logo
blue band <-
  JOURNAL "NP" ISSUES

"Nauchnoe Priborostroenie", 2018, Vol. 28, no. 1. ISSN 2312-2951, DOI: 10.18358/np-28-1-1814

"NP" 2018 year Vol. 28 no. 1.,   ABSTRACTS

ABSTRACTS, REFERENCES

D. A. Belov, Yu. V. Belov, V. E. Kurochkin

NEW METHOD OF DNA MELTING SIGNAL TREATMENT

"Nauchnoe priborostroenie", 2018, vol. 28, no. 1, pp. 3—10.
doi: 10.18358/np-28-1-i310
 

The improved model of DNA melting signal is proposed in the article. The model is based on power polynomials of degree 3 (SP). Based on the model, a technique for processing the DNA melting signal has been developed, the main result of which is the determination of the DNA melting temperature Tm. The new technique allows to decrease the analysis time by increasing the temperature measurement pitch while simultaneously narrowing temperature range. Adequacy proofs of the model based on the SP are given. The application results of developed technique and of the known technique based on the sigmoid function (SF) are compared. The possibility of the technique using for determining the thermocycler tubes holder temperature distribution nonuniformity during melting mode is shown.
 

Keywords: DNA, PCR, nucleic acid analyzer, approximation, High Resolution Melt analysis

Author affiliations:

Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia

 
Contacts: Belov Dmitriy Anatolyevich, onoff_10@mail.ru
Article received in edition 31.01.2018
Full text (In Russ.) >>

REFERENCES

  1. Vedenov A.A., Dychne A.M., Frank-Kamenezkiy M.D. [Transition a spiral–a ball in DNA]. Uspechi fizicheskich nauk [Achievements of physical sciences], 1971, vol. 105, no. 11, pp. 479—519. Doi: 10.3367/UFNr.0105.197111d.0479. (In Russ.).
  2. Lavrova O.I., Al'vares Figeroa M.V., Tvorogova M.G. [The HRM – new molecular technique of detection of pharmaceutical resistance of micobacteria of tuberculosis]. Klinicheskaya laboratornaya diagnostika [Russian Clinical Laboratory Diagnostics], 2014, no. 7, pp. 62—64. (In Russ.).
  3. Kalendar R.N., Sivolap Yu.M. [Polymerase chain reaction with arbitrary oligonucleotide primers]. Biopolimery i kletka [Biopolymers and cell], 1996, vol. 11, no. 3-4, pp. 55—65. Doi: 10.7124/bc.0003ED.
  4. Sivolap Yu.M., Kalendar' R.N., Chebotar' S.V. [Genetic polymorphism of cereals by means of PCR with arbitrary primers]. Zitologiya i genetika [Cytology and genetics], 1994, vol. 28, no. 6, pp. 54—61.
    URL: http://www.biocenter.helsinki.fi/bi/genomedynamics/Pdfs/zyt.pdf. (In Russ.).
  5. Vychislenie temperatury plavleniya [Computation of a melting temperature]. (In Russ.).
    URL: https://ru.wikipedia.org/wiki/Ãèáðèäèçàöèÿ_ÄÍÊ
  6. Rebrikov D.V., Samatov G.A., Trofimov D.Yu. et al. PCR v "real'nom vremeni" [PCR in "real time"]. Moscow, BIOM. Laboratoriya znaniy Publ., 2009. 223 p. (In Russ.).
    URL: http://nashol.com/2014072579193/pcr-v-realnom-vremeni-rebrikov-d-vsamatov-g-a-trofimov-d-u-2009.html
  7. Melting Temperature Calculation Tm ToolSM. University of Utah, Wittwer Lab (USA). URL: http://www.dna.utah.edu/tm/tool.html
  8. Introduction to High Resolution Melt Analysis. Application Guide. URL: http://www.kapabiosystems.com.
  9. Belov D.A., Korneva N.A., Aldekeeva A.C., Belov Yu.V., Kiselev I.G. [Genetic analyzer resolution increasing at DNA melting temperature determination]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2016, vol. 26, no. 2, pp. 17—22. (In Russ.). Doi: 10.18358/np-26-2-i1722.
  10. Belov D.A., Aldekeeva A.C., Belov Yu.V., Kiselev I.G. [Nucleic acids analyzer holes temperature spread determining method. Nauchnoe Priborostroenie [Scientific Instrumentation], 2017, vol. 27, no. 4, pp. 34—39. Doi: 10.18358/np-27-4-i3439. (In Russ.).
  11. Eydel'shteyn M.V., Alekseev Ya.I., Nikulin A.A, Romanov A.V., Kozlov R.S. Sposob detekzii spezificheskich nukleotidnych posledovatel'nostey i nukleotidnych zamen s pomosch'yu PCR v rezhime real'nogo vremeni s effektom gasheniya fluoreszenzii zonda praymerom [Way of detection of the specific nucleotide sequences and nucleotide replacements by means of PCR in real time with effect of clearing of fluorescence of the probe with a primer]. Patent RF no. 2451086, MPK C12Q 1/68, is published 20.05.2012. Bulletin No. 14. (In Russ.).
  12. Zemlyakov V.V. Obrabotka rezul'tatov izmereniy v Matlab: uchebno-metodicheskoe posobie [[Processing of results of measurements in Matlab: educational and methodical manual]]. Rostov-na-Donu, 2008. 40 p. (In Russ.).
  13. Sirota A.A. Metody i algoritmy analiza dannych i ich modelirovanie v MATLAB: ucheb. posobie [Methods and analysis algorithms of data and their simulation in MATLAB: studies manual]. Saint-Petersburg, BHV-Petersburg Publ., 2016. 384 p. (In Russ.).
  14. Belov D.A., Belov Yu.V., Manoylov V.V. [DNA melting data processing techniques development]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2017, vol. 27, no. 1, pp. 83—89. (In Russ.). Doi: 10.18358/np-27-1-i8389.
 

O. V. Nepomnyashcy, A. I. Postnikov, D. V. Popov

MATHEMATICAL MODELING OF THE LASER RADAR METHOD
OF DETERMINING EXTREMELY LOW CONCENTRATIONS
OF HYDROCARBONS IN THE SURFACE LAYER

"Nauchnoe Priborostroenie", 2018, vol. 28, no. 1, pp. 11—17.
doi: 10.18358/np-28-1-i1117
 

The proposed approach to the problem of localization of hydrocarbon deposits by the detection of very small surface leaks of natural gas in lidar remote sensing of the earth's surface. The mathematical apparatus to represent the alignment of the lidar, which is based on the solution of the lidar equation taking into account correction factors. Modeling in the software package Matlab and formulated a list of boundary conditions to develop the complex. The combined use of known physical models of the atmosphere and the solution of the lidar equation, taking into account the factors receiving equipment used as the basis for the development of the principle of operation hardware-software complex for remote sensing of the earth.
 

Keywords: lidar, remote sensing, lidar equation, mathematical tool, natural gas

Author affiliations:

Siberian Federal University, Krasnoyarsk, Russia

 
Contacts: Popov Dmitriy Viktorovich, juuuis92@gmail.com
Article received in edition 31.01.2018
Full text (In Russ.) >>

REFERENCES

  1. Marey H.S. Sattelite remote sensing of air quality in the oul sands region. University of Alberta, 2014. 112 p.
  2. Wojcik M., Crowther B., Lemon R. Development of differential absorption lidar (DIAL) for detection of CO2, CH4 and PM in Alberta. Proc. SPIE, 2015, vol. 9486. Doi: 10.1117/12.2176984.
  3. Bartholomew J., Lyman Ph., Weimer C. and Ruppert L. Airborne active sensing for pipeline leak survey. AIAA SciTech Forum, 2017. Doi: 10.2514/6.2017-0645.
  4. Popov D.V. [Mathematical model of remote sensing of the atmosphere for determination of small concentration of hydrocarbons]. Naukoemkie technologii [High technologies], 2016, pp. 48—51. (In Russ.).
  5. Nepomnyashcy O., Veicov E., Kopilov V., Khabarov V., Popov D. The LIDAR technology and earth remote sensing for small space vehicles. International Siberian
    Conference on Control and Communications
    2015 (SIBCON), 2015, pp. 306—311.
  6. Nepomnyaschiy O.V., Ten S.F., Chabarov V.A. [Mathematical and the hardware of a complex of geophysical surveys for remote, aviation sensing of the land surface]. Aviakosmicheskoe priborostroenie [Aerospace instrument making], 2011, pp. 38—43. (In Russ.).
  7. Zuev V.E., Krekov G.M. Opticheskie modeli atmosfery [Optical models of the atmosphere]. Leningrad, Gidrometeoizdat Publ., 1986. 256 p. (In Russ.).
  8. Yakimov A.V. Fizika shumov i fluktuaziy parametrov: uchebnoe posobie [Physics of noise and fluctuations of parameters: manual]. Nizhniy Novgorod, Nizhegorodskiy gosuniversitet, 2013. 85 p. (In Russ.).
  9. Nebuloni R. Empirical relationships between extinction coefficient and visibility in fog. Applied Optics, 2005, vol. 44, no. 18, pp. 3795—3804. Doi: 10.1364/AO.44.003795.
 

A. I. Belozertsev1, O. V. Cheremisina2, S. Z. El Salim3, V. V. Manoylov4,5, I. V. Zarutskiy4

ALGORITHMS FOR DATA PROCESSING IN GAS ANALYTICAL
COMPLEXES WITH SEMICONDUCTOR SENSORS FOR DETECTING CONTAMINANTS
IN ROCKET FUEL COMPONENTS

"Nauchnoe Priborostroenie", 2018, vol. 28, no. 1, pp. 18—29.
doi: 10.18358/np-28-1-i1829
 

In this paper, we describe the algorithms for processing data from semiconductor sensors that are part of the analytical means for controlling the vapors of rocket fuel components (RFC) in air, liquids, and solids. Data processing algorithms are designed for the quantitative analysis of individual components of RFC, as well as for the formation of information signs necessary for the classification of detected components. A method based on wavelet analysis, which allows to automatically distinguish a pure sample of the investigated gas from a sample containing impurities, impurities or additives is proposed.
 

Keywords: algorithms for processing gas analysis data, gas sensitive semiconductor sensors, components of rocket fuels, gas analytical instruments, environmental protection

Author affiliations:

1Research Institute of Physical Measurements. Penza, Russian Federation
2 Saint-Petersburg Mining University, Russian Federation
3Ltd "Omega", Saint-Petersburg, Russian Federation
4Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia
5 ITMO University, Saint-Petersburg, Russian Federation

 
Contacts: Manoylov Vladimir Vladimirovich, manoilov_vv@mail.ru
Article received in edition 3.11.2017
Full text (In Russ.) >>

REFERENCES

  1. Belozertsev A.I., Cheremisina O.V., El-Salim S.Z., Manoylov V.V. [Deployed gas analytical instrumentation systems for detection of rocket fuel components in the environment (review)]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2017, vol. 27, no. 2, pp. 91—102. (In Russ.). Doi: 10.18358/np-27-2-i91102.
  2. Volkenshetein F.F. Elektronnye processy na poverhnosti poluprovodnikov pri hemosorbcii [Electronic processes on the surface of semiconductors under chemisorption]. Moscow, Nauka Publ., 1987. 432 p. (In Russ.).
  3. Ajvazyan S.A., Enyukov I.S., Meshalkin L.D. Prikladnaya statistika. Klassifikaciya i snizhenie razmernosti. Spravochnoe izdanie [Applied statistics. Classification and decrease in dimension. Reference book]. Moscow, Finansy i statistika Publ., 1983. 471 p. (In Russ.).
  4. Greshilov A.A., Stakun V.A., Stakun A.A. Matematicheskie metody postroeniya prognozov [Mathematical methods for constructing predictions]. Moscow, Radio and Communication Publ., 1997. 112 p. (In Russ.).
  5. Savitzky A., Golay M.J.E. Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry, 1964, vol. 36, no. 8, pp. 1627—1639. Doi: 10.1021/ac60214a047.
  6. Belozertsev A.I., Cheremisina O.V., El-Salim S.Z., Manoylov V.V. Quantitative determination of asymmetric dimethylhydrazine in solutions by the Raman spectroscopy method. Nauchnoe Priborostroenie [Scientific Instrumentation], 2017, vol. 27, no. 2, pp. 47—56. (In Russ.). Doi: 10.18358/np-27-2-i4756.
  7. Nikolaev A.V., El-Salim S.Z. Classification of signals during the analysis of gas mixtures. URL: http://rl-omega.ru/docs/Classification.pdf. (In Russ.).
  8. Matlab. Exponenta. URL: http://matlab.exponenta.ru/wavelet/book1/14/wavemngr.php. (In Russ.).
  9. D'yakonov V.P. Vejvlety. Ot teorii k praktike. Seriya: Polnoe rukovodstvo pol'zovatelya [Wavelets. From theory to practice. Series: A comprehensive user guide]. Moscow, Solon-press Publ., 2010. 400 p. (In Russ.).
  10. Krzanowski W.J. Principles of Multivariate Analysis: A User's Perspective. New York: Oxford University Press, 1988.
  11. Manoylov V.V., Titov Yu.A., Kuzmin A.G., Zarutskiy I.V. [Algorithms of discriminant analysis for classification of mass spectra of exhaled gases]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2017, vol. 27, no. 3,
    pp. 33—42. (In Russ.). Doi: 10.18358/np-27-3-i3342.
  12. Manoilov V.V., Titov Yu.A., Kuzmin A.G., Zarutskii I.V. [Methods for processing and classifying mass spectra of exhaled gases using discriminant analysis]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2016, vol. 26, no. 3, pp. 50—56. (In Russ.). Doi: 10.18358/np-26-3-i5056
 

D. A. Kravchuk, I. B. Starchenko

MATHEMATICAL MODELING OF THE OPTOACOUSTIC
SIGNAL FROM AGGREGATED ERYTHROCYTES
TO ASSESS THE LEVEL OF AGGREGATION

"Nauchnoe Priborostroenie", 2018, vol. 28, no. 1, pp. 30—36.
doi: 10.18358/np-28-1-i3036
 

The presented model of the formation of an optoacoustic signal under the influence of an Nd: YAG laser on model blood samples with aggregated erythrocytes, to study how the amplitude of the optoacoustic (OA) signal and the power spectrum will vary depending on the level of aggregation of erythrocytes. A mathematical model of the packing of erythrocytes has been developed for modeling the aggregation of red blood cells. It is established that the amplitude of the optoacoustic signal increases with increasing aggregation level and the frequency of the spectral power of the signal decreases.
 

Keywords: optoacoustic signal, aggregation, erythrocytes, spectral power density, laser

Author affiliations:

Southwest State University, Taganrog, Russia

 
Contacts: Kravchuk Denis Aleksandrovich, kravchukda@sfedu.ru
Article received in edition 25.01.2018
Full text (In Russ.) >>

REFERENCES

  1. Kravchuk D.A., Starchenko I.B. [Mathematical simulation of an optikoakustichesky signal from spherical absorbers on the example of erythrocytes]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Upravlenie, vychislitel'naya technika, informatika. Medizinskoe priborostroenie [News of the Southwest state university. Series: Control, ADP equipment, informatics. Medical instrument making], 2017, vol. 7, no. 3, pp. 101—107. (In Russ.).
  2. Starchenko I.B., Kravchuk D.A., Kirichenko I.A. [Prototype optoacoustic laser cytomeasure]. Medizinskaya technika [Medical equipment], 2017, no. 5, pp. 4—7. (In Russ.).
  3. Kravchuk D.A. [The system of flowing laser diagnostic of liquids in case of generation of an optoaudible tone on diffusers of spherical shape]. Kachestvo i zhizn' [Quality and life], Moscow, 2017, no. 4, pp. 74—78. (In Russ.).
  4. Kravchuk D.A. [About a method of simulation of optoaudible tones from sources of spherical shape on the example of erythrocytes]. Kachestvo i zhizn' [Quality and life], Moscow, 2017, no. 4, pp. 78—80. (In Russ.).
  5. Savery D., Cloutier G. Effects of red cell clustering and anisotropy on ultrasound blood backscatter: a Monte Carlo study. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2005, vol. 52, no. 1, pp. 94—103. Doi: 10.1109/TUFFC.2005.1397353.
  6. Zhang H.F., Maslov K., Sivaramakrishnan M., Stoica G., Wang L.V. Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy. Appl. Phys. Lett., 2007, vol. 90, no. 5. Doi: 10.1063/1.2435697.
  7. Diebold G.J. Photoacoustic monopole radiation: Waves from objects with symmetry in one, two and three dimensions. Photoacoustic Imaging and Spectroscopy / L.V. Wong (ed.), Taylor & Francis Group, LLC, London, 2009, pp. 3—17.
  8. Saha R.K., Kolios M.C. A simulation study on photoacoustic signals from red blood cells. The Journal of the Acoustical Society of America, 2011, vol. 129, no. 5. Doi: 10.1121/1.3570946.
  9. Meiselman H.J. Red blood cell aggregation: 45 years being curious. Biorheology, 2009, vol. 46, no. 1, pp. 1—19. Doi: 10.3233/BIR-2009-0522.
  10. Kravchuk D.A. [The pilot studies and process modeling of generation of optoacoustic waves]. Elektronnyy nauchnyy zhurnal "Inzhenernyy vestnik Dona" [Online scientific magazine "Engineering Bulletin of Don"], 2017, vol. 45, no. 2. (In Russ.).
    URL: http://www.ivdon.ru/ru/magazine/archive/n2y2017/4234.
  11. Kravchuk D.A. [Theoretical researches of generation of optoacoustic waves in liquid cylindrical absorbers]. Elektronnyy nauchnyy zhurnal "Inzhenernyy vestnik Dona" [Online scientific magazine "Engineering Bulletin of Don"], 2017, vol. 46, no. 3. (In Russ.).
    URL: http://www.ivdon.ru/ru/magazine/archive/N3y2017/4350. ISSN 2073-8633
  12. Kravchuk D.A. [Analytical result of generation of optoacoustic waves for spherical absorbers in a distant field]. Elektronnyy nauchnyy zhurnal "Inzhenernyy vestnik Dona" [Online scientific magazine "Engineering Bulletin of Don"], 2017, vol. 47, no. 4. (In Russ.).
    URL: http://www.ivdon.ru/ru/magazine/archive/n4y2017/4436
  13. Starchenko I.B., Kravchuk D.A., Kirichenko I.A. An optoacoustic laser cytometer prototype. Biomedical Engineering, Springer, 2018, vol. 51, no. 5, pp. 308—312.
  14. Kravchuk D.A. [Ïpèìeíeíèe oïòoaêócòè÷ecêèõ ìeòoäoâ â áèoìeäèöèícêèõ èccëeäoâaíèÿõ]. Elektronnyy nauchnyy zhurnal "Inzhenernyy vestnik Dona" [Online scientific magazine "Engineering Bulletin of Don"], 2017, no. 4. (In Russ.). URL: http://www.ivdon.ru/ru/magazine/archive/n4y2017/4484
 

A. I. Zhernovoy, Yu. V. Ulashkevich, S. V. Diachenko

THE MEASUREMENT OF MAGNETIC MOMENTS
OF FERROMAGNETIC NANOPARTICLES BY THE POSITIONS
OF THE LINES OF INFRA RED SPECTRA
OF A MAGNETIC LIQUID IN A MAGNETIC FIELD

"Nauchnoe Priborostroenie", 2018, vol. 28, no. 1, pp. 37—44.
doi: 10.18358/np-28-1-i3744
 

The investigation infra red spectra of a magnetic liquid in a magnetic field showed, that a rotation lines were shifted, when a magnetic field was changed. We determined the magnetic moments of nanoparticles that are equal tu 1.0·10–19, 3.2·10–19, 8.7·10–19 Am2. Magnetic moments, which were measured by electromagnetic methods, were the average meanings of discrete magnetic moments.
 

Keywords: magnetic liquid, one domain nanoparticles of magnetite, infra red spectra, discrete magnetic moments

Author affiliations:

Saint-Petersburg State Institute of Technology (Technical University), Russia

 
Contacts: Zhernovoy Aleksandr Ivanovich, azhspb@rambler.ru
Article received in edition 17.10.2017
Full text (In Russ.) >>

REFERENCES

  1. Zhernovoy A.I., Ulashkevich Yu.V., Diyachenko S.V. [Magnetic fluid in magnetic field infrared absorbtion spectra investigation]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2016. vol. 26, no. 2, pp. 60—63. Doi: 10.18358/np-26-2-i6063. (In Russ.).
  2. Zhernovoy A.I., Ulashkevich Yu.V., Diyachenko S.V. [The discreteness of magnetic moments of single-domain ferromagnetic nanoparticles]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2017, vol. 27, no. 1, pp. 72—76. Doi: 10.18358/np-27-1-i7276. (In Russ.).
  3. Zhernovoy A.I., Ulashkevich Yu.V., Diyachenko S.V. [The study of the infrared spectrum of a magnetic nanoparticles in a magnetic field structure]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2017, vol. 27, no. 2, pp. 61—65. Doi: 10.18358/np-27-2-i6165. (In Russ.).
  4. Zhernovoy A.I., Ulashkevich Yu.V., Diyachenko S.V. [The study of dependence the infrared spectrum of magnetic fluid from magnetic field]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2017, vol. 27, no. 3, pp. 65—69. Doi: 10.18358/np-27-3-i6569. (In Russ.).
  5. Zhernovoi A.I., Naumov V.N., Rudakov Yu.R. [Paramagnetic nanoglobules dispersion curve definition via magnetization and magnetizable field using nmr method]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2009, vol. 19, no. 3, pp. 57—61. URL: http://213.170.69. 26/en/mag/2009/abst3.php#abst8. (In Russ.).
  6. Zhernovoy A.I., Diyachenko S.V. [Compare of sizes end of magnetic moments nanoparticles of a magnetit in a colloid solution and in a powder, prepared by a chemical sedymentation (short message)]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2016, vol. 26, no. 1, pp. 54—57. Doi: 10.18358/np-26-1-i5457. (In Russ.).
  7. Zhernovoy A.I., Rudakov Yu.R Diyachenko S.V. [NMR method for curie's law compliance in colloid solutions of paramagnetic nanoparticles]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2012, vol. 22, no. 1, pp. 52—54. (In Russ.).
    URL: http://213.170.69.26/en/mag/2012/full1/Art7.pdf
  8. Zhernovoy A.I., Diyachenko S.V. [Determination of the dispersion magnetic moment of the nanoparticles in magnetic fluid]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2015, vol. 25, no. 1, pp. 42—48. (In Russ.).
    URL: http://213.170.69.26/en/mag/2015/abst1.php#abst5
  9. Diyachenko S.V. Razrabotka metoda izmereniya namagnichennosti kolloidnyh rastvorov i poroshkov ferromagnit-nyh nanochastic v stacionarnyh usloviyah. Diss. kand. fiz.-mat. nauk [Development of a method of measurement of magnetization of colloidal solutions and powders of ferromagnetic nanoparticles in stationary conditions. Cand. phis. and mat. sci. diss.]. Saint-Petersburg, 2017. (In Russ.).
  10. Zhernovoi A.I., Komlev V.I., Diyachenko S.V. [Definition of magnetic characteristics of nanoparticles of MgFe2O4 received glycine – a nitrate way]. Zhurnal tekhnicheskoj fiziki [Journal of technical physics], 2016, vol. 86, no. 2, pp. 146—148. (In Russ.).
    URL: http://journals.ioffe.ru/articles/42755
  11. Emel'yanov S.G., Karpova G.V., Paukov V.M., Polunin V.M., Ryapolov P.A. [Estimation of Physical Parameters of Magnetic Nanoparticles]. Akusticheskiy zhurnal [Acoustical Journal], 2010, vol. 56, no. 3, pp. 316—322. (In Russ.).
 

Ya. A. Fofanov1, V. V. Manoilov1,2, I. V. Zarutskiy1,2, B. V. Bardin1

ON THE SIMILARITY OF THE POLARIZATION-OPTICAL RESPONSES OF MAGNETIC NANOFLUIDS.
PART I. APPROXIMATION FOR WEAK FIELDS

"Nauchnoe Priborostroenie", 2018, vol. 28, no. 1, pp. 45—52.
doi: 10.18358/np-28-1-i4552
 

Some features of the weak polarization responses of magnetic nanofluids are investigated. It is shown that magnitude of these responses for concentrations that differ by three or more orders have a similarity depending on the magnetic field. A quantitative evaluation of the similarity of responses is given.
 

Keywords: quantitative polarization-optical analysis, magnetic nanofluids, approximation of experimental data, verification of statistical hypotheses

Author affiliations:

1Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia
2ITMO University, Saint-Petersburg, Russia

 
Contacts: Manoylov Vladimir Vladimirovich, manoilov_vv@mail.ru
Article received in edition 28.12.2017
Full text (In Russ.) >>

REFERENCES

  1. Badoz J., Billardon M., Canit J.C., Russel M.F. Sensitive devices to determine the state and degree of polarization of a light beam using a birefringence modulator. J. Optics, 1977, vol. 8, no. 6, pp. 373—384. Doi: 10.1088/0150-536X/8/6/003.
  2. Fofanov Ya.A. Threshold sensitivity in optical measurements with phase modulation. Proc. SPIE. The Report of tenth Union Symposium and School on High Resolution Molecular Spectroscopy, 1992, vol. 1811, pp. 413—414. Doi: 10.1117/12.131190.
  3. Sokolov I.M., Fofanov Ya.A. Investigations of the small birefringence of transparent objects by strong phase modulation of probing laser radiation. J. Opt. Soc. Am. A, 1995, vol. 12, no. 7, pp. 1579—1588. Doi: 10.1364/JOSAA.12.001579.
  4. Fofanov Ya.A., Afanasiev I.I., Borozdin S.N. [Structural birefringence in crystals of optical fluorite]. Opticheskiy zhurnal [Optical Journal], 1998, vol. 65, no. 9, pp. 22—25. (In Russ.).
  5. Fofanov Ya.A. [Methods and devices for quantitative analysis of structural birefringence of materials and substances (overview)]. Nauchnoe Priborostroenie [Scientific Instrumentation], 1999, vol. 9, no. 3, pp. 104—110. (In Russ.).
    URL: http://213.170.69.26/mag/1999/full3/Art10.pdf.
  6. Fofanov Ya.A. [Selective reflection of polarized light with oblique incidence]. Kvantovaya elektronika [Quantum Electronics], 2009, vol. 39, no. 6, pp. 585—590. (In Russ.).
  7. Fofanov Ya.A., Kuraptsev A.S., Sokolov I.M., Havey M.D. Dispersion of the dielectric permittivity of dense and ultracold atomic gases. Phys. Rev. A, 2011, vol. 84, pp. 053811. Doi: 10.1103/PhysRevA.84.053811.
  8. Fofanov Ya.A., Kuraptsev A.S., Sokolov I.M., Havey M.D. Spatial distribution of optically induced atomic excitation in a dense and cold atomic ensemble. Phys. Rev. A, 2013, vol. 87, pp. 063839. Doi: 10.1103/PhysRevA.87.063839
  9. Fofanov Ya.A. Optical saturation of strong selective reflection. Universal Journal of Physics and Application, 2013, vol. 7, no. 4, pp. 370—375. Doi: 10.13189/ujpa.2013.010402
  10. Fofanov Ya.A. Nonlinear and fluctuation phenomena under conditions of strong selective reflection in inclined geometry. Advances in Optoelectronics Research. M.R. Oswald (ed.). Nova Science Publishers, Inc., USA, 2014, ISBN: 978–1–63321–212–1, pp. 75–114.
  11. Fofanov Ya.A., Bardin B.V. [On the principles and approaches to the automation of high sensitivity laser methods for quantitative polarization-optical analysis]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2002, vol. 12, no. 3, pp. 64—67. (In Russ.).
    URL: http://213.170.69.26/mag/2002/full3/Art9.pdf
  12. Fofanov Ya.A., Pleshakov I.V., Kuz'min Yu.I. [Laser polarization-optical detection of magnetization of a magnetically ordered crystal]. Opticheskiy zhurnal [Optical Journal], 2013, vol. 80, no. 1, pp. 88—93. (In Russ.).
  13. Rudyak V.M. [The Barkhausen effect]. UFN [Achievements of physical sciences], 1970, vol. 101, no. 3, pp. 429—462. (In Russ.).
  14. Fofanov Ya.A., Pleshakov I.V., Prokof'ev A.V. [The study of polarization magneto-optical responses of a weakly concentrated ferrofluid]. Pis'ma v ZhTF [Letters to Journal of technical physic], 2016, vol. 42, no. 20, pp. 66—72. (In Russ.).
  15. Fofanov Ya. On the analogy in evolution processes and the behavior of a magnetically ordered systems. Natural Science, 2013, vol. 5, no. 4A, pp. 14—17. Doi: 10.4236/ns.2013.54A003.
  16. Fofanov Ya.A. [On the criteria for strong and weak signals in polarization-optical studies]. Nauchnye trudy Mezhdunarodnogo kongressa "Slabye i sverchslabye polya i izlucheniya v biologii i medizine" [Scientific works of the International Congress "Weak and superweak fields and radiation in biology and medicine"], vol. 7. Saint-Petersburg, 2015, pp. 101.
  17. Davis H.W., Llewellyn J.P. Magnetic birefringence of ferrofluids: I. Estimation of particle size. J. Phys. D: Appl. Phys., 1979, vol. 12, no. 2, pp. 311—319.
  18. Fofanov Ya.A., Bardin B.V. [On polarization response of objects with small optical anisotropy]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2016, vol. 26, no. 1, pp. 58—61. (In Russ.). Doi: 10.18358/np-26-1-i5861.
  19. Rumshinskiy L.Z. Matematicheskaya obrabotka rezul'tatov eksperimenta [Mathematical processing of results of an experiment]. Statistika Publ., 1971. 192 p. (In Russ.).
  20. Manoylov V.V., Kostoyanov A.I., Ivanov D.Yu. [Polycyclic formation of minerals of the platinum group from alluvial manifestations of the Urals and Timman]. Geochemistry, 2003, no. 6, pp. 595—607. (In Russ.).
 

B. P. Sharfarets

ON THE SCATTERING OF SOUND BY AN INELASTIC BALL OF ARBITRARY RADIUS.
THE SCATTERING EFFICIENCY FACTOR

"Nauchnoe Priborostroenie", 2018, vol. 28, no. 1, pp. 53—60.
doi: 10.18358/np-28-1-i5360
 

The scattering of an acoustic wave by a single inelastic liquid ball is considered. To derive the required expressions, we use the mathematical technique that is characteristic of the theory of scattering of particles. Expressions are given for the field and amplitude of scattering of the ball, and also the scatterer integral parameter, adapted to the acoustic case, adopted in optics: the scattering efficiency factor. The results obtained for single inclusion under certain conditions easily extend to ensembles of particles, and the scattering factor can be useful in estimating the total intensity of the scattered field in the presence of a large number of chaotically weighted inclusions in the medium. Examples of calculation of the scattering efficiency factor for specific parameters are given, which are compared with optical analogs. The results obtained can be useful in the theory and practice of radiation pressure of sound on ensembles of particles.
 

Keywords: scattering amplitude, an inelastic ball, cross section of scattering, scattering efficiency factor,
the ensemble of particles

Author affiliations:

Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia

 
Contacts: Sharfarets Boris Pinkusovich, sharb@mail.ru
Article received in edition: 5.12.2017
Full text (In Russ.) >>

REFERENCES

  1. Sharfarets B.P. [On calculation of scattering amplitudes of bulk and surface scatterers]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2007, vol. 17, no. 1, pp. 62—72. (In Russ.).
    URL: http://213.170.69.26/en/mag/2007/full/Art8.pdf.
  2. Sharfarets B.P. [About a possibility of effective computation of amplitude of dispersion on switching on in a difficult field]. Akusticheskiy zhurnal [Acoustic journal], 2010, vol. 56, no. 2, pp. 166—171. (In Russ.).
  3. Sharfarets B.P. [To the problem of scattering amplitude evaluation on radially-symmetric elastic inserts in perfect fluid]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2012, vol. 22, no. 2, pp. 82—89. (In Russ.).
    URL: http://213.170.69.26/en/mag/2012/full2/Art11.pdf
  4. Sharfarets B.P. [About a possibility of effective computation of amplitude of dispersion on switching on in a difficult field]. Akusticheskiy zhurnal [Acoustic journal], 2010, vol. 56, no. 2, pp. 166—171. (In Russ.).
  5. Sharfarets B.P. [Scattering amplitude of the elastic ball in a viscous isotropic fluid]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2012, vol. 22, no. 2, pp. 90—97. (In Russ.).
    URL: http://213.170.69.26/en/mag/2012/full2/Art12.pdf.
  6. Kurochkin V.E., Sharfarets B.P. [Communication of radiation pressure with amplitude of dispersion of difficult switching on in ideal liquid]. DAN [Reports of Academy of Sciences], 2008, vol. 419, no. 3, pp. 324—327. (In Russ.).
  7. Sharfarets B.P., Kurochkin V.E., Knyaz'kov N.N. [Radiation pressure in arbitrary falling field. Communication with switching on dispersion amplitude]. DAN [Reports of Academy of Sciences], 2008, vol. 421, no. 2, pp. 186—189. (In Russ.).
  8. Sharfarets B.P. [Radiation pressure in case of dispersion of arbitrary field on switching on of irregular shape], Akusticheskiy zhurnal [Acoustic journal], 2010, vol. 56, no. 6, pp. 767—772. (In Russ.).
  9. Lamb H. Hydrodynamics. Cambridge Univ. Press, 1932 (Russ. ed.: Lamb G. Gidrodinamika. Moscow, OGIZ Publ., 1947. 929 p.).
  10. Flyugge Z. Zadachi po kvantovoy mechanike. T. 1. [Problems in Quantum Mechanics. Vol. 1]. Moscow, Mir Publ., 1974. 343 p. (In Russ.).
  11. Born M., Wolf E. Principles of Optics. 2nd ed. Oxford, Pergamon Press, 1964 (Russ. ed.: Born M., Vol'f E. Osnovy optiki. Moscow, Nauka Publ., 1970. 856 p.).
  12. Hulst H.C. van de.  Light scattering by small particles. New York, Dover Publications, 1981, 470 p. (Russ. ed.: Van de Chyulst G. Rasseyanie sveta malymi chastizami. Moscow, Inostr. lit-ra, 1961. 536 p.).
  13. Kerker M. The scattering of light and other electromagnetic radiation. New York, Academic Press, 1969. 666 p.
  14. Zuev V.E., Kabanov M.V. Sovremennye problemy atmosfernoy optiki T. 4. Optika atmosfernogo aerozolya [The modern problems of atmospheric optics. V. 4. Optics of an atmospheric aerosol]. Leningrad, Gidrometeoizdat Publ., 1987. 255 p. (In Russ.).
  15. Mie G. Beiträgezur Optiktrüber Medien, speziellkolloidaler Metallösungen. Ann. Phys., 1908, no. 330, pp. 377—445.
  16. Mors, F.M., Feshbach G. Methods of Theoretical Physics. New York, McGraw-Hill, 1953 (Russ. ed.: Mors F.M., Feshbach G. Metody teoreticheskoy fiziki. T. 2. Moscow, Inost. lit-ra Publ., 1960. 886 p.).
  17. Prochorov F.M. (ed.). Fizicheskaya enziklopediya. T. II. [Physical encyclopedia. Vol. II] Moscow, BSE Publ., 1990. 703 p. (In Russ.).
  18. Sivuchin D.V. Obschiy kurs fiziki. T. IV. Optika [General course of physics. Vol. IV. Optics]. Moscow, Fizmatlit Publ., 2005. 792 p.
 

V. A. Elokhin1, S. N. Arkhipov1, L. A. Pyankova1, A. V. Petrov2, R. V. Chekhova3, V. M. Pyshniy3

X-RAY DIFFRACTOMETRY IN PHARMACEUTICAL ANALYSIS:
PRACTICES OF USING "DIF RAY" BENCHTOP DIFFRACTOMETERS

"Nauchnoe Priborostroenie", 2018, vol. 28, no. 1, pp. 61—68.
doi: 10.18358/np-28-1-i6168
 

Limits of applicability of the XRD-analysis for control of pharmaceutical production and intermediate products compliance with the factory regulations and for monitoring of mechanocomposite formation with the changed reactionary ability are shown. XRD-analysis allows you to investigated solid-phase reactions, polymorphism, changes of biological activity of substances and medical products. Possibilities of the XRD-analysis are illustrated by the experimental data received by means of desktop X-ray diffractometer "Difray" produced in Russia Federation.
 

Keywords: XRD-analysis, GMP, quality control of pharmaceuticals

Author affiliations:

1Scientific Instruments Inc. , St. Petersburg , Russia
2Pharmsynthez PJSC, St. Petersburg, Russia
3Moscow Technological University, Russia

 
Contacts: Pyankova Lyubov' Alekseevna, lyuba@pyankova.ru
Article received in edition 14.12.2017
Full text (In Russ.) >>

REFERENCES

  1. Litteer B., Beckers D. Increasing application of X-Ray powder diffraction in the pharmaceutical industry. American Laboratory (Fairfield) A, 2005, vol. 37, no. 12, pp. 22—24.
  2. Beckers D. X-rays beat the counterfeiters. 20-Jul-2008.
    URL: https://www.manufacturingchemist.com/technical/article_page/Xrays_beat_the_counterfeiters/40961
  3. How to analyze drugs using X-ray diffraction.
    RL: http://www.icdd.com/knowledge/tutorials/pdf/How%20to%20Analyze%20Drugs.pdf.
  4. Obschaya farmakopeynaya stat'ya. Rentgenovskaya poroshkovaya difraktometriya. OFS.1.2.1.1.0011.15 [General pharmakopeyny article. X-ray powder diffractometry]. Ministerstvo zdravoochraneniya RF [Ministry of Health of the Russian Federation]. (In Russ.).
    URL: http://pharmacopoeia.ru/ofs-1-2-1-1-0011-15-rentgenovskaya-poroshkovaya-difraktometriya/
  5. The United States Pharmacopeia and The National Formulary (USP—NF).
    URL: http://www.uspnf.com/search?search=diffraction.
  6. Characterization of crystalline and partially crystalline solids by X-ray powder diffraction (XRPD). URL: http://www.usp.org/sites/default/files/usp/document/harmonization/gen-chapter/g14_pf_35_3_2009.pdf.
  7. Shtukenberg A.G., Maksimova L.N., Archipov S.N., Pyankova L.A. [The quantitative X-ray phase analysis of electrolytes by methods of calibrations and Ritveld]. Zavodskaya laboratoriya. Diagnostika materialov [Factory laboratory. Diagnostics of materials], 2017, vol. 83, no. 4, pp. 37—43. Doi: 10.26896/1028-6861-2017-83-4. (In Russ.).
  8. Pyankova L.A., Elochin V.A., Archipov S.N., Komissa-rov A.A. [Monitoring of the functional layers of VTSP-2 by means of a textural prefix of the X-ray diffractometer of "DIFRAY-401"]. Zavodskaya laboratoriya. Diagnostika materialov [Factory laboratory. Diagnostics of materials], 2016, vol. 82, no. 10, pp. 44—46. Doi: 10.26896/1028-6861-2016-82-10-44-46. (In Russ.).
  9. P'yankova L.A., Bogomazov A.V., Archipov S.N., Elo-chin V.A., Nikolaev V.I. [The X-ray-phase analysis of multicomponent medicines on diffractometers of a series of DIFRAY]. I Vserossiyskaya konferenziya "Sovremennye metody chimiko-analiticheskogo kontrolya farmazevticheskoy produkzii" [Proc. I All-Russian conference "The Modern Methods of Chemical Analysis Monitoring of Pharmaceutical Production"], Moscow, 2009, pp. 38.
  10. Rodionova O.E., Pomeranzev A.L. [Hemometrika: achievements and perspectives]. Uspechi chimii [RUSS. CHEM. REV.], 2006, vol. 75, no. 4, pp. 271—287. 10.1070/RC2006v075n04ABEH003599.
  11. Obschaya farmakopeynaya stat'ya. Polimorfizm. OFS.1.1.0017.15 [General pharmakopeyny article. Polymorphism]. Ministerstvo zdravoochraneniya RF [Ministry of Health of the Russian Federation]. (In Russ.). URL: https://pharmacopoeia.ru/ofs-1-1-0017-15-polimorfizm/
  12. Obschaya farmakopeynaya stat'ya. Kristallichnost'. OFS.1.1.0018.15. [General pharmakopeyny article. Crystallinity] Ministerstvo zdravoochraneniya RF [Ministry of Health of the Russian Federation]. (In Russ.). URL: http://pharmacopoeia.ru/ofs-1-1-0018-15-kristallichnost/.
  13. Farmakopeynaya stat'ya. Tal'k. FS.2.2.0017.15. [Pharmakopeyny article. Talc]. Ministerstvo zdravoochraneniya RF [Ministry of Health of the Russian Federation]. (In Russ.). URL: https://pharmacopoeia.ru/fs-2-2-0017-15-talk/
 

V. G. Gurevich, A. V. Pavlov, I. V.Pavlova

THERMO GRAVIMETRIC DEVICE WITH MULTICAMERA
THERMOSTAT FOR CALIBRATION OF GAS MICROSTREAM SOURCES. PRODUCTIVITY STABILIZATION OF PERMEABLE GAS MICROSTREAM SOURCES

"Nauchnoe Priborostroenie", 2018, vol. 28, no. 1, pp. 69—78.
doi: 10.18358/np-28-1-i6978
 

The construction of thermo gravimetric device with multicamera thermostat is described. The use of continuous-periodical method of gravimetric calibration of gas microstream sources enabled to enhance calibration accuracy and to develop the method of their productivity stabilization.
Preparation method of dynamic gas mixtures with the usage of microstream sources (MS) of aggressive substances is the most perspective from the point of view of long-term reproducibility of the set concentration. The main advantage of MS made of fluorine-containing polymers is their use duration and easy moving.
At the same time long-term productivity decrease of MS limits their usage as reference standards during international checking. Thermo gravimetric device(TGU-2) designed in ''DYNAGAS' company with multicamera thermostat for MS calibration by continuous-periodic way, enabled to develop the method of decrease of long-term productivity change of organic and inorganic substances (SO2 < 0.3 %; NO2 < 1.8 % for a year).
 

Keywords: long-term productivity stabilization of gas microstream sources, thermo gravimetric device with multicamera thermostat

Author affiliations:

DINAGAS Co., Saint-Petersburg, Russia

 
Contacts: Gurevich Vladimir Gerzevich, dinagas@rambler.ru
Article received in edition: 18.12.2017
Full text (In Russ.) >>

REFERENCES

  1. Drugov Yu.S. Gazochromatograficheskiy analiz gazov [Gas-chromotographic analysis of gases]. Drugov Yu.S., Konopel'ko L.A. (Eds.). Moscow, MOIMPEKS Publ., 1995. 464 p.
  2. Mitchel G.D., Dorko W.D., Johson P.A. Long-term stability of sulfur dioxide permeation tube standard reference materials. Fresenius' Journal of Analytical Chemistry, 1992, vol. 344, no. 6, pp. 229—233.
  3. Pashinin Yu.A., Malkevich S.G., Dunaevskaya Z.S. Ftoroplasty [Polytetrafluorethylene]. Leningrad, Chimiya Publ., 1978. 231 p.
  4. Announcement of VICI Metronics. Inc.: G-Cal Permeation Devices, 2007.
  5. Gurevich V.G., Pavlov A.V., Konstantinov V.M. [Reference thermogravimetric complex (TGC) for calibration of gas microstream sources and dynamic preparation of gas mixtures with traceable parameters. the defining of the reason of long-term change in productivity of gas (vapor) microstream sources]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2017, vol. 27, no. 3, pp. 18—27. Doi: 10.18358/np-27-3-i1827. (In Russ.).
  6. Gurevich V.G., Pavlov A.V. Kapillyarnyy diffuzionnyy istochnik mikropotoka para [Capillary diffusion source of a microflow of steam]. Patent for the useful model No. 104704, 2010.
 

B. S. Slepak, K. B. Slepak

THE INNOVATIVE DIRECTION OF SCIENTIFIC INSTRUMENTATION – MÖSSBAUER SPECTROSCOPY AS A FACTOR OF IMPROVING THE BRANCHES OF THE RUSSIAN ECONOMY.
PART 1. BREAKTHROUGH SCIENTIFIC RESEARCH IN THE FIELD OF MÖSSBAUER SPECTROSCOPY

"Nauchnoe Priborostroenie", 2018, vol. 28, no. 1, pp. 79—92.
doi: 10.18358/np-28-1-i7992
 

Breakthrough scientific research in the field of Mössbauer spectroscopy is described. The mass-produced IAI RAS Mössbauer spectrometers are presented, which largely determine the development of Russian materials science and are used in the development of new materials. A complex of scientific instruments illustrating the development of one of the most promising areas of scientific instrumentation, that is necessary for studying the magnetic and physico-chemical properties of new materials, investigating the high-temperature superconductivity of compounds, ferroelectrics, and multiferroics is demonstrated.
 

Keywords: innovations, import substitution, Mössbauer spectrometer, gamma-resonance spectrum, Doppler energy modulation, gamma optical scheme

Author affiliations:

1Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia
2NRC "Kurchatov Institute" – CRISM "Prometey", Russia

 
Contacts: Slepak Boris Semyenovich, slepak@mail. ru
Article received in edition 31.01.2018
Full text (In Eng.) >>

REFERENCES

  1. Slepak K.B. Scientific and educational potential as a factor of national security. Izvestiâ Sankt-Peterburgskogo gosudarstvennogo èkonomičeskogo universiteta [News of the St. Petersburg state economic university], 2014, no. 1, pp. 22—29. ISSN 2311-3464.
  2. Slepak K.B. The development of the scientific and educational potential of Russia’s regions in the process of innovative import substitution. Economics and management, 2015, no. 7, pp. 84—91. ISSN 1998-1627
  3. Efimov A.A., Semenov V.G., Gusev B.A., Kostin M.M., Miroshnichenko I.V., Panchuk V.V., Volodin V.S. Analysis of phase composition of corrosion-products deposits on the surfaces of a PG-440 steam-generator tube bundle by Mössbauer spectroscopy method. Thermal Engineering, 2009, vol. 56, no. 2, pp. 162—163.
  4. Semenov V.G., Moskvin L.N., Efimov A.A. Analytical potential of Mössbauer spectroscopy. Russian Chemical Reviews, 2006, vol. 75, no. 4, pp. 317—327.
  5. Blyakhman Y., Polushkin N.I., Akhsakhalyan A.D., Gusev S.A., Salashchenko N.N., Semenov V.G. Magnetic ordering in Fe-containing spinodally decomposing materials synthesized from laser plasma. Physical Review B, 1995, vol. 52, no. 14, pp. 10303—10314.
  6. Gittsovich V.N., Semenov V.G., Uzdin V.M. Bulk and surface magnetic properties of dilute FeCr alloys. Journal of Magnetism and Magnetic Materials, 1995, vol. 146, no. 1-2, pp. 165—174.
  7. Butaeva E.V., Grebenyuk A.V., Irkaev S.M., Panchuk V.V., Semenov V.G. The new algorithm of quantitative analysis in Mössbauer spectroscopy. Nauchnoe Priborostroenie [Scientific Instrumentation], 2016, vol. 26, no. 2, pp. 54—59. Doi: 10.18358/np-26-2-i5459. (In Russ.).
  8. Alferov P.V., Kargin N.I., Irkaev S.M., Panchuk V.V., Semenov V.G. Application of Mössbauer spectroscopy for quantitative analysis of the phase composition of nano-dimensional particles. Yadernaya fizika i inzhiniring [Nuclear physics and engineering], 2012, vol. 3, no. 2, pp. 146—150. (In Russ.).
  9. Semenov, V.G., Panchuk V.V., Irkaev S.M. Features of the quantitative analysis in Mössbauer spectroscopy. AIP Conference Proceedings, 2010, no. 1258, pp. 127—133.
  10. Belyaev A.A., Volodin V.S., Irkaev S.M., Panchuk V.V., Semenov V.G. Methodological problems of quantitative analysis in Mössbauer spectroscopy. Bulletin of the Russian Academy of Sciences: Physics, 2010, vol. 74, no. 3, pp. 326—329.
  11. Panchuk V.V., Irkaev S.M.., Semenov V.G. Improvement of design for resonance detection in Mössbauer spectroscopy. Nauchnoe Priborostroenie [Scientific Instrumentation], 2014, vol. 24, no. 3, pp. 9—15. URL: http://213.170.69.26/en/mag/2014/abst3.php#abst2. (In Russ.).
  12. Belyaev A.A., Volodin V.S., Irkaev S.M., Panchuk V.V., Semenov V.G. Application of resonant detectors in Mössbauer spectroscopy. Bulletin of the Russian Academy of Sciences: Physics, 2010, vol. 74, no. 3, pp. 412—415.
  13. Belyaev A.A., Volodin V.S., Irkaev S.M., Panchuk V.V., Semenov V.G. Peculiarities of resonance registration in Mössbauer spectroscopy. Nauchnoe Priborostroenie [Scientific Instrumentation], 2009, vol. 19, no. 3, pp. 41—50.
    URL: http://213.170.69.26/en/mag/2009/abst3.php#abst6. (In Russ.).
  14. Volodin V.S., Panchuk V.V., Semenov V.G. Boëoäèí B.C., Ïaí÷óê B.B. Enhancing resolution and quality of spectra in nuclear gamma-resonance methods. Vestnik Sankt-Peterburgskogo universiteta. Fizika I khimiya [Bulletin of the St. Petersburg university. Physics and chemistry], 2009, no. 3, pp. 150—153. (In Russ.).
  15. Grebenyuk A.V., Irkaev S.M., Panchuk V.V., Semenov V.G. Optimization of the geometric conditions in the absorption Mössbauer experiment. Nauchnoe Priborostroenie [Scientific Instrumentation], 2017, vol. 27, no. 1, pp. 66—71. Doi: 10.18358/np-27-1-i6671. (In Russ.).
  16. Grebenyuk A.V., Irkaev S.M., Panchuk V.V., Semenov V.G. Ab initio calculation of optimum absorber thickness in Mössbauer spectroscopy. Nauchnoe Priborostroenie [Scientific Instrumentation], 2016, vol. 26, no. 1, pp. 47—53. Doi: 10.18358/np-26-1-i4753.
  17. Wissenschaftliche Elektronik GmbH. URL: http://www.wissel-gmbh.de.
  18. Regional Centre of Advanced Technologies and Materials. URL: https://www.mossbauer-spectrometers.com.
 

Ulitsa Ivana Chernykh, 31-33, lit. A, St. Petersburg, Russia, 198095, P.O.B. 140
tel: (812) 3630719, fax: (812) 3630720, mail: iap@ianin.spb.su

content: Valery D. Belenkov design: Banu S. Kuspanova layout: Anton V. Manoilov