of melt of DNA in diagnosis of hereditary diseases]. Medizinskaya genetika [Medical genetics], 2017, vol. 16, no. 5, pp. 26—33. (In Russ.).
  11. Chimenko V.I. Sluchaynye dannye: struktura i analiz [Accidental data: structure and analysis]. Moscow, Technosfera Publ., 2017, 423 p. (In Russ.).
  12. Petrov A.I. Issledovanie i prakticheskaya realizaziya programmno-apparatnych sredstv provedeniya polimeraznoy zepnoy reakzii s nablyudeniem v real'nom vremeni [Research and implementation of software and hardware tools of carrying out polymerase chain reaction with observation in real time]. Diss. kand tekhn. nauk, Saint-Petersburg, 2016. (In Russ.).
  13. Belov D.A., Belov Yu.V., Kurochkin V.E. [New method of DNA melting signal treatment]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2018, vol. 28, no. 1, pp. 3—10. Doi: 10.18358/np-28-1-i310. (In Russ.).
  14. Mudrov A.E. Chislennye metody dlya PEVM na yazykach Beysik, Fortran i Paskal' [Numerical methods for PEVM in the BASIC, FORTRAN and Pascal languages]. Tomsk, MP "RASKO", 1991. 272 p. (In Russ.).
  15. Lizunova N.A., Shkroba S.P. Matrizy i sistemy lineynych uravneniy [Matrixes and linear equation systems]. Moscow, Fizmatlit Publ., 2007. 171 p. (In Russ.).
  16. Bardin B.V. [Fast algorithm of median filtering]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2011, vol. 21, no. 3, pp. 135—139. (In Russ.). URL: http://213.170.69.26/en/mag/2011/abst3.php#abst16.
 

D. A. Kravchuk, I. B. Starchenko

THE MODEL FOR DETERMINING OXYGEN SATURATION
OF BIOLOGICAL TISSUES WITH THE HELP OF AN OPTOACOUSTIC METHOD

"Nauchnoe Priborostroenie", 2018, vol. 28, no. 2, pp. 20—24.
doi: 10.18358/np-28-2-i2024
 

The work is devoted to modeling of optoacoustic signals from erythrocytes taking into account oxygen saturation for laser radiation with a wavelength of 700 nm. The spatial organization of tissues, disjoint randomly distributed mixtures of oxygenated and dysoxygenated erythrocytes in two-dimensional space is modeled.
A theoretical model for studying the effect of SO2 on optoacoustic signals is presented. For this, mixtures of oxygenated and dysoxygenated erythrocytes were considered. The received signal from erythrocytes was calculated using the principle of linear superposition for signals emitted by individual red blood cells. It was observed that the amplitude of the optoacoustic signal increased with decreasing SO2 for optical radiation of 700 nm.
 

Keywords: optoacoustic signal, oxygenation, dysoxygenation, oxygen saturation, erythrocytes, power spectral density, laser

Author affiliations:

Southwest State University, Taganrog, Russia

 
Contacts: Kravchuk Denis Aleksandrovich, kravchukda@sfedu.ru
Article received in edition 15.03.2018
Full text (In Russ.) >>

REFERENCES

  1. Wang L.V. Prospects of photoacoustic tomography. Med. Phys., 2008, vol. 35, no. 12, pp. 5758—5767. Doi: 10.1118/1.3013698.
  2. Diebold G.J. Photoacoustic monopole radiation: Waves from objects with symmetry in one, two and three dimensions. Photoacoustic Imaging and Spectroscopy, edited by L.V. Wong, Taylor & Francis Group, LLC, London, 2009, pp. 3—17.
  3. Saha R.K., Kolios M.C. A simulation study on photoacoustic signals from red blood cells. J. Acoust. Soc. Am., 2011, vol. 129, no. 5, pp. 2935—2943.
  4. Kravchuk D.A. [The pilot studies and process modeling of generation of optoacoustic waves]. Elektronnyy nauchnyy zhurnal "Inzhenernyy vestnik Dona" [Online scientific magazine "Engineering Bulletin of Don"], 2017, vol. 45, no. 2. URL: ivdon.ru/ru/magazine/archive/n2y2017/4234. (In Russ.).
  5. Kravchuk D.A. [Theoretical researches of generation of optoacoustic waves in liquid cylindrical absorbers]. Elektronnyy nauchnyy zhurnal "Inzhenernyy vestnik Dona" [Online scientific magazine "Engineering Bulletin of Don"], 2017, vol. 46, no. 3. (In Russ.).
  6. Kravchuk D.A. [Analytical result of generation of optoacoustic waves for spherical absorbers in a distant field]. Elektronnyy nauchnyy zhurnal "Inzhenernyy vestnik Dona" [Online scientific magazine "Engineering Bulletin of Don"], 2017, vol. 47, no. 4. (In Russ.).
  7. Shung K.K., Yuan Y.W., Fei D.Y., Tarbell J.M. Effect of flow disturbance on ultrasonic backscatter from blood. J. Acoust. Soc. Am., 1984, vol. 75, no. 4, pp. 1265—1272. Doi: 10.1121/1.390733.
  8. Zhang H.F., Maslov K., Sivaramakrishnan M., Stoic'a G., Wang L.V. Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy. Appl. Phys. Lett., 2007, vol. 90, pp. 1—3.
  9. Savery D., Cloutier G. Effect's of red blood cell clustering and aisotropy on ultrasound blood backscatter: A Monte Carlo study. IEEE Trans. Ultrason. Ferroelectr. Freq. Control., 2005, vol. 52, pp. 94—103.
  10. Kravchuk D.A., Starchenko I.B. [Mathematical simulation of an optikoakustichesky signal from spherical absorbers on the example of erythrocytes]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Upravlenie, vychislitel'naya technika, informatika, medizinskoe priborostroenie [News of the Southwest state university. Series: Control, ADP equipment, informatics, medical instrument making], 2017, vol. 7, no. 3, pp. 101—107. (In Russ.).
  11. Kravchuk D.A., Starchenko I.B. [Mathematical modeling of the optoacoustic signal from aggregated erythrocytes to assess the level of aggregation]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2018, vol. 28, no. 1, pp. 30—36. Doi: 10.18358/np-28-1-i3036. (In Russ.).
  12. Kravchuk D.A. [The system of flowing laser diagnostic of liquids in case of generation of an optoaudible tone on diffusers of spherical shape]. Kachestvo i zhizn' [Quality and life], Moscow, 2017, no. 4, pp. 74—78. (In Russ.).
  13. Starchenko I.B., Kravchuk D.A., Kirichenko I.A. [Prototype optoacoustic laser cytomeasure]. Medizinskaya technika [Medical equipment], 2017, no. 5, pp. 4—7. (In Russ.).
  14. Kravchuk D.A. [About a method of simulation of optoaudible tones from sources of spherical shape on the example of erythrocytes]. Kachestvo i zhizn' [Quality and life], Moscow, 2017, no. 4, pp. 78—80. (In Russ.).
  15. Starchenko I.B., Kravchuk D.A., Kirichenko I.A. An Optoacoustic Laser Cytometer Prototype. Biomedical Engineering, 2018, vol. 51, no. 5, pp. 308—312.
 

V. A. Sergeev1, B. P. Sharfarets2

ABOUT ONE NEW METHOD OF ELECTROACOUSTIC TRANSFORMATION.
A THEORY BASED ON ELECTROKINETIC PHENOMENA.
PART I. THE HYDRODYNAMIC ASPECT

"Nauchnoe Priborostroenie", 2018, vol. 28, no. 2, pp. 25—35.
doi: 10.18358/np-28-2-i2535
 

As the basic physical model of a new type of electroacoustic transformation, it is proposed to use the theory of an electrokinetic phenomenon such as electroosmosis. The main details of the theory of transformation and associated hydrodynamic and electrical parameters are given. Hydrodynamics of steady electroosmotic motion of a liquid in a capillary is considered. Expressions are given for the flow velocities under the conditions of the presence of a total flow of two flows: the Poiseuille flow and the electroosmotic flow. A generalization of hydrodynamics of the electroosmotic flow to an arbitrary capillary-porous medium is also given. The acoustic aspects of the theory are supposed to be considered in the second part of this paper.
 

Keywords: electroacoustic conversion, electrokinetic phenomena, hydrodynamics of electroosmosis, capillary-porous media, electroosmotic speed

Author affiliations:

1AO "AKVAMARIN", Saint-Petersburg, Russia
2Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia

 
Contacts: Sharfarets Boris Pinkusovich, sharb@mail.ru
Article received in edition 9.02.2018
Full text (In Russ.) >>

REFERENCES

  1. Shishov S.V., Andrianov S.A., Dmitriev S.P., Ruchkin D.V. Method of converting electric signal sinto acoustics oscillations and an electric gas-kinetic transducer. US Patent no. US 8,085,957,B2 Dec. 27, 2011.
  2. Duchin S.S., Deryagin B.V. Elektroforez [Electrophoresis]. Moscow, Nauka Publ., 1976. 332 p. (In Russ.).
  3. Newman J. Elektrochimicheskie sistemy [Electrochemical Systems]. Moscow, Mir Publ., 1977. 464 p. (In Russ.).
  4. Bruus H. Theoretical microfluidics. Oxford University Press, 2008. 346 p.
  5. Knyaz’kov N.N., Sharfarets B.P., Sharfarets E.B. [The basic expressions used in the electrokinetic phenomena (review)]. Nauchnoe Priborostroenie [Scientific Instru­mentation], 2014, vol. 24, no. 4, pp. 13—21. (In Russ.). URL: http://213.170.69.26/en/mag/2014/abst4.php#abst2.
  6. Fizicheskaya enziklopediya [Physical encyclopedia]. Vol. 5. Moscow, BRE Publ., 1998. 760 p. (In Russ.).
  7. Schukin E.D., Perzov A.V., Amelina E.A. Kolloidnaya chimiya [The colloid chemistry]. Moscow, Vysshaya shkola Publ., 2004. 445 p. (In Russ.).
  8. Landau L.D., Lifshiz E.M. Teoreticheskaya fizika. T. 6. Gidrodinamika [Theoretical physics. Vol. 6. Hydrodyna­mics]. Moscow, Nauka Publ., 1988. 736 p. (In Russ.).
  9. Birkhoff G. Gidrodinamika. Metody. Fakty. Podobie [Hydrodynamics, methods, facts and similarity]. Moscow, IL Publ., 1963. 244 p. (In Russ.).
  10. Sharfarets B.P., Kurochkin V.E. [To the question of mobility of particles and molecules in porous media]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2015, vol. 25, no. 4, pp. 43—55. Doi: 10.18358/np-25-4-i4355.
 

V. A. Sergeev1, B. P. Sharfarets2

ABOUT ONE NEW METHOD OF ELECTROACOUSTIC
TRANSFORMATION. A THEORY BASED ON ELECTROKINETIC
PHENOMENA. PART II. THE ACOUSTIC ASPECT

"Nauchnoe Priborostroenie", 2018, vol. 28, no. 2, pp. 36—44.
doi: 10.18358/np-28-2-i3644
 

The necessary equations and boundary conditions are proposed for describing acoustic fields caused by electrokinetic phenomena: the presence of a double electric layer and an applied electric field that is the sum of a constant field and an electric field carrying acoustic information. Equations are considered for viscous incompressible and compressible fluid conditions, provided that the hydrodynamics of the stationary electroosmotic process and the acoustic process are calculated accordingly. From the expressions obtained, it can be seen that the processes occurring during acoustic electroosmosis have as much in common, and contain some differences from the processes of classical electroosmosis. The physical model developed in the work and the corresponding mathematical expressions obtained make it possible to calculate the acoustic characteristics of the radiator based on the presence of electrokinetic phenomena and to optimize its device. The obtained results can be used in scientific instrument making.
 

Keywords: electroacoustic conversion, electrokinetic phenomena, hydrodynamics of electroosmosis, acoustics
of electroosmosis, equations of motion of acoustic electroosmosis

Author affiliations:

1AO "AKVAMARIN", Saint-Petersburg, Russia
2Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia

 
Contacts: Sharfarets Boris Pinkusovich, sharb@mail.ru
Article received in edition 5.03.2018
Full text (In Russ.) >>

REFERENCES

  1. Shishov S.V., Andrianov S.A., Dmitriev S.P., Ruchkin D.V. Method of converting electric signal sinto acoustics oscillations and an electric gas-kinetic transducer. US Patent no. US 8,085,957,B2 Dec. 27, 2011.
  2. Sergeev V.A., Sharfarets B.P. [About one new method of electroacoustic transformation. A theory based on electrokinetic phenomena. Part I. The hydrodynamic aspect]. Nauchnoe Priborostroenie [Scientific Instru­mentation], 2018, vol. 28, no. 2, pp. 25—35. (In Russ.).
  3. Duchin S.S., Deryagin B.V. Elektroforez [Electrophoresis]. Moscow, Nauka Publ., 1976. 332 p. (In Russ.).
  4. Eglit M.E., eds. Mechanika sploshnych sred v zadachach [Mechanics of continuous mediums in the tasks]. Moscow, LENAND Publ., 2017. 640 p. (In Russ.).
  5. Landau L.D., Lifshiz E.M. Teoreticheskaya fizika. T. 6. Gidrodinamika [Theoretical physics. Vol. 6. Hydrodyna­mics]. Moscow, Nauka Publ., 1988. 736 p. (In Russ.).
  6. Kochin N.E., Kibel' E.A., Roze N.V. Teoreticheskaya gidromechanika [Theoretical hydromechanics]. Moscow, GIFML Publ., 1963. 728 p. (In Russ.).
  7. Serrin J. Matematicheskie osnovy klassicheskoy mechaniki zhidkosti [Mathematical fundamentals of classical mechanics of liquid]. Moscow, IL Publ., 1963. 256 p. (In Russ.).
  8. Rudenko O.V., Soluyan S.I. Teoreticheskie osnovy nelineynoy akustiki [Theoretical fundamentals of non-linear acoustics]. Moscow, Nauka Publ., 1975. 288 p. (In Russ.).
  9. Gorshkov A.G., Medvedskiy A.L., Rabinskiy L.N., Tarlakovskiy D.V. Volny v sploshnych sredach [Waves in continuous mediums]. Moscow, Fizmatlit Publ., 2004. 472 p. (In Russ.).
  10. Brechovskich L.M., Goncharov V.V. Vvedenie v mechaniku sploshnych sred v prilozhenii k teorii voln [Introduction to mechanics of continuous mediums in application to the theory of waves]. Moscow, Nauka Publ., 1982. 336 p. (In Russ.).
  11. Bruus H. Theoretical Microfluidics. Oxford University Press, 2008. 346 p.
  12. Knyaz’kov N.N., Sharfarets B.P., Sharfarets E.B. [The basic expressions used in the electrokinetic phenomena (review)]. Nauchnoe Priborostroenie [Scientific Instru­mentation], 2014, vol. 24, no. 4, pp. 13—21. (In Russ.). URL: http://213.170.69.26/en/mag/2014/abst4.php#abst2.
  13. Doinikov A.A. Acoustic radiation pressure on a rigid sphere in a viscous fluid. Proc. R. Soc. Lond., 1994, vol. 447, no. 1931, pp. 447—466. Doi: 10.1098/rspa.1994.0150.
  14. Doinikov A.A. Acoustic radiation pressure on a compressibl sphere in a viscous fluid. J. Fluid Mech., 1994. Vol. 267. P. 1—22. Doi: 10.1017/S0022112094001096.
  15. Stretton J.A. Teoriya elektromagnetizma [Theory of electromagnetism]. Moscow, OGIZ Publ., 1948. 539 p. (In Russ.).
  16. Isakovich M.A. Obschaya akustika [General acoustics]. Moscow, Nauka Publ., 1973. 496 p. (In Russ.).
  17. Newman J. Elektrochimicheskie sistemy [Electrochemical Systems]. Moscow, Mir Publ., 1977. 464 p. (In Russ.).
 

A. I. Zhernovoy

QUANTIZATION OF MAGNETIC FLOW
CREATED BY NANOPARTICLE OF MAGNETITE

"Nauchnoe Priborostroenie", 2018, vol. 28, no. 2, pp. 45—48.
doi: 10.18358/np-28-2-i4548
 

Magnetic flow Ô created by nanoparticle of magnetite possessing minimal observed magnetic moment
Pmin = 10–19 Am2 was estimated. Assuming thickness of layer in that circulated currents of electrons producing magnetic field to be 0.75 of atomic radius of ion of Fe+2, we get value of Ô to be equal to quantum of magnetic flow of 2·10–15 Wb.
 

Keywords: nanoparticles of magnetite, magnetic moment, magnetic flow, quantization

Author affiliations:

Saint-Petersburg State Institute of Technology (Technical University), Russia

 
Contacts: Zhernovoy Aleksandr Ivanovich, azhspb@rambler.ru
Article received in edition 22.02.2018
Full text (In Russ.) >>

REFERENCES

  1. Zhernovoy A.I., Ulashkevich Yu.V., Diyachenko S.V. [Magnetic fluid in magnetic field infrared absorbtion spectra investigation]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2016, vol. 26, no. 2, pp. 60—63. Doi: 10.18358/np-26-2-i6063. (In Russ.).
  2. Zhernovoy A.I., Ulashkevich Yu.V., Diyachenko S.V. [The discreteness of magnetic moments of single-domain ferromagnetic nanoparticles]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2017, vol. 27, no. 1, pp. 72—76. Doi: 10.18358/np-27-1-i7276. (In Russ.).
  3. Zhernovoy A.I., Ulashkevich Yu.V., Diyachenko S.V. [The study of the infrared spectrum of a magnetic nanoparticles in a magnetic field structure]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2017, vol. 27, no. 2, pp. 61—65. Doi: 10.18358/np-27-2-i6165. (In Russ.).
  4. Zhernovoy A.I., Ulashkevich Yu.V., Diyachenko S.V. [The measurement of magnetic moments of ferromagnetic nanoparticles by the positions of the lines of infra red spectra of a magnetic liquid in a magnetic field]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2018, vol. 28, no. 1, pp. 37—44.
  5. Kalashnikov S.G. Elektrichestvo [Electricity]. Moscow, Nauka Publ., 1985. 576 p. (In Russ.).
  6. Kittel' Ch. Vvedenie v fiziku tverdogo tela [Introduction to solid state physics]. Moscow, Nauka Publ., 1978. 366 p. (In Russ.).
  7. Lidin R.A. Spravochnik po obschey i neorganicheskoy chimii [The reference manual in the general and inorganic chemistry]. Moscow, KolosS Publ., 2008. 350 p. (In Russ.).
  8. Berkovskiy B.M., Medvedev V.F., Krakov M.S. Magnitnye zhidkosti [Magnetic liquids]. Moscow, Chimiya Publ., 1989. 240 p. (In Russ.).
 

A. E. Karpunin1, A. S. Mazur2, O. V. Proskurina3,4, V. I. Gerasimov1,
I. V. Pleshakov1,4, Ya. A. Fofanov5, Yu. I. Kuzmin1,4

OBSERVATION OF TEMPERATURE BEHAVIOR OF PECULIARITIES OF 13C NMR SPECTRUM LINES AS A METHOD FOR THE INVESTIGATION OF POLYHYDROXYLATED FULLERENE C60(OH)N

"Nauchnoe Priborostroenie", 2018, vol. 28, no. 2, pp. 49—53.
doi: 10.18358/np-28-2-i4953
 

It is shown in the work, that in spectra of nuclear magnetic resonance of 13C in polyhydroxylated fullerene (fullerenol) peculiarities are registered, which reflects the existence of isomers in the substance. The study of temperature behavior of corresponding peaks can be regarded as a qualitative method for specification of the isomers proportion in fullerenol composition. It was found out, that by changing of the temperature in a certain regime it is possible to control the isomer speciation of samples.
 

Keywords: nuclear magnetic resonance, fullerenol, NMR spectra of carbon

Author affiliations:

1Peter the Great St. Petersburg Polytechnic University, Russia
2St. Petersburg State University, Russia
3St. Petersburg State Technological Institute (Technical University), Russia
4Ioffe Institute, Saint-Petersburg, Russia
5Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia

 
Contacts: Fofanov Yakov Andreevich, yakinvest@yandex.ru
Article received in edition: 6.04.2018
Full text (In Russ.) >>

REFERENCES

  1. Andreev S.M., Bashkatova E.N., Purgina D.D., Sher-shakova N.N., Chaitov M.R. [Fullerenes: biomedical aspect]. Immunologiya [Immunology], 2015, vol. 36, no. 1, pp. 57—61. (In Russ.).
  2. Andrievsky G.V., Klochkov V.K., Bordyuh A.B., Dovbeshko G.I. Comparative analysis of two aqueous-colloidal solutions of C60 fullerene with help of FTIR reflectance and UV-Vis spectroscopy. Chemical Physics Letters, 2002, vol. 364, no. 1-2, pp. 8—17.
  3. Li J., Takeuchi A., Ozawa M., Li X., Saigo K., Kitazawa K.J. C60 fullerol formation catalysed by quaternary ammonium hydroxides. Chem. Soc., Chem. Commun., 1993, vol. 23, pp. 1784—1785.
  4. Semenov K.N., Letenko D.G., Charykov N.A., Nikitin V.A., Matuzenko M.Yu., Keskinov V.A., Postnov V.N., Kopyrin A.A. [Synthesis and identification of the fullerenol received by method of direct oxidation]. Zhurnal prikladnoy chimii [Journal of application-oriented chemistry], 2010, vol. 83, no. 12, pp. 1948—1952.
  5. Chiang L.Y., Upasani R.B., Swirczewski J.W. Evidence of hemiketals incorporated in the structure of fullerols derived from aqueous acid chemistry. J. Am. Chem. Soc., 1993, vol. 115, no. 13, pp. 5453—5457.
  6. Wang Z., Chang X., Lu Z., Gu M., Zhao Y., Gao X. A precision structural model for fullerenols. Chemical Science, 2014, vol. 5, no. 8, pp. 2940—2948.
  7. Andreeva D.V., Ratnikova O.V., Melenevskaya E.Yu., Gribanov A.V. The regioselectivity of fullerenols C60(OH)x determined by high-resolution solid-state 13C and 1H NMR analysis. International Journal of Polymer Analysis and Characterization, 2007, vol. 12, pp. 105—113.
  8. Gerasimov V.I., Trofimov A., Proskurina O. Isomers of fullerene C60. Materials Physics and Mechanics, 2014, vol. 20, no. 1, pp. 25—32.
 

Ya. A. Fofanov1, V. V. Manoilov1,2, I. V. Zarutskiy1,2, B. V. Bardin1

ON THE SIMILARITY OF THE POLARIZATION-OPTICAL RESPONSES OF MAGNETIC NANOFLUIDS.
PART II. ASSESSMENT OF THE STATISTICAL SIGNIFICANCE OF REGRESSION COEFFICIENTS

"Nauchnoe Priborostroenie", 2018, vol. 28, no. 2, pp. 54—61.
doi: 10.18358/np-28-2-i5461
 

The statistical significance of the regression coefficients for polynomial approximation of the experimental data on the weak polarization responses of magnetic nanofluids is quantified. By checking the statistical hypotheses, the correlation coefficients between the explanatory, that is, the independent variable (in this case, the magnetic field values), and the variable explained (polarization magneto-optical responses) are shown to be significant, and secondly, the statistical significance of the coefficients approximating polynomials of different degrees. The results of estimating regression errors for nanofluids of different concentrations are presented.
 

Keywords: magnetic nanofluids, polarization-optical analysis, approximation of experimental data,
verification of statistical hypotheses

Author affiliations:

1Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia
2ITMO University, Saint-Petersburg, Russia

 
Contacts: Manoylov Vladimir Vladimirovich, manoilov_vv@mail.ru
Article received in edition 12.03.2018
Full text (In Russ.) >>

REFERENCES

  1. Bitar A., Kaewsaneha C., Eissa M.M., Jamshaid T., Tangboriboonrat P., Polpanich D., Elaissari A. Ferrofluids: from preparation to biomedical applications. Journal of Colloid Science and Biotechnology, 2014, vol. 3, no. 1, pp. 3—18.
  2. Fofanov Ya.A., Pleshakov I.V., Prokofiev A.V. [Investigation of polarization magnetooptic responses of a low-concentration ferrofluid]. Pis'ma v ZhTF [Technical Physics Letters], 2016, vol. 42, no. 20, pp. 66—72. (In Russ.).
  3. Fofanov Ya.A. Threshold sensitivity in optical measurements with phase modulation. Proc. SPIE. The Report of tenth Union Symposium and School on High Resolution Molecular Spectroscopy, 1992, vol. 1811, pp. 413—414. Doi: 10.1117/12.131190.
  4. Fofanov Ya.A. Methods and devices for quantitative analysis of the structural birefringence of materials and substances. Nauchnoe Priborostroenie [Scientific Instru­mentation], 1999, vol. 9, no. 3, pp. 104—110. (In Russ.).
  5. Fofanov Ya.A., Pleshakov I.V., Kuzmin Yu.I. Laser polarization-optical detection of the magnetization process of a magnetically ordered crystal. Opticheskiy zhurnal [J. Opt. Technol.], 2013, vol. 80, no. 1, pp. 88—93. (In Russ.).
  6. Prokofiev A.V., Fofanov Ya.A., Pleshakov I.V., Bibik E.E. Laser polarization-optical observation of magnetic nanoparticles agglomeration in a liquid medium. Nauchnoe Priborostroenie [Scientific Instrumentation], 2017, vol. 27, no. 4, pp. 3—7. (In Russ.). Doi: 10.18358/np-27-4-i37.
  7. Fofanov Ya.A., Sokolov I.M., Pleshakov I.V., Vetrov V.N., Prokofiev A.V., Kuraptsev A.C., Bibik E.E. On the criteria for strong and weak polarization responses of ordered objects and systems. EPJ Web of Conferences PECS-2017, 2017, vol. 161, 01003, pp. 1—2. Doi: 10.1051/epjconf/201716101003.
  8. Fofanov Ya.A., Manoylov V.V., Zaruzkiy I.V., Bardin B.V. [On the similarity of the polarization-optical responses of magnetic nanofluids. Part I. Approximation for weak fields]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2018, vol. 28, no. 1, pp. 45—52. (In Russ.). Doi: 10.18358/np-28-1-i4552.
  9. Davis H.W., Llewellyn J.P. Magnetic birefringence of ferrofluids: I. Estimation of particle size. J. Phys. D: Appl. Phys., 1979, vol. 12, no. 2, pp. 311—319. Doi: 10.1088/0022-3727/12/2/018.
  10. Dreyper N., Smit G. Prikladnoy regressionnyy analiz. Kn. 1 [Application-oriented regression analysis. Book 1]. Moscow, Finansy i statistika Publ., 1986. 369 p. (In Russ.).
  11. Krzanowski W.J. Principles of Multivariate Analysis: A User's Perspective. New York, Oxford University Press, 1988. 563 p.
  12. Voskov A.L. Statisticheskaya obrabotka eksperimenta [Statistical processing of an experiment]. (In Russ.). URL: http://td.chem.msu.ru/uploads/files/courses/general/statexp/lsq_descr.pdf.
  13. Znachimost' koeffizienta korrelyazii, doveritel'nyy interval [Significance of correlation coefficient, confidential interval]. (In Russ.). URL: http://statistica.ru/theory/znachimost-koeffitsienta-korrelyatsii-doveritelnyy-interval/.
  14. Kobzar' A.I. Prikladnaya matematicheskaya statistika [Application-oriented mathematical statistics]. Moscow, Fizmatlit Publ., 2006. 816 p. (In Russ.).
  15. Chudson D. Statistika dlya fizikov [Statistics for physicists]. Moscow, Mir Publ., 1970. 295 p. (In Russ.).
  16. Box G.E.P., Hunrer J.S., Hunter W.G. Statistics for Experiments A. John Wiley & Sons, Inc., Puplication, 2005. 655 p.
 

A. N. Shevchenko1, A. G. Kuzmin2, Yu. A. Titov2

MASS-SPECTROMETRIC MEASUREMENT OF THE GAS MIXTURES COMPOSITION IN THE CELLS OF A QUANTUM ROTATE SENSOR

"Nauchnoe Priborostroenie", 2018, vol. 28, no. 2, pp. 62—68.
doi: 10.18358/np-28-2-i6268
 

The procedure of mass spectrometric analysis of the gas mixtures composition in cells of a quantum rotation sensor is described. Rotation sensors are used in gyroscopes, so their parameters are subject to strict requirements. The quantitative composition of the gas mixture in cells, especially isotope enrichment, has a critical effect on their characteristics. The suggested analysis procedure allows to sort out the produced cells batches efficiently.
 

Keywords: mass spectrometry, determination of gas mixture composition, quantum rotation sensor

Author affiliations:

1State Research Center of the RF Concern CSRI Elektropribor, JSC, Russia
2Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia

 
Contacts: Kuzmin Aleksey Georgievich, agqz55@rambler.ru
Article received in edition: 1.03.2018
Full text (In Russ.) >>

REFERENCES

  1. Walker T.G., Larsen M.S. Spin-exchange-pumped NMR gyros. Advances in atomic, molecular, and optical physics, 2016, vol. 65, pp. 373—401.
  2. Litmanovich Yu.A., Vershovskiy A.K., Peshecho­nov V.G. Litmanovich Yu.A., Vershovskiy A.K., Peshechonov V.G. [Gyroscope on the basis of the phenomenon of nuclear magnetic resonance: last, real, future]. Materialy plenarnogo zasedaniya 7-y rossiyskoy mul'tikonferenzii po problemam upravleniya, 07—09 oktyabrya 2014 [Proc. of a plenary session of the 7th Russian multiconference on control problems, on October 07-09, 2014], pp. 35—42. (In Russ.).
  3. Vershovskiy A.K., Shevchenko A.N. [Nuclear magnetic gyroscope: principle of action, history, perspectives]. Materialy XVII konferenzii molodych uchenych "Navigaziya i upravlenie dvizheniem", Sankt-Peterburg, 17—20 marta 2015 g. [Proc. of the XVII conference of young scientists "Navigation and traffic control", St. Petersburg, on March 17—20, 2015], pp. 19—28. (In Russ.).
  4. Bulatowicz M., Larsen M. Compact atomic magnetometer for global navigation (NAV-CAM). Proc. IEEE PLANS, Apr., 2012, pp. 1088—1093.
  5. Patent of the Russian Federation for an invention N 2408978, 10.01.2011.
  6. Patent of the Russian Federation for the useful model N 133354, 10.10.2013.
  7. Vershovskiy A.K., Pazgalyev A.S. [Quantum Mx-magnetometers with optical pump: digital methods of measurement of frequency of a Mx-resonance in quickly changing field]. Zhurnal technicheskoy fiziki [Journal of technical physics], 2006, vol. 76, no. 7, pp. 108—112. (In Russ.).
  8. Groeger S., Bison G., Schenker J.L., Wynands R., and Weis A. A high-sensitivity laser-pumped M-x magnetometer. Eur. Phys. J. D, 2006, vol. 38, pp. 239—247.
  9. Happer W. Optical pumping. Reviews of modern physics, 1972, vol. 44, no. 2, pp. 170—249.
  10. Benumof R. Optical pumping. Theory and experiments. American Journal of Physics, 1965, vol. 3, pp. 151—160.
  11. Walker T.G., Happer W. Spin-exchange optical pumping of noble-gas nuclei. Reviews of modern physics, 1997, vol. 69, no. 2, pp. 629—642.
  12. Walker T.G. Fundamentals of spin-exchange optical pumping. Journal of Physics: Conference Series, 2011, vol. 294, no. 1.
  13. Patent of the USA N 7292031, 6.11.2007.
  14. Patent of the Russian Federation for an invention N 25584358, 27.06.2015.
  15. Popov E.N., Baranzev K.A., Litvinov A.N., Kurapzev A.S., Voskoboynikov S.P., Ustinov S.M., Larionov N.V., Liokumovich L.B., Ushakov N.A., Shevchenko A.N. [The frequency line of nuclear magnetic resonance in the quantum sensor of rotation: Negative impact of the diagram of detection]. Giroskopiya i navigaziya [Gyroscopy and navigation], 2016, vol. 84, no. 1, pp. 3—13.
  16. Patent of the Russian Federation for the useful model N 94763, 27.05.2010.
  17. Kuzmin Yu.D, Kuzmin A.G. [The mass-spectrometer analysis of composition of gases on thermal platforms of Kamchatka in field conditions]. Trudy III nauchno-technicheskoy konferenzii "Problemy kompleksnogo geofizicheskogo monitoringa Dal'nego Vostoka Rossii", g. Petropavlovsk-Kamchatskiy, 9—15 oktyabrya 2011 g. [Proc. of III the scientific and technical conference "Problems of Complex Geophysical Monitoring of the Far East of Russia", Petropavlovsk-Kamchatsky, on October 9—15, 2011.], Obninsk, GC RAS. 2011, pp. 1—5. (In Russ.).
  18. Manoylov V.V., Kuzmin A.G., Titov Yu.A. [Method of signal processing of mass spectrums of the exhaled gases on the basis of spectral expansion in the adaptive base]. Mass-spektrometriya [Mass-spectrometry], 2015, vol. 12, no. 3, pp. 194—200. (In Russ.).
  19. Elizarov A.Yu., Kuzmin A.G., Polezhaev A.V., Titov Yu.A., Cherebillo V.Yu. [Measurement of coefficient of pulmonary gas exchange during anesthesia]. Biomedizinskaya radioelektronika [Biomedical radiotronics], Moscow, 2015, no. 8, pp. 10—15. (In Russ.).
  20. Manoylov V.V., Titov Yu.A., Kuzmin A.G., Zaruzkiy I.V. [Methods for data processing and classification for mass spectra of exhaled gases using discriminant analysis]. Nauchnoe Priborostroenie [Scientific Instru­mentation], 2016, vol. 26, no. 3, pp. 50—56. (In Russ.). Doi: 10.18358/np-26-3-i5056.
  21. Kuzmin A.G., Tkachenko E.I., Oreshko L.S., Titov Yu.A., Balabanov A.S. [Method of mass-spectrometer express diagnostics on composition of the exhaled air]. Medizinskiy akademicheskiy zhurnal [Medical academic journal], 2016, vol. 16, no 4, pp. 106—107. (In Russ.).
  22. Kuzmin A.G., Tkachenko E.I., Oreshko L.S., Titov Yu.A., Balabanov A.S. The method of medical instant diagnostics based on real-time mass-spectrometric analysis of exhaled air composition. 3rd ICMM PAN-ASIA PACIFIC CONGRESS ON MILITARY MEDICINE, 08.08.2016—12.08.2016, St.-Petersburg. Abstracts, pp. 181—182.
  23. Manoylov V.V., Titov Yu.A., Kuzmin A.G., Zaruzkiy I.V. [Discriminant analysis algorithms for classification mass spectra of exhaled gases]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2017, vol. 27, no. 3, pp. 33—42. Doi: 10.18358/np-27-3-i3342. (In Russ.).
  24. Tveryanovich Ju.S., Kuzmin A.G., Menchikov L.G., Kochemirovsky V.A., Safonov S.V., Tumkin I.I., Povolotsky A.V., Manshina A.A. Composition of the gas phase formed upon laser-induced copper deposition from solutions. Mendeleev Commun., 2011, vol. 21, pp. 1—3.
  25. Kochemirovskiy V.A, Menchikov L.G., Kuzmin A.G., Safonov S.V., Tumkin I.I., Tver'yanovich Yu.S. [Collateral responses in case of laser and induced sedimentation of copper from water solutions of the CuII complexes]. Izvestiya Akademii nauk. Seriya chimicheskaya [News of Academy of Sciences. Chemical series], 2012, no. 5, pp. 1035—1041.
  26. Gordeychuk D.I. Kochemirovsky V.A., Sorokoumov V., Tumkin I.I., Kuzmin A.G., Balova I.A. Copper particles generated during in situ laser-induced synthesis exhibit catalytic activity towards formation of gas phase. Journal of Laser Micro/Nanoengineering, 2017, vol. 12, no. 2, pp. 57—61.
 

D. V. Lisin

IMPLEMENTATION OF THE METHOD FOR MEASURING ELECTRIC
VOLTAGES AT THE ELEMENTS OF LI-ION BATTERIES
WHEN WORKING ON SPACECRAFT

"Nauchnoe Priborostroenie", 2018, vol. 28, no. 2, pp. 69—74.
doi: 10.18358/np-28-2-i6974
 

The method of circuit implementation of the element-by-element voltage control of lithium-ion batteries in the batteries intended for use on spacecraft is described. The method is based on the calculation of the voltage on the elements digitally according to individual measuring channels, implemented on calibrated precision voltage dividers. At the same time, the problem of implementing the storage mode of the battery without dismantling the built-in control system was solved. The data of laboratory tests obtained during the development of the technological sample of the measuring system are given.
 

Keywords: spacecraft, power supply system, lithium-ion accumulator battery

Author affiliations:

Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation (IZMI RAN),
Troitsk, Moscow, Russia

 
Contacts: Lisin Dmitrij Valer'evich, lisindv@izmiran.ru
Article received in edition 14.03.2018
Full text (In Russ.) >>

REFERENCES

  1. Chromov A.V. [Lithium-ion rechargeable batteries of low-orbit spacecrafts]. Trudy VNIIEM. Voprosy elektromechaniki [Proc. of VNIIEM. Electromecanics questions], 2016, vol. 152, no. 3, pp. 20—28. (In Russ.).
  2. Ganzburg M.F., Gruzdev A.I. [Features of creation of an equipment of monitoring and protection of high-voltage lities-ion rechargeable batteries for the systems of electrical power supply of spacecrafts]. Trudy VNIIEM. Voprosy elektromechaniki [Proc. of VNIIEM. Electromecanics questions], 2011, vol. 123, no. 4, pp. 29—34. (In Russ.).
  3. Lisin D., Lebedev N., Smerek V. [Application of the modern Russian VLSI of improved stability in control systems solar space experiments in distant space]. Komponenty i technologii [Components and technologies], 2016, no. 5, pp. 73—76. (In Russ.).
 

B. S. Slepak, K. B. Slepak

THE INNOVATIVE DIRECTION OF SCIENTIFIC INSTRUMENTATION – MÖSSBAUER SPECTROSCOPY AS A FACTOR OF IMPROVING THE BRANCHES OF THE RUSSIAN ECONOMY.
PART 2. CREATION OF NATIONAL RESEARCH EQUIPMENT IN THE FIELD OF MÖSSBAUER SPECTROSCOPY

"Nauchnoe Priborostroenie", 2018, vol. 28, no. 2, pp. 75—88.
doi: 10.18358/np-28-2-i7588
 

The main technical characteristics of the national research equipment for import substitution in the field of Mössbauer spectroscopy created by the IAI RAS are presented. The mass produced IAI RAS Mössbauer spectrometers SM 1101TER and SM 4201 TERLAB, which are widely used in the development of innovative materials, are presented. Mössbauer spectrometers SM 1101TER and SM 4201 TERLAB were in demand in the study of the magnetic and physico-chemical properties of innovative materials, the study of high-temperature superconductivity of compounds, studies of multiferroics and ferroelectrics.
 

Keywords: innovations, import substitution, Mössbauer spectrometer, gamma-resonance spectrum, Doppler energy modulation, gamma optical scheme

Author affiliations:

1Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia
2NRC "Kurchatov Institute" – CRISM "Prometey", Russia

 
Contacts: Slepak Boris Semyenovich, slepak@mail.ru
Article received in edition 31.01.2018
Full text (In Eng.) >>

REFERENCES

  1. Slepak B.S., Slepak K.B. The innovative direction of scientific instrumentation – Mossbauer spectroscopy as a factor of improving the branches of the Russian economy. Part 1. Breakthrough scientific research in the field of Mossbauer spectroscopy. Nauchnoe Priborostroenie [Scientific Instrumentation], 2018, vol. 28, no. 1, pp. 79—92. URL: http://213.170.69.26/en/mag/2018/abst1.php#abst10.
  2. Slepak K.B. The development of the scientific and educational potential of Russia’s regions in the process of innovative import substitution. Ekonomika i upravlenie [Economics and management], 2015, no. 7, pp. 84—91.
  3. Panchuk V.V., Semenov V.G., Uzdin V.M. [Magnetic texture, hyperfine fields, and simulation of epitaxial growth of multilayer Fe/V magnetic systems]. Izvestiya RAN. Seriya fizicheskaya [Bulletin of the Russian Academy of Sciences: Physics], 2004, vol. 68, no. 4, pp. 495—499. (In Russ.).
  4. Andreeva M.A., Odintsova E.E., Semenov V.G., Irkaev S.M., Panchuk V.V. Fluorescence analysis of a multilayer (Zr(10 nm)/[Fe(1.6 nm)/Cr(1.7 nm)]26/Cr(50 nm)/glass) structure under grazing incidence conditions. Poverchnost' [Journal of Surface Investigation], 2008, vol. 2, no. 4, pp. 564—568.
  5. Irkaev S.M., Semenov V.G., Kurochkin V.E., Makarov N.A., Panchuk V.V., Ter-Martirosyan A.L., Cherneutsanu K.P. [Multi-purpose spectrometer for condensed media surface and bulk studies. III. Experimental procedure and investigation results]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2007, vol. 17, no. 2, p. 3—19.
  6. Irkaev S.M., Semenov V.G., Panchuk V.V., Makarov N.A. Multipurpose spectrometer TERLAB for depth selective investigation of surface and multilayer. Hyperfine Interactions, 2006, vol. 167, no. 1-3, pp. 861—867.
  7. Irkaev S.M., Semenov V.G., Kurochkin V.E., Makarov N.A., Panchuk V.V., Ter-Martirosyan A.L., Cherneutsanu K.P. [Multi-purpose spectrometer for condensed media surface and bulk studies. II. Transport control and data acquisition system]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2005, vol. 15, no. 1, pp. 46—55. URL: http://213.170.69.26/en/mag/2005/abst1.php#abst6. (In Russ.).
  8. Semenov V.G., Irkaev S.M., Panchuk V.V., Cherneutsany K.P. [X-ray and γ-resonance optics for surface diagnostics]. Izvestiya RAN. Seriya fizicheskaya [Bulletin of the Russian Academy of Sciences: Physics], 2004, vol. 68, no. 4, pp. 499—503. (In Russ.).
  9. Irkaev S.M., Semenov V.G., Kurochkin V.E., Makarov N.A., Panchuk V.V., Ter-Martirosyan A.L., Cherneutsanu K.P. [Multifunctional spectrometer for surface and bulk studies of condensed media. I. Functional capabilities]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2004, vol. 14, no. 3, pp. 3—10. URL: http://213.170.69.26/en/mag/2004/abst3.php#abst1. (In Russ.).
  10. Regional Centre of Advanced Technologies and Materials. URL: https://www.mossbauer-spectrometers.com.
  11. Wissenschaftliche Elektronik GmbH. URL: http://www.wissel-gmbh.de.
  12. Slepak K.B. The development of science, education and innovative technologies in the regions of Russia as a factor in ensuring national security. SPb.: Publishing house of Polytechnic University, 2014. 192 p. ISBN 978-5-7422-4577-3.
 

Ulitsa Ivana Chernykh, 31-33, lit. A, St. Petersburg, Russia, 198095, P.O.B. 140
tel: (812) 3630719, fax: (812) 3630720, mail: iap@ianin.spb.su

content: Valery D. Belenkov design: Banu S. Kuspanova layout: Anton V. Manoilov