logo
blue band <-
  JOURNAL "NP" ISSUES

"Nauchnoe Priborostroenie", 2016, Vol. 26, no. 3. ISSN 2312-2951, DOI: 10.18358/np-26-3-464

"NP" 2016 year Vol. 26 no. 3.,   ABSTRACTS

ABSTRACTS, REFERENCES

G. V. Kotelnikov, S. P. Moiseyeva

NANOCALORIMETER FOR MEASURING THE HEAT PRODUCTION IN MITOCHONDRIA

"Nauchnoe priborostroenie", 2016, vol. 26, no. 3, pp. 3—9.
doi: 10.18358/np-26-3-i39
 

Measurements of energy transformation and dissipation in mitochondria by the calorimetric method were carried out in the second half of the last century. However, to date no specialized calorimeter has been developed for this purpose. Selection of compounds providing uncoupleted mitochondrial respiration without damaging the respiratory chain components, for use in pharmaceutical compositions of drugs, development of new neuroprotectors, nefroprotectors require precise measurements of heat release by different mitochondrial uncouplers of oxidative phosphorylation. A capillary differential nanocalorimeter for studying energy transformation and dissipation in the mitochondria has been created in the IBI RAS . The instrument meets the above requirements. The principal advantage of the nanocalorimeter is that it has thermal bridges for the thermostatingthe mitochondria injection. In the thermal bridges mitochondria acquire the desired temperature for a few seconds. Mitochondria are introduced uniformly along the entire length of the calorimeter chamber by means of a dispensing needle. This provides mixing of mitochondria with the sample without great energy consumption and thermal noise. Precision measurements of thermal power of the processes of transformation and dissipation of energy in the mitochondria are carried out at an absolute error less than 50 nW.
 

Keywords: capillary nanocalorimeter, mitochondria, thermal bridge, isothermal mode, uncoupling

Author affiliations:

Institute for Biological Instrumentation RAS, Pushchino, Moscow Region, Russia

 
Contacts: Moiseyeva Sof'ya Petrovna, spmoiseeva@yandex.ru
Article received in edition: 28.04.2016
Full text (In Engl.) >>

REFERENCES

  1. Nakamura T., Matsuoka I. Calorimetric studies of heat of respiration of mitochondria. Journal of Biochemistry, 1978, vol. 84, no. 1, pp. 39—46.
  2. Gnaiger E., Mendez G., Hand S.C. High phosphorylation efficiency and depression of uncoupled respiration in mitochondria under hypoxia. PNAS, 2000, vol. 97, no. 20, pp. 11080—11085. Doi: 10.1073/pnas.97.20.11080.
  3. Zhou P.-J., Zhou H.-T., Liu Y., Qu S.-S., Zhu Y.-G., Wu Z.-B. Studies on the energy release of rice mitochondria under different conditions by means of microcalorimetry. Journal of Biochemical and Biophysical Methods, 2001, vol. 48, no. 1, pp. 1—11. Doi: 10.1016/S0165-022X(00)00123-8.
  4. Velázquez-Campoy A.,  López-Mayorga O., Cabrerizo-Vı́lchez M.A. Development of an isothermal titration microcalorimetric system with digital control and dynamic power Peltier compensation. I. Description and basic performance. Review of Scientific Instruments, 2000, vol. 71, no. 4, pp. 1824—1831. Doi: 10.1063/1.1150543.
  5. Garcia-Fuentes L., Baron C., Mayorga O.L. Influence of dynamic power compensation in an isothermal titration microcalorimeter. Analytical Chemistry, 1998, vol. 70, no. 21, pp. 4615—4623. Doi: 10.1021/ac980203u.
  6. Wiseman T., Williston S., Brandts J.F., Lin L.-N. Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Analytical Biochemistry, 1989, vol. 179, no. 1, pp. 131—137.
  7. Patent RF N 2527519, 10.09.2014. (In Russ.).
  8. Silachev D.N., Khailova L.S., Babenko V.A., Gulyaev M.V., Kovalchuk S.I., Zorova L.D., Plotnikov E.Y., Antonenko Y.N., Zorov D.B. Neuroprotective effect of glutamate-substituted analog of gramicidin A is mediated by the uncoupling of mitochondria. Biochimica et Biophysica Acta. General Subjects, 2014, vol. 1840, no. 12, pp. 3434—3442.
  9. Khailova L.S., Silachev D.N., Rokitskaya T.I., Avetisyan A.V., Lyamsaev K.G., Severina I.I., Il'yasova T.M.,  Gulyaev M.V., Dedukhova V.I., Trendeleva T.A., Plotnikov E.Y., Zvyagilskaya R.A., Chernyak B.V., Zorov D.B., Antonenko Yu.N., Skulachev V.P. A short-chain alkyl derivative of Rhodamine 19 acts as a mild uncoupler of mitochondria and a neuroprotector. Biochimica et Biophysica Acta. Bioenergetics, 2014, vol. 1837, no. 10, pp. 1739—1747. Doi: 10.1016/j.bbabio.2014.07.006.
  10. Plotnikov E.Y., Silachev D.N., Jankauskas S.S., Rokitskaya T.I., Chupyrkina A.A., Pevzner I.B., Zorova L.D., Isaev N.K., Antonenko Y.N., Skulachev V.P., Zorov D.B. Mild uncoupling of respiration and phosphorylation as a mechanism providing nephro- and neuroprotective effects of penetrating cations of the SkQ family. Biochemistry (Moscow), 2012, vol. 77, no. 9, pp. 1029—1037. Doi: 10.1134/S0006297912090106.
  11. Kotelnikov G.V., Moiseyeva S.P., Mezhburd E.V., Krayev V.P. Method of separating the sensitive volume of calorimetric cells in a differential titration calorimeter. Journal of Thermal Analysis and Calorimetry, 2000, vol. 62, no. 1, pp. 39—50. Doi: 10.1023/A:1010150409126.
  12. Kotelnikov G.V., Moiseyeva S.P., Mezhburd E.V., Krayev V.P. New isothermal titration calorimeter for investigations on very small samples. Theoretical and experimental studies. Journal of Thermal Analysis and Calorimetry, 2002, vol. 68, no. 3, pp. 803—818. Doi: 10.1023/A:1016165817003.
  13. Patent USA N 4112734, 12.09.1978.
  14. Kotelnikov G.V., Moiseyeva S.P., Mezhburd E.V., Maevsky E.I., Grishina E.V. Studying dispersoid systems method of introducing an injecting needle into calorimetric chamber of capillary titration calorimeter. Journal of Thermal Analysis and Calorimetry, 2005, vol. 81, no. 2, pp. 255—259. Doi: 10.1007/s10973-005-0775-6.
  15. Patent RF N 2335743, 10.10.2008. (In Russ.).
  16. Briggner L.E., Wadsö I. Test and calibration processes for microcalorimeters, with special reference to heat conduction instruments used with aqueous systems. Journal of Biochemical and Biophysical Methods, 1991, vol. 22, no. 2, pp. 101—118. Doi: 10.1016/0165-022X(91)90023-P.
  17. Gpishina E.V., Xauctova Ya.V., Vacil'eva A.A., Maevckij E.I. [Age features of influence of a suktsinat on the induced oxidation of lipids of mitochondrions of a liver of rats]. Biofizika [Biophysics], 2015, vol. 60, no. 4, pp. 708—715. (In Russ.).
 

D. A. Belov1, Yu. V. Belov1, V. V. Manoylov1,2

METHOD OF PROCESSING DATA IN MELTING OF REAL-TIME POLYMERASE CHAIN REACTIONS

"Nauchnoe Priborostroenie", 2016, vol. 26, no. 3, pp. 10—14.
doi: 10.18358/np-26-3-i1014
 

The derivative melting curve approximating method with derivative SF is suggested. The method is supplemented with zero line drift compensation and the melting curve noise filtration. The method is closer to the traditional methods of value Tm calculating, that are familiar to users, because they usually use melting curve derivative. In constructing derivative of SF zero line instability is completely eliminated. Significant noise reduction is achieved by filtering. The method application results are presented in tabular and graphical forms. The comparison of the proposed methods for the melting point Tm determination and the traditional method is performed. It is recommended to reduce the value of temperature variation step to approximately 0.1 °C when the traditional method is used. The analysis requires considerable time as it is necessary to achieve accurate temperature adjustment at each step. It is shown that step about 1 °C can be used the proposed method is used, thus saving considerable analysis time and the melting point can be calculated with a resolution not worse than
0.1 °C.
 

Keywords: RT-PCR, a melting curve, temperature of melting of DNA, sigmoidalny function

Author affiliations:

1Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia
2ITMO University, Saint-Petersburg, Russia

 
Contacts: Belov Dmitriy Anatol'evich, onoff_10@mail.ru
Article received in edition: 22.07.2016
Full text (In Russ.) >>

REFERENCES

  1. Alekseev Ya.I., Belov Yu.V., Varlamov D.A. et al. [Devices for diagnostics of biological objects based on the real-time polymerase chain reaction (RT-PCR) method]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2006, vol. 16, no. 3, pp. 132—136. URL: http://213.170.69.26/mag/2006/full3/Art14.pdf. (In Russ.).
  2. Rebrikov D.V., Samatov G.A., Trofimov D.Yu. et al. PZR v "real'nom vremeni" [PCR in "real time"]. Moscow, BIOM. Laboratoriya znaniy Publ., 2009. 223 p. URL: http://nashol.com/2014072579193/pcr-v-realnom-vremeni-rebrikov-d-v-samatov-g-a-trofimov-d-u-2009.html. (In Russ.).
  3. Kalendar' R.N., Sivolap Yu.M. [Polymerase chain reaction with any primers]. Biopolimery i kletka [Biopolymers and cell], 1996, vol. 11, no. 3-4, pp. 55—65. URL: http://www.biopolymers.org.ua/pdf/ru/11/3/055/biopolym.cell-1995-11-3-055-ru.pdf. (In Russ.).
  4. Belov Yu.V., Petrov A.I., Lavrov V.V., Kurochkin V.E. [Optimisation of RT-PCR nucleic acid quantitative analysis]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2011. vol. 21, no. 1, pp. 44—49. URL: http://213.170.69.26/mag/2011/full/Art4.pdf. (In Russ.).
  5. Vedenov A.A., Dychne A.M., Frank-Kamenezkiy M.D. [Transition a spiral – a ball in DNA]. Physics - Uspekhi [Advances in Physical Sciences], 1971, vol. 105, no. 3, pp. 479—519. (In Russ.).
  6. DNK plavlenie [DNA melting]. URL: http://humbio.ru/humbio/dnastructure/0002a247.htm. (In Russ.).
  7. Belov D.A., Korneva N.A., Al'dekeeva A.C., Belov Yu.V., Kiselev I.G. [Genetic analyzer resolution increasing at DNA melting temperature determination]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2016, vol. 26, no. 2, pp. 17—22. Doi: 10.18358/np-26-2-i1722.
  8. Introduction to High Resolution Melt Analysis. Application Guide. URL: http://www.kapabiosystems.com.
 

A. G. Varekhov

CONDUCTIVITY AND SEMICONDUCTOR PARAMETERS OF BIOLOGICAL MEMBRANES

"Nauchnoe Priborostroenie", 2016, vol. 26, no. 3, pp. 15—23.
doi: 10.18358/np-26-3-i1523
 

The tunnel nature of transmembrane current is proved in article and ideas of mechanisms of this current are summarized. The calculation of the parameters characterizing conductivity of membranes, in particular, kinetics of electronic transitions, specific conductivity, mobility and the concentration of carriers allows to consider a biological membrane as the equivalent semiconductor. For the analysis of an electrical conductivity the semi-classical description of the mechanism of electrons exchange in reversible chemical reaction, and then semi-classical Gaussian approximation for locally donor-acceptor couple of electronic carriers organized in a membrane is used. It allows to calculate the size of transmembrane current, and then specific conductivity and the equivalent concentration of carriers. The hoping mobility of the delocalized conduction electron is calculated proceeding from value of probability of electronic transfer, defined activation energy.
The material of this article is directed, in particular, to a problem of development and research of biotechnical devices on the basis of the natural and synthesized biological membranes.
 

Keywords: transmembrane current, tunneling, membrane semiconductor, semiconductor parameters

Author affiliations:

Saint-Petersburg State University of Aerospace Instrumentation, Russia

 
Contacts: Varechov Aleksey Grigor'evich, varekhov@mail.ru
Article received in edition: 1.07.2016
Full text (In Engl.) >>

REFERENCES

  1. Chance B., Nishimura M. On the mechanism of chlorophyll-cytochrome interaction: the temperature intensitivity of light-induced cytochrome oxidation in chromatidium. Proc. Natl. Acad. Sci. USA, 1960, vol. 46, pp. 19—24. Doi: 10.1073/pnas.46.1.19.
  2. De Vault D., Chance B. Studies of photosynthesis using a pulsed laser. I. Temperature dependence of cytochrome oxidation rate in Chromatidium. Evidence of tunneling. Biophys. J., 1966, vol. 6, pp. 825—847. Doi: 10.1016/S0006-3495(66)86698-5.
  3. Jortner J. Temperature dependent activation energy for electron transfer between biological molecules. J. Chem. Phys., 1976, vol. 64, no. 12, pp. 4860—4867. Doi: 10.1063/1.432142.
  4. Davydov A.S. Biologiya i kvantovaya mekhanika [Biology and quantum mechanics]. Kiev, Naukova dumka Publ., 1979. 296 p. (In Russ.).
  5. Meyburg S., Wrobel G., Stockmann R., Moers J., Ingebrandt S., Offenhäusser A. Single cell recordings with pairs of complementary transistors. Appl. Phys. Lett., 2006, vol. 89, 013901. Doi: 10.1063/1.2219339.
  6. Dankerl M., Eick S., Hofmann B., Hauf M., Ingebrandt S., Offenhäusser A., Stutzmann M., Garrido J.A. Diamond transistor array for extracellular recording from electrogenic cells. Advanced Functional Materials, 2009, vol. 19, pp. 1—9. Doi: 10.1002/adfm.200900590.
  7. Richardson D.J., Butt J.N., Clarke Th.A. Controlling electron transfer at the microbe-mineral interface. Proc. Natl. Acad. Sci. USA, 2013, vol. 110, no. 19, pp. 7537—7538. Doi: 10.1073/pnas.1305244110.
  8. Samardak A., Taylor S., Nogaret A., Hollier G., Austin J., Ritchie D.A. Propagation and spatiotemporal summation of electrical pulses in semiconductor nerve fibers. Appl. Phys. Lett., 2007, vol. 91, 073502. Doi: 10.1063/1.2770773.
  9. Foerster Th. Zwischenmolekulare energiewanderung und fluoreszenz. Ann. Phys., 1948, B. 2, ¹ 1-2, pp. 55—75.
  10. Dexter D.L. A theory of sensitized luminescence in solids. J. Chem. Phys., 1953, vol. 21, pp. 836—850. Doi: 10.1063/1.1699044.
  11. Marcus R.A., Sutin N. Electron transfers in chemistry and biology. Biochim. et Biophys. Acta, 1985, vol. 81, pp. 265—322. Doi: 10.1016/0304-4173(85)90014-X.
  12. Marcus R.A. On the theory of oxidation-reduction reactions involving electron transfer. J. Chem. Phys., 1956, vol. 24, pp. 966−978. Doi: 10.1063/1.1742723.
  13. Koslowski Th., Burggraf F., Krapf S, Steinbrecher Th., Wittekindt Ch. Recent progress in biological charge transfer: Theory and simulation. BBA, 2012, vol. 1817, no. 10. pp. 1955—1957. Doi: 10.1016/j.bbabio.2012.02.025.
  14. Hopfield J.J. Electron transfer between biological molecules by thermally activated tunneling. Proc. Natl. Acad. Sci. USA, 1974, vol. 71, pp. 3640−3644. Doi: 10.1073/pnas.71.9.3640.
  15. Blyumenfeld L.A. Problemy biologicheskoj fiziki [Problems of biological physics]. Moscow, Nauka Publ., 1977. 336 p. (In Russ.).
  16. Elyutin P.V., Krivchenkov V.D. Kvantovaya mekhanika s zadachami [Quantum mechanics with tasks]. Moscow, Nauka Publ., 1976. 334 p. (In Russ.).
  17. Lumsden C.J., Silverman M., Trainor L.E.H. Quantum mechanical effects in molecule-membrane interacrions. J. Theor. Biol., 1974, vol. 48, pp. 325—343. Doi: 10.1016/S0022-5193(74)80004-4.
  18. Landau L.D., Livshic E.M. Kvantovaya mekhanika. Nerelyativistskaya teoriya [Quantum mechanics. The nonrelativistic theory]. Moscow, Nauka Publ., 1974. 752 p. (In Russ.).
  19. Hartman Th.E. Electrical conduction in discontinuous thin metal films. J. of Appl. Phys., 1963, vol. 34, no. 4, pp. 943—947. Doi: 10.1063/1.1729567.
  20. Gray H.B., Winkler J.R. Electron flow through metalloproteins. Review Biochimica et Biophysica Acta, 2010, vol. 1797, pp. 1563—1572. Doi: 10.1016/j.bbabio.2010.05.001.
  21. Elinson M.I., Vasil'ev G.F. Avtoehlektronnaya emissiya [Field emission]. Ed. D.V. Zernov. Moscow, GIFML Publ., 1958. 272 p. (In Russ.).
  22. Chernavskij D.S., Chernavskaya N.M. Belok — mashina. Biologicheskie makromolekulyarnye konstrukcii [Protein — the machine. Biological macromolecular designs]. Moscow, Yanus-K Publ., 1999. 149 p. (In Russ.).
  23. Polyarony [Polarons]. Ed. Yu.A. Firsov. Moscow, Nauka Publ., 1975. 423 p. (In Russ.).
  24. Frelih G. Teoriya dielektrikov [Theory of dielectrics]. Moscow, IIL Publ., 1960. 249 p. (In Russ.).
  25. Walker G.M., Ramsey J.M., Cavin R.K., Herr D.J.C., Merzbacher C.I., Zhirnov V. A framework for bioelectronics. Discovery and innovation. Review, 2009. URL: www.nist.gov/pml/div683/upload/bioelectronics_report.pdf.
 

L. N. Gall1, A. A. Semenov2, V. N. Kudriavtsev2, A. V. Lisunov2, I. G. Lesina2,
B. V. Ivanov2, A. N. Bukin2, A. S. Shtan3, G. E. Kirianov3, A. Antonov4, N. R. Gall4

NOVEL SOLUTIONS IN ISOTOPIC MASS-SPECTROMETRIC
ANALYSIS OF HYDROGEN-HELIUM MIXTURES.
HOW TO GET RELIABLE DATA

"Nauchnoe Priborostroenie", 2016, vol. 26, no. 3, pp. 24—34.
doi: 10.18358/np-26-3-i2434
 

The paper is aimed on the choice of the optimal instrumentation for isotopic analysis of hydrogen-helium mixtures. A critical review is made of former and commercially available instruments as well as of goal approaches to such an instrument. The so called 'compromised' approach is chosen as the most attracting one; the instrument should resolve all multiplets at 2—7 a.m.u. excluding T+–3He+, but it should not be oriented on resolving of isotopically derived hydrocarbons: the necessary resolving power, about 27 000, practically excluded possibility of accurate measurement is a wide component concentration range.
A number of technical ideas are put forward aimed on an optimal specialized instrument for the problem under discussion. It should be compact to low ion scattering on residual gas and have a resolving power of 3500 at relative peak height of 10—3. It was shown that only static magnet instruments can give the line quality good enough for such measurements. A combination of called electron ionization and prism double focusing mass analyzer is probably optimal; a prototype of such an instruments was developed in tested in the USSR period.
 

Keywords: mass-spectrometry, hydrogen, deuterium, tritium, isotopic analysis, helium, electron ionization, prism ion optics

Author affiliations:

1Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia
2Bochvar institute (VNIINM) Inc., Moscow, Russia
3VNIITFA Inc. Moscow, Russia
4Ioffe Physical Technical Institute of the RAS , Saint-Petersburg, Russia

 
Contacts: Gall Nikolay Rostislavovich, gall@ms.ioffe.rssi.ru
Article received in edition: 20.07.2016
Full text (In Russ.) >>

REFERENCES

  1. Vodorod [Hydrogen]. Himicheskaya ehnciklopediya. V 5 tomah. [Chemical encyclopedia], vol. 1.
    Ed. I.L. Knunyanc. Moscow, Soviet encyclopedia Publ., 1988, pp. 400—402. (In Russ.).
  2. Izotopy: svojstva, poluchenie, primenenie. [Isotopes: properties, receiving, application], vol. 2. Ed. V.Yu. Baranov. Moscow, Fizmatlit Publ., 2005. 728 p. (In Russ.).
  3. Ivanov B.V., Semenov A.A., Lizunov A.V. [About works of JSC "VNIINM" in the field of isotopes of easy elements]. Atomnaya energiya [Atomic energy], 2015, November, vol. 119, no. 5, pp. 284—286. (In Russ.).
  4. Milechkine I.A., Riazantseva N.N. Specialized mass spectrometers for analysis of hydrogen-helium mixtures in tritium technological systems. In Proc. 18th SOFT, Germany: Karlsruhe, 1994, vol. 1, 831 p.
  5. Milechkine I.A., Riazantseva N.N. Specialized mass spectrometers for analysis of tritium gas mixes in "on-line" mode in technological systems of TR. In Proc. 19th SOFT, Portugal: Lisboa, 1996, vol. 1, p. 1285—1288.
  6. Shirnin P.V., Sivercev A.I., Ivashchenko I.V. et al. [Measurement of tritium in gas mixes]. V sbornike: Mezhdunarodnyj seminar. «Potencial rossijskih yadernyh centrov i MNTC v tritievyh tekhnologiyah» [In the collection: International seminar. "Capacity of the Russian nuclear centers and MNTTs in the tritiyevykh technologies"]. Russia: Sarov, may of 1999, pp.130—135. (In Russ.).
  7. Castigkione D. Tritium Science and Technology at AWE, In Proc. of Tritium focus group meeting. British: London, 3—5 Nov 2015, Crown Owned copywrite/AWE.
  8. Aruev N.N., Pilyugin I.I., Kozlovskij A.V., Saksganskij G.L. [Requirements to the allowing spsosobnost and calibration of a vremyaproletny mass spectrometer for the analysis of fuel gas mixes of the thermonuclear reactor]. Atomnaya energiya [Atomic energy], 2008, vol. 104, no. 4, pp. 233—237. (In Russ.).
  9. Aruev N.N., Kozlovskij A.V., Fedichkin I.L., Saksganskij G.L. [About a possibility of the analysis deytero-tritiyevykh of gas mixes with the help of a vremyaproletny mass spectrometer]. Pis'ma v ZhTF [Letters in JTF], 1997, vol. 23, no. 20, pp. 83—87. (In Russ.).
  10. Gall L.N., Masyukevich S.V., Sachenko V.D., Gall N.R. [Optimization of the choice of the electron-optical scheme of a static mass spectrometer for the simultaneous isotope and chemical analysis]. ZhTF [JTF], 2016, vol. 86, no. 1,
    pp. 116—120. (In Russ.).
  11. Kogan V.T., Gladkov G.YU., Viktorova O.S. ZhTF [JTF], 2001, vol. 7, no. 4, pp. 130—132. (In Russ.).
  12. Lebedev A.T. Mass-spektrometriya v organicheskoj himii [Mass-spectrometry in organic chemistry]. Moscow, BINOM Publ., 2003. 493 p. (In Russ.).
  13. Gall L.N., Berdnikov A.S., Sachenko V.D., Hasin Yu.I. [New approach to calculation of ion-optical systems of static mass spectrometers]. Mezhdunarodnaya shkola-seminar "Mass-spektrometriya v himicheskoj fizike, biofizike i ehkologii" [International workshop "Mass spectrometry in chemical physics, biophysics and ecology"], Russia, Zvenigorod, April of 2002, pp. 186—187. (In Russ.).
  14. Amirav A., Fialkov A.B., Alon T. What can be improved in GC-MS – when multi benefits can be transformed into a GC-MS Revolution. International Journal of Analytical Mass Spectrometry and Chromatography, 2013, vol. 1, no. 1, pp. 31—47. Doi: 10.4236/ijamsc.2013.11005.
  15. Blashenkov N.M., Gall' N.R. [Use of "cold" electronic ionization for detection of VV vapors in air]. VI Vserossijskaya konferenciya "Mass-spektrometriya i ee prikladnye poblemy" [The VI All-Russian conference "Mass-spectrometry and its application-oriented poblems"], 12—17 October 2015, Moscow, pp. 138. (In Russ.).
  16. Kelman V.M., Yavor S.Ya. Elektronnaya optika [Electron optics]. AN SSSR, Fiz.-tekhn. in-t im. A.F. Ioffe. Edition 3, pererab. i dop. Leningrad, Nauka Publ., 1968. 486 p. (In Russ.).
 

T. E. Kuleshova1, M. N. Blashenkov2, D. O. Kuleshov3, N. R. Gall1,3

DEVELOPMENT AND BIOLOGICAL TESTING OF THE LABORATORY PHYTOTRON WITH POSSIBILITY OF VARYING THE EMISSION
SPECTRA AND THE DAILY EXPOSURE

"Nauchnoe Priborostroenie", 2016, vol. 26, no. 3, pp. 35—43.
doi: 10.18358/np-26-3-i3543
 

A compact laboratory phytotron with programmable LED light source has been designed and tested to study the influence of physical factors on plants. The instrument is aimed on getting reproducible results for plant study in wide range of the PPF from 10—600 μmol/(m2s) with possibility to change the daily exposure time and light spectrum from monochromatic, red or blue, or to nearly white. Its main aim is to standardize growth conditions and development of plants, to use than as reproducible samples for biophysical studies. The method of absolute measurement of PPF has been developed using light measurement by integrating sphere. The effect of emission spectrum and daily exposure has been shown on the light-sensitive pigments content in Chlorophytum comosum maculatum and Avena sativa by measuring with optical spectrometer. Spectrum providing maximal absorption by chlorophyll has been used in experiments, as the most suitable for plant growth.
 

Keywords: emission spectrum, daylight, phytotron, LED light source, photosynthetic photon flux, chlorophyll, Chlorophytum comosum maculatum, Avena sativa

Author affiliations:

1Ioffe Physical Technical Institute of the RAS , Saint-Petersburg, Russia
2Inc."Kristall Tehnoservis", Saint-Petersburg, Russia
3Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia

 
Contacts: Kuleshova Tat'yana Eduardovna, www.piter.ru@bk.ru
Article received in edition: 16.05.2016
Full text (In Russ.) >>

REFERENCES

  1. Glaser R. Physical factors of the environment. Biophy­sics, Springer, Berlin, Heidelberg, 2012, pp. 245—332.
  2. Buchachenko A.L. [Magnetic and dependent molecular and chemical processes in biochemistry, genetics and medicine]. Uspekhi himii [Achievements of chemistry], 2014, vol. 83, no. 1, pp. 1—12. (In Russ.).
  3. Bingi V.N., Savin A.V. [Physical problems of action of weak magnetic fields on biological systems]. Uspekhi fizicheskih nauk [Achievements of physical sciences], 2003, vol. 173, no. 3, pp. 265—300. (In Russ.).
  4. Gederim V.V., Sokolovskij V.V., Gorshkov EH.S., Shapovalov S.N., Troshichev O.A. [Periodic changes of some hematologic indicators characterizing process of adaptation in a human body and a variation of a gravitational field]. Biofizika [Biophysics], 2001, vol. 46, no. 5, pp. 833—834. (In Russ.).
  5. Sokolovskij V.V. Tioldisulfidnaya sistema v reakcii organizma na faktory okruzhayushchej sredy [Tioldisulfidny system in reaction of an organism to environment factors]. Saint-Petersburg, Nauka Publ., 2008. 112 p. (In Russ.).
  6. Tichomirov A.A., Sharupich V.P., Lisovskiy G.M. Svetokul'tura rasteniy: biofizicheskie i biotechnologicheskie osnovy. Uchebnoe posobie dlya vuzov [Lightcultural of plants: biophysical and biotechnological bases. Manual for higher education institutions]. Novosibirsk, SO RAN Publ., 2000. 213 c. (In Russ.).
  7. Spivakov D.S., Mynbaev K.D. Svetodiodnye nanotechnologii v biologii i medizine. Uchebnoe posobie [LED nanotechnologies in biology and medicine. Manual]. Saint-Petersburg: NIUITMO Publ., 2013. 139 c. (In Russ.).
  8. Massa G.D., Kim H.H., Wheeler R.M., Mitchell C.A. Plant productivity in response to LED lighting. HortScience, 2008, vol. 43, no. 7, pp. 1951—1956.
  9. Olle M., Viršile A. The effects of light-emitting diode lighting on greenhouse plant growth and quality. Agricultural and food science, 2013, vol. 22, no. 2, pp. 223—234.
  10. Folta K.M., Childers K.S. Light as a growth regulator: controlling plant biology with narrow-bandwidth solid-state lighting systems. HortScience, 2008, vol. 43, no. 7, pp. 1957—1964.
  11. Protasova N.N. [Lightcultural as method of detection of potential productivity of plants]. Fiziologiya rastenij [Phytophysiology], 1987, vol. 34, no. 4, pp. 51. (In Russ.).
  12. Shibaeva T.G., Markovskaya E.F. [Influence of the round-the-clock lighting on a condition of the photosynthetic device and growth of plants of a cucumber of Cucumis sativus L. at early stages of ontogenesis]. Trudy Karel'skogo nauchnogo centra Rossijskoj akademii nauk [Proc. of the Karelian scientific center of the Russian Academy of Sciences]. Petrozavodsk, 2012, no. 2, pp. 162—166.
  13. Pfeiffer N.E. Anatomical study of plants grown under glasses transmitting light of various ranges of wave lengths. Botanical Gazette, 1928, pp. 427—436. Doi: 10.1086/333854.
  14. Cathey H.M., Campbell L.E. Light and lighting systems for horticultural plants. Horticultural Reviews, 1980, vol. 2, pp. 491—537. Doi: 10.1002/9781118060759.ch10.
  15. Ritchie R.J. Modelling photosynthetic photon flux density and maximum potential gross photosynthesis. Photosynthetica, 2010, vol. 48, no. 4, pp. 596—609. Doi: 10.1007/s11099-010-0077-5.
  16. Britton G. Biochimiya prirodnych pigmentov [Biochemistry of natural pigments]. Moscow: Mir Publ., 1986. 422 p. (In Russ.).
  17. Dymova O.V., Grib I., Golovko T.K., Strzhalka K. [Condition of the pigmentary device winter - and the letnezelenykh of a shade-enduring plant]. Fiziologiya rastenij [Phytophysiology], 2010, vol. 57, no. 6, pp. 809—818. (In Russ.).
 

S. V. Kuleshov, A. Y. Aksenov, A. A. Zaytseva

AN APPROACH TO THE SOFTWARE
DEFINED CAMERA CREATION (REVIEW)

"Nauchnoe Priborostroenie", 2016, vol. 26, no. 3, pp. 44—49.
doi: 10.18358/np-26-3-i4449
 

The paper proposes an approach to software defined digital camera creation which is able to change it's features on the fly without moving parts and mechanical changes in optical system.
The proposed approach is based on conception of liquid crystal diaphragm with software defined form, the lens with distortion and programmable zones of reading from photo sensor. Besides the task of reading and processing of data obtained from photo sensor the digital signal processor of software defined camera needs to control all of the camera components to be able to reach needed optical and information performance.
The possible structural scheme of a such camera is presented which can become the basis for development of the next generation of digital cameras.
 

Keywords: software defined, camera, photo sensor, diaphragm, optical system

Author affiliations:

Saint-Petersburg Institute for Informatics and Automation of RAS, Russia

 
Contacts: Zaytseva Aleksandra Alekseevna, cher@iias.spb.su
Article received in edition: 5.05.2016
Full text (In Russ.) >>

REFERENCES

  1. Kuleshov S.V. Cvetkov O.V. [Active data in the digital program defined systems]. Informacionno-izmeritel'nye i upravlyayushchie sistemy [The information and measuring and operating systems], 2014, no. 6, pp. 12—19. (In Russ.).
  2. Kuleshov S.V. [Problems of a quantum infokommunikation]. Trudy SPIIRAN [Works SPIIRAN], 2013, no. 4(27), pp. 35—47. (In Russ.).
  3. Alexandrov V.V., Kuleshov S.V., Zaytseva A.A. Active data in digital software defined systems based on SEMS structures. Smart Electromechanical Systems, Ed. A.E. Gorodetskiy, Studies in Systems, Decision and Control 49, Springer International Publishing, Switzerland, 2016, pp. 61—69. Doi: 10.1007/978-3-319-27547-5.
  4. Kislevitz A. Kak rabotaet kamera GoPro (chast' 1) [As the GoPro camera works (part 1)]. Available at: http://skillville.ru/media/abe-kislevitz-kak-rabotaet-kamera-gopro-chast1.html (accessed: 20.04.16). (In Russ.).
  5. Asmakov S. Plenopticheskie kamery: novaya ehra fotografii [Plenoptichesky chambers: new era of the photo]. Available at: http://compress.ru/article.aspx?id=14645 (accessed: 20.04.2016). (In Russ.).
  6. Hahne C., Aggoun A., Haxha S., Velisavljevic V., Fernández J. Light field geometry of a standard plenoptic camera. Optics Express, 2014, vol. 22, no. 22, pp. 26659—26673. Doi: 10.1364/OE.22.026659.
  7. Fotokinotekhnika. Enciklopediya [Photofilm equipment. Encyclopedia]. Ed. E.A. Iofis. Moscow, Sovetskaya Enciklopediya Publ., 1981. 447 p. (In Russ.).
  8. LYTRO, Inc. Available at: https://www.lytro.com (accessed: 20.04.16).
  9. Levoy M., Hanrahan P. Light field rendering. Siggraph’96, 1996, pp. 31—42. Available at:
  10. Tomilin M.G. Nevskaya G.E. Displei na zhidkih kristallah [Displays on liquid crystals]. Saint-Petersburg, NIU ITMO Publ., 2010. 108 p. (In Russ.).
  11. Banks M.S., Sprague W.W., Schmoll J.P., Jared A.Q., Love G.D. Why do animal eyes have pupils of different shapes? Science Advances, 2015, vol. 1, no. 7, e1500391. Doi: 10.1126/sciadv.1500391.
  12. Schiekel M.F., Fahrenschon F. Deformation of NLCs with vertical orientation in electrical fields. Appl. Phys. Lett., 1971, vol. 19, pp. 391. Doi: 10.1063/1.1653743.
  13. Ismailov T.K., Abbas-zade A.A.-K. Hanukaev B.B., Hartunov G.-M.SH. Sposob upravleniya zhidkokristallicheskoj diafragmoj [Way of management of a liquid crystal diaphragm]. Patent SU 1081612 A, 23.03.1984. (In Russ.).
 

V. V. Manoylov1,2, Yu. A. Titov1, A. G. Kuz'min1, I. V. Zaruzkiy1

METHODS FOR DATA PROCESSING AND CLASSIFICATION
FOR MASS SPECTRA OF EXHALED GASES
USING DISCRIMINANT ANALYSIS

"Nauchnoe Priborostroenie", 2016, vol. 26, no. 3, pp. 50—56.
doi: 10.18358/np-26-3-i5056
 

Currently, there are methods for estimation of human health condition based on the composition of the exhaled gas. At health surveys such methods are appears to be applicable for automatic classification of people's health groups. In this paper, the method of linear discriminant analysis is used for the classification of people's health. Discriminant analysis is a branch of multivariate statistical analysis, which includes methods for classification of multidimensional observations on the principle of maximum similarity of the analyzed observations with observations assimilated certain classes of learning outcomes. It is shown that the amplitudes of the lines of the mass spectrum can serve as values of discriminant features for classification. Examples of the testing of the proposed methods are provided.
 

Keywords: mass spectrometer, linear discriminant analysis, classification of mass spectra

Author affiliations:

1Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia
2ITMO University, Saint-Petersburg, Russia

 
Contacts: Manoylov Vladimir Vladimirovich, manoilov_vv@mail.ru
Article received in edition: 21.04.2016
Full text (In Russ.) >>

REFERENCES

  1. Statsoft, electronic textbook statistically. URL: http://www.statsoft.ru/home/textbook/modules/stdiscan.html (In Russ.).
  2. Ivanov E.E., Shustov D.A., Pereshivkin S.A. [Multidimensional statistical methods]. Kafedra ehkonomicheskoj kibernetiki i ehkonomiko-matematicheskih metodov [Department of economic cybernetics and economic-mathematical methods]. URL: http://ecocyb.narod.ru/513/MSM/msms.htm (In Russ.).
  3. Meshcheryakov V.A. [Application of neural network technologies for the solution of a task of the discriminant analysis in Matlab]. Materialy V Mezhdunarodnoj konferencii "Proektirovanie inzhenernyh i nauchnyh prilozhenij v srede Matlab" [Materials of the V international conference "Design of Engineering and Scientific Applications in the Environment Matlab"]. Kharkov, 11—13 may 2011, pp. 360—366. URL: http://matlab.ru/upload/resources/
    EDU%20Conf/pp%20360-366%20Mestherjakov.pdf (In Russ.).
  4. Ajvazyan S.A., Mhitaryan V.C. Prikladnaya statistika i osnovy ehkonometriki [Applied statistics and fundamentals of econometrics]. Moscow, UNITI Publ., 1998. 1022 p. (In Russ.).
  5. Ajvazyan S.A., Buhshtaber V.M., Enyukov I.S., Meshalkin L.D. Prikladnaya statistika. Klassifikaziya i snizhenie razmernosti [Applied statistics. Classification and decrease in dimension]. Ed. Ajvazyan S.A. Reference Edition. Moscow, Finansy i statistika Publ., 1989. 608 p. (In Russ.).
  6. Dubrov A.M., Mhitaryan B.C., Troshin L.I. Mnogomernye statisticheskie metody [Multidimensional statistical methods]. Moscow, Finansy i statistika Publ., 1998. 352 p. (In Russ.).
  7. Kim G.-O., Miller Ch.U., Klekka U.R. Faktornyj, diskriminantnyj i klasternyj analiz [Factorial, discriminant and cluster analysis]. Ed. I.S. Enyukov. Moscow, Finansy i statistika Publ., 1989. 215 p. (In Russ.).
  8. Orlova I.V., Gabeskiriya V.Ya., Pilipenko A.I., Garmash A.N., Gusarova O.M., Uradovskih V.N., Yakushev A.A. Ekonometrika. Uchebnoe posobie dlya studentov Vserossijskogo zaochnogo finansovo-ehkonomicheskogo instituta [Econometrics. Manual for students of the All-Russian correspondence financial and economic institute]. URL: http://eusi.ru/umk/vzfei_ekonometrika/index.shtml (In Russ.).
  9. Kuzmin A.G. Kvadrupol'nyj mass-spektrometr [Quadrupole mass-spectrometer]. Patent RF, no. 94763, 27.05.2010. (In Russ.).
  10. Kuzmin A.G., Titov Yu.A. [Small-sized mass spectrometers for dynamic researches of composition of the exhaled air]. Trudy I Mezhdunarodnoj nauchno-prakticheskoj konferencii "Vysokie tekhnologii, fundamental'nye i prikladnye issledovaniya v fiziologii i medicine", Chast’ 3 [Pric. I International scientific and practical conference "High Technologies, Fundamental and Applied Researches in Physiology and Medicine". Part 3]. Saint-Petrsburg, 23−26 november 2010. SPbGPU Publ., 2010, pp. 266−270 (In Russ.).
  11. Kuzmin A.G., Tkachenko E.I., Oreshko L.S., Titov Yu.A. [Prospects of a method of a mass and spectrometer aromadiagnostika on composition of the exhaled air]. Tezisy dokladov X Evrazijskoj nauchnoj konferencii "DONOZOLOGIYA-2014" [Theses of reports of the X Euroasian scientific DONOZOLOGY-2014 conference]. Saint-Petrsburg, 18−19 december 2014, pp. 229−231 (In Russ.).
  12. Kuzmin A.G., Tkachenko E.I., Oreshko L.S., Titov Yu.A. [Diagnostic opportunities of mass spectrometry of the exhaled air]. Sbornik tezisov I Vserossijskoj konferencii s mezhdunarodnym uchastiem "Himicheskij analiz i medicina" [The collection of theses of the I All-Russian conference with the international participation "The chemical analysis and medicine"]. Moscow, 09—12 november 2015, 35 p. (In Russ.).
  13. Manojlov V.V., Kuzmin A.G., Titov Yu.A. [Method of processing of signals of mass spectrums of the exhaled gases on the basis of spectral decomposition in adaptive basis]. Mass-spektrometriya [Mass-spectrometry], 2015, vol. 12, no. 3, pp. 194—200 (In Russ.).
  14. Gurevich A.L., Mogilnickij A.M., Rusinov L.A. Avtomatizaciya obrabotki mass-spektrometricheskoj informacii [Automation of processing of mass-spectrometer information]. Moscow, Energiya Publ., 1978. 182 p. (In Russ.).
  15. Lanin E.V., Maslennikov A.I. Avtomatizaciya mass-spektrometricheskogo eksperimenta [Automation of mass-spectrometer experiment]. Ufa, Bashkirskij filial AN SSSR, otdel fiziki i matematiki Publ., 1986. 132 p. (In Russ.).
  16. URL: https://en.wikipedia.org/wiki/Norm_%28mathematics%29.
 

B. P. Sharfarets1, E. B. Sharfarets1, N. N. Knyaz'kov1, T. N. Pashovkin2

SOME FEATURES OF THE NUMERICAL SOLUTION
OF TASKS OF THERMOELASTICITY AND HYDRODYNAMICS
HEAT-CONDUCTING COMPRESSED VISCOUS LIQUID
BY MEANS OF UNIVERSAL PACKAGES

"Nauchnoe Priborostroenie", 2016, vol. 26, no. 3, pp. 57—63.
doi: 10.18358/np-26-3-i5763
 

The selective analysis of adequacy of a concrete package according to the numerical solution of problems of mathematical physics is done. The analysis showed need of obligatory verification of the algorithms accepted in a package for modeling, on the mathematical models necessary to the researcher, instead of on available in a package. It assumes prescription in a package of original user models.
 

Keywords: heat transfer in fluid, thermoelasticity, Navier—Stokes equation

Author affiliations:

1Institute for Analytical Instrumentation of RAS, Saint-Petersburg, RF
2Institute of Cell Biophysics, RAS, Pushchino, Moscow Region. RF

 
Contacts: Sharfarets Boris Pinkusovich, sharb@mail.ru
Article received in edition: 26.02.2014
Full text (In Russ.) >>

REFERENCES

  1. COMSOL. User's Guide. CFD Module.
  2. James Serrin. Mathematical principles of classical fluid mechanics. Berlin, 1959 (Russ. ed.: Serrin Dzh. Matematicheskie osnovy klassicheskoy mechaniki zhidkosti. Moscow, In. lit. Publ., 1963. 256 p.).
  3. Landau L.D., Lifshiz E.M. Teoreticheskaya fizika. T. 6. Gidrodinamika [Theoretical physics. Vol. 6. Hydrodynamics]. Moscow, Nauka Publ., 1988. 736 p. (In Russ.).
  4. Bruus H. Theoretical Microfluidics. Oxford: University Press, 2008. 346 p.
  5. Doinikov A.A. Acoustic radiation force on a spherical particle in a viscous heat-conducting fluid. I. General formula. J. Acoust. Soc. Am., 1997, vol. 101, nu. 2, pp. 713—721.
  6. Sharfarez B.P., Knyaz'kov N.N., Pashovkin T.N. [About mathematical tasking for movement of viscous compressible heat-conducting fluids in thermoelastic tube]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2013, vol. 23, no. 4, pp. 85—90. URL: http://213.170.69.26/mag/2013/full4/Art11.pdf (In Russ.).
  7. Karslou G., Eger D. Teploprovodnost' tverdych tel [Heat conductivity of solid bodies]. Moscow, Nauka Publ., 1964. 488 p.
  8. Novazkiy V. Dinamicheskie zadachi termouprugosti [Dynamic problems of thermoelasticity]. Moscow, Mir Publ., 1970. 256 p.
  9. Novazkiy V. Teoriya uprugosti [Elastic theory]. Moscow, Mir Publ., 1975. 872 p.
  10. Landau L.D., Lifshiz E.M. Teoreticheskaya fizika. T. 7. Teoriya uprugosti [Theoretical physics. Vol. 7. Elastic theory]. Moscow, Nauka Publ., 1987. 248 p.
  11. Landau L.D., Lifshiz E.M. Teoreticheskaya fizika. T. 5. Statisticheskaya fizika [Theoretical physics. Vol. 5.  Statistical physics]. Moscow, Nauka Publ., 1976. 584 p.
  12. COMSOL. User's Guide. Structural Mechanics Module. URL: http://www.comsol.com/model/download/143401/IntroductionToStructuralMechanicsModule.pdf.
 

A. S. Ilyin (ORCID: 0000-0001-8426-5580)

PROPERTIES OF MEDIAN UNDER DRIFT
OF ONE OF GROUP OF MEASURING INSTRUMENTS
AT NORMAL DISTRIBUTION

"Nauchnoe Priborostroenie", 2016, vol. 26, no. 3, pp. 64—74.
doi: 10.18358/np-26-3-i6474
 

It is supposed that the data arriving from each measuring instrument are distributed under the normal law. Formulas of calculation of expected value and dispersion of median when data from one of group of measuring instruments are subject to drift are received. As a median we take the value which has appeared in the middle of the sorted list of values from the odd number of measuring instruments. It was possible to take integrals and to receive analytical formulas, – when using approximate formula of integral of probability (Laplace's function). On the basis of results of numerical integration correction functions are added to the received formulas. Limits of preference of median in comparison with arithmetic average are defined.

 
Keywords: median, normal distribution, arithmetic mean, expected value, dispersion, sensitivity drift

Author affiliations:

State Scientific Center for Robotics and Technical Cybernetics, Saint-Petersburg, Russia

 
Contacts: Ilyin Anatolij Stepanovich, TOLY@RTC.RU
Article received in edition: 15.04.2016
Full text (In Engl.) >>

REFERENCES

  1. Ilyin A.S. [Properties of median under drift of one of group of measuring instruments (on the example of uniform distribution)]."Nauchnoe Priborostroenie [Scientific Instrumentation], 2016, vol. 26, no. 2, pp. 93—100. Doi: 10.18358/np-26-2-i93100.
  2. David H., Nagaraja H. Order statistics. 3rd ed. Wiley, 2003. (Russ. ed.: Dehjvid G. Poryadkovye statistiki. Moscow: Glavnaya redakciya fiziko-matematicheskoj literatury Publ., 1979. 336 p.). Doi: 10.1002/0471722162.
  3. Gil'bo E.P., Chelpanov I.B. Obrabotka signalov na osnove uporjadochennogo vybora (mazhoritarnoe i blizkie k nemu preobrazovanija) [Processing of signals on the basis of the ordered choice (majority and other transformations)]. Moscow, Sovetskoe radio Publ., 1976. 344 p. (In Russ.).
  4. Vilenkin N.Ja., Vilenkin A.N., Vilenkin P.A. Kombinatorika [Combinatorics]. Moscow, FIMA Publ. and Moscow center of continuous mathematical education Publ., 2006. 400 p. (In Russ.).
  5. Error function. URL: https://en.wikipedia.org/wiki/Error_function (Accessed 30.05.2016).
  6. Dwight H.B. Tables of integrals and other mathematical data. New York, The Macmillan company, 1961 (Russ. ed.: Dvajt G.B. Tablicy integralov i drugie matematicheskie formuly. Moscow, Nauka Publ., 1973. 228 p.).
  7. Chistjakov V.P. Kurs teorii verojatnostej [Probability theory course]. Textbook, 3rd edition. Moskow, Nauka Publ., 1987. 240 p. (In Russ.).
 

V. B. Almazov

A MODEL OF TRANSITION FIELD BETWEEN QUADRUPOLE MASS FILTER AND PRE-FILTER

"Nauchnoe Priborostroenie", 2016, vol. 26, no. 3, pp. 75—82.
doi: 10.18358/np-26-3-i7582

Analytical function, which describes transition field in the area between quadrupole mass filter (QMF) and prefilter, was proposed. The function was obtained by means of potential distribution in the QMF-to-prefilter connection area numeric model, which was built using SIMION 8 software, and followed potential distribution function least-square fitting. Fitting was based on exponential function, as described for fringing field model earlier. Two variants of the model was proposed: full variant of three coordinates, which takes into account transverse x-, y-coordinates and axial z-coordinate, and simplified variant of single axial z-coordinate. Availability of transition field function together with fringing field function allows analytical description of ion motion in QMF–prefilter electrode system, facilitating in characteristics research of such a system using phase-space dynamics methods.
 

Keywords: quadrupole mass filter, pre-filter, transition field

Author affiliations:

Institute for Analytical Instrumentation RAS, Saint-Petersburg, Russia
Yoshkar-Ola, Russia

 
Contacts: Almazov Viktor Borisovich, diamondvictor@mail.ru
Article received in edition: 18.05.2016
Full text (In Russ.) >>

REFERENCES

  1. Dawson P.H. Quadrupole mass-spectrometry and its applications. New York, AIP Press, 1995. 349 p.
  2. Brubaker W.M. An improved quadrupole mass analyser. Advances in Mass Spectrometry, 1968, vol. 4, pp. 293—299.
  3. Trajber C., Simon M., Csatlos M. On the use of prefilters in quadrupole mass spectrometers. Meas. Sci. Technol, 1991, vol. 2, no. 8, pp. 785—787. Doi: 10.1088/0957-0233/2/8/012.
  4. Trajber C., Simon M., Bohatka S. A method for uniform optimization of quadrupole prefilters. Rapid Commun. Mass Spectrom., 1992, vol. 6, no. 7, pp. 459—462. Doi: 10.1002/rcm.1290060711.
  5. McIntosh B.J., Hunter K.L. Influence of realistic fringing fields on the acceptance of a quadrupole mass filter. International Journal of Mass Spectrometry and Ion Process, 1989, vol. 87, pp. 165—179.
  6. Konenkov N.V. [Influence of the regional field on acceptance of quadrupole  filter of masses in an operating mode of the lower top of a rectangle of stability]. ZhTF [Journal of technical physics], 1997, vol. 67, no. 10, pp. 121—124. (In Russ.).
  7. Konenkov N.V., Korol'kov A.N., Strashnov Yu.V. [Acceptance and passage of the quadrupole filter of masses with amplitude shift keying of high-frequency tension taking into account an edge field]. ZhTF [Journal of technical physics], 2010, vol. 80, no. 9, pp. 110—117. (In Russ.).
  8. Slobodenyuk G.I. Kvadrupol'nye mass-spektrometry [Quadrupole mass-spectrometers]. Mocsow, Atomizdat Publ., 1974. 272 p. (In Russ.).
  9. McLachlan N.W. Theory and application of Mathieu functions. New York, Oxford University Press, 1947.
  10. Hunter K.L., McIntosh B.J. An improved model of the fringing fields of a quadrupole mass filter. International Journal of Mass Spectrometry and Ion Process, 1989, vol. 87, no. 2, pp. 157—164.
  11. Almazov V.B. [Model of the regional field of the quadrupole filter of masses]. Rabochaya tetrad' uchastnika V mezhdunarodnoj konferencii-shkoly "Fundamental'nye voprosy mass-spektrometrii i eyo analiticheskie primeneniya" [Workbook of the participant of the V international conference school "Fundamental Questions of Mass Spectrometry and Its Analytical Applications"], 14—18 July 2013, Saint-Petersburg, Kaskon publ., 2013. 37 p. (In Russ.).
  12. Manura D.J., Dahl D.A. SIMIONTM 8.0 User Manual. Sci. Instrument Services, Inc., Idaho, Nat. Lab., 2006.
  13. Origin 8.6 User Guide. OriginLab Corporation, 2012.
  14. Press W.H., Teukolsky S.A., Vetterling W.H., Flannery B.P. Numerical Recipes: The Art of Scientific Computing, 3rd ed. New York, Cambridge University Press, 2007. 1235 p.
 

A. S. Ilyin (ORCID: 0000-0001-8426-5580)

BASES OF DYNAMIC CORRECTION OF SENSITIVITY
COEFFICIENTS OF GROUP OF THE SAME SENSORS
(ON THE EXAMPLE OF COSINE DISTRIBUTION LAW)

"Nauchnoe Priborostroenie", 2016, vol. 26, no. 3, pp. 83—94.
doi: 10.18358/np-26-3-i8394
 

It is supposed that at an operational phase there is an opportunity to perform measurement of an isotropic background. Carrying out sorting of the measured values in group of the same sensors, in case of similarity of their sensitivity we receive for each sensor a uniform picture of distribution on positions of the sorted list. In case of sensitivity drift of one sensor there is an imbalance: the measured values from this sensor appear in one half more often than in another. Formulas and results of calculations establishing dependence of an imbalance on the size of drift of one sensor as a basis for dynamic correction of coefficients of sensitivity of the same sensors are presented. Similarity of result for the even number of sensors and bigger odd is proved. As an example cosine distribution of the measured random variable is considered. A choice of parameters of this distribution by some criteria of likeness to normal distribution is made.
 

Keywords: intelligent sensors, sensitivity drift, adjustment, accuracy, survivability, self-restoration

Author affiliations:

State Scientific Center for Robotics and Technical Cybernetics, Saint-Petersburg, Russia

 
Contacts: Ilyin Anatoliy Stepanovich, TOLY@RTC.RU
Article received in edition: 21.06.2016
Full text (In Engl.) >>

REFERENCES

  1. Tajmanov R.E., Sapozhnikova K.V. [Metrological self-checking of sensors]. Sbornik trudov Vtoroj rossijskoj konferencii s mezhdunarodnym uchastiem "Tehnicheskie i programmnye sredstva sistem upravlenija, kontrolja i izmerenija (teorija, metody, algoritmy, issledovanija i razrabotki)", Sekcija 5: Datchiki v sistemah upravlenija, kontrolja i izmerenija [Proceedings of the Second Russian conference with the international participation "Technical and software of control systems, control and measurement (the theory, methods, algorithms, researches and development", Section 5: Sensors in control and measurement systems]. Moscow, IPU RAN, October 18—20, 2010. CD-ROM. ISBN 978-5-91450-061-7 (In Russ.).
  2. Dahir Insaat: Combat Robot. URL: http://fullreels.com/en/video/UZbqsYYapW4/Dahir-Insaat-Combat-Robot-in-Russian (Accessed 22.06.2016) (In Russ.).
  3. Vlasenko A.N., Demchenkov V.P., Lapin O.E., Lopota V.A., Nikulenkov K.P., Shelepkov E.A., Judin V.I. Ustrojstvo dlja izmerenija potokov fotonnogo izluchenija [The device for measurement of streams of photon radiation]. Patent RF no. 2299450, prioritet 20.05.2007 (In Russ).
  4. Izmeritel' moschnosti dozy i differenzial'nych potokov gamma-izlucheniya IMD-24 [Measuring instrument of power of a dose and differential streams of gamma radiation IMD-24. URL: http://www.rtc.ru/index.php/ru/
    sredstva-radiatsionnogo-kontrolya/imd-24 (Accessed 22.06.2016) (In Russ.).
  5. Arkad'ev V.B., Golubeva O.A., Ilyin A.S., Lapin O.E. [Features of the software of the measuring instrument of power of a dose and differential streams of gamma radiation]. Rossiyskoe atomnoe soobschestvo. Prezentazii [The Russian nuclear community. Presentations], 2011, Feb. 28. URL: http://www.atomic-energy.ru/presentations/
    19074 (Accessed 22.06.2016) (In Russ.).
  6. NPF "Konsensus". Katalog schetchikov registracii izluchenij [Catalog of counters of registration of radiations]. URL: http://consensus-group.ru/katalog. (Accessed 22.06.2016) (In Russ.).
  7. Boyko A.Yu., Vasiliev A.V. [Multi-purpose mobile robotic complex]. Trudy Mezhdunarodnoj nauchno-tekhnicheskoj konferencii "Ekstremal'naya robototekhnika" [Proceedings of the International Scientific and Technological Conference "Exteme robotics"], State Scientific Center for Robotics and Technical Cybernetics, October 1—2, 2014, Saint-Petersburg, Russia, pp. 46—49 (In Russ.).
  8. David H., Nagaraja H. Order statistics. 3rd ed., Wiley, 2003. (Russ. ed.: Dehjvid G. Porjadkovye statistiki. Moscow: Glavnaja redakcija fiziko-matematicheskoj literatury Publ., 1979. 336 p.). Doi: 10.1002/0471722162.
  9. Gil'bo E.P., Chelpanov I.B. Obrabotka signalov na osnove uporjadochennogo vybora (mazhoritarnoe i blizkie k nemu preobrazovanija) [Processing of signals on the basis of the ordered choice (majority and other transformations)]. Moscow, Sovetskoe radio Publ., 1976. 344 p. (In Russ).
  10. Ilyin A.S. [Properties of median under drift of one of group of measuring instruments (on the example of uniform distribution)]. Nauchnoe priborostroenie [Scientific Instrumentation], 2016, vol. 26, no. 2, pp. 93—100. Doi: 10.18358/np-26-2-i93100.
  11. Dwight H.B. Tables of integrals and other mathematical data. New York, The Macmillan company Publ., 1961. (Russ. ed.: Dvajt G.B. Tablicy integralov i drugie matematicheskie formuly. Moscow, Nauka Publ., 1973. 228 p.).
  12. List of integrals of trigonometric functions. URL: https://en.wikipedia.org/wiki/List_of_integrals_of_trigonometric_functions (Accessed 22.06.2016).
  13. Vadzinsky R.N. Spravochnik po verojatnostnym raspredelenijam [Reference book on probabilistic distributions]. St. Petersburg, Nauka Publ., 2001. 296 p. (In Russ.).
  14. Gradshtejn I.S., Ryzhik I.M. Tablicy integralov, summ, rjadov i proizvedenij [Tables of integrals, sums and serieses] (5th edition). Moscow, Nauka Publ., 1971. 1108 p. (In Russ.).
 

B. P. Sharfarets

ABOUT WAVEGUIDE PROPAGATION OF SOUND BEAMS
IN A NONLINEAR MEDIUM. OVERVIEW

"Nauchnoe Priborostroenie", 2016, vol. 26, no. 3, pp. 95—107.
doi: 10.18358/np-26-3-i95107
 

The review is devoted to the presentation of the conditions under which we obtain the effect of self-action of acoustic beams in a nonlinear medium. For this, we describe the formalism of obtaining the solution of the dimensionless Khokhlov–Zabolotskaya equations and finding appropriate Khokhlov similarity criteria, in which there is effect of self-action of acoustic beams. Provides various forms of Khokhlov–Zabolotskaya equations. Examines the issue associated with accurately set parameters in the Khokhlov–Zabolotskaya equation.
 

Keywords: nonlinear acoustics, self-action of acoustic beams, Khokhlov–Zabolotskaya equation, Khokhlov similarity criterion

Author affiliations:

Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia

 
Contacts: Sharfarets Boris Pinkusovich, sharb@mail.ru
Article received in edition: 12.07.2016
Full text (In Russ.) >>

REFERENCES

  1. Askaryan G.A. [Impact of a gradient of the field of an intensive electromagnetic beam on electrons and atoms]. ZHETF [Journal of Experimental and Theoretical Physics], 1962, vol. 42, no. 6, pp. 1567. (In Russ.).
  2. Talanov V.I. [About self-focusing of electromagnetic waves in nonlinear environments]. Izestiya vuzov. Radiofizika [News of higher education institutions. Radiophysics], 1964, vol. 7, no. 5, pp. 564—565. (In Russ.).
  3. Chiao R.Y., Garmire E., Townes C.H. Self-trapping of optical beams. Phys. Rev. Lett., 1964, vol. 13, pp. 479—482. Doi: 10.1103/PhysRevLett.13.479.
  4. Bjorkholm J.E., Ashkin A.A. Cw self-focusing and self-trapping of light in sodium vapor. Phys. Rev. Lett., 1974, vol. 32, no. 4, pp. 129. Doi: 10.1103/PhysRevLett.32.129.
  5. Zabolockaya E.A., Hohlov R.V. [Quasiflat waves in nonlinear acoustics of limited bunches]. Akusticheskij zhurnal [Acoustic journal], 1969, vol. 15, no. 1, pp. 40—44. (In Russ.).
  6. Kuznecov I.P. [Equations of nonlinear acoustics]. Akusticheskij zhurnal [Acoustic journal], 1970, vol. 16, no. 4, pp. 548—553. (In Russ.).
  7. Fizicheskaya enciklopediya [Physical encyclopedia]. Vol. 1. Moscow, BRE Publ., 1988. 704 p. (In Russ.).
  8. Rudenko O.V., Soluyan S.I. Teoreticheskie osnovy nelinejnoj akustiki [Theoretical bases of nonlinear acoustics]. Moscow, Nauka Publ., 1975. 287 p. (In Russ.).
  9. Bahvalov N.S., Zhilejkin Ya.M., Zabolockaya E.A. Nelinejnaya teoriya zvukovyh puchkov [Nonlinear theory of sound bunches]. Moscow, Nauka Publ., 1982. 176 p. (In Russ.).
  10. Lin C., Reissner E., Tsiegn H. On two-dimensional non-steady motion of a slender body in a compressible fluid. J. Math. and Phys., 1948, vol. 27, no. 3, pp. 126—140. Doi: 10.1002/sapm1948271220.
  11. Vinogradova M.B., Rudenko O.V., Suhorukov A.P. Teoriya voln [Wave theory]. Moscow, Nauka Publ., 1979. 384 p. (In Russ.).
  12. Zarembo L.K., Krasilnikov V.A. Vvedenie v nelinejnuyu akustiku. Zvukovye i ultrazvukovye volny bol'shoj intensivnosti [Introduction to nonlinear acoustics. Sound and ultrasonic waves of big intensity]. Moscow, Nauka Publ., 1966. 520 p. (In Russ.).
  13. Bahvalov N.S., Zhilejkin YA.M., Zabolockaya E.A., Hohlov R.V. [Distribution of sound bundles of finite amplitude in the dissipative environment]. Akusticheskij zhurnal [Acoustic journal], 1978, vol. 24, no. 4, pp. 473—479. (In Russ.).
  14. Rudenko O.V., Soluyan S.I., Hohlov R.V. [Problems of the theory of nonlinear acoustics]. Akusticheskij zhurnal [Acoustic journal], 1974, vol. 20, no. 3, pp. 449—457. (In Russ.).
  15. Rudenko O.V. [To the 40 anniversary of the equation of Khokhlov–Zabolotskaya]. Akusticheskij zhurnal [Acoustic journal], 2010, vol. 56, no. 4, pp. 452—462. (In Russ.).
  16. Rudenko O.V., Soluyan S.I., Hohlov R.V. [To the nonlinear theory of paraxial sound bunches]. DAN SSSR [DAN USSSR], 1975, vol. 225, no. 5, pp. 1053—1055. (In Russ.).
  17. Rudenko O.V., Soluyan S.I., Hohlov R.V. [Limited quasiflat bunches of periodic indignations in the nonlinear environment]. Akusticheskij zhurnal [Acoustic journal], 1973, vol. 19, no. 6, pp. 871—876. (In Russ.).
  18. Rudenko O.V. [Nonlinear sawtooth waves]. UFN [UFN], 1995, vol. 165, no. 9, pp. 1011—1036. (In Russ.). Doi: 10.3367/UFNr.0165.199509b.1011.
  19. Gurbatov S.N., Rudenko O.V., Saichev A.I. Volny i struktury v nelinejnyh sredah bez dispersii [Waves and structures in nonlinear environments without dispersion]. Moscow, Fizmatlit Publ., 2008. 496 p. (In Russ.).
  20. Rudenko O.V., Sapozhnikov O.A. [The phenomena of self-influence of bunches of the waves containing shock fronts ]. UFN [UFN], 2004, vol. 174, no. 9, pp. 973—989. Doi: 10.3367/UFNr.0174.200409c.0973. (In Russ.).
  21. Makov Yu.N. [The waveguide distribution of sound bunches in the nonlinear environment]. Akusticheskij zhurnal [Acoustic journal], 2000, vol. 46, no. 5, pp. 680—684. (In Russ.).
  22. Akustika v zadachah [Acoustics in tasks]. Ed. S.N. Gurbatova i O.V. Rudenko. Second Edition. Moscow, Fizmatlit Publ., 2009. 336 p. (In Russ.).
 

Ulitsa Ivana Chernykh, 31-33, lit. A, St. Petersburg, Russia, 198095, P.O.B. 140
tel: (812) 3630719, fax: (812) 3630720, mail: iap@ianin.spb.su

content: Valery D. Belenkov design: Banu S. Kuspanova layout: Anton V. Manoilov