logo
blue band <-
  JOURNAL "NP" ISSUES

"Nauchnoe Priborostroenie", 2024, Vol. 34, no. 1. ISSN 2312-2951

"NP" 2024 year Vol. 34 no. 1.,   ABSTRACTS

ABSTRACTS, REFERENCES

V. A. Lomovskoy, Y. V. Chugunov, S. A. Shatokhina

METHODOLOGY FOR THE STUDY OF INTERNAL FRICTION IN THE MODE OF
FREE DAMPED OSCILLATORY PROCESS.
PART 2. THEORETICAL ANALYSIS OF EXPERIMENTAL RESULTS

"Nauchnoe priborostroenie", 2024, vol. 34, no. 1, pp. 3—18.
 

A theoretical analysis of the experimental results of studying the spectra of internal friction and temperature dependences of frequency for each dissipative process local in temperature, obtained in the mode of a freely damped oscillatory process excited in the studied systems of different chemical nature, composition, and structure, is presented.
 

Keywords: internal friction spectra, damped oscillatory process, structural-kinetic subsystems, standard linear body

Author affiliations:

Frumkin Institute of Physical Chemistry and Electrochemistry of RAS, Moscow, Russia

 
Contacts: Shatokhina Svetlana Aleksandrovna, svetlanka.mazurina@mail.ru
Article received by the editorial office on 10.10.2023

Full text (In Russ./In Eng.) >>

REFERENCES

  1.   Lomovskoy V.A., Chugunov Y.V., Shatokhina S.A. [Methodology for the study of internal friction in the mode of free damped oscillatory process (part 1)]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2023, vol. 33, no. 4, pp. 60—71. URL: http://iairas.ru/mag/2023/full4/Art6.pdf
  2. Lomovskoy V.A. [Problems of structure formation in disperse systems]. Sovremennye problemy fizicheskoi khimii [Modern problems of physical chemistry]. Moscow, "Granitsa" Publ., 2005, pp. 193—209.
    (In Russ.).
  3. Ditkin V.A., Kuznetsov P.I. Spravochnik po operatsionnomu ischisleniyu [Operational calculus handbook]. Moscow, Gostekhteorizdat Publ., 1951. 256 p. (In Russ.).
  4. Gol'berg I.I. Mekhanicheskoe povedenie polimernykh materialov [Mechanical behavior of polymeric materials]. Moscow, Khimiya Publ., 1970. 156 p. (In Russ.).
  5. Postnikov V.S. Vnutrennee trenie v metallakh [Internal friction in metals]. Moscow, Metallurgiya Publ., 1969. 330 p. (In Russ.).
  6. Krishtal M.A., Golovin S.A. Vnutrennee trenie i struktura metallov [Internal friction and structure of metals]. Moscow, Metallurgiya Publ., 1976. 376 p. (In Russ.).
  7. Meshkov S.I. Vyazkouprugie svoistva metallov [Viscoelastic properties of metals]. Moscow, Metallurgiya Publ., 1974. 192 p. (In Russ.).
  8. Vnutrennee trenie v metallakh i splavakh [Internal friction in metals and alloys]. Moscow, Nauka Publ., 1970. 208 p. (In Russ.).
  9. Vnutrennee trenie v metallakh, poluprovodnikakh, diehlektrikakh i ferromagnetikakh [Internal friction in metals, semiconductors, dielectrics and ferromagnets]. Moscow, Nauka Publ., 1978. 240 p. (In Russ.).
  10. Gridnev S.A. Mekhanizmy vnutrennego treniya v segnetoehlektrikakh i segnetoehlastikakh [Mechanisms of internal friction in segmentoelectrics and segmentoelastics]. Voronezh, 1983. 360 p. (In Russ.).
  11. Prokhorov A.M., editor. Fizicheskaya ehntsiklopediya [Encyclopedia of Physics]. Moscow, Bol'shaya Rossiiskaya ehntsiklopediya Publ., 1992. (In Russ.).
  12. Lomovskoy V.A. [Structural subsystems and mechanical relaxation phenomena in inorganic glasses]. Neorganicheskie materialy [Inorganic Materials], 1999, vol. 35, no. 3, pp. 382—384. (In Russ.).
  13. Lomovskoy V.A. [Internal friction spectra and dissipative mobility of elements of aggregate and modifying subsystems]. Materialovedenie [Materials science], 2007, no. 2, pp. 3—10. (In Russ.).
  14. Lomovskoy V.A. [Internal friction spectra and dissipative mobility of elements of aggregate and modifying subsystems]. Materialovedenie [Materials science], 2007, no. 3, pp. 3—12. (In Russ.).
  15. Lomovskoy V.A. [Internal friction spectra and dissipative mobility of elements of aggregate and modifying sub-systems]. Materialovedenie [Materials science], 2007, no. 4, pp. 3—11. (In Russ.).
  16. Lomovskoy V.A. [The device for researching of local dissipative processes in solid materials of various chemical origin, composition and structure]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2019, vol. 29, no. 1, pp. 33—46. (In Russ.). DOI: 10.18358/np-29-1-i3346
  17. Chudnovskii V.G. Metody rascheta kolebanii i ustoichivosti sterzhnevykh sistem [Methods of calculation of vibrations and stability of rod systems]. Kyiv, AN USSR Publ., 1952. 416 p. (In Russ.).
  18. Panovko Ya.G. Vnutrennee trenie pri kolebaniyakh uprugikh sistem [Internal friction in oscillations of elastic systems]. Moscow, Fizmatgiz Publ., 1960. 194 p. (In Russ.).
  19. Panovko Ya.G., Gubanova I.I. Ustoichivost' i kolebaniya uprugikh sistem [Stability and oscillations of elastic systems]. Moscow, Nauka Publ., 1967. 420 p. (In Russ.).
  20. Pisarenko G.S. Kolebaniya mekhanicheskikh sistem s uchetom nesovershennoi uprugosti materiala [Vibrations of mechanical systems taking into account imperfect elasticity of material]. Kyiv, Naukova dumka Publ., 1970. 380 p. (In Russ.).
  21. Svetlitskii V.A., Stasenko I.V. Sbornik zadach po teorii kolebanii [Collection of problems on the theory of oscillations]. Moscow, Vysshaya shkola Publ., 1973. 452 p. (In Russ.).
  22. Sorokin E.S. K teorii vnutrennego treniya pri kolebaniyakh uprugikh sistem [Toward a theory of internal friction in oscillations of elastic systems]. Moscow, Gosstroiizdat Publ., 1960. 132 p. (In Russ.).
  23. Timoshenko S.P. Kolebaniya v inzhenernom dele [Fluc-tuations in engineering]. Moscow, Nauka Publ., 1967. 444 p. (In Russ.).
  24. Filippov A.P. Kolebaniya deformiruemykh sistem [Fluc-tuations of deformable systems]. Moscow, Mashino-stroenie Publ., 1970. 732 p. (In Russ.).
  25. Tondl A. Nelineinye kolebaniya mekhanicheskikh sistem [Nonlinear oscillations of mechanical systems]. Moscow, Mir Publ., 1973. 334 p. (In Russ.).
  26. Davidenkov N.N. [About energy dissipation at vibrations]. Zhurnal tekhnicheskoi fiziki [Journal of Applied Physics], 1938, vol. 8, no. 6, pp. 483—499. (In Russ.).
  27. Lunts E.B. [About damping of torsional vibrations]. Prikladnaya matematika i mekhanika. Novaya seriya [Journal of Applied Mathematics and Mechanics. New Series], 1938, vol. 1, no. 3, pp. 331—370. (In Russ.).
  28. Korchinskii I.L. [On the internal resistance of building materials]. Vestnik inzhenerov i tekhnikov [Engineers and technicians review], 1938, no. 2, pp. 21—27. (In Russ.).
  29. Panov D.Yu. [On torsional vibrations of a rod in the presence of elastic hysteresis]. Prikladnaya matematika i mekhanika. Novaya seriya [Journal of Applied Mathematics and Mechanics. New Series], 1940, vol. 4, no. 1, pp. 65—78. (In Russ.).
  30. Sorokin E.S. [Method of taking into account the inelastic resistance of the material when calculating structures for vibrations]. Sbornik ZNIIPS "Issledovaniya po dinamike sooruzheniy" [Collection TSNIIPS "Research on structural dynamics"], Moscow, Gosstroiizdat Publ., 1951, pp. 5—90. (In Russ.).
  31. Panovko Ya.G. [On consideration of hysteresis losses in problems of the applied theory of elastic vibrations]. Zhurnal tekhnicheskoi fiziki [Journal of Applied Physics], 1953, vol. 23, no. 3, pp. 486—497. (In Russ.).
  32. Pisarenko G.S. [Determination of hysteresis loop parameters by logarithmic decrement of free oscillation damping]. Sb. trudov Instituta stroitel'noy mechaniki AN USSR [Collection of articles of Institute of Construction Mechanics, Academy of Sciences of the Ukrainian SSR], 1951. Vol. 15. (In Russ.).
  33. Granato A., Lyukke K. [Dislocation theory of absorption]. Merkulov E.G., editor. Ul'trazvukovye metody issledovaniya dislokatsii [Ultrasonic methods of dislocations research], Moscow, IL Publ., 1963, pp . 27—57. (In Russ.).
  34. Bugaev N.M., Gorshkov A.A., Lomovskoi V.A., Fomkina Z.I. [Nature and possible mechanisms of dissipative loss background on internal friction spectra of amorphous polymeric materials]. Tezisy dokladov XXVI Mezhdunarodnoi konferentsii "Matematicheskoe i komp'yuternoe modelirovanie v mekhanike deformiruemykh sred i konstruktsii" [Proc. XXVI Int. Conf. "Mathematical and computer modeling in mechanics of deformable media and structures"], Saint Petersburg, "Aising" ID "FARMindeks", 2015, pp. 346—348. (In Russ.).
  35. Lomovskoy V.A. [Relaxation phenomena in poly(methyl methacrylate)]. Tonkie khimicheskie tekhnologii [Fine Chemical Technologies], 2015, vol. 10, no. 3, pp. 5—49. (In Russ.).
    URL: https://www.finechem-mirea.ru/jour/article/view/235?locale=ru_RU
  36. Kargin V.A., Slonimskii G.L. Kratkie ocherki po fizikokhimii polimerov. Izdanie vtoroe [Short Essays on the Physicochemistry of Polymers. Second edition]. Moscow, Khimiya Publ., 1967. 232 p. (In Russ.).
  37. Valishin A.A., Gorshkov A.A., Lomovskoy V.A. [Relaxation Processes and Their Spectra in Liquating Glasses]. Mekhanika tverdogo tela [Mechanics of Solids], 2011, no. 2, pp. 169—182. (In Russ.).
    URL: https://mtt.ipmnet.ru/ru/Issues/2011/2/169
  38. Postnikov V.S. [Temperature dependence of the internal friction of metals and alloys]. Uspekhi fizicheskikh nauk [Advances in physical sciences], 1958, vol. 66, no. 1, pp. 43—77. DOI: 10.3367/UFNr.0066.195809b.0043 (In Russ.).
 

E. E. Maiorov1, V. V. Kurlov1, Y. M. Borodyansky2, A. V. Dagaev3, I. S. Tayurskaya4

INVESTIGATION OF AN EXPERIMENTAL INTERFERENCE
INSTALLATION WITH SPATIAL MICROSCANNING TO CONTROL
THE GEOMETRIC PARAMETERS OF THE SURFACE

"Nauchnoe Priborostroenie", 2024, vol. 34, no. 1, pp. 19—25.
 

The paper highlights the possibility of using an experimental interference setup with spatial microscanning to control the geometric parameters of the surface. Obtaining high-precision and reliable information about the geometric parameters of the surface of objects has always been an important task of metrology, so this work is relevant and promising. The paper defines the purpose and sets the task of the study. An optical scheme, a mode of measuring the surface microrelief using an experimental interference device, as well as the optical film for determining the angular amplitude of vibrations are presented. The formulas make it possible to calculate all the parameters of the micro-scanning of the probing spot on the surface of the object with an experimental interference installation.
 

Keywords: interference installation, microrelief, microscanning, measurement range, measurement accuracy, measurement error, transverse component, longitudinal component

Author affiliation:

1Saint Petersburg State University of Aerospace Instrumentation (GUAP), Saint Petersburg, Russia
2The Bonch-Bruevich Saint-Petersburg State University of Telecommunications, Saint Petersburg, Russia
3Ivangorodskii Humanitarian-Technical Institute (branch of Saint Petersburg University of Aerospace
Instrumentation), Ivangorod, Russia

4Saint Petersburg University of Management Technologies and Economics, Saint Petersburg, Russia

 
Contacts: Maiorov Evgeniy Evgen'evich, majorov_ee@mail.ru
Article received by the editorial office on 18.09.2023

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Born M., Wolf E. Principles of Optics. 1st ed. Pergamon Press, 1959. 852 p. (Russ. ed.: Born M., Vol'f Eh. Osnovy optiki. Translate S.N. Breusa, A.I. Golovashkina, A.A. Shubina, eds. G.P. Motulevich. Moscow, Nauka Publ., 1970. 855 p.).
  2. Kreopalova G.V., Lazareva N.L., Puryaev D.T. Opticheskie izmereniya [Optical measurements]. Moscow, Mashinostroenie Publ., 1987. 264 p. (In Russ.).
  3. Franson M., Slanskii S. Kogerentnost' v optike [Coherence in optics]. K.S. Shifrin, ed. Moscow, Nauka Publ., 1967. 80 p. (In Russ.).
  4. Landsberg G.S. Optika [Optics]. Moscow, Nauka Publ., 1976. 926 p. (In Russ.).
  5. Malakara D. Opticheskii proizvodstvennyi kontrol' [Optical production control]. A.N. Sosnov, ed. Moscow, Mashinostroenie Publ., 1985. 340 p. (In Russ.).
  6. Afanas'ev V.A. Opticheskie izmereniya [Optical measurements]. Moscow, Nedra Publ., 1968. 263 p. (In Russ.).
  7. Kolomiitsev Yu.V. Interferometry [Interferometers]. Le-ningrad, Mashinostroenie Publ., 1976. 296 p. (In Russ.).
  8. Akhmanov S.A., D'yakov Yu.E., Chirkin A.S. Vvedenie v statisticheskuyu radiofiziku i optiku [Introduction to statistical radiophysics and optics]. Moscow, Nauka Publ., 1981. 640 p. (In Russ.).
  9. Maiorov E.E., Fedorenko A.G., Chabanenko A.V., Khokhlova M.V., Guliyev R.B., Dagaev A.V. [Investigation of the geometry of illumination in two-beam interferometers]. Izvestiya tul'skogo gosudarstvennogo universiteta. Tekhnicheskie nauki [News of Tula State University. Technical sciences], 2020, no. 8, pp. 179—189. (In Russ.). URL: https://elibrary.ru/item.asp?id=49521599
  10. Maiorov E.E. [Investigation of the interference output signal in the phase measurement system]. Sbornik dokladov 4 Vserossiiskoi nauchnoi konferentsii "Modelirovanie i situatsionnoe upravlenie kachestvom slozhnykh sistem" [Proc. 4 All-Russ. conf. "Modelling and situational quality management of complex systems"], Saint Petersburg, GUAP, 2023, pp. 56—60. URL: https://elibrary.ru/itzldp (In Russ.).
  11. Maiorov E.E., Pushkina V.P., Arefiev A.V., Dagaev A.V., Borodyansky Yu.M., Guliyev R.B. [Determination of the optical signal at the output of the photodetector system by direct integration Izvestiya tul'skogo gosudarstvennogo universiteta. Tekhnicheskie nauki [News of Tula State University. Technical sciences], 2022, no. 12, pp. 230—234. (In Russ.). URL: https://elibrary.ru/item.asp?id=50128366
  12. Maiorov E.E. [On the issue of measurement error in shear interferometry]. Sbornik dokladov 4 Vserossiiskoi nauchnoi konferentsii "Modelirovanie i situatsionnoe upravlenie kachestvom slozhnykh sistem" [Proc. 4 All-Russ. conf. "Modelling and situational quality management of complex systems"], Saint Petersburg, GUAP, 2023, pp. 61—64. URL: https://elibrary.ru/itzldp (In Russ.).
  13. Maiorov E.E. [Investigation of complex shapes of surfaces by a coherent time-limited system]. Sbornik dokladov 4 Vserossiiskoi nauchnoi konferentsii "Modelirovanie i situatsionnoe upravlenie kachestvom slozhnykh sistem". [Proc. 4 All-Russ. conf. "Modelling and situational quality management of complex systems"], Saint Petersburg, GUAP, 2023, pp. 65—68. URL: https://elibrary.ru/itzldp (In Russ.).
  14. Arefiev A.V., Koskovich V.B., Maiorov E.E., Pushkina V.P., Sorokin A.A., Udakhina S.V. [Investigation of the developed interference probe for measuring the irregularities of real surfaces]. Pribory i sistemy. Upravlenie, kontrol', diagnostika [Instruments and Systems: Monitoring, Control, and Diagnostics], 2022, no. 2, pp. 1—6. (In Russ.). DOI: 10.25791/pribor.2.2022.1319
  15. Borodyanskii Yu.M., Maiorov E.E., Petrova E.A., Popova E.V., Kurlov V.V., Udakhina S.V. [Measurement of geometrical parameters of complex shaped surfaces by low-coherent optical system]. Pribory [Instruments], 2022, no. 5 (263), pp. 3—7. (In Russ.). URL: https://elibrary.ru/item.asp?id=48969218
  16. Khokhlova M.V., Dagaev A.V., Maiorov E.E., Arefiev A.V., Guliev R.B., Gromov V.O. [Interference system for measuring the geometric parameters of reflecting surfaces]. Mezhdunarodnyi nauchno-issledovatel'skii zhurnal [International research journal], 2021, no. 6 (108), pp. 184—189. DOI: 10.23670/IRJ.2021.108.6.029 (In Russ.).
  17. Franson M. Optika speklov [Speckle optics]. Translate from French. Yu.I. Ostrovskii, ed. Moscow, Mir Publ., 1980. 171 p. (In Russ.).
 

S. A. Kazakov1, M. A. Grevtsev1, I. E. Jagatspanyan2, A. O. Volchek2

KINETICS OF CONDUCTIVITY OF N-TYPE SEMICONDUCTOR
METAL OXIDE FILMS DURING CHEMOSORPTION
OF OXIDIZING GASES
(SHORT MESSAGE)

"Nauchnoe Priborostroenie", 2024, vol. 34, no. 1, pp. 26—29.
 

The article considers a model of chemisorption of acceptor particles on the surface of n-type metal oxide semiconductors. An expression is obtained for the dimensionless electrical conductivity as a function of the concentration of the detected microimpurity. It has been shown that the adsorption value is proportional to the analyte concentration in the gas phase.
 

Keywords: adsorption, surface, electrical conductivity, metal oxide semiconductor, concentration, defective structure

Author affiliations:

1Ioffe Physical Technical Institute of the RAS, Saint Petersburg, Russia
2Scientific and Production Association PRIBOR, JSC, Saint Petersburg, Russia

 
Contacts: Kazakov Sergey Alekseevich, kazakov59@mail.ioffe.ru
Article received by the editorial office on 22.09.2023

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Myasnikov I.A., Sukharev V.Ya., Kupriyanov L.Yu., Zav'yalov S.A. Poluprovodnikovye sensory v fiziko-khimicheskikh issledovaniyakh [Semiconductor sensors in physicochemical research]. Moscow, Nauka Publ., 1991. 327 p. (In Russ.).
  2. Kiselev V.F., Krylov O.V. Adsorbtsionnye protsessy na poverkhnosti poluprovodnikov i diehlektrikov [Adsorption processes on the surface of semiconductors and dielectrics]. Moscow, Nauka Publ., 1978. 317 p. (In Russ.).
  3. Roberts M.W., McKee C.S. Chemistry of the metal-gas interface. Oxford, Clarendon Press, New York: Oxford University Press, 1978. 594 p. (Russ. ed.: Roberts M., Makki Ch. Khimiya poverkhnosti metall — gaz. Moscow, Mir Publ., 1981. 543 p.).
  4. Wolkenstein T. Electronic Processes on Semiconductor Surfaces during Chemisorption. Springer, 460 p. (Russ. ed.: Vol'kenshtein F.F. Ehlektronnye protsessy na poverkhnosti poluprovodnikov pri khemosorbtsii. Moscow, Nauka Publ., 1987. 345 p.).
  5. Gaman V.I. Fizika poluprovodnikovykh gazovykh sensorov [Physics of semiconductor gas sensors]. Tomsk, NTL Publ., 2012. 112 p. (In Russ.).
  6. Kazakov S.A., Kaminski V.V., Soloviev S.M., Sharenkova N.V. [Semiconductor gas oxygen sensors based on polycrystalline films of samarium sulfide]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2015, vol. 25, no. 3, pp. 116—123. (In Russ.). DOI: 10.18358/np-25-3-i116123
  7. Chelibanov V.P., Kazakov S.A., Lebedev S.G., Ryabtsev S.V., Turenko A.A. [Improved understanding of reference and equivalent instruments for measuring ozone in the gas phase]. Materialy konferentsii "Ozon i drugie ehkologicheski chistye okisliteli. Nauka i tekhnologii" [Proc. conf.: "Ozone and other environmentally friendly oxidizers. Science and Technology"], Moscow, 2005.
    URL: https://www.kge.msu.ru/ozone/archives/1rus_conf_pr/Plenary/P9-Chelibanov.pdf (In Russ.).
  8. Obvintseva L.A. [Semiconductor metal-oxide sensors for determination of chemically active gas impurities in air environment]. Zhurnal Rossiiskogo khimicheskogo obshchestva im. D.I. Mendeleeva [Journal of the D.I. Mendeleev Russian Chemical Society], 2008, vol. LII, no. 2, pp. 113—121. (In Russ.).
    URL: https://www.chem.msu.su/rus/jvho/2008-2/113.pdf
 

E. E. Maiorov1, G . A. Kostin2, T. A. Chernyak2, N. E. Baranov2

APPLICATION OF A DIRECTIONAL INTERFEROGRAM RECORDING SCHEME TO DETERMINE
THE MOVEMENT OF AN OBJECT USING A HOLOGRAPHIC INTERFERENCE INSTALLATION

"Nauchnoe Priborostroenie", 2024, vol. 34, no. 1, pp. 30—36.
 

The work is devoted to the study of object movement using the method of holographic interferometry according to a codirectional scheme. This work is relevant and promising because coherent optics methods play a significant role in optical measurements, and holographic interferometry methods are among the most highly informative and high-precision approaches. The article sets the goal and objectives as well as defines the object and method of research. The appearance, optical scheme. and technical parameters of an experimental holographic interference installation are given. Interference fields for various types of movements are shown, as well as a scheme for reproducing an interferogram after recording object movements. The results of moving the object image along the X axis by 100 microns and along the Z axis by 150 microns were obtained, and the relative error of determining dx and dz, which does not exceed 5%, was revealed.
 

Keywords: interferogram, condirectional scheme, photographic high-resolution plates, focal plane of the lens, relative error, interference band

Author affiliations:

1Saint Petersburg State University of Aerospace Instrumentation (GUAP), Saint Petersburg, Russia
2Saint Petersburg State University of Civil Aviation named after Chief Marshal of Aviation A.A. Novikov,
Saint Petersburg, Russia

 
Contacts: Maiorov Evgeniy Evgen'evich, majorov_ee@mail.ru
Article received by the editorial office on 12.10.2023

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Born M., Wolf E. Principles of Optics. 1st ed. Pergamon Press, 1959. 852 p. (Russ. ed.: Born M., Vol'f Eh. Osnovy optiki. Translate S.N. Breusa, A.I. Golovashkina, A.A. Shubina, eds. G.P. Motulevich. Moscow, Nauka Publ., 1970. 855 p.).
  2. Kreopalova G.V., Lazareva N.L., Puryaev D.T. Opticheskie izmereniya [Optical measurements]. Moscow, Mashinostroenie Publ., 1987. 264 p. (In Russ.).
  3. Franson M., Slanskii S. Kogerentnost' v optike [Coherence in optics]. K.S. Shifrin, ed. Moscow, Nauka Publ., 1967. 80 p. (In Russ.).
  4. Landsberg G.S. Optika [Optics]. Moscow, Nauka Publ., 1976. 926 p. (In Russ.).
  5. Malakara D. Opticheskii proizvodstvennyi kontrol' [Optical production control]. A.N. Sosnov, ed. Moscow, Mashinostroenie Publ., 1985. 340 p. (In Russ.).
  6. Afanas'ev V.A. Opticheskie izmereniya [Optical measurements]. Moscow, Nedra Publ., 1968. 263 p. (In Russ.).
  7. Kolomiitsev Yu.V. Interferometry [Interferometers]. Le-ningrad, Mashinostroenie Publ., 1976. 296 p. (In Russ.).
  8. Akhmanov S.A., D'yakov Yu.E., Chirkin A.S. Vvedenie v statisticheskuyu radiofiziku i optiku [Introduction to statistical radiophysics and optics]. Moscow, Nauka Publ., 1981. 640 p. (In Russ.).
  9. Maiorov E.E., Fedorenko A.G., Chabanenko A.V., Khokhlova M.V., Guliyev R.B.O., Dagaev A.V. [Investigation of the geometry of illumination in two-beam interferometers]. Izvestiya tul'skogo gosudarstvennogo universiteta. Tekhnicheskie nauki [News of Tula State University. Technical sciences], 2022, iss. 8, pp. 75—80. URL: https://elibrary.ru/item.asp?id=49521599 (In Russ.).
  10. Maiorov E.E. [Investigation of the interference output signal in the phase measurement system]. Sbornik dokladov 4 Vserossiiskoi nauchnoi konferentsii "Modelirovanie i situatsionnoe upravlenie kachestvom slozhnykh sistem" [Proc. 4 All-Russ. conf. "Modelling and situational quality management of complex systems"], Saint Petersburg, GUAP, 2023, pp. 56—60. URL: https://elibrary.ru/itzldp (In Russ.).
  11. Maiorov E.E., Pushkina V.P., Arefiev A.V., Dagaev A.V., Borodyansky Yu.M., Guliyev R.B. [Determination of the optical signal at the output of the photodetector system by direct integration]. Izvestiya tul'skogo gosudarstvennogo universiteta. Tekhnicheskie nauki [News of Tula State University. Technical sciences], 2022, iss. 12, pp. 230—235. (In Russ.). URL: https://elibrary.ru/item.asp?id=50128366
  12. Maiorov E.E. [On the issue of measurement error in shear interferometry]. Sbornik dokladov 4 Vserossiiskoi nauchnoi konferentsii "Modelirovanie i situatsionnoe upravlenie kachestvom slozhnykh sistem" [Proc. 4 All-Russ. conf. "Modelling and situational quality management of complex systems"], Saint Petersburg, GUAP, 2023, pp. 61—64. (In Russ.). URL: https://elibrary.ru/itzldp
  13. Maiorov E.E., Arefiev A.V., Borodyansky Yu.M., Guliyev R.B.O., Dagaev A.V., Pushkina V.P. [Mathematical modeling of the output signal for different photodetector aperture geometries in interference system of interferogram analysis]. Izvestiya vysshikh uchebnykh zavedeniy. Priborostroenie [Journal of Instrument Engineering],
    2023, vol. 66, no. 4, pp. 313—319. DOI: 10.17586/0021-3454-2023-66-4-313-319 (In Russ.).
  14. Maiorov E.E., Chernyak T.A., Kostin G.A. [Application of highly sensitive photomaterials based on silver halides to study the influence of speckle substrate deviations on measurement results]. Pribory [Instruments], 2023, no. 5 (275), pp. 51—54. (In Russ.). URL: https://elibrary.ru/item.asp?id=54266626
  15. Maiorov E.E., Borodyansky Yu.M., Kurlov V.V., Tayurskaya I.S., Pushkina V.P., Guliyev R.B.O. [Spatial micro-scanning of plane-parallel glass plate surface by the interference method]. Izvestiya vysshikh uchebnykh zavedeniy. Priborostroenie [Journal of Instrument Engineering], 2023, vol. 66, no. 8, pp. 688—695. DOI: 10.17586/0021-3454-2023-66-8-688-695 (In Russ.).
 

D. S. Chikurov, A. E. Rudominskiy, M. P. Volkov

NON-CONTACT METHOD FOR MEASURING THE DEPENDENCE OF THE CRITICAL CURRENT
OF A HIGH-TEMPERATURE SUPERCONDUCTOR TAPE ON THE MAGNITUDE AND
ORIENTATION OF THE MAGNETIC FIELD

"Nauchnoe Priborostroenie", 2024, vol. 34, no. 1, pp. 37—42.
 

A method for non-contact measurement of the critical current Jc of a high-temperature superconductor (HTSC) tape is considered, using the effect of magnetic flux capture in a superconducting ring. It is shown that the application of a local magnetic field on a section of the tape makes it possible to determine the dependence of Jc on the magnitude of the magnetic field H and the angle α between the plane of the tape and the direction of the magnetic field. Measurements of Jc(H, α) carried out on an experimental setup using the proposed technique showed good agreement of the results with published data on the anisotropy of the critical currents of HTSC tapes.
 

Keywords: HTSC tape, critical current, non-contact measurement method, anisotropy, magnetic field dependence, trapped magnetic flux

Author affiliations:

Ioffe Physical Technical Institute of the RAS, Saint Petersburg, RF

 
Contacts: Rudominskiy Alexander Evgenievich, a.rudominskiy@mail.ioffe.ru
Article received by the editorial office on 03.12.2023

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Shchukin A.E., Kaul’ A.R. Approaches to Increasing the Current-Carrying Characteristics in Second-Generation HTSC Tapes. Inorganic Materials, 2022. vol. 58, pp. 1365—1397. DOI: 10.1134/S0020168522130015
  2. Zhang Z., Zhou B., Liu J. et al. Engineering-based design and fabrication procedure for mid-temperature
    REBCO magnets accommodating the strong Ic anisotropy. Superconductivity, 2022, vol. 1, id. 100005. DOI: 10.1016/j.supcon.2022.100005
  3. Zheng H., Claus H., Chen L. et al. Transport currents measured in ring samples: test of superconducting weld. Physica C: Superconductivity, 2001, vol. 350, iss. 1-2, pp. 17—23. DOI. 10.1016/S0921-4534(00)01566-5
  4. Levin G.A., Barnes P.N., Murphy J. et al. Persistent current in coils made out of second generation high temperature superconductor wire. Applied Physics Letters, 2008, vol. 93, iss. 6, id. 062504. DOI: 10.1063/1.2969798
  5. Sheng J., Zhang M., Wang Y. et al. A new ring-shape high-temperature superconducting trapped-field magnet. Superconductor Science and Technology, 2017, vol. 30, no. 9, id. 094002. DOI: 10.1088/1361-6668/aa7a51
  6. Santos da Cruz V., Telles G.T., Ferreira A.C. et al. Pulse Magnetization of Jointless Superconducting Loops for Magnetic Bearings Height Control. IEEE Transactions on Applied Superconductivity, 2018, vol. 28, no. 4, pp. 1—4, id. 3601204. DOI: 10.1109/TASC.2018.2816105
  7. Rong C.C., Barnes P.N., Levin G.A. et al. Investigation of the Relaxation of Persistent Current in Superconducting Closed Loops Made Out of YBCO Coated Conductors. IEEE Transactions on Applied Superconductivity, 2015, vol. 25, no. 3, pp. 1—5, id. 8200805. DOI: 10.1109/TASC.2014.2376173
  8. Shelych A.I., Kudinov E.K. [Excitation of non-extinguishing current in HTSC ring]. Fizika tverdogo tela [Solid state physics], 1994, vol. 36, iss. 9, pp. 2585—2589. URL: https://journals.ioffe.ru/articles/16630 (In Russ.).
  9. Chikurov D.S., Volkov M.P. Study of the anisotropy of critical currents in 2G-HTSC tapes by a non-contact method. St. Petersburg State Polytechnical University Journal - Physics and Mathematics, 2023, vol. 16, no. 1.1, pp. 142—145. DOI: 10.18721/JPM.161.124
  10. Molodyk A., Samoilenkov S., Markelov A. et al. Development and large volume production of extremely high current density YBa2Cu3O7 superconducting wires for fusion. Scientific Reports, 2021, vol. 11, id. 2084. DOI: 10.1038/s41598-021-81559-z
 

T. E. Kuleshova

PRODUCTION OF ACTIVATED CARBON FROM BIOMASS
AS ELECTRODE MATERIAL FOR ELECTROCHEMICAL
DEVICES (REVIEW)

"Nauchnoe Priborostroenie", 2024, vol. 34, no. 1, pp. 43—61.
 

Activated carbon has excellent electrochemical characteristics such as a large specific surface area, fast ion/electron transport, and adjustable surface chemistry, making it a promising candidate as an electrode material for electrochemical devices. Biomass from agricultural products and waste is a promising precursor for activated carbon production because it is widespread, renewable, easy to process, and environmentally friendly. This review compares the electrode materials used for electrochemical devices, presents their advantages and disadvantages, and also reveals the prospects for using carbon materials. Biomass of various compositions is considered a promising electrode material. Data on the methods of obtaining activated carbon from biomass, methods of its activation, and parameters for evaluating the effectiveness of electrode systems are presented. Possible modifications of activated carbon that increase its conductivity are considered. In conclusion, a description of a wide range of suitable biomass sources and the possibility of their application in various electrochemical devices is given. Based on the data presented, it can be concluded that biomass-derived activated carbon turned out to be a promising candidate as an electrode for highly efficient electrochemical devices.
 

Keywords: activated carbon, electrochemical devices, supercapacitor, plant material, green energy

Author affiliations:

Agrophysical Research Institute, Saint Petersburg, Russia

 
Contacts: Kuleshova Tatiana Eduardovna, www.piter.ru@bk.ru
Article received by the editorial office on 22.08.2023

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Olabi A.G., Abbas Q., Al Makky A., Abdelkareem M.A. Supercapacitors as next generation energy storage devices: Properties and applications. Energy, 2022, vol. 248, id. 123617. DOI: 10.1016/j.energy.2022.123617
  2. Abechi S.E., Gimba C.E., Uzairu A., Dallatu Y.A. Preparation and characterization of activated carbon from palm kernel shell by chemical activation. Res. J. Chem. Sci., 2013, vol. 3, iss. 7, pp. 54—61.
    URL: http://www.isca.me/rjcs/Archives/v3/i7/8.ISCA-RJCS-2013-095.php
  3. Shaker M., Ghazvini A.A.S., Cao W., Riahifar R., Ge Q. Biomass-derived porous carbons as supercapacitor electrodes — A review. New Carbon Materials, 2021, vol. 36, no. 3, pp. 546—572. DOI: 10.1016/S1872-5805(21)60038-0
  4. Pandolfo A.G., Hollenkamp A.F. Carbon properties and their role in supercapacitors. Journal of Power Sources, 2006, vol. 157, iss. 1, pp. 11—27. DOI: 10.1016/j.jpowsour.2006.02.065
  5. Obreja V.V.N. On the performance of supercapacitors with electrodes based on carbon nanotubes and carbon activated material – a review. Physica E: Low-dimensional Systems and Nanostructures, 2008, vol. 40, iss. 7, pp. 2596—2605. DOI: 10.1016/j.physe.2007.09.044
  6. Farma R., Deraman M., Awitdrus A., Talib I.A., Taer E., Basri N.H., et al. Preparation of highly porous binderless activated carbon electrodes from fibres of oil palm empty fruit bunches for application in supercapacitors. Bioresource Technol., 2013, vol. 132, pp. 254—261. DOI: 10.1016/j.biortech.2013.01.044
  7. Zhao L., Zhou J.H., Sui Z.J., Zhou X.G. Hydrogenolysis of sorbitol to glycols over carbon nanofiber supported ruthenium catalyst. Chem Eng Sci., 2010, vol. 65, iss. 1, pp. 30—35. DOI: 10.1016/j.ces.2009.03.026
  8. Dos Reis G.S., Larsson S.H., de Oliveira H.P., Thyrel M., Lima E.C. Sustainable biomass activated carbons as electrodes for battery and supercapacitors – A mini-review. Nanomaterials, 2020, vol. 10, no. 7, id. 1398. DOI: 10.3390/nano10071398
  9. Klass D.L. Biomass for renewable energy and fuels. Encycl. Energy, 2004, pp. 193—212. DOI: 10.1016/B0-12-176480-X/00353-3
  10. Sharma V., Singh I., Chandra A. Hollow nanostructures of metal oxides as next generation electrode materials for supercapacitors. Sci Rep., 2018, vol. 8, id. 1307. DOI: 10.1038/s41598-018-19815-y
  11. Bashyam R., Zelenay P. A class of non-precious metal composite catalysts for fuel cells. Nature, 2006, vol. 443, pp. 63—66. DOI: 10.1038/nature05118
  12. Wang H., Lin J., Shen Z.X. Polyaniline (PANi) based electrode materials for energy storage and conversion. J Sci: Adv Mater Dev., 2016, vol. 1, iss. 3, pp. 225—255. DOI: 10.1016/j.jsamd.2016.08.001
  13. Peng C., Yan X.-b., Wang R.-t., Lang J.-w., Ou Y.-j., Xue Q.-j. Promising activated carbons derived from waste tea-leaves and their application in high performance supercapacitors electrodes. Electrochim Acta, 2013, vol. 87, pp. 401—408. DOI: 10.1016/j.electacta.2012.09.082
  14. Nagel B., Dellweg H., Gierasch L.M. Glossary for chemists of terms used in biotechnology (IUPAC Recommendations1992). Pure Appl. Chem., 1992, vol. 64, no. 1, pp. 143—168. DOI: 10.1351/pac199264010143
  15. Hesas R.H., Daud W.M.A.W., Sahu J.N., Arami-Niya A. The effects of a microwave heating method on the production of activated carbon from agricultural waste: A review. Journal of Analytical and Applied Pyrolysis, 2013, vol. 100, pp. 1—11. DOI: 10.1016/j.jaap.2012.12.019
  16. Vervikishko D.E., Yanilkin I.V., Atamanyuk I.N., Sametov A.A., Shkol’nikov E.I., Dobele G.V., Volperts A. [Activated carbon for supercapacitor electrodes with an aqueous electrolyte]. Teplofizika vysokikh temperatur [High Temperature], 2015, vol. 53, no. 5, pp. 799—806. DOI: 10.7868/S0040364415050270 (In Russ.).
  17. Voznyakovskii A.P., Neverovskaya A.Yu., Voznyakovskii A.A., Karmanov A.P., Shugalei I.V. [Biomass of hogweed as a raw material for producing 2D nanocarbones. Environmental aspect]. Ehkologicheskaya khimiya [Ecological chemistry], 2020, vol. 29, no. 4, pp. 190—195. (In Russ.).
    URL: https://www.elibrary.ru/item.asp?id=43105412
  18. Rufford T.E., Hulicova-Jurcakova D., Zhu Z., Lu G.Q. Nanoporous carbon electrode from waste coffee beans for high performance supercapacitors. Electrochemistry Communications, 2008, vol. 10, iss. 10, pp. 1594—1597. DOI: 10.1016/j.elecom.2008.08.022
  19. Kalderis D., Bethanis S., Paraskeva P., Diamadopoulos E. Production of activated carbon from bagasse and rice husk by a single-stage chemical activation method at low retention times. Bioresource Technology, 2008, vol. 99, iss. 15, pp. 6809—6816. DOI: 10.1016/j.biortech.2008.01.041
  20. Foo K.Y., Hameed B.H. Utilization of rice husks as a feedstock for preparation of activated carbon by microwave induced KOH and K2CO3 activation. Bioresource Technology, 2011, vol. 102, iss. 20, pp. 9814—9817. DOI: 10.1016/j.biortech.2011.07.102
  21. He X., Ling P., Qiu J., Yu M., Zhang X., Yu C., Zheng M. Efficient preparation of biomass-based mesoporous carbons for supercapacitors with both high energy density and high power density. Journal of Power Sources, 2013, vol. 240, pp. 109—113. DOI: 10.1016/j.jpowsour.2013.03.174
  22. Li X., Xing W., Zhuo S., Zhou J., Li F., Qiao S.-Z., et al. Preparation of capacitor’s electrode from sunflower seed shell. Bioresour Technol., 2011, vol. 102, iss. 2, pp. 1118—1123. DOI: 10.1016/j.biortech.2010.08.110
  23. Zhu H., Yin J., Wang X., Wang H., Yang X. Microorganism-derived heteroatom-doped carbon materials for oxygen reduction and supercapacitors. Adv. Funct. Mater., 2013, vol. 23, iss. 10, pp. 1305—1312.
    DOI: 10.1002/adfm.201201643
  24. Zhu H., Wang X., Yang F., Yang X. Promising carbons for supercapacitors derived from fungi. Adv. Mater., 2011, vol. 23, iss. 24, pp. 2745—2748. DOI: 10.1002/adma.201100901
  25. Goldfarb J.L., Do G., Salari M., Grinstaff M.W. Biomass-based fuels and activated carbon electrode materials: An integrated approach to green energy systems. ACS Sustainable Chemistry & Engineering, 2017, vol. 5, iss. 4, pp. 3046—3054. DOI: 10.1021/acssuschemeng.6b02735
  26. Bi Z., Kong Q., Cao Y., Sun G., Su F., Wei X., et al. Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: a review. Journal of materials chemistry A, 2019, vol. 7, iss. 27, pp. 16028—16045. DOI: 10.1039/C9TA04436A
  27. Rawat S., Mishra R.K., Bhaskar T. Biomass derived functional carbon materials for supercapacitor applications. Chemosphere, 2022, vol. 286, part. 3, id. 131961. DOI: 10.1016/j.chemosphere.2021.131961
  28. Abioye A.M., Ani F.N. Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: A review. Renewable and sustainable energy reviews, 2015, vol. 52, pp. 1282—1293. DOI: 10.1016/j.rser.2015.07.129
  29. Dhyani V., Bhaskar T. A comprehensive review on the pyrolysis of lignocellulosic biomass. Renewable Energy, 2018, vol. 129, part B, pp. 695—716. DOI: 10.1016/j.renene.2017.04.035
  30. Al Arni S. Comparison of slow and fast pyrolysis for converting biomass into fuel. Renewable Energy, 2018, vol. 124, pp. 197—201. DOI: 10.1016/j.renene.2017.04.060
  31. Funke A., Ziegler F. Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Biofuels, Bioprod., Biorefin., 2010, vol. 4, iss. 2, pp. 160—177. DOI: 10.1002/bbb.198
  32. Nizamuddin S., Baloch H.A., Griffin G.J., Mubarak N.M., Bhutto A.W., Abro R., Mazari S.A., Ali B.S. An overview of effect of process parameters on hydrothermal carbonization of biomass. Renewable and sustainable energy reviews, 2017, vol. 73, pp. 1289—1299. DOI: 10.1016/j.rser.2016.12.122
  33. Inari G.N., Petrissans M., Gerardin P. Chemical reactivity of heat-treated wood. Wood Sci. Technol., 2007, vol. 41, pp. 157—168. DOI: 10.1007/s00226-006-0092-7
  34. Antal M.J., Mochidzuki K., Paredes L.S. Flash carbonization of biomass. Ind. Eng. Chem. Res., 2003, vol. 42, iss. 16, pp. 3690—3699. DOI: 10.1021/ie0301839
  35. Cagnon B., Py X., Guillot A., Stoeckli F., Chambat G. Contributions of hemicellulose, cellulose and lignin to the mass and the porous properties of chars and steam activated carbons from various lignocellulosic precursors. Bioresour. Technol., 2009, vol. 100, iss. 1, pp. 292—298. DOI: 10.1016/j.biortech.2008.06.009
  36. Thostenson E.T., Chou T.-W. Microwave processing: fundamentals and applications. Composites Part A: Applied Science and Manufacturing, 1999, vol. 30, iss. 9, pp. 1055—1071. DOI: 10.1016/S1359-835X(99)00020-2
  37. Xie Z., Yang J., Huang X., Huang Y. Microwave processing and properties of ceramics with different dielectric loss. Journal of the European Ceramic Society, 1999, vol. 19, iss. 3, pp. 381—387. DOI: 10.1016/S0955-2219(98)00203-9
  38. Oghbaei M., Mirzaee O. Microwave versus conventional sintering: a review of fundamentals, advantages and applications. Journal of Alloys and Compounds, 2010, vol. 494, iss. 1-2, pp. 175—189.
    DOI: 10.1016/j.jallcom.2010.01.068
  39. Rodríguez-Reinoso F., Molina-Sabio M. Activated carbons from lignocellulosic materials by chemical and/or physical activation: an overview. Carbon, 1992, vol. 30, iss. 7, pp. 1111—1118. DOI: 10.1016/0008-6223(92)90143-K
  40. Cai Y., Luo Y., Xiao Y., Zhao X., Liang Y., Hu H., Dong H., Sun L., Liu Y., Zheng M. Facile synthesis of three-dimensional heteroatom-doped and hierarchical egg-boxlike carbons derived from moringa oleifera branches for high-performance supercapacitors. ACS Appl. Mater. Interfaces., 2016, vol. 8, no. 48, pp. 33060—33071. DOI: 10.1021/acsami.6b10893
  41. Li J., Liu W., Xiao D., Wang X. Oxygen-rich hierarchical porous carbon made from pomelo peel fiber as electrode material for supercapacitor. Appl. Surf. Sci., 2017, vol. 416, pp. 918—924. DOI: 10.1016/j.apsusc.2017.04.162
  42. Jiang W., Pan J., Liu X. A novel rod-like porous carbon with ordered hierarchical pore structure prepared from Al-based metal-organic framework without template as greatly enhanced performance for supercapacitor. J. Power Sources, 2019, vol. 409, pp. 13—23. DOI: 10.1016/j.jpowsour.2018.10.086
  43. Biswal M., Banerjee A., Deo M., et al. From dead leaves to high energy density supercapacitors. Energy & Environmental Science, 2013, vol. 6, iss. 4, pp. 1249—1259. DOI: 10.1039/C3EE22325F
  44. Ling Z., Wang Z., Zhang M., et al. Sustainable synthesis and assembly of biomass biomass-derived B/N co co-doped carbon nanosheets with ultrahigh aspect ratio for high high-performance supercapacitors. Advanced Functional Mat., 2016, vol. 26, iss. 1, pp. 111—119. DOI: 10.1002/adfm.201504004
  45. Kubo S., White R.J., Yoshizawa N., et al. Ordered carbohydratecarbohydrate-derived porous carbons. Chemistry of Materials, 2011, vol. 23, iss. 22, pp. 4882—4885. DOI: 10.1021/cm2020077
  46. Xu B., Hou S., Duan H., Cao G., Chu M., Yang Y. Ultramicroporous carbon aselectrode material for supercapacitors. J. Power Source, 2013, vol. 228, pp. 193—197. DOI: 10.1016/j.jpowsour.2012.11.122
  47. Chmiola J., Yushin G., Gogotsi Y. et al. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science, 2006, vol. 313, iss. 5794, pp. 1760—1763. DOI: 10.1126/science.1132195
  48. Inal I.I.G., Holmes S.M., Banford A., Aktas Z. The performance of supercapacitor electrodes developed from chemically activated carbon produced from waste tea. Applied Surface Science, 2015, vol. 357, part. A, pp. 696—703. DOI: 10.1016/j.apsusc.2015.09.067
  49. Jiang C., Yakaboylu G.A., Yumak T., Zondlo J.W., Sabolsky E.M., Wang J. Activated carbons prepared by indirect and direct CO2 activation of lignocellulosic biomass for supercapacitor electrodes. Renewable Energy, 2020, vol. 155, pp. 38—52. DOI: 10.1016/j.renene.2020.03.111
  50. Yumak T., Yakaboylu G.A., Oginni O., Singh K., Ciftyurek E., Sabolsky E.M. Comparison of the electrochemical properties of engineered switchgrass biomass-derived activated carbon-based EDLCs. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, vol. 586, id. 124150. DOI: 10.1016/j.colsurfa.2019.124150
  51. Beidaghi M., Chen W., Wang C. Electrochemically activated carbon micro-electrode arrays for electrochemical micro-capacitors. Journal of power sources, 2011, vol. 196, iss. 4, pp. 2403—2409. DOI: 10.1016/j.jpowsour.2010.09.050
  52. Wei T., Wei X., Gao Y., Li H. Large scale production of biomass-derived nitrogen-doped porous carbon materials for supercapacitors. Electrochimica Acta, 2015, vol. 169, pp. 186—194. DOI: 10.1016/j.electacta.2015.04.082
  53. Prabaharan S.R.S., Vimala R., Zainal Z. Nanostructured mesoporous carbon as electrodes for supercapacitors. Journal of Power Sources, 2006, vol. 161, iss. 1, pp. 730—736. DOI: 10.1016/j.jpowsour.2006.03.074
  54. Li W., Peng J., Zhang L., Yang K., Xia H., Zhang S., Guo S.H. Preparation of activated carbon from coconut shell chars in pilot-scale microwave heating equipment at 60 kW. Waste Management, 2009. vol. 29, iss. 2,
    pp. 756—760. DOI: 10.1016/j.wasman.2008.03.004
  55. Cao L., Li H., Xu Z., Zhang H., Ding L., Wang S., et al. Comparison of the heteroatoms-doped biomass-derived carbon prepared by one-step nitrogen-containing activator for high performance supercapacitor. Diamond and Rela-ted Materials, 2021, vol. 114, id. 108316. DOI: 10.1016/j.diamond.2021.108316
  56. Cao H., Peng X., Liu M.Z.P., Xua B., Guo J. Oxygen functional groups improve the energy storage performances of graphene electrochemical supercapacitors. RSC Adv., 2018, iss. 6, pp. 2858—2865. DOI: 10.1039/C7RA12425B
  57. Li Z., Zhang L., Chen X., Li B., Wang H., Li Q. Three-dimensional graphene-like porous carbon nanosheets derived from molecular precursor for high-performance supercapacitor application. Electrochim. Acta, 2019, vol. 296, pp. 8—17. DOI: 10.1016/j.electacta.2018.11.002
  58. Zhang Y., Chen H., Wang, S., Zhao X., Kong F. Regulatory pore structure of biomass-based carbon for supercapacitor applications. Microporous and Mesoporous Materials, 2020, vol. 297, id. 110032.
    DOI: 10.1016/j.micromeso.2020.110032
  59. Ding Z., Trouillet V., Dsoke S. Are functional groups beneficial or harmful on the electrochemical performance of activated carbon electrodes? J. Electrochem. Soc., 2019, vol. 166, iss. 6, id. A1004. DOI: 10.1149/2.0451906jes
  60. Elmouwahidi A., Zapata-Benabithe Z., Carrasco-Marín F., Moreno-Castilla C. Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes. Bioresource Technol., 2012, vol. 111, pp. 185—190. DOI: 10.1016/j.biortech.2012.02.010
  61. Yang W., Li Y., Feng Y. High electrochemical performance from oxygen functional groups containing porous activated carbon electrode of supercapacitors. Materials, 2018, vol. 11, iss. 12, id. 2455. DOI: 10.3390/ma11122455
  62. Wu F.C., Tseng R.L., Hu C.C., et al. Physical and electrochemical characterization of activated carbons prepared from firwoods for supercapacitors. Journal of Power Sources, 2004, vol. 138, no. 1-2, pp. 351—359. DOI: 10.1016/j.jpowsour.2004.06.023
  63. Phiri J., Dou J., Vuorinen T., et al. Highly porous willow wood-derived activated carbon for high-performance supercapacitor electrodes. ACS Omega, 2019, vol. 4, iss. 19, pp. 18108—18117. DOI: 10.1021/acsomega.9b01977
  64. Thubsuang U., Laebang S., Manmuanpom N., et al. Tuning pore characteristics of porous carbon monoliths prepared from rubber wood waste treated with H3PO4 or NaOH and their potential as supercapacitor electrode materials. Journal of Materials Science, 2017, vol. 52, pp. 6837—6855. DOI: 10.1007/s10853-017-0922-z
  65. Kim Y.-j., Lee B.-j., Suezaki H., et al. Preparation and characterization of bamboo-based activated carbons as electrode materials for electric double layer capacitors. Carbon, 2006, vol. 44, iss. 8, pp. 1592—1595.
    DOI: 10.1016/j.carbon.2006.02.011
  66. Wu J., Xia M., Zhang X., et al. Hierarchical porous carbon derived from wood tar using crab as the template: Performance on supercapacitor. Journal of Power Sources, 2020, vol. 455, id. 227982.
    DOI: 10.1016/j.jpowsour.2020.227982
  67. Liang C., Bao J., Li C., et al. One-dimensional hierarchically porous carbon from biomass with high capacitance as supercapacitor materials. Microporous and Mesoporous Materials, 2017, vol. 251, pp. 77—82.
    DOI: 10.1016/j.micromeso.2017.05.044
  68. Liu X., Ma C., Li J., et al. Biomass-derived robust three-dimensional porous carbon for high volumetric performance supercapacitors. Journal of Power Sources, 2019, vol. 412, pp. 1—9. DOI: 10.1016/j.jpowsour.2018.11.032
  69. Balathanigaimani M.S., Shim W.-G., Lee M.-j., et al. Highly porous electrodes from novel corn grains-based activated carbons for electrical double layer capacitors. Electrochemistry Communications, 2008, vol. 10, iss. 6, pp. 868—871. DOI: 10.1016/j.elecom.2008.04.003
  70. Cossutta M., Vretenar V., Centeno T.A., et al. A comparative life cycle assessment of graphene and activated carbon in a supercapacitor application. Journal of Cleaner Production, 2020, vol. 242, id. 118468. DOI: 10.1016/j.jclepro.2019.118468
  71. Sudhan N., Subramani K., Karnan M., et al. Biomass-derived activated porous carbon from rice straw for
    a high-energy symmetric supercapacitor in aqueous and non-aqueous electrolytes. Energy & Fuels, 2017, vol. 31, iss. 1, pp. 977—985. DOI: 10.1021/acs.energyfuels.6b01829
  72. Si W.-J., Wu X.-Z., Xing W., et al. Bagasse-based nanoporous carbon for supercapacitor application. Journal of Inorganic Materials, 2011, vol. 26, iss. 1, pp. 107—113. DOI: 10.3724/SP.J.1077.2010.10376
  73. Ma G., Yang Q., Sun K., et al. Nitrogen-doped porous carbon derived from biomass waste for high-performance supercapacitor. Bioresource Technology, 2015, vol. 197, pp. 137—142. DOI: 10.1016/j.biortech.2015.07.100
  74. Zhao G., Li Y., Zhu G., et al. Biomass-based N, P, and S self-doped porous carbon for high-performance supercapacitors. ACS Sustainable Chemistry & Engineering, 2019, vol. 7, iss. 14, pp. 12052—12060.
    DOI: 10.1021/acssuschemeng.9b00725
  75. Zhang J., Gong L., Sun K., et al. Preparation of activated carbon from waste Camellia oleifera shell for supercapacitor application. Journal of Solid State Electrochemistry, 2012, vol. 16, pp. 2179—2186. DOI: 10.1007/s10008-012-1639-1
  76. Wang C., Wu D., Wang H., et al. A green and scalable route to yieldporous carbon sheets from biomass for supercapacitors with high capacity. Journal of Materials Chemistry A, 2018, vol. 6, iss. 3, pp. 1244—1254. DOI: 10.1039/C7TA07579K
  77. Kalpana D., Cho S.H., Lee S.B., et al. Recycled waste paper-A new source of raw material for electric double-layer capacitors. Journal of Power Sources, 2009, vol. 190, iss. 2, pp. 587—591. DOI: 10.1016/j.jpowsour.2009.01.058
  78. Bhattacharjya D., Yu J.S. Activated carbon made from cow dung as electrode material for electrochemical double layer capacitor. Journal of Power Sources, 2014, vol. 262, pp. 224—231. DOI: 10.1016/j.jpowsour.2014.03.143
  79. Zhao Y.Q., Lu M., Tao P.Y., et al. Hierarchically porous and heteroatom doped carbon derived from tobacco rods for supercapacitors. Journal of Power Sources, 2016, Vol. 307, pp. 391—400.
    DOI: 10.1016/j.jpowsour.2016.01.020
  80. Misra R. Recycled waste paper-An inexpensive carbon material for supercapacitor applications. Doctoral dissertation. Central Electrochemical Research Institute, USA, 2016. URL: http://hdl.handle.net/10919/71497
  81. Tian W., Gao Q., Zhang L., et al. Renewable graphene-like nitrogen-doped carbon nanosheets as supercapacitor electrodes with integrated high energy—power properties. Journal of Materials Chemistry A, 2016, vol. 4, iss. 22, pp. 8690—8699. DOI: 10.1039/C6TA02828D
  82. Liu M.-C., Kong L.-B., Lu C., et al. Waste paper based activated carbon monolith as electrode materials for high performance electric double-layer capacitors. RSC Advances, 2012, vol. 2, iss. 5, pp. 1890—1896. DOI: 10.1039/C2RA01175A
  83. Taer E., Deraman M., Talib I.A., et al. Physical, electrochemical and supercapacitive properties of activated carbon pellets from pre-carbonized rubber wood sawdust by CO2 activation. Current Applied Physics, 2010, vol. 10, iss. 4, pp. 1071—1075. DOI: 10.1016/j.cap.2009.12.044
  84. Ismanto A.E., Wang S., Soetaredjo F.E., et al. Preparation of capacitor’s electrode from cassava peel waste. Bioresource Technology, 2010, vol. 101, iss. 10, pp. 3534—3540. DOI: 10.1016/j.biortech.2009.12.123
  85. Ali G.M., Habeeb O.A., Algarni H., et al. CaO impregnated highly porous honeycomb activated carbon from agriculture waste: symmetrical supercapacitor study. Journal of Materials Science, 2019, vol. 54, pp. 683—692. DOI: 10.1007/s10853-018-2871-6
  86. Sun K., Leng C.-y., Jiang J.-c., et al. Microporous activated carbons from coconut shells produced by self-activation using the pyrolysis gases produced from them, that have an excellent electric double layer performance. New Carbon Materials , 2017, vol. 32, iss. 5, pp. 451—459. DOI: 10.1016/S1872-5805(17)60134-3
  87. Kalyani P., Anitha A. Refuse derived energy-tea derived boric acid activated carbon as an electrode material for electrochemical capacitors. Portugaliae Electrochimica Acta, 2013, vol. 31, iss. 3, pp. 165—174. DOI: 10.4152/pea.201303165
  88. Wang K., Zhao N., Lei S., et al. Promising biomass-based activated carbons derived from willow catkins for high performance supercapacitors. Electrochimica Acta, 2015, vol. 166, pp. 1—11. DOI: 10.1016/j.electacta.2015.03.048
  89. Yu M., Han Y., Li J., Wang L. CO2-activated porous carbon derived from cattail biomass for removal of malachite green dye and application as supercapacitors. Chemical Engineering Journal, 2017, vol. 317, pp. 493—502. DOI: 10.1016/j.cej.2017.02.105
  90. Taer E., Apriwandi A., Taslim R., Agutino A., Yusra D.A. Conversion Syzygium oleana leaves biomass waste to porous activated carbon nanosheet for boosting supercapacitor performances. Journal of Materials Research and Technology, 2020, vol. 9, iss. 6, pp. 13332—13340. DOI: 10.1016/j.jmrt.2020.09.049
  91. Yang C., Chen C., Pan Y., Li S., Wang F., Li J., et al. Flexible highly specific capacitance aerogel electrodes based on cellulose nanofibers, carbon nanotubes and polyaniline. Electrochim Acta, 2015, vol. 182, pp. 264—271. DOI: 10.1016/j.electacta.2015.09.096
  92. Vivekchand S.R.C., Rout C.S., Subrahmanyam K.S., Govindaraj A., Rao C.N.R. Graphene-based electrochemical supercapacitors. J Chem Sci., 2008, vol. 120, pp. 9—13. DOI: 10.1007/s12039-008-0002-7
  93. Miller J., Dunn B., Tran T., Pekala R. Deposition of ruthenium nanoparticles on carbon aerogels for high energy density supercapacitor electrodes. J Electrochem Soc., 1997, vol. 144, iss. 12, id. L309. DOI: 10.1149/1.1838142
  94. Tao F., Zhao Y.-Q., Zhang G.-Q., Li H.-L. Electrochemical characterization on cobalt sulfide for electrochemical supercapacitors. Electrochem Commun, 2007, vol. 9, iss. 6, pp. 1282—1287. DOI: 10.1016/j.elecom.2006.11.022
  95. Li H., Yu M., Wang F., Liu P., Liang Y., Xiao J., et al. Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials. Nat Commun., 2013, vol. 4, id. 1894. DOI: 10.1038/ncomms2932
  96. Prasad K.R., Miura N. Potentiodynamically deposited nanostructured manganese dioxide as electrode material for electrochemical redox supercapacitors. J Power Sources, 2004, vol. 135, iss. 1-2, pp. 354—360.
    DOI: 10.1016/j.jpowsour.2004.04.005
  97. Yaqoob A.A., Ibrahim M.N.M., Yaakop A.S., Umar K., Ahmad A. Modified graphene oxide anode: A bioinspired waste material for bioremediation of Pb2+ with energy generation through microbial fuel cells. Chem. Eng. J., 2021, vol. 417, Id. 128052. DOI: 10.1016/j.cej.2020.128052
  98. Hung Y.H., Liu T.Y., Chen H.Y. Renewable coffee waste-derived porous carbons as anode materials for high-performance sustainable microbial fuel cells. ACS Sustain. Chem. Eng., 2019, vol. 7, iss. 20, pp. 16991—16999. DOI: 10.1021/acssuschemeng.9b02405
  99. Huggins T., Wang H., Kearns J., Jenkins P., Ren Z.J. Biochar as a sustainable electrode material for electricity production in microbial fuel cells. Bioresour. Technol., 2014, vol. 157, pp. 114—119.
    DOI: 10.1016/j.biortech.2014.01.058
 

T. S. Tikhomirova, Y. A. Lepekhin, M. S. Taraskevich

A PERCOLATION LAB-SCALE BIOREACTOR SYSTEM LB-1
FOR CULTIVATION OF MICROORGANISMS SENSITIVE
TO MECHANICAL DAMAGES

"Nauchnoe Priborostroenie", 2024, vol. 34, no. 1, pp. 62—80.
 

Lab-scale bioreactors are convenient and efficient equipment for various biotechnological processes. The main purpose of their application is an in-depth study of the properties of processes occurring under controlled conditions, as well as their further optimization and scaling. In this paper, we propose the lab-scale bioreactor (1.5 L), in which mixing is carried out due to a bidirectional flow of liquid between two cylindrical vessels due to compressed gases (percolation). Saturation of liquid media here is performed both in a thin layer of liquid on the surface of vessels and solid carriers. The mass transfer characteristics made it possible to qualify LB-1 as a column film bioreactor, which can be used for cultivating both microorganisms sensitive to mechanical damage and immobilized washed cultures (biofilms). In addition, an immersion heat exchanger and a steam sterilizable X-shaped connector were developed, the features of which were revealed using numerical simulation of the temperature control process and computational fluid dynamics.
 

Keywords: lab-scale bioreactor, column bioreactor, scaling, biotechnological process, percolation

Author affiliations:

Institute for Biological Instrumentation of the Russian Academy of Sciences,
Federal Research Center "Pushchino Scientific Center for Biological Research of the RAS",
Pushchino, Moscow Region, Russia

 
Contacts: Tikhomirova Tatyana Sergeevna, tts05@mail.ru
Article received by the editorial office on 08.09.2023

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Alvarado-Gutiérrez M.L., Ruiz-Ordaz N., Galíndez-Mayer J., Santoyo-Tepole F., Curiel-Quesada E., García-Mena J., Ahuatzi-Chacón D. Kinetics of carbendazim degradation in a horizontal tubular biofilm reactor. Bioprocess Biosyst. Eng., 2017, vol. 40, no. 4, pp. 519—528. DOI: 10.1007/s00449-016-1717-3
  2. Yang Y., Zhang L., Cheng J., Zhang S., Li B., Peng Y. Achieve efficient nitrogen removal from real sewage in
    a plug-flow integrated fixed-film activated sludge (IFAS) reactor via partial nitritation/anammox pathway. Bioresour. Technol., 2017, vol. 239, pp. 294—301. DOI: 10.1016/j.biortech.2017.05.041
  3. Guilherme E.C.X., de Oliveira J.C., de Carvalho L.M., Brandi I.V., Santos S.H.S., de Carvalho G.G.C., Cota J., Mara Aparecida de Carvalho B. Synthesis of supermacroporous cryogel for bioreactors continuous starch hydrolysis. Electrophoresis, 2017, vol. 38, no. 22-23, pp. 2940—2946. DOI: 10.1002/elps.201700208
  4. Zhang C., Li J., Wang J., Song X., Zhang J., Wu S., Hu C., Gong Z., Jia L. Antihyperlipidaemic and hepatoprotective activities of acidic and enzymatic hydrolysis exopolysaccharides from Pleurotus eryngii SI-04: 1. BMC Complement. Altern. Med., 2017, vol. 17, no. 1, id. 403. DOI: 10.1186/s12906-017-1892-z
  5. Frensing T., Heldt F.S., Pflugmacher A., Behrendt I., Jordan I., Flockerzi D., Genzel Y., Reichl U. Continuous influenza virus production in cell culture shows a periodic accumulation of defective interfering particles. PLoS ONE, 2013, vol. 8, no. 9, id. e72288. DOI: 10.1371/journal.pone.0072288
  6. Tapia F., Jordan I., Genzel Y., Reichl U. Efficient and stable production of Modified Vaccinia Ankara virus in two-stage semi-continuous and in continuous stirred tank cultivation systems. PLoS ONE, 2017, vol. 12, no. 8, id. e0182553. DOI: 10.1371/journal.pone.0182553
  7. Wu H.C., Hu Y.C., Bentley W.E. Tubular bioreactor for probing baculovirus infection and protein production. Methods Mol. Biol. Clifton NJ, 2016, vol. 1350, pp. 461—467. DOI: 10.1007/978-1-4939-3043-2_23
  8. Xu C., Clark C., Ryder T., Sparks C., Zhou J., Wang M., Russell R., Scott C. Characterization of TAP Ambr 250 disposable bioreactors, as a reliable scale-down model for biologics process development. Biotechnol. Prog., 2017, vol. 33, no. 2, pp. 478—489. DOI: 10.1002/btpr.2417
  9. Oncel S., Kose A. Comparison of tubular and panel type photobioreactors for biohydrogen production utilizing Chlamydomonas reinhardtii considering mixing time and light intensity. Bioresour. Technol., 2014, vol. 151, pp. 265—270. DOI: 10.1016/j.biortech.2013.10.076
  10. Cantera S., Muñoz R., Lebrero R., López J.C., Rodríguez Y., García-Encina C.A. Technologies for the bioconversion of methane into more valuable products. Curr. Opin. Biotechnol., 2018, vol. 50, pp. 128—135. DOI: 10.1016/j.copbio.2017.12.021
  11. Galvagno M.A., Iannone L.J., Bianchi J., Kronberg F., Rost E., Carstens M.R., Cerrutti C. Optimization of biomass production of a mutant of Yarrowia lipolytica with an increased lipase activity using raw glycerol. Rev. Argent. Microbiol., 2011, vol. 43, no. 3, pp. 218—225. DOI: 10.1590/S0325-75412011000300010
  12. Raza Z.A., Tariq M.R., Majeed M.I., Banat I.M. Recent developments in bioreactor scale production of bacterial polyhydroxyalkanoates. Bioprocess Biosyst. Eng., 2019, vol. 42, no. 6, pp. 901—919. DOI: 10.1007/s00449-019-02093-x
  13. Asih D.R., Alam M.Z., Alam Z., Salleh M.N., Salleh N., Salihu A. Pilot-scale production of lipase using palm oil mill effluent as a basal medium and its immobilization by selected materials. J. Oleo Sci., 2014, vol. 63, no. 8, pp. 779—785. DOI: 10.5650/jos.ess13187
  14. Zhong J.-J. Bioreactor Engineering. Comprehensive Biotechnology (Third Edition), ed. M. Moo-Young, Oxford, Pergamon, 2019, pp. 257—269. DOI: 10.1016/B978-0-444-64046-8.00077-X
  15. Shanmugam M.K., Mandari V., Devarai S.K., Gummadi S.N. Types of bioreactors and important design considerations. Current Developments in Biotechnology and Bioengineering, ed. R. Sirohi et al., Elsevier, 2022, pp. 3—30. DOI: 10.1016/B978-0-323-91167-2.00008-3
  16. De la Fuente Salcido N.M., Andrade A.M.A. Challenges of fermentation engineering. Advances in food bioproducts and bioprocessing technologies, CRC Press, 2019, Ch. 11, pp. 233—264. DOI: 10.1201/9780429331817-11
  17. Tikhomirova T.S., Taraskevich M.S., Ponomarenko O.V. The role of laboratory-scale bioreactors at the semi-continuous and continuous microbiological and biotechnological processes. Appl. Microbiol. Biotechnol., 2018, vol. 102, no. 17, pp. 7293—7308. DOI: 10.1007/s00253-018-9194-z
  18. Arrojo B., Mosquera-Corral A., Campos J.L., Méndez R. Effects of mechanical stress on Anammox granules in a sequencing batch reactor (SBR). J. Biotechnol., 2006, vol. 123, no. 4, pp. 453—463. DOI: 10.1016/j.jbiotec.2005.12.023
  19. Cantera S., Sánchez-Andrea I., Lebrero R., García-Encina P.A., Stams A.J.M., Muñoz R. Multi-production of high added market value metabolites from diluted methane emissions via methanotrophic extremophiles. Bioresour. Technol., 2018, vol. 267, pp. 401—407. DOI: 10.1016/j.biortech.2018.07.057
  20. Kumar R.N., Vinod A.V. Oxygen mass transfer in bubble column bioreactor. Period. Polytech. Chem. Eng., 2014, vol. 58, no. 1, pp. 21—30. DOI: 10.3311/PPch.7122
  21. Doig S.D., Ortiz-Ochoa K., Ward J.M., Baganz F. Characterization of oxygen transfer in miniature and lab-scale bubble column bioreactors and comparison of microbial growth performance based on constant k(L)a. Biotechnol. Prog., 2005, vol. 21, no. 4, pp. 1175—1182. DOI: 10.1021/bp050064j
  22. Chaumat H., Billet-Duquenne A.M., Augier F., Mathieu C., Delmas H. Mass transfer in bubble column for industrial conditions - effects of organic medium, gas and liquid flow rates and column design. Chem. Eng. Sci., 2005, vol. 60, no. 22, pp. 5930—5936. DOI: 10.1016/j.ces.2005.04.026
  23. Liu B., Zheng Y., Cheng R., Xu Z., Wang M., Jin Z. Experimental study on gas—liquid dispersion and mass transfer in shear-thinning system with coaxial mixer. Chin. J. Chem. Eng., 2018, vol. 26, no. 9, pp. 1785—1791. DOI: 10.1016/j.cjche.2018.02.009
  24. Aroniada M., Maina S., Koutinas A., Kookos I.K. Estimation of volumetric mass transfer coefficient (kLa) - Review of classical approaches and contribution of a novel methodology. Biochem. Eng. J., 2020, vol. 155, id. 107458. DOI: 10.1016/j.bej.2019.107458
  25. Yawalkar A.A., Heesink A.B.M., Versteeg G.F., Pangarkar V.G. Gas-liquid mass transfer coefficient in stirred tank reactors. Can. J. Chem. Eng., 2002, vol. 80, no. 5, pp. 840—848. DOI: 10.1002/cjce.5450800507
  26. Xu S., Gavin J., Jiang R., Chen H. Bioreactor productivity and media cost comparison for different intensified cell culture processes. Biotechnol. Prog., 2017, vol. 33, no. 4, pp. 867—878. DOI: 10.1002/btpr.2415
  27. Rioseras B., López-García M.T., Yagüe C., Sánchez J., Manteca A. Mycelium differentiation and development of Streptomyces coelicolor in lab-scale bioreactors: programmed cell death, differentiation, and lysis are closely linked to undecylprodigiosin and actinorhodin production. Bioresour. Technol., 2014, vol. 151, pp. 191—198. DOI: 10.1016/j.biortech.2013.10.068
  28. Steger F., Rachbauer L., Windhagauer M., Montgomery L.F.R., Bochmann G. Optimisation of continuous gas fermentation by immobilisation of acetate-producing Acetobacterium woodii. Anaerobe, 2017, vol. 46,
    pp. 96—103. DOI: 10.1016/j.anaerobe.2017.06.010
  29. Brand E., Junne S., Anane E., Cruz-Bournazou M.N., Neubauer C. Importance of the cultivation history for the response of Escherichia coli to oscillations in scale-down experiments. Bioprocess Biosyst. Eng., 2018, vol. 41, no. 9, pp. 1305—1313. DOI: 10.1007/s00449-018-1958-4
  30. Sandner V., Pybus L.C., McCreath G., Glassey J. Scale-down model development in ambrTM systems: An industrial perspective. Biotechnol. J., 2018, vol. 14, no. 4, id. 1700766. DOI: 10.1002/biot.201700766
  31. Jonczyk C., Takenberg M., Hartwig S., Beutel S., Berger R.G., Scheper T. Cultivation of shear stress sensitive microorganisms in disposable bag reactor systems. J. Biotechnol., 2013, vol. 167, no. 4, pp. 370—376. DOI: 10.1016/j.jbiotec.2013.07.018
  32. Michels M.H.A., van der Goot A.J., Vermuë M.H., Wijffels R.H. Cultivation of shear stress sensitive and tolerant microalgal species in a tubular photobioreactor equipped with a centrifugal pump. J. Appl. Phycol., 2016, vol. 28, no. 1, pp. 53—62. DOI: 10.1007/s10811-015-0559-8
  33. Verkholaz Y., Lavrov C., Guseva E., Menshutina N., Boudrant J. Simulations of hydrodynamic stress in stirred-tank bioreactors using CFD technology. Computer Aided Chemical Engineering, eds. E.N. Pistikopoulos, M.C. Georgiadis, A.C. Kokossis, Elsevier, 2011, vol. 29, pp. 1451—1454. DOI: 10.1016/B978-0-444-54298-4.50069-6
  34. Merchuk J.C. Shear effects on suspended cells. Bioreactor Systems and Effects. Adv. Biochem. Eng. Biotechnol, 1991, vol. 44, pp. 65—95. DOI: 10.1007/BFb0000748
  35. Fazenda M.L., Harvey L.M., McNeil B. Effects of dissolved oxygen on fungal morphology and process rheology during fed-batch processing of Ganoderma lucidum. J. Microbiol. Biotechnol., 2010, vol. 20, no 4, pp. 844—851. DOI: 10.4014/jmb.0911.11020
  36. Zheng Y.-X., Wang Y.-L., Pan J., Zhang J.-R., Dai Y., Chen K.-Y. Semi-continuous production of high-activity pectinases by immobilized Rhizopus oryzae using tobacco wastewater as substrate and their utilization in the hydrolysis of pectin-containing lignocellulosic biomass at high solid content. Bioresour. Technol., 2017, vol. 241, pp. 1138—1144. DOI: 10.1016/j.biortech.2017.06.066
  37. Orr D., Zheng W., Campbell B.S., McDougall B.M., Seviour R.J. Culture conditions affect the chemical composition of the exopolysaccharide synthesized by the fungus Aureobasidium pullulans. J. Appl. Microbiol., 2009, vol. 107, no. 2, pp. 691—698. DOI: 10.1111/j.1365-2672.2009.04247.x
  38. Timoumi A., Bideaux C., Guillouet S.E., Allouche Y., Molina-Jouve C., Fillaudeau L., Gorret N. Influence of oxygen availability on the metabolism and morphology of Yarrowia lipolytica: insights into the impact of glucose levels on dimorphism. Appl. Microbiol. Biotechnol., 2017, vol. 101, no. 19, pp. 7317—7333. DOI: 10.1007/s00253-017-8446-7
  39. Timoumi A., Cléret M., Bideaux C., Guillouet S.E., Allouche Y., Molina-Jouve C., Fillaudeau L., Gorret N. Dynamic behavior of Yarrowia lipolytica in response to pH perturbations: dependence of the stress response on the culture mode. Appl. Microbiol. Biotechnol., 2017, vol. 101, no. 1, pp. 351—366. DOI: 10.1007/s00253-016-7856-2
  40. Cobas M., Danko A.S., Pazos M., Sanromán M.A. Removal of metal and organic pollutants from wastewater by a sequential selective technique. Bioresour. Technol., 2016, vol. 213, pp. 2—10.
    DOI: 10.1016/j.biortech.2016.02.036
  41. Moore R.L.L., Worrallo M.J., Mitchell C.D., Harriman J., Glen K.E., Thomas R.J. Immobilisation of Delta-like 1 ligand for the scalable and controlled manufacture of hematopoietic progenitor cells in a stirred bioreactor. BMC Biotechnol., 2017, vol. 17, no. 1, id. 65. DOI: 10.1186/s12896-017-0383-0
  42. Nitsche B.M., Jørgensen T.R., Akeroyd M., Meyer V., Ram A.F. The carbon starvation response of Aspergillus niger during submerged cultivation: Insights from the transcriptome and secretome. BMC Genomics, 2012, vol. 13, id. 380. DOI: 10.1186/1471-2164-13-380
  43. Jost B., Holz M., Aurich A., Barth G., Bley T., Müller R.A. The influence of oxygen limitation for the production of succinic acid with recombinant strains of Yarrowia lipolytica. Appl. Microbiol. Biotechnol., 2015, vol. 99, no. 4, pp. 1675—1686. DOI: 10.1007/s00253-014-6252-z
  44. Bellou S., Makri A., Triantaphyllidou I.-E., Papanikolaou S., Aggelis G. Morphological and metabolic shifts of Yarrowia lipolytica induced by alteration of the dissolved oxygen concentration in the growth environment. Microbiol. Read. Engl., 2014, vol. 160, no. 4, pp. 807—817. DOI: 10.1099/mic.0.074302-0
  45. Chen C.-C., Zha X.-H., Zheng C. Construction of fibrous bed bioreactor for enhanced succinic acid production using wastewater of dextran fermentation. Bioprocess Biosyst. Eng., 2017, vol. 40, no. 12, pp. 1859—1866. DOI: 10.1007/s00449-017-1839-2
  46. Zhao L., Cao G.-L., Sheng T., Ren H.-Y., Wang A.-J., Zhang J., Zhong Y.-J., Ren N.-Q. Bio-immobilization of dark fermentative bacteria for enhancing continuous hydrogen production from cornstalk hydrolysate. Bioresour. Technol., 2017, vol. 243, pp. 548—555. DOI: 10.1016/j.biortech.2017.06.161
  47. Kays W.M., Crawford M.E. Convective heat and mass transfer. 3rd ed. NY, USA, McGraw-Hill Science, 1993. 480 p.
  48. Kays W.M. Turbulent Prandtl number. Where are we? ASME J. Heat Transf., 1994, vol. 116, no. 2, pp. 284—295. DOI: 10.1115/1.2911398
  49. Cerri M.O., Esperança M.N., Badino A.C., de Arruda Ribeiro M.P. A new approach for kLa determination by gassing-out method in pneumatic bioreactors. J. Chem. Technol. Biotechnol., 2016, vol. 91, no. 12, pp. 3061—3069. DOI: 10.1002/jctb.4937
  50. Dos Santos M.C., Cerri M.O., Bicas J.L. Relation of shear stress and kLa on bikaverin production by Fusarium oxysporum CCT7620 in a bioreactor. Bioprocess Biosyst. Eng., 2022, vol. 45, no. 4, pp. 733—740. DOI: 10.1007/s00449-022-02693-0
  51. Redikul'tsev Yu.V., Zinov'ev M.A., Kudryashov V.K., Malyshev R.M., Naumov V.N., Ugraitskii A.A. Apparat dlya kul'tivirovaniya kletok i mikroorganizmov [Cell and microorganism culture apparatus]. Patent RF no. RU106899U1. Prioritet 07.27.2011. (In Russ.). URL: https://yandex.ru/patents/doc/RU106899U1_20110727
  52. Redikul'tsev Yu.V., Kudryashov V.K., Zinov'ev M.A., Ugraitskii A.A., Golichenkov V.S., Bezruchko V.V., Sizov A.N., Shevelev D.A., Semenovich E.A., Taraske-vich M.R. Apparat dlya sovmeshchennogo kul'tiviro-vaniya mikroorganizmov [Apparatus for combined cultivation of microorganisms]. Patent RF no. RU93394U1. Prioritet 04.27.2010. (In Russ.). URL: https://yandex.ru/patents/doc/RU93394U1_20100427
  53. Redikul'tsev Yu.V., Shirshikov N.V., Gavrilov A.B., Khodakov E.V. Sposob realizatsii fermentatsionnykh protsessov i apparat dlya ego osushchestvleniya [Method for implementation of fermentation processes and apparatus for its implementation]. Patent RF no. RU2596924C1. Prioritet 09.10.2016. (In Russ.). URL:
    https://yandex.ru/patents/doc/RU2596924C1_20160910
  54. Redikul'tsev Yu.V., Zinov'ev M.A., Kon'kov M.A., Kudryashov V.K., Malyshev R.M., Naumov V.N., Taraskevich M.R., Ugraitskii A.A. Ustanovka dlya sovmeshchennogo kul'tivirovaniya mikroorganizmov [Combined microbial culture plant]. Patent RF no. RU102618U1. Prioritet 03.10.2011. (In Russ.). URL:
    https://yandex.ru/patents/doc/RU102618U1_20110310
  55. Borba A.P., de Souza J., Haupt W., de Oliveira de Souza F.R., Sporket F., Rossini E.G., Reis B.P. Microstructural analysis of corrosion of welded joints in stainless steel used in manufacture of bioreactors. IJRES, 2016, vol. 4, no. 12, pp. 37—48. DOI: 10.6084/m9.figshare.12317492
  56. Yan M., Wei B., Xu J., Li Y., Hu Y., Cai Z., Sun C. Insight into sulfate-reducing bacteria corrosion behavior of X80 pipeline steel welded joint in a soil solution. J. Mater. Res. Technol., 2023, vol. 24, pp. 5839—5863. DOI: 10.1016/j.jmrt.2023.04.163
  57. Kadic E., Heindel T.J. Bubble Column Bioreactors. An introduction to bioreactor hydrodynamics and gas-liquid mass transfer, John Wiley & Sons, Ltd, 2014, pp. 124—167. DOI: 10.1002/9781118869703
  58. Lübbert A. Bubble Column Bioreactors. Bioreaction engineering: modeling and control, eds. K. Schügerl,
    K.-H. Bellgardt, Berlin, Heidelberg, Springer, 2000, pp. 247—273. DOI: 10.1007/978-3-642-59735-0_9
  59. Khalil A., Rosso D., DeGroot C.T. Effects of flow velocity and bubble size distribution on oxygen mass transfer in bubble column reactors — A critical evaluation of the computational fluid dynamics-population balance model. Water Environ. Res., 2021, vol. 93, no. 10, pp. 2274—2297. DOI: 10.1002/wer.1604
  60. Mahdinia E., Demirci A., Berenjian A. Biofilm reactors as a promising method for vitamin K (menaquinone-7) production. Appl. Microbiol. Biotechnol., 2019, vol. 103, no. 14, pp. 5583—5592. DOI: 10.1007/s00253-019-09913-w
  61. Hu G., Zhai M., Niu R., Xu X., Liu Q., Jia J. Optimization of culture condition for ganoderic acid production in Ganoderma lucidum liquid static culture and design of a suitable bioreactor. Molecules, 2018, vol. 23, no. 10, id. 2563. DOI: 10.3390/molecules23102563
  62. Qureshi N., Annous B.A., Ezeji T.C., Karcher C., Maddox I.S. Biofilm reactors for industrial bioconversion processes: employing potential of enhanced reaction rates. Microb. Cell Factories, 2005, vol. 4, no. 1, id. 24. DOI: 10.1186/1475-2859-4-24
  63. Kosky C., Balmer R., Keat W., Wise G. Mechanical Engineering. Exploring Engineering (Third Edition), eds. C. Kosky et al., Boston, Academic Press, 2013, Ch. 12, pp. 259—281. DOI: 10.1016/B978-0-12-415891-7.00012-1
  64. Goodwin M.E. Sampling ports and related container systems. Patent EP1837640B1. 07.01.2020. URL: https://patents.google.com/patent/EP1837640B1/en
  65. Goodwin M.E., Larsen J.K. Tube port and associated container system. Patent JP5265345B2. 08.14.2013.
  66. Wang Y., Qin W., Liang Y., Chen Y., Jiang Y. Sampling device of fermentation tank. Patent CN211713089U. 10.20.2020.
  67. Lee C.B., Giroux D. Automatable aseptic sample withdrawal system. Patent US8281672B2. 10.09.2012. URL: https://patents.google.com/patent/US8281672B2/en
  68. Qian J., Huang G., Wan Z., Gao Y., Xia, Yang S., Wang C., Zhao Y. Sampling port and harvesting port connector for bioreactor. Patent CN203200260U. 09.18.2013.
  69. Ponomarenko O.V., Lepekhin Yu.A., Tikhomirova T.S. Fiting sterilizuemyi dlya gibkikh trubok [Sterilizable fitting for flexible tubes]. Patent RF no. RU2788265C1. Prioritet 01.17.2023. (In Russ.). URL:
    https://yandex.ru/patents/doc/RU2788265C1_20230117
 

D. G. Petrov, E. D. Makarova, I. E. Antifeev, M. V. Zaitseva

COLLECTING GENETIC BIOMATERIAL (DNA)
FROM SURFACES: METHODS AND DEVICES (REVIEW)

"Nauchnoe Priborostroenie", 2024, vol. 34, no. 1, pp. 81—106.
 

The review survey the evolution and current progress in designing instrumentation for sampling touch (contact) DNA and biological stains on the variety of item surfaces. The paper considers the effectivity of touch (contact) DNA recovery methods and devices being use for DNA collection from various surfaces at the crime scene and in the forensic laboratory as well as the explored challenges, limitations and current trends. The discussion covers earlier and novel tools, namely: scraping, cutting-out, swabs (and swabbing), tape and gel lifting, soaking, the Bardole M-VAC, dry and wet vacuum and the others.
 

Keywords: forensic biology, forensic DNA, touch (contact) DNA, DNA recovery, DNA collection methods, biomaterial sampling from surfaces, swab, swabbing, tape and gel lifting, wet vacuum, dry vacuum, soaking method

Author affiliations:

Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia

 
Contacts: Petrov Dmitriy Grigor'evich, dimoon88@mail.ru
Article received by the editorial office on 10.09.2023

Full text (In Russ.) >>

REFERENCES

  1. Oorschot R.A.H., Ballantyne K.N., Mitchell R.J. Forensic trace DNA: a review. Investigative Genetics, 2010, vol. 1, Id. 14. DOI: 10.1186/2041-2223-1-14
  2. Anisimov V.A., Garafutdinov R.R., Sagitov A.M., et al. [DNA forensics — the origin, present state and future prospects]. Biomika [Biomics], 2019, vol. 11, no. 3, pp. 282—314. DOI: 10.31301/2221-6197.bmcs.2019-26 (In Russ.).
  3. Faleeva T.G. Molekulyarno-geneticheskaya identifikatsiya potozhirovykh sledov v otpechatkakh pal'tsev na kozhe cheloveka. Diss. kand. med. nauk [Molecular genetic identification of sweat marks in human skin fingerprints. cand. med. sci. diss.]. Saint Petersburg, 2021. 208 p. (In Russ.).
  4. Yang J., Brooks C., Estes M.D., et al. An integratable microfluidic cartridge for forensic swab samples lysis. Forensic Sci. Int. Genet., 2014, vol. 8, no. 1, pp. 147—158. DOI: 10.1016/j.fsigen.2013.08.012
  5. Bruijns B., Knotter J., Tiggelaar R. A Systematic review on commercially available integrated systems for forensic DNA analysis. Sensors, 2023, vol. 23, no. 3, Id. 1075. DOI: 10.3390/s23031075
  6. Jung W., Yang M., Barrett M., et al. Recent improvement in miniaturization and integration of a DNA analysis system for rapid forensic analysis (midas). J. Forensic Investigation, 2014. vol. 2, no. 2. DOI: 10.13188/2330-0396.1000012
  7. Yang J., Hurth C., Nordquist A., et al. Integrated microfluidic system for rapid DNA fingerprint analysis: a miniaturized integrated DNA analysis system (MiDAS) — swab sample-in to DNA profile-out. Dutta D. (ed.). Microfluidic Electrophoresis: Methods and Protocols, Methods in Molecular Biology, Gumana Press, 2019, vol. 1906, pp. 207—224. DOI: 10.1007/978-1-4939-8964-5_14
  8. Butler J.M. Recent advances in forensic DNA typing: INTERPOL review 2019—2022. Forensic Sci. Int.: Synergy, 2023, vol. 6, Id. 100311. DOI: 10.1016/j.fsisyn.2022.100311
  9. Bazyar H. On the application of microfluidic-based technologies in forensics: a review. Sensors, 2023, vol. 23, no. 13, Id. 5856. DOI: 10.3390/s23135856
  10. Zemskova E.Y., Sokolova N.R., Isupov S.V., Ivanov P.L. ["Rapid DNA" ― new horizons of forensic DNA profiling using full cycle genetic analyzers]. Sudebnaya meditsina [Russian Journal of Forensic Medicine], 2021, vol. 7, no. 4, pp. 29—38. DOI: 10.17816/fm678 (In Russ.).
  11. Butler J.M. The future of forensic DNA analyses. Phil. Trans. R. Soc. B, 2015, vol. 370, Id. 20140252. DOI: 10.1098/rstb.2014.0252
  12. Burrill J., Daniel B., Frascione N. A review of trace "touch DNA" deposits: variability factors and an exploration of cellular composition. Forensic Sci. Int. Genet., 2019, vol. 39, pp. 8—18. DOI: 10.1016/j.fsigen.2018.11.019
  13. Alessandrini F., Cecati M., Pesaresi M., et al. Fingerprints as evidence for a genetic profile: morphological study on fingerprints and analysis of exogenous and individual factors affecting DNA typing. J. Forensic Sci., 2003, vol. 48, no. 3, pp. 586—592. DOI: 10.1520/JFS2002260
  14. Tang J., Ostrander J., Wickenheiser R., Hall A. Touch DNA in forensic science: The use of laboratory-created eccrine fingerprints to quantify DNA loss. Forensic Sci. Int.: Synergy, 2020, vol. 2, pp. 1—16. DOI: 10.1016/j.fsisyn.2019.10.004
  15. Kumar P., Bhandari D., Chauhan J.S., Sahajpal V. Touch DNA: revolutionizing evidentiary DNA forensics. Int. J. Forensic Sci., 2023, vol. 8, no. 3, Id. 000314. DOI: 10.23880/ijfsc-16000314
  16. Kanokwongnuwut P., Martina B., Taylora D. et al. How many cells are required for successful DNA profiling? Forensic Sci. Int.: Genet., 2020, vol. 51, Id 102453. DOI: 10.1016/j.fsigen.2020.102453 [Author manuscript].
  17. Gołaszewska A. Recovery techniques for contact DNA traces. Arch. Med. Sadowej. Kryminol., 2022, vol. 72, no. 3, pp. 138—146. DOI: 10.4467/16891716AMSIK.22.016.17394
  18. van Oorschot R.A.H., Szkuta B., Meakin G.E., et al. DNA transfer in forensic science: a review. Forensic Sci. Int.: Genet., 2019. vol. 38, pp. 140—166. DOI: 10.1016/j.fsigen.2018.10.014
  19. Williamson A.L. Touch DNA: Forensic Collection and Application to Investigations. J. Assoc. Crime Scene Reconstr., 2012, vol. 18, no. 1, pp. 1—5.
  20. Hebda L.M., Doran A.E., Foran D.R. Collecting and Analyzing DNA Evidence from Fingernails: A Comparative Study. J. Forensic Sci., 2014, vol. 59, iss. 5, pp. 1343—1350. DOI: 10.1111/1556-4029.12465
  21. Singh H.N. Collection, preservation and transportation of biological evidence for forensic DNA analysis. Int. J. All Research Education and Scientific Methods (IJARESM), 2021, vol. 9, no. 9, pp. 1123—1130.
  22. Hess S., Haas C. Recovery of trace DNA on clothing: A comparison of mini-tape lifting and three other forensic evidence collection techniques. J. Forensic Sci., 2017, vol. 62, iss. 1, pp. 187—191. DOI: 10.1111/1556-4029.13246
  23. Bécue A., Eldridge H., Champod C. Identification Sciences. Fingermarks. 19th INTERPOL Int. Forensic Sci. Managers Symposium, Lyon, France 7—10 October 2019. Review Papers, 2019, pp. 677—770.
  24. Collecting DNA evidence at property crime scenes, 2009. URL: https: //www.sjsu.edu/people/steven.lee/courses/c2/s2/Collecting%20DNA%20Evidence%20at%20Property%20Crime% 20Scenes%20Course.pdf
  25. Zaghloud N.M., Samir T., Megahed H.M. Recovery of DNA from Fingerprints on Enhanced Different Paper Types. J. Forensic Sci. & Criminol., 2019, vol. 7, no. 2, pp. 2—8. URL: https://www.annexpublishers.com/articles/JFSC/7202-Recovery-of-DNA-from-Fingerprints-on-Enhanced-Different-Paper-Types.pdf
  26. Kumar A. Touch DNA; A Quantitative Study in the Perspective of Forensic Science. Austin J. Forensic Sci. Criminol., 2021, vol. 8, no. 1, Id 1084. DOI: 10.26420/AustinJForensicSciCriminol.2021.1084
  27. Al-Snan N.R. The recovery of touch DNA from RDX-C4 evidences. Int. J. Leg. Med., 2021, vol. 135, no. 2, pp. 393—397. DOI: 10.1007/s00414-020-02407-9
  28. Solomon A.D., Hytinen M.E., McClain A.M., et al. An Optimized DNA Analysis Workflow for the Sampling, Extraction, and Concentration of DNA obtained from Archived Latent Fingerprints. J. Forensic Sci., 2018, vol. 63, iss. 1, pp. 47—57. DOI: 10.1111/1556-4029.13504
  29. Dong H., Wang J., Zhang T., et al. Comparison of preprocessing methods and storage times for touch DNA samples. Croat. Med. J., 2017, vol. 58, iss. 1, pp. 4—13. DOI: 10.3325/cmj.2017.58.4
  30. Tozzo P., Mazzobel E., Marcante B., et al. Touch DNA Sampling Methods: Efficacy Evaluation and Systematic Review. Int. J. Mol. Sci., 2022, vol. 23, Iss. 24, Id. 15541. DOI: 10.3390/ijms232415541
  31. Sessa F., Salerno M., Bertozzi G., et al. Touch DNA: impact of handling time on touch deposit and evaluation of different recovery techniques: An experimental study. Sci. Rep., 2019, vol. 9, Id. 9542. DOI: 10.1038/s41598-019-46051-9
  32. Linacre A., Pekarek V., Swaran Y.C., Tobe S.S. Generation of DNA profiles from fabrics without DNA extraction. Forensic Sci. Int. Genet., 2010, vol. 4, no. 2, pp. 137—141. DOI: 10.1016/j.fsigen.2009.07.006
  33. Cavanaugh S.E., Bathrick A.S. Direct PCR amplification of forensic touch and other challenging DNA samples:
    a review. Forensic Sci. Int. Genet., 2018, vol. 32, pp. 40—49. DOI: 10.1016/j.fsigen.2017.10.005
  34. Irion P.R. Evaluating the use of the M-Vac® Wet Vacuum System to recover DNA from cotton fabric. Graduated Theses, Dissertation, and Problem Reports, 2020. Id. 7951. URL: https://researchrepository.wvu.edu/etd/7951/
  35. Bonsu D.O.M., Higgins D., Austin J.J. Forensic touch DNA recovery from metal surfaces — A review. Science & Justice, 2020, vol. 60, no. 3, pp. 206—215. DOI: 10.1016/j.scijus.2020.01.002
  36. Bruijns B.B., Tiggelaar R.M., Gardeniers H. The Extraction and Recovery Efficiency of Pure DNA for Different Types of Swabs. J. Forensic Sci., 2018, vol. 63, no. 5, pp. 1492—1499. DOI: 10.1111/1556-4029.13837
  37. Vashist V., Banthia N., Kumar S., Agrawal P. A systematic review on materials, design, and manufacturing of swabs. Annals of 3D Printed Medicine, 2023, vol. 9, Id. 100092. DOI: 10.1016/j.stlm.2022.100092
  38. Prisposobleniya dlya sbora obraztsov v kriminalistike [Specimen collection devices in forensics]. Life Technology Corporation, 2012. URL: https://lifetechcentar.com/en/
  39. Copan 2021. URL: www.copangroup.com
  40. Comment D., Gouy A., Zingg C., Zieger M. A holistic approach for the selection of forensic DNA Swabs. Forensic Sci. Int., 2023, vol. 348, Id. 111737. DOI: 10.1016/j.forsciint.2023.111737
  41. Adamowicz M.S., Stasulli D.M., Sobestanovich E.M., Bille T.W. Evaluation of methods to improve the extraction and recovery of DNA from cotton swabs for forensic analysis. PLoS One, 2014, vol. 9, Id. e116351. DOI: 10.1371/journal.pone.0116351
  42. van Oorschot R.A.H., Phelan D.G., Futlong S., et al. Are you collecting all the available DNA from touched objects? Int. Congress Series, 2003, vol. 1239, pp. 803—807. DOI: 10.1016/S0531-5131(02)00498-3
  43. Alketbi S.K., Goodwin W. Validating Touch DNA Collection Techniques Using Cotton Swabs. J Forensic Res., 2019, vol. 10, iss. 3, Id. 445. URL:
    https: //www.hilarispublisher.com/open-access/validating-touch-dna-collection-techniques-using-cotton-swabs.pdf
  44. Gray A., Kuffel A., Daeid N.N. An improved rapid method for DNA recovery from cotton swabs. Forensic Sci. Int. Genet., 2023, vol. 64, Id. 102848. DOI: 10.1016/j.fsigen.2023.102848
  45. Marshall P., Stoljarova M., Larue B., et al. Evaluation of a novel material, diomics X-Swab, for collection of DNA. 3rd Int. Conf. on Forensic Res. Technol., October 06—08 2014. Hilton San Antonio Airport, USA (abstract).
  46. Novroski N., Kindt T., Schmedes S., et al. Diomics X-Swab™: a novel bio-specimen collection tool for increased trace material recovery and PCR enhancement. Poster Presentation . 25th Annual Int. Symposium on Human Identification (Promega); Phoenix, Arizona, September 29-October 2, 2014.
  47. Luna 2017. Luna's dissolvable swabs can revolutionize crime Scene investigations. BLOG. URL: https://lunainc.com/blog/lunas-dissolvable-swabs-can-revolutionize-crime-scene-investigations
  48. Dissolvable forensic swabs. URL: https://lunalabs.us/product/dissolvable-forensic-swabs/
  49. Popule® self-saturating applicators. Puritan Medical Products Co. 2019. URL: https://www.puritanmedproducts.com/
  50. Garvin A.M., Holzinger R., Berner F., et al. The forensiX Evidence Collection Tube and Its Impact on DNA Preservation and Recovery. BioMed Res. Int., 2013, vol. 2013, Id. 105797. DOI: 10.1155/2013/105797
  51. Mawlood S.K., Alrowaithi M., Watson N. Advantage of ForensiX Swabs in Retrieving and Preserving Biological Fluids. J Forensic Sci., 2015, vol. 60, iss. 3, pp. 686—689. DOI: 10.1111/1556-4029.12704
  52. Sauvagère S., Pussiau A., Hubac S. Innovations in Forensic Sciences for Human Identification by DNA in the French Gendarmerie during the Last 10 Years. Forensic Sci., 2023, vol. 3, iss. 2, pp. 316—329. DOI: 10.3390/forensicsci3020024
  53. Sherier A.J., Kieser R.E., Novroski N.M.M., Wendt F.R., King J.L., Woerner A.E., Ambers A., Garofano P., Budowle B. Copan microFLOQ® Direct Swab collection of bloodstains, saliva, and semen on cotton cloth. Int. J. Legal. Med., 2020, vol. 134, iss. 1, pp. 45—54. DOI: 10.1007/s00414-019-02081-6
  54. Ambers A., Wiley R., Novroski N., Budowle B. Direct PCR amplification of DNA from human bloodstains, saliva, and touch samples collected with microFLOQ® swabs. Forensic Sci. Int. Genet., 2018, vol. 32, pp. 80—87.
    DOI: 10.1016/j.fsigen.2017.10.010
  55. Gammon K., Murray-Jones K., Shenton D., et al. Touch DNA on objects can be analysed at low cost using simplified direct amplification methods. bioRxiv preprint, February 08, 2019, Id. 540823. DOI: 10.1101/540823
  56. DNA Extraction Pen to serve as A Forensic Tool. URL: http://imageandstyle.com/dna-extraction-pen-serve-forensic-tool/
  57. Comte J., Baechler S., Gervaix J., et al. Touch DNA collection — Performance of four different swabs. Forensic Sci. Int. Genet., 2019, vol. 43, Id. 102113. DOI: 10.1016/j.fsigen.2019.06.014
  58. Seiberle I., Währer J., Kron S., et al. Collaborative swab performance comparison and the impact of sampling solution volumes on DNA recovery. Forensic Sci. Int. Genet., 2022, vol. 59, Id. 102716.
    DOI: 10.1016/j.fsigen.2022.102716
  59. Hartless S., Walton-Williams L., Williams G. Critical Evaluation of Touch DNA Recovery Methods for Forensic Purposes. Forensic Sci. Int. Genetics. Suppl. Ser., 2019, vol. 7, iss. 1, pp. 379—380. DOI: 10.1016/j.fsigss.2019.10.020
  60. Smith C., Cox J.O., Rhodes C., et al. Comparison of DNA typing success in compromised blood and touch samples based on sampling swab composition. J. Forensic Sci., 2021, vol. 66, iss. 4, pp. 1427—1434. DOI: 10.1111/1556-4029.14694
  61. Pang B.C.M., Cheung B.K.K. Double swab technique for collecting touched evidence. Legal Med., 2007, vol. 9, no. 4, pp. 181—184. DOI: 10.1016/j.legalmed.2006.12.003
  62. Hoffmann S.G., Stallworth S.E., Foran D.R. Investigative studies into the recovery of DNA from improvised explosive device containers. J Forensic Sci., 2012, vol. 57, no. 3, pp. 602—609.
    DOI: 10.1111/j.1556-4029.2011.01982.x
  63. Thomasma S.M., Foran D.R. The influence of swabbing solutions on DNA recovery from touch samples. J. Forensic Sci., 2013, vol. 58, no. 2, pp. 465—469. DOI: 10.1111/1556-4029.12036
  64. Phetpeng S., Kitpipit T., Asavutmangkul V., et al. Touch DNA collection from improvised explosive devices: A comprehensive study of swabs and moistening agents. Forensic Sci. Int. Genet. Suppl. Ser., 2013, vol. 4, pp. e29—e30. DOI: 10.1016/j.fsigss.2013.10.014
  65. Schulte J., Rittiner N., Seiberle I., Kron S. Collecting touch DNA from glass surfaces using different sampling solutions and volumes: Immediate and storage effects on genetic STR analysis. J. Forensic Sci., 2023, vol. 68, iss. 4, pp. 1133—1147. DOI: 10.1111/1556-4029.15305
  66. Butler J.M. Advanced topics in forensic DNA typing: Methodology. Academic Press, 2011. 704 p.
  67. Romeika J.M., Yan F. Recent advances in forensic DNA analysis. J. Forensic Res., 2013, iss. S12, Id. 001.
    DOI: 10.4172/2157-7145.S12-001
  68. Hedman J., Jansson L., Akel Y., et al. The double-swab technique versus single swabs for human DNA recovery from various surfaces. Forensic Sci. Int. Genet., 2020, vol. 46, Id. 102253. DOI: 10.1016/j.fsigen.2020.102253
  69. Parsons L., Sharfe G., Vintiner S. DNA Analysis and Document Examination: The Impact of Each Technique on Respective Analyses. J. Forensic Sci., 2016, vol. 61, no. 1, pp. 26—34. DOI: 10.1111/1556-4029.12848
  70. Williams G., Pandre M., Ahmed W., et al. Evaluation of low trace DNA recovery techniques from ridged surfaces. J. Forensic Res., 2013, vol. 4, Id. 4. DOI: 10.4172/2157-7145.1000199
  71. Abdullah A., Szkuta B., Meakin G.E. Effect of swabbing technique and duration on forensic DNA recovery. Sci. Justice, 2023, vol. 63, no. 3, pp. 343—348. DOI: 10.1016/j.scijus.2023.03.002
  72. Hedman J., Akel Y., Jansson L., et al. Enhanced forensic DNA recovery with appropriate swabs and optimized swabbing technique. Forensic Sci. Int. Genet., 2021, vol. 53, Id. 102491. DOI: 10.1016/j.fsigen.2021.102491
  73. Jansson L., Akel Y., Eriksson R., et al. Impact of swab material on microbial surface sampling. J. Microbiol. Methods., 2020, vol. 176, Id. 106006. DOI: 10.1016/j.mimet.2020.106006
  74. Digel I., Akimbekov N., Kistaubayeva A., Zhubanova A. Microbial sampling from dry surfaces: current challenges and solutions. Artmann G.M., et al. (eds.) Biological, Physical and Technical Basics of Cell Engineering, Springer Nature Singapore Pte Ltd., 2018, pp. 421—456. DOI: 10.1007/978-981-10-7904-7_19
  75. Wood I., Park S., Tooke J., et al. Efficiencies of recovery and extraction of trace DNA from non-porous surfaces. Forensic Sci. Int. Genetics. Suppl. Ser., 2017, vol. 6, pp. e153—e156 (Preview). DOI: 10.1016/j.fsigss.2017.09.022
  76. Bini C., Giorgetti A., Giovannini E. Human DNA contamination of postmortem examination facilities: Impact of COVID-19 cleaning procedure. J Forensic Sci., 2022, vol. 67, no. 5, pp. 1867—1875. DOI: 10.1111/1556-4029.15096
  77. Mwangi P., Mogotsi M., Ogunbayo A., et al. A decontamination strategy for resolving SARS-CoV-2 amplicon contamination in a next-generation sequencing laboratory. Archives of Virology, 2022, vol. 167, pp. 1175—1179. DOI: 10.1007/s00705-022-05411-z
  78. Nilsson M., De Maeyer H., Allen M. Evaluation of Different Cleaning Strategies for Removal of Contaminating DNA Molecules. Genes, 2022, vol. 13, no. 1, Id. 162. DOI: 10.3390/genes13010162
  79. Pochtovyi A.A., Bacalin V.V., Kuznetsova N.Z., et al. SARS-CoV-2 Aerosol and Surface Contamination in Health Care Settings: The Moscow Pilot Study. Aerosol and Air Quality Research, 2021, vol. 21, no. 4, Id. 200604. DOI: 10.4209/aaqr.200604
  80. Ichijo T., Hieda H., Ishihara R., et al. Bacterial Monitoring with Adhesive Sheet in the International Space Station — "Kibo", the Japanese Experiment Module. Microbes Environ., 2013, vol. 28, no. 2, pp. 264—268.
    DOI: 10.1264/jsme2.ME12184
  81. Yamaguchi N., Roberts M., Castro S., et al. Microbial Monitoring of Crewed Habitats in Space – Current Status and Future Perspectives. Microbes Environ., 2014, vol. 29, no. 3, pp. 250—260. DOI: 10.1264/jsme2.ME14031
  82. Forsberg C., Jansson L., Ansell R., Hedman J. High-throughput DNA extraction of forensic adhesive tapes. Forensic Sci. Int. Genet., 2016, vol. 24, pp. 158—163. DOI: 10.1016/j.fsigen.2016.06.004
  83. Forsberg C., Wallmark N., Hedell R., et al. Reference material for comparison of different adhesive tapes for forensic DNA sampling. Forensic Sci. Int. Genet. Suppl. Ser., 2015, vol. 5, pp. e454—e455.
    DOI: 10.1016/j.fsigss.2015.09.180
  84. Li R.C., Harris H.A. Using hydrophilic adhesive tape for collection of evidence for forensic DNA analysis. J. Forensic Sci., 2003, vol. 48, no. 6, pp. 1318—1321. DOI: 10.1520/JFS2003121
  85. Verdon T.J., Mitchell R.J., van Oorschot R.A. Evaluation of tapelifting as a collection method for touch DNA. Forensic Sci. Int. Genet., 2014, vol. 8, no. 1, pp. 179—186. DOI: 10.1016/j.fsigen.2013.09.005
  86. Zech W.-D., Malik N., Thali M. Applicability of DNA Analysis on Adhesive Tape in Forensic Casework. J Forensic Sci., 2012, vol. 57, no. 4, pp. 1036—1041. DOI: 10.1111/j.1556-4029.2012.02105.x
  87. Hymus C.M., Baxter F.O., Ta H., et al. A comparison of six adhesive tapes as tape lifts for efficient trace DNA recovery without the transfer of PCR inhibitors. Leg. Med., 2023, Id. 102330. DOI: 10.1016/j.legalmed.2023.102330
  88. Gunnarsson J., Eriksson H., Ansell R. Success Rate of Forensic Tape-Lift Method for DNA Recovery. Problems of Forensic Sci., 2010, vol. LXXXIII, pp. 243—254.
  89. Joël J., Glanzmann B., Germann U., Cossu C. DNA extraction of forensic adhesive tapes — A comparison of two different methods. Forensic Sci. Int., 2015, vol. 5, pp. e579—e581. DOI: 10.1016/j.fsigss.2015.09.229
  90. Burmuzoska I., Hogg K., Raymond J., et al. Comparison of operational DNA recovery methods: Swabs versus tapelifts. Forensic Sci. Int. Genet. Suppl. Ser., 2022, vol. 8, pp. 50—52. DOI: 10.1016/j.fsigss.2022.09.019
  91. Kholevchuk A.G. [Methods of producing high-quality «touch DNA» from non-porous surface after visualizing finger marks: experience of the USA]. Vestnik Nizhe-gorodskogo universiteta im. N.I. Lobachevskogo [Vestnik of Lobachevsky University of Nizhni Novgorod], 2020, no. 4, pp. 159—167. (In Russ.).
  92. Bhoelai B., Beemster F., Sijen T. Revision of the tape used in a tape-lift protocol for DNA recovery. Forensic Sci. Int. Genet. Suppl. Ser., 2013, vol. 4, no. 1, pp. e270—e271. DOI: 10.1016/j.fsigss.2013.10.138
  93. Liu J.Y. PE-swab direct STR amplification of forensic touch DNA samples. J. Forensic Sci., 2015, vol. 60, no. 3, pp. 693—701. DOI: 10.1111/1556-4029.12705
  94. Liu J.Y. Direct qPCR quantification using the Quantifiler® Trio DNA quantification kit. Forensic Sci. Int. Genetics., 2014, vol. 13, pp. 10—19. DOI: 10.1016/j.fsigen.2014.06.016
  95. Janssen K., Aune M., Olsen M., et al. Biological stain collection — Absorbing paper is superior to cotton swabs. Forensic Sci. Int. Genet. Suppl. Ser., 2019, vol. 7, iss. 1, pp. 468—469. DOI: 10.1016/j.fsigss.2019.10.054
  96. van Oorschot R.A.H., Meakin G.E., Kokshoorn B., et al. DNA Transfer in Forensic Science: Recent Progress towards Meeting Challenges. Genes, 2021, vol. 12, iss. 11, Id. 1766. DOI: 10.3390/genes12111766
  97. Pizzamiglio M., Mameli A., My D., Garofano L. Forensic identification of a murderer by LCN DNA collected from the inside of the victim's car. Int. Congr. Ser., 2004, vol. 1261, pp. 437—439. DOI: 10.1016/S0531-5131(03)01855-7
  98. Kirgiz I.A., Calloway C. Increased recovery of touch DNA evidence using FTA paper compared to conventional collection methods. J. Forensic Legal Med., 2017, vol. 47, pp. 9—15. DOI: 10.1016/j.jflm.2017.01.007
  99. Omni-Matrix sample collection system. URL: http://www.biofunctions.com/biofunctions/category.asp?c=202
  100. Ramirez E. Evaluation of a novel DNA collection matrix designed to improve recovery of touch DNA from non-porous surfaces. Student These CUNY John Jay College of Criminal Justice, December 2019.
    URL: https://academicworks.cuny.edu/jj_etds/133
  101. BVDA international: Materials and equipment for crime scene officers and forensic laboratories. URL: www.bvda.com
  102. FOMA, product description. Gelatin lifters for criminal investigations. 2021. URL: www.foma.eu
  103. Parsons R., Bates L., Walton-Williams L., et al. DNA from Fingerprints: Attempting dual recovery. Staffordshire University, 2016, pp. 8—17. URL: http://eprints.staffs.ac.uk/2764/3/eprints2764.pdf
  104. Curtis B. The use of forensic gellifters to collect human DNA off trafficked animal specimens.
    URL: https://experiment-uploads.s3.amazonaws.com/file-attachments/user/162647/hNOwG4LtQOamQrl7dqaj_The% 20Use%20of%20Forensic%20Gellifters%20to%20Collect%20Human%20DNA%20Off%20Trafficked%20Animal% 20Specimens-%20Experiment.com.pdf
  105. Zieger M., Schneider C., Utz S. DNA recovery from gelatin fingerprint lifters by direct proteolytic digestion. Forensic Sci. Int., 2019, vol. 295, pp. 145—149. DOI: 10.1016/j.forsciint.2018.12.006
  106. Kwok R., Parsons R., Fieldhouse S., Walton-Williams L. An evaluation of two adhesive media for the recovery of DNA from latent fingermarks: A preliminary study. Forensic Sci. Int., 2023, vol. 344, Id. 11574.
    DOI: 10.1016/j.forsciint.2023.111574
  107. van Helmond W., O'Brien V., de Jong R., et al. Collection of amino acids and DNA from fingerprints using hydrogels. Analyst, 2018, vol. 143, no. 4, pp. 900—905. DOI: 10.1039/C7AN01692A
  108. Dieltjes P., Mieremet R., Zuniga S., et al. A sensitive method to extract DNA from biological traces present on ammunition for the purpose of genetic profiling. Int. J. Legal Med., 2011, vol. 125, pp. 597—602.
    DOI: 10.1007/s00414-010-0454-4
  109. Montpetit S., O’Donnell P. An optimized procedure for obtaining DNA from fired and unfired ammunition. Forensic Sci. Int. Genetics, 2015, vol. 17, pp. 70—74. DOI: 10.1016/j.fsigen.2015.03.012
  110. Subhani Z., Coleman K., Moore D., et al. A novel semi-automated direct lysis method for DNA recovery from live and spent 9mm ammunition. Forensic Sci. Int. Genet. Suppl. Ser., 2019, vol. 7, iss. 1, pp. 269—270.
    DOI: 10.1016/j.fsigss.2019.09.120
  111. Prasad E., Barash M., Hitchcock C., et al. Evaluation of soaking to recover trace DNA from fired cartridge cases. Aust. J. Forensic Sci., 2020, vol. 53, no. 5, Id. 1757758. DOI: 10.1080/00450618.2020.1757758
  112. Bille T.W., Fahrig G., Weitz S.M., Peiffer G.A. An improved process for the collection and DNA analysis of fired cartridge cases. Forensic Sci. Int. Genetics, 2020, vol. 46, Id. 102238. DOI: 10.1016/j.fsigen.2020.102238
  113. Elwick K., Gauthier Q., Rink S., et al. Recovery of DNA from fired and unfired cartridge casing: comparison of two DNA collection methods. Forensic Sci. Int. Genet., 2022, vol. 59, Id. 102726. DOI: 10.1016/j.fsigen.2022.102726
  114. Milne B. New wet vacuum touch DNA recovery system. CSEye. The Chartered Society of Forensic Sciences, January 2016. 36 p. URL: https://www.m-vac.com/images/pdfs/cseyejanuary2016.pdf
  115. Garrett A.D., Patlak D.J., Gunn L.E., et al. Exploring the Potential of a Wet-Vacuum Collection System for DNA Recovery. J. Forensic Identification, 2014, vol. 64, no. 5, pp. 429—448.
  116. Hedman J., Agren J., Ansell R. Crime scene DNA sampling by wet-vacuum applying M-Vac. Forensic Sci. Int. Genet. Suppl. Ser., 2015, vol. 5, pp. e89—e90. DOI: 10.1016/j.fsigss.2015.09.036
  117. McLamb J.M., Adams L.D., Kavlick M.F. Comparison of the M-Vac® Wet-Vacuum-Based Collection Method for DNA Recovery on Diluted Bloodstained Substrates. J. Forensic Sci., 2020, vol. 65, no. 6, pp. 1828—1834.
    DOI: 10.1111/1556-4029.14508
  118. Vickar T., Bache K., Daniel B., Frascione N. The use of the M-Vac® wet-vacuum system as a method for DNA recovery. Sci. Justice, 2018, vol. 58, no. 4, pp. 282—286. DOI: 10.1016/j.scijus.2018.01.003
  119. Williams S., Panacek E., Green W., et al. Recovery of salivary DNA from the skin after showering. Forensic Sci. Med. Pathol., 2015, vol. 11, no. 1, pp. 29—34. DOI: 10.1007/s12024-014-9635-7
  120. Bardole DNA collection method. M-Vac® Systems, Inc. URL: https://www.m-vac.com/why-mvac/research/bardole-dna-collection-method
  121. McLaughlin P., Hopkins C., Springer E., Prinz M. Non-destructive DNA recovery from handwritten documents using a dry vacuum technique. J. Forensic Sci., 2021, vol. 66, no. 4, pp. 1443—1451. DOI: 10.1111/1556-4029.14696
  122. Morgan A.G., Prinz M. Development of Improved DNA Collection and Extraction Methods for Handled Documents. Genes, 2023, vol. 14, no. 3, Id. 761. DOI: 10.3390/genes14030761
  123. Währen J., Kehm S., Allen M., et al. The DNA-Buster: The evaluation of an alternative DNA recovery approach. Forensic Sci. Int. Genet., 2023, vol. 64, Id. 102830. DOI: 10.1016/j.fsigen.2023.102830
  124. Neves C., Zieger M. "Total Human DNA Sampling" — Forensic DNA profiles from large areas. Forensic Sci. Int. Genet., 2023, vol. 67, Id. 102939. DOI: 10.1016/j.fsigen.2023.102939
  125. Caraballo N.I., Mendel J., Holness H., et al. An investigation into the concurrent collection of human scent and epithelial skin cells using a non-contact sampling device. Forensic Sci. Int., 2016, vol. 266, pp. 148—159.
    DOI: 10.1016/j.forsciint.2016.05.019
  126. Plaza D.T., Mealy J.L., Lane J.N., et al. ESDA®-Lite collection of DNA from latent fingerprints on documents. Forensic Sci, Int. Genet., 2015, vol. 16, pp. 8—12. DOI: 10.1016/j.fsigen.2014.11.011
  127. Zieger M., Defaux P.M., Utz S. Electrostatic sampling of trace DNA from clothing. Int. J. Legal. Med., 2016, vol. 130, no. 3, pp. 661—667. DOI: 10.1007/s00414-015-1312-1
  128. Meakin G., Jamieson A. DNA transfer: Review and implications for casework. Forensic Sci. Int. Genet., 2013, vol. 7, no. 4, pp. 434—443. DOI: 10.1016/j.fsigen.2013.03.013
  129. Kanokwongnuwut P., Kikbride P., Linacre A. Detection of latent DNA. Forensic Sci. Int. Genet., 2018, vol. 37, pp. 95—101. DOI: 10.1016/j.fsigen.2018.08.004
  130. Champion J., Kanokwongnuwut P., van Oorschot R.A.H., et al. Evaluation of a fluorescent dye to visualize touch DNA on various substrates. J. Forensic Sci., 2021, vol. 66, no. 4, pp. 1435—1442. DOI: 10.1111/1556-4029.14695
  131. Kanokwongnuwut P., Kirkbride P., Linacre A. Visualising latent DNA on swabs. Forensic Sci. Int., 2018, vol. 291, pp. 115—123. DOI: 10.1016/j.forsciint.2018.08.016
  132. Linacre A. Latent DNA: "seeing" the location of DNA. Judicial Officers' Bulletin, 2019, vol. 31, no. 3, pp. 23—24.
  133. Kanokwongnuwut P., Kirkbride K.P., Linacre A. An assessment of tape-lifts. Forensic Sci. Int. Genet., 2020, vol. 47, Id. 102292. DOI: 10.1016/j.fsigen.2020.102292
  134. Krosch M.N., McNevin A., Cook J., et al. Fluorescent dye-based detection of trace DNA on forensic tapelifts from worn shirts. Australian J. Forensic Sci., 2021, vol. 53, iss. 4, pp. 419—430.
    DOI: 10.1080/00450618.2019.1711177
  135. Cook R., Mitchell N., Henry J. Assessment of Diamond™ Nucleic Acid Dye for the identification and targeted sampling of latent DNA in operational casework. Forensic Sci. Int. Genet., 2021, vol. 55, Id. 102579.
    DOI: 10.1016/j.fsigen.2021.102579
  136. Hughes D.A., Szkuta B., van Oorschot R.A.H., Conlan X.A. "Technical note": Optimisation of Diamond™ Nucleic Acid. Dye preparation, application, and visualization, for latent DNA detection. Forensic Sci. Int., 2022, vol. 330, Id. 111096. DOI: 10.1016/j.forsciint.2021.111096
  137. Young J.M., Linacre A. Use of a spray device to locate touch DNA on casework samples. J. Forensic Sci., 2020, vol. 65, iss. 4, pp. 1280—1288. DOI: 10.1111/1556-4029.14304
  138. Kanokwongnuwut P., Kirkbride K.P., Linacre A. Detecting latent DNA in wildlife forensic science investigations. Science & Justice, 2020, vol. 60, iss. 4, pp. 358—362. DOI: 10.1016/j.scijus.2020.02.001
  139. Deliveyner N., Cassey P., Linacre A., et al. Recovering trace DNA from the illegal wildlife trade. Forensic Sci. Int. Animals and Environments, 2022, vol. 2, Id. 100040. DOI: 10.1016/j.fsiae.2021.100040
 

A. S. Berdnikov, S. V. Masyukevich

ANALYTICAL POTENTIALS OF ELECTRIC FIELDS FOR SIMULATION OF ION GUIDES
WITH A PERIODIC STRUCTURE

"Nauchnoe Priborostroenie", 2024, vol. 34, no. 1, pp. 107—116.
 

The article discusses analytical expressions for the potentials of electric fields that correspond to transport channels with a periodic geometric structure of electrodes and potentials applied to the electrodes. The electrodes of the transport channel are a sequence of circular diaphragms or have a similar structure. The derived expressions can be useful for rapid qualitative simulation of radio frequency devices used for ion conveying and focusing.
 

Keywords: Laplace's equation, periodic electrodes, analytical electric fields, ion guides, ion traps, ion funnels

Author affiliations:

Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia

 
Contacts: Berdnikov Aleksandr Sergeevich, asberd@yandex.ru
Article received by the editorial office on 04.10.2023

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Gerlich D. Inhomogeneous RF fields: a versatile tool for the study of processes with slow ions. Ng Ch.Y., Baer M. (Eds.). State-selected and state-to-state ion—molecule reaction dynamics. Part 1. Experiment, advances in chemical physics series, vol. LXXXII, New York, John Wiley & Sons Inc., 1992, pp. 1—176.
  2. Yavor M.I. Optics of charged particle analyzers. Advances of Imaging and Electron Physics, vol. 157, Elsevier, 2009, pp. 142—168.
  3. Bahr R. Diplom thesis. University of Freiburg. 1969.
  4. Gerlich D. Diplom thesis. University of Freiburg. 1971.
  5. Teloy E., Gerlich D. Integral cross sections for ion-molecule reactions. Part I. The Guided beam technique. Chem. Phys., 1974, vol. 4, no. 3, pp. 417—427. DOI: 10.1016/0301-0104(74)85008-1
  6. Gerlich D., Kaefer G. Ion trap studies of association processes in collisions of CH3+ and CD3+ with n-H2,
    p-H2, D2 and He at 80 K. The Astrophysical Journal, 1989, vol. 347, iss. 2, pp. 849—854. DOI: 10.1086/168174
  7. Berdnikov A.S., Gall N.R. [Radiofrequency transport traps with periodic electrodes without parasitic trapping regions]. Mass-Spektrometria [Mass-spectrometry], 2013, vol. 10, no. 4, pp. 224—229. (In Russ.). URL: http://mass-spektrometria.ru/pre-t10n4-radiochast/
  8. Berdnikov A.S., Gall N.R. Radio frequency ion guiding traps with periodic electrodes without spurious trapping regions. J. Anal. Chem., 2014, vol. 69, no. 13, pp. 1285—1290. DOI: 10.1134/S1061934814130024
  9. Shaffer S.A., Tang K., Anderson G., Prior D.C., Udseth H.R., Smith R.D. A novel ion funnel for focusing ions at elevated pressure using electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom., 1997, vol. 11, no. 16, pp. 1813—1817. DOI: 10.1002/(SICI)1097-0231(19971030)11:16<1813::AID-RCM87>3.0.CO;2-D
  10. Shaffer S.A., Prior D.C., Anderson G., Udseth H.R., Smith R.D. An ion funnel interface for improved ion focusing and sensitivity using electrospray ionization mass spectrometry. Anal. Chem., 1998, vol. 70, iss. 19, pp. 4111—4119. DOI: 10.1021/ac9802170
  11. Shaffer S.A., Tolmachev A.V., Prior D.C., Anderson G.A., Udseth H.R., Smith R.D. Characterization of an improved electrodynamic ion funnel interface for electrospray ionization mass spectrometry. Anal. Chem., 1999, vol. 71, no. 15, pp. 2957—2964. DOI: 10.1021/ac990346w
  12. Tolmachev A.V., Kim T., Udseth H.R., Smith R.D., Bailey T.H., Futrell J.H. Simulation-based optimization of the electrodynamic ion funnel for high sensitivity electrospray ionization mass spectrometry. International Journal of Mass Spectrometry, 2000, vol. 203, no. 1-3, pp. 31—47. DOI: 10.1016/S1387-3806(00)00265-7
  13. Kim T., Tolmachev A.V., Harkewicz R., Prior D.C., Anderson G., Udseth H.R., Smith R.D. Design and implementation of a new electrodynamic ion funnel. Anal. Chem., 2000, vol. 72, iss. 10, pp. 2247—2255. DOI: 10.1021/ac991412x
  14. Lynn E.C., Chung M.-C., Han C.-C. Characterizing the transmission properties of an ion funnel. Rapid Commun. Mass Spectrom., 2000, vol. 14, no. 22, pp. 2129—2134. DOI: 10.1002/1097-0231(20001130)14:22<2129::AID-RCM144>3.0.CO;2-M
  15. Kelly R.T., Tolmachev A.V., Page J.S., Tang K., Smith R.D. The Ion Funnel: Theory, Implementations and Applications. Mass Spectrometry Reviews, 2010, vol. 29, iss. 2, pp. 294—312. DOI: 10.1002/mas.20232
  16. Watson G.N. A treatise on the theory of Bessel functions. Cambridge at the University Press, 1922. 788 p. (Russ. ed.: Watson J.N. Teoriya besselevych funkziy. Translate V.S. Berman. Moscow, Inostrannaya literatura Publ., 1949. 799 p.).
  17. Bateman H., Erdeyi A. Higher Transcendental Functions. Vol. 2: Tables of Integral Transforms. Bombay—New Dehli, TATA McGraw Hill Publ. Comp., 1953. 396 p. (Russ. ed.: Beitmen G., Ehrdeii A. Vysshie transtsendentnye funktsii. T. 2: Funktsii Besselya, funktsii parabolicheskogo tsilindra, ortogonal'nye mnogochleny. Seriya "Spravochnaya matematicheskaya biblioteka", Izd. 2-e, Moscow, Nauka Publ., 1974.
    296 p.).
  18. Abramowitz M., Stegun I.A. Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables. New York, Dover Publications Inc., 1965. 1046 p. (Russ. ed.: Abramovits M., Stigan I. Spravochnik po spetsial'nym funktsiyam s formulami, grafikami i matematicheskimi tablitsami. Moscow, Nauka Publ., 1979. 832 p.).
  19. Andreyeva A.D., Berdnikov A.S. [Charged particle manipulation devices based on the Archimedean screw principle]. Sbornik tezisov dokladov IV Vserossiiskoi konferentsii i V syezda Vserossiiskogo mass-spektrometriches-kogo obshchestva "Massspektrometriya i ee prikladnye problemy" [Proc. IV All-Russ. Conf. and V Congr. All-Russ. Mass Spectrom. Soc. "Mass spectrometry and its applications"], Moscow, 2011, pp. 137. (In Russ.).
  20. Andreyeva A.D., Berdnikov A.S. [Mass spectrometric devices based on radio-frequency electric fields with Archimedean properties]. Mass-Spektrometria [Mass spectrometry], 2011, vol. 8, no. 4, pp. 293—296. URL: http://mass-spektrometria.ru/pre-8n4-pismo/
  21. Andreyeva A.D., Berdnikov A.S. Mass spectrometric devices with Archimedean radio frequency electric fields. J. Anal. Chem., 2012, vol. 67, no. 13, pp. 1034—1037. DOI: 10.1134/S1061934812130023
  22. Berdnikov A.S., Andreyeva A.D. Ustroistvo dlya manipulirovaniya zaryazhennymi chastitsami. Patent RF no. RU113611U1 [Patent for useful model for device for manipulating charged particles]. Prioritet 2011. (In Russ.). URL: https://patents.google.com/patent/RU113611U1/ru
  23. Berdnikov A.S., Andreyeva A.D. Ustroistvo dlya manipulirovaniya zaryazhennymi chastitsami. Patent RF no. RU 2465679C1 [Patent for apparatus for manipulating charged particles]. Prioritet 2012. (In Russ.).
    URL: https://patents.google.com/patent/RU2465679C1/ru
  24. Berdnikov A., Andreyeva A., Giles R. Device for manipulating charged particles via field with pseudo potential having one or more local maxima along length of channel. Patent US9536721B2. Priority 2017.
    URL: https://patents.google.com/patent/US9536721B2/en
  25. Berdnikov A., Andreyeva A., Giles R. Device for manipulating charged particles. Patent US9812308B2.
    Priority 2017. URL: https://patents.google.com/patent/US9812308B2/en
  26. Berdnikov A.S. [Time-dependent pseudopotential and its application for description of the everaged motion of the charged particles. Part. I]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2011, vol. 21, no. 2, pp. 77—89. (In Russ.). URL: http://iairas.ru/mag/2011/abst2.php#abst12
  27. Berdnikov A.S. [Time-dependent pseudopotential and its application for description of the averaged motion of the charged particles. Part 2. General expression for time-dependent pseudopotentials]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2011, vol. 21, no. 3, pp. 83—96. (In Russ.).
    URL:http://iairas.ru/mag/2011/abst3.php#abst10
  28. Berdnikov A.S. [Time-dependent pseudopotential and its application for the description of the charged particles averaged motion. Part 3. Time dependent signals characterized by "slow" and "fast" characteristic time]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2011, vol. 21, no. 4, pp. 75—85. (In Russ.).
    URL: http://iairas.ru/mag/2011/abst4.php#abst11
  29. Berdnikov A.S. [Time-dependent pseudopotential and its application for the description of the charged particles averaged motion. Part 4. Devices and instruments]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2011, vol. 21, no. 4, pp. 86—102. (In Russ.). URL: http://iairas.ru/mag/2011/abst4.php#abst12
  30. Berdnikov A.S. [Time-dependent pseudopotential and its application for description of the averaged motion of the charged particles. Part 5. Comments to a general expression for time-dependent pseudopotentials]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2012, vol. 22, no. 2, pp. 105—111. (In Russ.).
    URL: http://iairas.ru/mag/2012/abst2.php#abst14
  31. Berdnikov A.S. [High frequency electromagnetic fields with "Archimedean" properties which are calculated taken Maxwell’s terms into account]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2014, vol. 24, no. 1, pp. 104—127. (In Russ.). URL: http://iairas.ru/mag/2014/abst1.php#abst13
  32. Bao X., Zhang Q., Liang Q., Sun Q., Xu W., Lu Y., Xia L., Liu Y., Zou X., Huang C., Shen C., Yannan Chu Y. Increased sensitivity in proton transfer reaction mass spectrometry by using a novel focusing quadrupole ion funnel. Anal. Chem., 2022, vol. 94, iss. 39, pp. 13368—13376. DOI: 10.1021/acs.analchem.2c01893
  33. Wolfram Mathematica: the system for modern technical computing. URL: http://wolfram.com/mathematica/
 

S. I. Shevchenko

ABOUT THE METHOD OF CALCULATING THE LIGHT INTENSITY
IN ELECTRONIC OPTICS

"Nauchnoe Priborostroenie", 2024, vol. 34, no. 1, pp. 117—128.
 

The method of calculating the light intensity applied to a cylindrical mirror is presented. The conditions under which second-order focusing is realized are shown. The possibility of increasing the light intensity when taking current from the emission ring with a sufficiently large radius is shown.
 

Keywords: energy analyzer, cylindrical mirror, emission ring, output aperture

Author affiliations:

Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia

 
Contacts: Shevchenko Sergey Ivanovich, nyro2@yandex.ru
Article received by the editorial office on 29.10.2023

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Kozlov I.G. Sovremennye problemy ehlektronnoi spektroskopii [Modern problems of electron spectroscopy]. Moscow, Atomizdat Publ., 1978. 248 p. (In Russ.).
  2. Zashkvara V.V., Korsunskii M.I., Lavrov V.P., Red'kin V.S. [On the influence of finite source size on focusing of a charged particle beam in a cylindrical-field electrostatic spectrometer]. ZhTF [Technical Physics], 1971, vol. 41, no. 1, pp. 187—192. (In Russ.).
  3. Sar-El H.Z. Cylindrical Mirror Analyzer with Surface Entrance and Exit Slots. I. Nonrelativistic Part. Review of Scientific Instruments, 1971, vol. 42, no. 11, pp. 43—48. DOI: 10.1063/1.1684948
  4. Aksela S. Instrument Function of a Cylindrical Electron Energy Analyzer. Review of Scientific Instruments, 1972, vol. 43, no. 9, pp. 122—128. DOI: 10.1063/1.1685923
  5. Draper J.E., Lee Ch.-yi. Response functions of ring-to-axis, axis-to-axis, and n=1.5 cylindrical mirror analyzers with finite source and slit and central angle 30°—65°. Review of Scientific Instruments, 1977, vol. 48, no. 7, pp. 138—154. DOI: 10.1063/1.1135170
  6. Shevchenko S.I. [About the properties of cylindrical mirrors for the accounting of electrons with the azimuthal component of velocity. The distribution of electrons near the output aperture]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2017, vol. 27, no. 1, pp. 90—101. URL: http://iairas.ru/mag/2017/abst1.php#abst15 (In Russ.).
  7. Krylov V.I., Shul'gina L.T. Spravochnaya kniga po chislennomu integrirovaniyu [A reference book on numerical integration]. Moscow, Nauka Publ., 1966. 370 p. (In Russ.).
 

Ulitsa Ivana Chernykh, 31-33, lit. A, St. Petersburg, Russia, 198095, P.O.B. 140
tel: (812) 3630719, fax: (812) 3630720, mail: iap@ianin.spb.su

content: Valery D. Belenkov design: Banu S. Kuspanova layout: Anton V. Manoilov