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PROPERTIES  OF  MEDIAN  UNDER  DRIFT  
 OF  ONE  OF  GROUP  OF  SENSORS  

 AT  NORMAL  DISTRIBUTION 
 

It is supposed that the data arriving from each measuring instrument are distributed under the normal law. Formulas 
of calculation of expected value and dispersion of median when data from one of group of measuring instruments 
are subject to drift are received. As a median we take the value which has appeared in the middle of the sorted list of 
values from the odd number of measuring instruments. It was possible to take integrals and to receive analytical 
formulas — when using approximate formula of integral of probability (Laplace's function). On the basis of results 
of numerical integration correction functions are added to the received formulas. Limits of preference of median in 
comparison with arithmetic average are defined. 
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INTRODUCTION 

In the previous article [1] properties of a median 
for uniform (rectangular) distribution of the values 
received from each measuring instrument (sensor) in 
the conditions of drift of one of group of measuring 
instruments are considered. Uniform distribution has 
allowed calculating the required integrals analytically 
precisely. But in practice we deal with radiation to 
which Poisson's distribution is peculiar. It is known 
that it differs from the normal distribution which is 
more convenient for mathematical calculations a little. 
In this article for normal distribution formulas of a 
population mean and dispersion of a median in the 
conditions of drift of one of group of measuring in-
struments are received. However these formulas are 
approximate. Therefore for their specification the cor-
rection functions received by comparison with results 
of numerical integration are added. 

FORMULAS OF A  GENERAL VIEW 

Let  p(a,x) — probability density function (PDF) 
be set. Width of area of values is characterized by the 
parameter  a. 

We will write down also cumulative distribution 
function (CDF): 

   , , d
X

P a X p a x x


  . 

We will designate N — quantity of sensors. 
We will be limited to option of an odd set: 

N=2n+1. 
We will designate L — drift size towards unders-

tating. It means that PDF takes  p(a, x + L)  form. 
We will begin with consideration of an initial state, 

when L=0. Formulas for this case are known from 
[2, pp. 17–18],[3, p. 96]. 

Probability of obtaining value of a median in the 
range from X to X+dX: 
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Here we have "shifts with repetitions" [4, p. 48] which 
quantity is defined by multinomial coefficient: 
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The formula of the K — order moments has an ap-
pearance: 
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In the presence of drift the formula of calculation 
of the K — order moments has an appearance of the 
sum of three items corresponding to three options of 
obtaining value from the drifting sensor in comparison 
with a median: 
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1) Value from the drifting sensor appeared a me-
dian: 
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2) Value from the drifting sensor appeared more 
median: 
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3) Value from the drifting sensor appeared less 
median: 
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CALCULATION OF DERIVATIVES 

For a start we will analyse derivatives with respect 
to parameter L. They will be useful further for in-
crease of accuracy of formulas: 
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Having the derivative by x coinciding with a deriv-
ative by L in integrand expression, we will execute 
integration "by parts". The multiplier of xK doesn't 
disturb zeroing in infinity. Therefore we receive: 
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In the received expression the first two integrals 
considered with opposite signs, completely coincide 
with derivatives of expressions (5) and (6) by L. 
Therefore after reductions there is only one integral: 
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In particular, at L=0 and K=1, the received formula  
(7)  is similar to a formula  (2) at K=0 which thus is 
identically equal to 1. Therefore, considering differ-
ence of coefficients, we receive: 

 d 1M , , ,0 .
d 2 1

K a n
L n





                    (8) 

It means that at small values of drift the expected val-
ue of a median coincides with an expected value of an 
arithmetic average: 

 MEANM , , ,
2 1

LK a n L
n





.                  (9) 

On the basis of a formula  (7)  further we will write 
down also the second derivative: 
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In particular, at K=2 for normal distribution, using 
(25) and comparing with (2), we receive: 
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INITIAL TRANSFORMATION OF FORMULAS  
 FOR INTEGRATION 

Further it will be more convenient to us to use the 
following designations: 

    1, 1 Ф , ,
2

P a x a x 
                 

(11) 

   1, Ф , .
2

p a x a x                          (12) 

Limit values will be useful at integration: 
   Ф , 1,a       Ф , 1.a    

The formula  (2)  takes a form: 
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Formulas (4)–(6)  take a form:
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At addition of R2 and R3, removing the brackets, 
we find possibility of reduction. Therefore we receive: 
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Here are designated: 
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We will notice that R4 doesn't depend on L and can be 
expressed as 

     4 1, , 2 1 , , 1,0R K a n n R K a n   .       (19) 

At K=1 oddness of integrand expression generates 
identity: 

 4 1, , 0R a n  .                           (20) 

We will start transformation of R5. We consider 
that 
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Integrating "in parts", we receive: 
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In this expression at substitution of limits of inte-
gration zero turns out, and the first of two integrals on 
an absolute value coincides with R1(K,a,n,L) also is 
reduced with it. Therefore we receive: 

     4 6M , , , , , , , ,K a n L R K a n R K a n L  .     (22) 

Here it is designated: 
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We will notice that 
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1
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FORMULAS FOR NORMAL  
 DISTRIBUTION 

In the received formulas  (22)–(24) there can be 
any smooth distribution function. 

Now we will take normal distribution: 
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The used Laplace's function (error function) has an 
appearance: 
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The approximate formula is known [5]: 
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Here it is designated: 
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So bulky formula won't help to take us integrals 
analytically. Therefore we will use less exact, but 
quite acceptable option 0  . 

By analogy as in [3, pp. 103–104] wrote down an 
approximate PDF of a median, here we will receive 
approximate formulas of expected value and disper-
sion of a median in the conditions of drift of one of 
group of sensors. 

The formula (26)  taking into account (27)  takes a 
form: 
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 . 

Thus there is an opportunity to write down very con-
venient formula: 
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The formula  (14) taking into account  (25) and (28) 
takes a form: 
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Before integrating, we will execute a regrouping of 
multipliers: 
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For our case we will designate: 
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We will use also properties of function of probabil-
ity of normal distribution: 
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Carrying out replacement of a variable x by shift at 
a size (31), using (30), (32) and (34),  we will trans-
form a formula (29)  at K=0 in the following look: 
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On a formula (19)  we will at once write down: 
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On the basis of a formula (24)  at K=1 we carry out 
integration on a formula (33) : 
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For a formula (29)  at K=1, carrying out replace-
ment of a variable by shift at a size (31), we find out 
that shift gets a multiplier role: 
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On a formula (19)  we will at once write down: 

     4 11, , 2 1 1, , 1,0 0R a n n R a n    .           (36) 

On the basis of a formula (24)  at K=2 we carry out 
integration: 
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For a formula (29) at K=2, carrying out replace-
ment of a variable by shift at a size (31), we find two 
nonzero members found on formulas (34) and (35), 
thus the square of shift gets a multiplier role: 
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This items it is possible to unite: 
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However the received expression is only required to 
us at L=0: 
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We will start calculation of the constants which 
appeared at integration. 

We will determine the constant c1 on the basis of 
expected value by a formula (22) at K=1, L=0: 

     4 6M 1, , ,0 0 1, , 1, , ,0a n R a n R a n   .  

Considering (36), we receive c1=0. 

We will determine the constant c2 on the basis of 
dispersion by a formula (22) at K=2, L=0. 

We will notice that R6(2,a,n,0)=c2,  therefore we 
receive the equation: 

   4 2M 2, , ,0 2, ,a n R a n c  .  

It means that it is possible to take c2=0, but thus it is 
necessary instead of R4(2,a,n) to take M(2,a,n,0), cal-
culated on the basis of a formula (2). 

Of course, the formula (3) at L=0 completely coin-
cides with a formula (2), however when using approx-
imate expressions of probability coincidence of these 
formulas inevitably turns out also approximate. 

Substituting (25) and (28) in (1) and (2), applying 
(35), we receive: 
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To full set of events there corresponds the identity 
M(0,a,n,0)=1. However when using approximate ex-
pressions of probability it is equality it is observed 
also approximately. Substituting  (25) and (28) in (1) 
and (2), applying (35), we receive: 
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It is undoubted that each of the integrals calculated 
here approximately, has the mistake close to an error 
of calculation of integral M(0,a,n,0). Therefore for 
increase of accuracy of formulas the received expres-
sion (38) can be used as correction divider. In [7] use 
of this coefficient is called as normalization. Thus ex-
pressions more convenient turn out (without facto-
rials). 

We will write down only three demanded expres-
sions: 
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CALCULATION  
 OF EXPECTED VALUE 

According to a formula (22)  the expression (39) 
taken with the sign "minus" defines an expected value 
of a median M(1,a,n,L). 

In particular, at small values of L, decomposing 
(39)  in a row on a known formula [6, p. 119], we find 
out that the first member of a row coincides with (9). 

We will consider also an asymptotic of expected 
value. 
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It is obvious that at  L   we have the right 
completely to ignore the drifting sensor. Therefore 
pertinently to compare the asymptotic size (42) and an 
expected value of central (with index n-1 or n) order 
statistic on a set 2n sensors. For this purpose we will 
use a formula from [3, p. 96], we will write down a K-
order moment formula in the following look: 
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Taking into account a formula (11), we have: 

   
 

       

2 2 1

12

2 !
M , ,

2 ! 1 !

1 Ф , 1 Ф , , d .

n n

n K

n
K a n

n n

a x a x p a x x x








 


     (44)
 

Multiplier (1 – Ф(a, x)) gives the chance to choose 
from it only one item (depending on K), at which in-
tegrand expression will be even. 

In particular, comparing (13) and (44), it is easy to 
be convinced that the identity is fair: 

   2M 2, , M 2, , 1,0n a n a n  .               (45) 

In particular, we have dispersion of normal distri-
bution: 
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Considering (12), for an expected value (at K=1) we 
receive the expression integrated in parts: 
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Using an approximate formula (28) and an exact 
formula (34), we receive: 
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On the basis of (44) we will write down also the 
expression corresponding to a full probability (at 
K=0): 
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Using an approximate formula (28) and an exact 
formula (34), we receive: 
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We will transform formula (47) taking into account 
normalization, i.e. carrying out division on (48): 
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The difference between approximate expressions (42) 
and (49)  can be considered an estimation of their ac-
curacy. And to find the answer to a question of what 
of them is more preferable, it is expedient to execute 
numerical integration of a formula (43) at K=1 with 
use (25)  and (26). 

Meanwhile in the presence of results of numerical 
integration (the right column of Table 2) need of use 
of formulas (42) and (49) disappears. In view of their 
look, it is pertinent instead of a formula (39)  now to 
write down a similar formula with the correction func-
tion   n  providing coincidence to asymptotic val-
ues which are received by numerical integration. Thus 
we observe the requirement: at small values of  L for-
mula has to coincide with (9). 

 6 1, , ,R a n L   
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Values of correction function   n  are presented 
in table 1, and the set of values of the function 
R6(1,a,n,L), calculated on a formula (50) is presented 
in table 2. For comparison under each value the result 
of numerical integration is specified. 

In the lower line of table 2 for each value of L the 
result of calculation of full probability integral which 

has to be equal to 1 is specified. In process of increase 
in L there is an understating of result of numerical 
integration as in numerical experiment "tail" of distri-
bution of the drifting sensor gradually left for integra-
tion interval borders. Other results of numerical inte-
gration presented in the corresponding columns are 
underestimated in the same measure. Nevertheless, 
from table 2 it is visible that the formula (50) is quite 
satisfactory. 

 
 

Table 1. Correction function for formula of expected value of median 
 

Function Number n of sensors 

3 5 7 9 11 13 15 

φ 0.75772 0.81160 0.82804 0.83729 0.84038 0.84398 0.84578 

 
 

Table 2. Expected value of a median depending on drift of one sensor for the normal law of distribution 
 

Number n 
of sensors 

L/a 

0.5 1.0 1.5 2.0 2.5 3.0 1000.0 

3 0.16294, 0.30522, 0.41373, 0.48598, 0.52800, 0.54934, 0.56419 

0.16291 0.30508 0.41332 0.48490 0.52451 0.53759  

5 0.09711, 0.17859, 0.23596, 0.26985, 0.28665, 0.29364, 0.29701 

0.09711 0.17856 0.23586 0.26946 0.28500 0.28761  

7 0.06915, 0.12610, 0.16473, 0.18631, 0.19624, 0.20000, 0.20155 

0.06915 0.12609 0.16468 0.18606 0.19514 0.19592  

9 0.05368, 0.09743, 0.12646, 0.14217, 0.14909, 0.15157, 0.15251 

0.05368 0.09742 0.12643 0.14199 0.14826 0.14849  

11 0.04387, 0.07937, 0.10261, 0.11491, 0.12019, 0.12202, 0.12267 

0.04387 0.07936 0.10258 0.11477 0.11952 0.11954  

13 0.03709, 0.06696, 0.08631, 0.09642, 0.10066, 0.10210, 0.10259 

0.03709 0.06695 0.08629 0.09630 0.10011 0.10002  

15 0.03213, 0.05790, 0.07448, 0.08304, 0.08659, 0.08777, 0.08816 

0.03213 0.05790 0.07447 0.08294 0.08611 0.08599  

Theoretical 
value P 

The calculated value of a total probability P 

P = 1 0.99999 0.99997 0.9998 0.9988 0.9946 0.9798 – 

 



PROPERTIES  OF  MEDIAN  UNDER  DRIFT... 

NAUCHNOE  PRIBOROSTROENIE, 2016, Vol. 26, No. 3 

71

 
Table 3. Conditional limit of essential advantage of a median 

 
Function Number n of sensors 

3 5 7 9 11 13 15 

0.5

L
a

 
 
 

  3.3398 2.9303 2.7839 2.7084 2.6626 2.6316 2.6094 

 
 
 
To present the course of change of expected value 

of median, we will find value of drift at which the ex-
pected value of a median becomes equal to a half of 
expected value of an arithmetic average. In other 
words, we will write down the equation: 

 
   

0.5
2 1

4 2 2erf .
4 2 2 1 4

L
n

n na nL n
n n n a n n







 
     

  (51)
 

It is convenient to apply designation: 

   
2 2

2 1 4
nL nt

n a n n


 
.                    (52) 

The equation (51) takes a form:
 

 erft t . 

The solution of this equation is a constant: 

0.5 1.748709t  . 

Respectively we have:  0.5erf 0.98660t  . 
It means that in this point the expected value is close 
to the asymptotic value (42). 

Taking into account (52) we receive the solution of 
the equation (51): 

 
0.5

0.5

11 2 .
2 2

nL t
a n n

        
   

                 (53) 

Results of calculations on a formula (53) are pre-
sented in table 3. When the size of drift exceeds the 
specified values, the median gains essential advantage 
in comparison with an arithmetic average. 

SPECIFICATION  OF  SECOND  
 ORDER  MOMENTS 

The formula (44) at K=2 has an appearance: 
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Taking into account (25) and (28) it is possible to 
execute integration on a formula (35): 

   
   

3
2 2

2 2 1

2 !
M 2, , .

2 ! 1 ! 4 1n n

a n
a n
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   (54) 

We will execute a normalization, i.e. we will divide 
(54) on (48). We receive:

 
   

2

2M 2, ,
4 1n

aa n
n





 
.                   (55) 

By the way, identities (45) and (46) are fair and for 
the received approximate formulas (41) and (55).  

Having executed numerical integration of a formu-
la (13) or (44)  at K=2, we have opportunity to add 
correction function   n  to approximate formulas 
(41) and (55). Thus it is convenient to make designa-
tion: 

   
1 .

4
n

n n


 


 
 

Formulas (41) and (55) take a form: 

   2M 2, , ,0 ,a n a n                       (56) 

   2
2M 2, , 1 .n a n a n                   (57) 

Values of correction function are presented in table 4. 
We will notice that  0 0   according to identity 

(46). 
Thereby we have an opportunity in a formula (40) 

to apply more exact coefficient which is written down 
on the basis of a difference between values (57) and 
(56). The formula (40) takes a form: 
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Table 4. Correction function for a formula of the moment of the second order 
 
Function Number n of sensors 

1 3 5 7 9 11 13 15 

   0 0.13958 0.18879 0.21362 0.22773 0.23701 0.24440 0.24777 

 
 
 

 
Family of curves of rated dispersion 

 
 
 

      
 

2
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2

2

2, , , 1

exp 1 .

R a n L a n n

L n
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         (58)
 

The demanded multiplier  n  can be taken on the 
basis of approximate formulas (37) or (40). But it is 
better to use the equation (10) in which it is possible 
to substitute (56) and the second derivative from (58) 
as it defines the second derivative of the moment of 
the second order. As a result it is easy to receive: 
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2 1 1

n
n

n n n



 


  

 

CALCULATION  OF  DISPERSION 

Using a known formula of calculation of disper-
sion [7, p. 103], considering (22), substituting  (50), 
(56) and (58), we receive: 

     2D , , M 2, , , M 1, , ,a n L a n L a n L  

      2
6 6M 2, , ,0 2, , , 1, , ,a n R a n L R a n L     
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For comparison we will write down dispersion of 
an arithmetic average 

2

MEAND ( , , ) .
2 1

aa n L
n




  (59) 

In figure the family of curves of dispersion of a 
median divided into dispersion of an arithmetic aver-
age is presented, by formula: 

   
 MEAN

D , ,
, ,

D , ,
a n L

z a n L
a n L

 . 

At n=1 the curve goes most coolly, and with in-
crease in number of sensors the curve becomes more 
flat, aspiring to the horizontal line at the level 2 . 
Apparently, all curves have inflection points at uni-
form knot with coordinates approximately (1.4, 1.6). 

 

z(a, n, L) 

L / a 

n = 1
n = 2



PROPERTIES  OF  MEDIAN  UNDER  DRIFT... 

NAUCHNOE  PRIBOROSTROENIE, 2016, Vol. 26, No. 3 

73

 
Table 5.  Limit of preference of median 

 
Function Number n of sensors 

3 5 7 9 11 13 15 

PREF

L
a

 
 
 

  2.0119 2.0224 2.0861 2.1553 2.2228 2.2870 2.3480 
 
 
 
The nature gives improvement of an expected val-

ue of a median in comparison with an arithmetic aver-
age at the price of dispersion deterioration. For the 
answer to a question of in what measure such price is 
justified, the limit of preference of use of a median is 
offered to be defined as the solution of the following 
equation containing mean square deviations, equating 
borders of statistical dispersion: 

 
 

MEAN MEANM (1, , , ) D , ,

M(1, , , ) D , , .

a n L a n L

a n L a n L

 

 
 

The solution of this equation received by pro-
gramming is presented in Table 5. In comparison with 
table 3 we see wider area of preference of a median. 

CONCLUSION 

The received formulas and results of calculations 
give opportunity to estimate median parameters in 
comparison with arithmetic average parameters de-
pending on number of sensors and from drift of one 
sensor. Thereby possibility of a choice of the de-
manded number of sensors according to the set re-
quirements for the accuracy of measurements of a 
random variable (dose rate) is provided. 
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