logo
blue band <-
  JOURNAL "NP" ISSUES

"Nauchnoe Priborostroenie", 2023, Vol. 33, no. 3. ISSN 2312-2951

"NP" 2023 year Vol. 33 no. 3.,   ABSTRACTS

ABSTRACTS, REFERENCES

M. A. Poldushov

DEVELOPMENT OF A DIY PLATFORM FOR DROPLET-BASED MICROFLUIDICS

"Nauchnoe priborostroenie", 2023, vol. 33, no. 3, pp. 3—26.
 

The development of a microfluidic platform for most research laboratories is a difficult task, primarily because of the high cost of its components. In this regard, numerous studies are being carried out to modernize existing or find new methods for manufacturing such devices. The paper discusses the possibility of developing a DIY (Do-It-Yourself) droplet-based microfluidic platform, which includes a fluid delivery system consisting of syringe pumps and microfluidic chips with various geometries. Both syringe pumps and microfluidic chips were fabricated using widely available off-the-shelf components. Some mechanical parts of the pumps were made using 3D printing. The microfluidic setup was controlled using an Arduino UNO board. It was shown that the proposed platform is not inferior to the systems previously reported by other authors on a variety of examples of the generation of emulsions with various forms of morphology.
 

Keywords: microfluidic platform, droplet-based microfluidic, microcontroller boards, Arduino

Author affiliations:

MIREA — Russian Technological University, Moscow, Russia

 
Contacts: Poldushov Maxim Aleksandrovich, poldushov@mail.ru
Article received by the editorial office on 27.05.2023

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Berlanda S.F., Breitfeld M., Dietsche C.L., Dittrich P.S. Recent advances in microfluidic technology for bioanalysis and diagnostics. Anal. Chem., 2021, vol. 93, no. 1, pp. 311−331. DOI: 10.1021/acs.analchem.0c04366
  2. Song Y., Cheng D., Zhao L., Eds. Microfluidics: fundamentals, devices and applications. Weinheim, Wiley-VCH, 2018. 544 p.
  3. Whitesides G.M. The origins and the future of microfluidics. Nature, 2006, vol. 442, no. 7101, pp. 368—373. DOI: 10.1038/nature05058
  4. Iakovlev A.P., Erofeev A.S., Gorelkin P.V. Novel pumping methods for microfluidic devices: acomprehensive review. Biosensors, 2022, vol. 12, no. 11, Id. 956. DOI: 10.3390/bios12110956
  5. Mavrogiannis N., Ibo M., Fu X., Crivellari F., Gagnon Z. Microfluidics made easy: a robust low-cost constant pressure flow controller for engineers and cell biologists. Biomicrofluidics, 2016, vol. 10, Id. 034107. DOI: 10.1063/1.4950753
  6. Shang L., Cheng Y., Zhao Y. Emerging Droplet Microfluidics. Chem. Rev., 2017, vol. 117, no. 12, pp. 7964−8040. DOI: 10.1021/acs.chemrev.6b00848
  7. Kukhtevich I.V., Posmitnaya Y.S., Belousov K.I., Bukatin A.S., Evstrapov A.A. [Principles, technologies and droplet-based microfluidic devices. Part 1 (review)]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2015, vol. 25, no. 3, pp. 65—85. DOI: 10.18358/np-25-3-i6585 (In Russ.).
  8. Matula K., Rivello F., Huck W.T.S. Single-cell analysis using droplet microfluidics. Adv. Biosys., 2020, vol. 4, iss. 1, Id. 1900188. DOI: 10.1002/adbi.201900188
  9. Clausell-Tormos J., Lieber D., Baret J.-C., et al. Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms. Chem. Biol., 2008, vol. 15, iss. 5, pp. 427—437. DOI: 10.1016/j.chembiol.2008.04.004
  10. Wang J., Li Y., Wang X., et al. Droplet microfluidics for the production of microparticles and nanoparticles. Micromachines, 2017, vol. 8, no. 1, Id. 22. DOI: 10.3390/mi8010022
  11. Kim J. H., Jeon T.Y., Choi T.M., Shim T.S., Kim S., Yang S. Droplet microfluidics for producing functional microparticles. Langmuir, 2014, vol. 30, no. 6, pp. 1473—1488. DOI: 10.1021/la403220p
  12. Han X., Zhang Y., Tian J., Wu T., Li Z., Xing F., Fu S. Polymer‐based microfluidic devices: a comprehensive review. Polym. Eng. Sci., 2022, vol. 62, iss. 1, pp. 3—24. DOI: 10.1002/pen.25831
  13. Faustino V., Catarino S.O., Lima R., Minas G. Biomedical microfluidic devices by using low-cost fabrication techniques: A review. J. Biomech., 2016, vol. 49, no. 11, pp. 2280—2292. DOI: 10.1016/j.jbiomech.2015.11.031
  14. Wijnen B., Hunt E.J., Anzalone G.C., Pearce J.M. Open-source syringe pump library. PLoS One, 2014, vol. 9, iss. 9, Id. E107216. DOI: 10.1371/journal.pone.0107216
  15. Damoah I.S., Botchie D. Do-It-Yourself (DIY) laboratories and science, technology, and innovation (STI): trends, implications and future research. Technol. Anal. Strateg. Manag., 2021, vol. 33, iss. 10, pp. 1267—1280. DOI: 10.1080/09537325.2021.1942826
  16. Ravindran S. How DIY technologies are democratizing science. Nature, 2020, Vol. 587, no. 7834, pp. 509—511. DOI: 10.1038/d41586-020-03193-5
  17. Booeshaghi A.S., de Veiga Beltrame E., Bannon D., Gehring J., Pachter L. Principles of open source bioinstrumentation applied to the poseidon syringe pump system. Sci. Rep., 2019, vol. 9, Id. 12385. DOI: 10.1038/s41598-019-48815-9
  18. Lake J.R., Heyde K.C., Ruder W.C. Low-cost feedback-controlled syringe pressure pumps for microfluidics applications. PLoS One, 2017, vol. 12, iss. 4, Id. E175089. DOI: 10.1371/journal.pone.0175089
  19. Garcia V.E., Liu J., DeRisi J.L. Low-cost touchscreen driven programmable dual syringe pump for life science applications. HardwareX, 2018, vol. 4, Id. E00027. DOI: 10.1016/j.ohx.2018.e00027
  20. Sadegh-cheri M. Using the recycled parts of a computer DVD drive for fabrication of a low-cost Arduino-based syringe pump. J. Chem. Educ., 2022, vol. 99, iss. 2, pp. 521—525. DOI: 10.1021/acs.jchemed.1c00260
  21. Samokhin A.S. Syringe pump created using 3D printing technology and Arduino platform. J. Anal. Chem., 2020, vol. 75, no. 3, pp. 416—421. DOI: 10.1134/S1061934820030156
  22. Behrens M.R., Fuller H.C., Swist E.R., Wu J., Islam Md.M., Long Z., Ruder W.C., Steward R. Open-source, 3D-printed peristaltic pumps for small volume point-of-care liquid handling. Sci. Rep., 2020, vol. 10, Id. 1543. DOI: 10.1038/s41598-020-58246-6
  23. Ching T., Vasudevan J., Tan H.Y., Lim C.T., Fernandez J., Toh Y.-C., Hashimoto M. Highly-customizable 3D-printed peristaltic pump kit. HardwareX, 2021, vol. 10, Id. E00202. DOI: 10.1016/j.ohx.2021.e00202
  24. Gao R.Z., Hebert M., Huissoon J., Ren C.L. µPump: an open-source pressure pump for precision fluid handling in microfluidics. HardwareX, 2020, vol. 7, Id. E00096. DOI: 10.1016/j.ohx.2020.e00096
  25. Challa P.K., Kartanas T., Charmet J., Knowles T.P.J. Microfluidic devices fabricated using fast wafer-scale LED-lithography patterning. Biomicrofluidics, 2017, vol. 11, iss. 1, Id. 014113. DOI: 10.1063/1.4976690
  26. Rizqika R., Whulanza Y., Charmet J., Kiswanto G., Soemardi T.P. Characterization of homemade UV-LED photolithography to realize high aspect ratio channels. AIP Conf. Proc., 2020, vol. 2227, iss. 1, Id. 020010. DOI: 10.1063/5.0000873
  27. Rajan D.K., Lekkala J. A maskless exposure device for rapid photolithographic prototyping of sensor and microstructure layouts. Procedia Eng., 2010, vol. 5, pp. 331—334. DOI: 10.1016/j.proeng.2010.09.115
  28. Ghosh R., Gopalakrishnan S., Savitha R., Renganathan T., Pushpavanam S. Fabrication of laser printed microfluidic paper-based analytical devices (LP-µPADs) for point-of-care applications. Sci. Rep., 2019, vol. 9, Id. 7896. DOI: 10.1038/s41598-019-44455-1
  29. Nishat S., Jafry A.T., Martinez A.W., Awan F.R. Paper-based microfluidics: simplified fabrication and assay methods. Sens. Actuators B: Chem., 2021, vol. 336, Id. 129681. DOI: 10.1016/j.snb.2021.129681
  30. Singhal H.R., Prabhu A., Nandagopal G.M.S., Dheivasigamani T., Mani N.K. One-dollar microfluidic paper-based analytical devices: Do-It-Yourself approaches. Microchem. J., 2021, vol. 165, Id. 106126. DOI: 10.1016/j.microc.2021.106126
  31. Bhattacharjee N., Urrios A., Kanga S., Folch A. The upcoming 3D-printing revolution in microfluidics. Lab. Chip., 2016, vol. 16, iss. 10, pp. 1720—1742. DOI: 10.1039/c6lc00163g
  32. Li T., Zhao L., Liu W., Xua J., Wang J. Simple and reusable off-the-shelf microfluidic devices for the versatile generation of droplets. Lab. Chip., 2016, vol. 16, iss. 24, pp. 4718—4724. DOI: 10.1039/c6lc00967k
  33. Sun L., Li T., Zhang B., Zhang M., Xu J., Wang J. An off-the-shelf microfluidic device for the controllable fabrication of multiple-holed hollow particles and their cell culture applications. Mater. Chem. Front., 2021, vol. 5, iss. 7, pp. 3149—3158. DOI: 10.1039/d0qm01014f
  34. FreeCAD, Your own 3D parametric modeler. URL: https://www.freecadweb.org (accessed 15.05.2023).
  35. Software: Arduino. URL: https://www.arduino.cc/en/software (accessed 15.05.2023).
  36. AccelStepper library for Arduino. URL: https://www.airspayce.com/mikem/arduino/AccelStepper/index.html (accessed 15.05.2023).
  37. Dincer I., Zamfirescu C. Drying phenomena: theory and applications. Chichester, Wiley, 2016. 512 p.
  38. Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Cardona A. Fiji: an open-source platform for biological-image analysis. Nat. Methods, 2012, vol. 9, no. 7, pp. 676—682. DOI: 10.1038/nmeth.2019
  39. Utada A.S., Fernandez-Nieves A., Stone H.A., Weitz D.A. Dripping to jetting transitions in coflowingliquid streams. Phys. Rev. Lett., 2007, vol. 99, iss. 9, Id. 094502. DOI: 10.1103/PhysRevLett.99.094502
  40. Chen Y., Wu L., Zhang C. Emulsion droplet formation in coflowing liquid streams. Phys. Rev. E, 2013, vol. 87, iss. 1, Id. 013002. DOI: 10.1103/PhysRevE.87.013002
  41. Wang Y., Huang Y., Li H., Zhang L. A convenient plug-and-play coaxial microfluidic device and quantitative prediction of monodisperse droplets generation. J. Micromech. Microeng., 2020, vol. 30, no. 6, Id. 065009. DOI: 10.1088/1361-6439/ab87ee
 

S. K. Ilyushonok1,2, A. S. Gladchuk1,3, A. N. Arseniev1, N. V. Tomilin3,
M. N. Krasnov
4, E. P. Podolskaya1,3, N. V. Krasnov1

THE SIMPLEST SET OF DROPLET-FREE ELECTROSPRAYING EQUIPMENT
FOR THE DEPOSITION OF METAL OXIDE NANOPARTICLES
ON A MALDI TARGET UNDER NORMAL CONDITIONS

"Nauchnoe Priborostroenie", 2023, vol. 33, no. 3, pp. 27—36.
 

This work presents a scheme for a simplified laboratory setup for the deposition of sorbents – nanoparticles of various metal oxides – on a metal substrate. The setup makes it possible to implement the "lab-on-plate" technique for metal-affinity sorbents on a metal substrate for MALDI mass spectrometric analysis. Using the example of TiO2 sorbent, it is shown that the "lab-on-plate" format can be employed for the extraction of halogen-containing protein adducts.
 

Keywords: sorbents, electrospraying, MALDI mass spectrometry, titanium dioxide, nanoparticles

Author affiliation:

1Institute for Analytical Instrumentation of RAS, Saint-Petersburg
2Research Institute of Hygiene, Occupational Pathology and Human Ecology, FMBA, Saint Petersburg
3Golikov Research Center of Toxicology, Saint Petersburg
4Device Consulting Ltd, Saint Petersburg

 
Contacts: Gladchuk Aleksei Sergeevich, aleglad24@gmail.com
Article received by the editorial office on 28.05.2023

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Urban P., Amantonico A., Zenobi R. Lab-on-a-plate: extending the functionality of MALDI-MS and LDI-MS targets. Mass Spectrometry Reviews, 2011, vol. 30, no. 3, pp. 435—478. DOI: 10.1002/mas.20288
  2. Blacken G.R., Volný M., Vaisar T., Sadílek M., Tureček F. In situ enrichment of phosphopeptides on MALDI plates functionalized by reactive landing of zirconium(IV)—n-ropoxide ions. Analytical Chemistry, 2007, vol. 79, no. 14, pp. 5449-5456. DOI: 10.1021/ac070790w
  3. Chen C.-J., Lai C.-C., Tseng M.-C., Liu Y.-C., Liu Y.-H., Chio L.-W., Tsai F.-J. A novel titanium dioxide-polydimethylsiloxane plate for phosphopeptide enrichment and mass spectrometry analysis. Analytica Chimica Acta, 2014, vol. 812, pp. 105—113. DOI: 10.1016/j.aca.2014.01.010
  4. Krásný L., Pompach P., Strohalm M. In situ enrichment of phosphopeptides on MALDI plates modified by ambient ion landing. Journal of Mass Spectrometry, 2012, vol. 47, no. 10, pp. 1294—1302. DOI: 10.1002/jms.3081
  5. Bi H., Qiao L., Busnel J.-M., Devaud V., Liu B., Girault H.H. TiO2 printed aluminum foil: single-use film for a laser desorption/ionization target plate. Analytical Chemistry, 2009, vol. 81, no. 3, pp. 1177—1183. DOI: 10.1021/ac8024448
  6. Keltsiyeva O.A., Kolpakova Yu.D., Krasnov M.N., Muradymov M.Z., Sukhodolov N.G., Krasnov N.V., Podolskaya E.P. [Modification of MALDI targets by nanoparticles during iron oxide (III) suspension electrospreying under normal conditions]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2019, vol. 29, no. 2, pp. 5—11. DOI: 10.18358/np-29-2-i511 (In Russ.).
  7. Al-Tavil E.E, Kurnin I.V., Krasnov M.N., Muradymov M.Z., Krasnov N.V. Dropless ESI for IMS of ambient conditions. International Journal for Ion Mobility Spectrometry, 2019, vol. 22, iss. 2, pp. 85—91. DOI: 10.1007/s12127-019-00250-2
  8.   Podolskaya E.P., Keltsieva O.A., Krasnov N.V., Mura-dymov M.Z., Krasnov M.N. Ustroistvo dlya naneseniya oksidov metallov na metallicheskuyu poverkhnost' pri normal'nykh usloviyakh. Patent RF no. 2733530 C 1 [Patent for the device for the application of metal oxides to a metal surface under normal conditions]. Prioritet 05.10.2020. (In Russ.). URL: https://yandex.ru/patents/doc/RU2733530C1_20201005
  9.   Krasnov N.V., Krasnov M.N. Sposob obrazovaniya beskapel'nogo ionnogo potoka pri ehlektroraspylenii analiziruemykh rastvorov v istochnikakh ionov s atmosfernym davleniem. Patent RF no. 2613429 [Patent for the method for the formation of a droplet-free ion flux during electrospraying of analyzed solutions in ion sources with atmospheric pressure]. Prioritet 16.03.2017. (In Russ.). URL: https://patents.google.com/patent/RU2613429C2/ru
  10. Krasnov N.V., Muradymov M.Z., Krasnov M.N. Sposob nepreryvnogo stabil'nogo ehlektroraspyleniya rastvorov v istochnike ionov pri atmosfernom davlenii. Patent RF no.  2612324 [Patent for the method for continuous stable electrospraying of solutions in an ion source at atmospheric pressure]. Prioritet 07.03.2017. (In Russ.). URL: https://patents.google.com/patent/RU2612324C2/ru
  11. Shreyner E.V., Alexandrova M.L., Sukhodolov N.G., Selyutin A.A., Podolskaya E.P. Extraction of the insecticide dieldrin from water and biological samples by metal affinity chromatography. Mendeleev Communications, 2017, vol. 27, no. 3, pp. 304—306. DOI: 10.1016/j.mencom.2017.05.030
  12. Kurdyukov D.A., Chernova E.N., Russkikh Y.V., Eurov D.A., Sokolov V.V., Bykova A.A., Shilovskikh V.V., Keltsieva O.A., Ubyivovk E.V., Anufrikov Y.A., Fedorova A.V., Selyutin A.A., Sukhodolov N.G., Podolskaya E.P., Golubev V.G. Ni-functionalized submicron mesoporous silica particles as a sorbent for metal affinity chromatography. Journal of Chromatography A, 2017, vol. 1513, pp. 140—148. DOI: 10.1016/j.chroma.2017.07.043
  13. Gorbunov A.Yu., Podolskaya E.P. [Fabrication of nanoscale multimolecular structures of lanthanum stearate using Langmuir monolayers for laser desorption/ionization mass spectrometry]. Pis'ma v Zhurnal tekhnicheskoi fiziki [Technical Physics Letters], 2022, vol. 48, no. 21, pp. 35—39. (In Russ.). DOI: 10.21883/PJTF.2022.21.53711.19320
 

D. A. Gavrilov1, E. A. Tatarinova1, A. A. Fortunatov1, V. E. Buzdin1,
D. V. Uchaev
1, Dm. V. Uchaev1, I. M. Mikhailov1, M. V. Terentiev1,
D. N. Shchelkunov
1, Ya. Murhizh1, O. A. Potkin2

DEVELOPMENT OF A PROTOTYPE OF A MULTIFUNCTIONAL
OPTICAL-ELECTRONIC ALL-ROUND VIEWING SYSTEM
TO PROVIDE VISUAL ORIENTATION OF UNMANNED VEHICLES

"Nauchnoe Priborostroenie", 2023, vol. 33, no. 3, pp. 37—48.
 

This paper presents a prototype of a multifunctional optical-electronic system for all-round viewing to provide visual orientation for unmanned vehicles. The developed prototype is designed to be placed on the car roof rack and allows you to control an unmanned vehicle using an online analysis of the environment. Sensor devices collect information about the environment and transmit it to the control system, in which input data is analyzed and actions are planned based on this information, as well as map data and localization. Algorithmic software for building a map and localizing on it using cameras operating in real time allows an unmanned device to navigate in space only using visual information and solve the task of autonomous movement along with orientation on a given terrain map.
 

Keywords: optoelectronic systems, all-round view, unmanned vehicle, situational awareness, visual orientation

Author affiliations:

1Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
2Sber Automotive Technologies, Moscow, Russia

 
Contacts: Tatarinova Elena Aleksandrovna, tatarinova.ea@mipt.ru
Article received by the editorial office on 08.04.2023

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Issledovanie sostoyaniya i perspektiv rynka avtonomnykh avtomobilei, platform dlya ehlektrotransporta i toplivnykh ehlementov, otsenka vliyaniya na razvitie rossiiskogo i mezhdunarodnogo rynka "Avtonet". Analiticheskii otchet 2019 [Study of the state and prospects of the market for autonomous cars, platforms for electric transport and fuel cells, assessment of the impact on the development of the Russian and international market "Autonet." Analytical Report 2019]. Moscow, Nekommercheskaya organizatsiya Assotsiatsiya "GLONASS/GNSS-Forum", 2019. 245 p. URL: www.aggf.ru/projects/%D0%A0%D1%8B%D0%BD%D0%BE%D0%BA%20%D0%B0%D0 %B2%D1%82%D0%BE%D0%BD%D0%BE%D0%BC%D0%BD%D1%8B%D1%85%20%D0%B8%20 %D1%8D%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D0 %BA%D0%B8%D1%85%20%D0%B0%D0%B2%D1%82%D0%BE%D0%BC%D0%BE%D0%B1%D0 %B8%D0%BB%D0%B5%D0%B8%CC%86.pdf
  2. Kondrat'ev V.V., Pivovarov I.O., Gorbachev R.A., Matyukhin V.V., Kornev D.A., Gavrilov D.A., Tatarinova E.A., Buzdin V.Eh., Mikhailov I.M., Potkin O.A. [Prospects for the use of artificial intelligence in applied business tasks]. Doklady Rossijskoj Akademii Nauk. Matematika, informatika, processy upravleniya [DAN. Mathematics, Computer Science, Management Processes], 2022, vol. 508, no. 1, pp. 41—49. DOI: 10.31857/S2686954322070104 (In Russ.).
  3. Vashchenko A.P., Gavrilov D.A., Lapushkin A.G. [Development of a prototype of a hardware and software device for panoramic viewing for security systems and situational awareness of an unmanned vehicle]. Voprosy kiberbezopasnosti [Cybersecurity issues], 2021, no. 5(45), pp. 87—95. DOI: 10.21681/2311-3456-2021-5-87-95 (In Russ.).
  4. Lovtsov D.A., Gavrilov D.A. Modelirovanie optiko-ehlektronnykh sistem distantsionno pilotiruemykh apparatov: Monografiya [Modeling of optoelectronic systems of remotely manned vehicles: Monograph]. Moscow, "Tekhnolodzhi-3000", 2019. 164 p. (In Russ.).
  5. Lovtsov D.A., Gavrilov D.A. [An efficient automated electronic optical system for aerospace monitoring]. Pravovaya informatika [Legal Informatics], 2019, no. 2, pp. 29—35. (In Russ.). URL: https://cyberleninka.ru/article/n/effektivnaya-avtomatizirovannaya-optiko-elektronnaya-sistema-aerokosmicheskogo-monitoringa
  6. Lovtsov D.A., Gavrilov D.A., Tatarinova E.A. [Theoretical foundations of effective processing visual information in the automated optical-electronic system of ground-space monitoring]. Professorskii zhurnal. Seriya: Tekhnicheskie nauki [Professorship Journal. Series: Technical Sciences], 2019, no. 3, pp. 26—40. DOI: 10.18572/2686-8598-2019-3-3-26-40 (In Russ.).
  7. Potapov A. [Computer vision systems: modern tasks and methods]. Control Engineering Rossiya [Control Engineering Russia], 2014, no. 1, pp. 22—28. URL: https://rucont.ru/efd/437978 (In Russ.).
  8. Nesterov A.V. [Analysis of digital information processing methods in computer vision systems]. Vestnik RGRTU [Vestnik of RSREU], 2008, no. 4, pp. 3—5. (In Russ.). URL: http://vestnik.rsreu.ru/ru/archive/2008/4-vypusk-26
  9. Gavrilov D.A., Shchelkunov N.N., Fortunatov A.A., Molchanov V.S. Mnogofunktsional'noe optiko-ehlektronnoe ustroistvo krugovogo obzora dlya upravleniya dvizheniem bespilotnogo transportnogo sredstva. Patent for useful model RU 210565 U1. [Patent for useful model Multifunctional optical-electronic device for all-round viewing for controlling the movement of an unmanned vehicle]. Prioritet 27.12.2021. (In Russ.). URL: https://yandex.ru/patents/doc/RU210565U1_20220421
  10. Labbé M., Michaud F. RTAB-Map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. J. Field Robot., 2019, vol. 36, iss. 2, pp. 416—446. DOI: 10.1002/rob.21831
  11. Leutenegger S., Lynen S., Bosse M., Siegwart R., Furgale P. Keyframe-based visual—inertial odometry using nonlinear optimization. Int. J. Robot. Res., 2015, vol. 34, iss. 3, pp. 314—334. DOI: 10.1177/0278364914554813
  12. Kerl C., Sturm J., Cremers D. Dense visual SLAM for RGB-D cameras. IROS 2013 — IEEE/RSJ International Conference on Intelligent Robots and Systems. Tokyo, IEEE, 2013.
    P. 2100—2106. DOI: 10.1109/IROS.2013.6696650
  13. Engel J., Stückler J., Cremers D. Large-scale direct SLAM with stereo cameras. IROS 2015 — IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE Press., 2015. P. 1935—1942. DOI: 10.1109/IROS.2015.7353631
  14. Mur-Artal R., Tardós J.D. Visual-Inertial Monocular SLAM with Map Reuse. IEEE Robot. Autom. Lett., 2017, vol. 2, iss. 2, pp. 796—803. DOI: 10.1109/LRA.2017.2653359
  15. Schneider T., Dymczyk M., Fehr M., Egger K., Lynen S., Gilitschenski I., Siegwart R. Maplab: An Open Framework for Research in Visual-Inertial Mapping and Localization. IEEE Robot. Autom. Lett., 2018, vol. 3, iss. 3, pp. 1418—1425. DOI: 10.1109/LRA.2018.2800113
  16. Schlegel D., Colosi M., Grisetti G. ProSLAM: Graph SLAM from a Programmer’s Perspective. ICRA 2018 — IEEE International Conference on Robotics and Automation. 2018. P. 3833—3840. DOI: 10.1109/ICRA.2018.8461180
  17. Zubizarreta J., Aguinaga I., Montiel J.M.M. Direct Sparse Mapping. IEEE Trans. Robot., 2020, vol. 36, iss. 4, pp. 1363—1370. DOI: 10.1109/TRO.2020.2991614
  18. Rosinol A. Kimera: an Open-Source Library for Real-Time Metric-Semantic Localization and Mapping. ICRA 2020 — IEEE International Conference on Robotics and Automation. Paris, France: IEEE, 2020. P. 1689—1696. DOI: 10.1109/ICRA40945.2020.9196885
  19. Campos C., Elvira R., Gómez Rodríguez J.J., Montiel J.M.M., Tardós J.D. ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual Inertial, and Multimap SLAM. IEEE Trans. Robot., 2021, vol. 37, iss. 6, pp. 1874—1890. DOI: 10.1109/TRO.2021.3075644
  20. Gao X., Wang R., Demmel N., Cremers D. LDSO: Direct Sparse Odometry with Loop Closure. IROS 2018 — IEEE/RSJ International Conference on Intelligent Robots and Systems. 2018. P. 2198—2204. DOI: 10.1109/IROS.2018.8593376
  21. Usenko V., Demmel N., Schubert D., Stückler J., Cre-mers D. Visual-Inertial Mapping With Non-Linear Factor Recovery. IEEE Robot. Autom. Lett., 2020, vol. 5, iss. 2, pp. 422—429. DOI: 10.1109/LRA.2019.2961227
  22. Forster C., Zhang Z., Gassner M., Werlberger M., Scara-muzza D. SVO: Semidirect Visual Odometry for Monocular and Multicamera Systems. IEEE Trans. Robot., 2017, vol. 33, iss. 2, pp. 249—265. DOI: 10.1109/TRO.2016.2623335
  23. Qin T., Li P., Shen S. VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator. IEEE Trans . Robot., 2018, vol. 34, iss. 4, pp. 1004—1020. DOI: 10.1109/TRO.2018.2853729
  24. Gavrilov D.A. [Investigation of the applicability of the convolutional neural network u-net to a problem of segmentation of aircraft images]. Komp'yuternaya optika [Computer optics], 2021, vol. 45, no. 4, pp. 575—579. DOI: 10.18287/2412-6179-CO-804 (In Russ.).
  25. Gavrilov D.A., Lovtsov D.A. [Efficient automated processing visual information using artificial intelligence technologies]. Iskusstvennyi intellekt i prinyatie reshenii [Artificial intelligence and decision making], 2020, no. 4, pp. 33—46. DOI: 10.14357/20718594200404 (In Russ.).
  26. Geiger A., Lenz P., Urtasun R. Are we ready for autonomous driving? The KITTI vision benchmark suite. 2012 IEEE — Conference on Computer Vision and Pattern Recognition. Providence, RI: IEEE, 2012. P. 3354—3361. DOI: 10.1109/CVPR.2012.6248074
  27. Yang G., Song X., Huang C., Deng Z., Shi J., Zhou B. DrivingStereo: A Large-Scale Dataset for Stereo Matching in Autonomous Driving Scenarios. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA: IEEE, 2019. P. 899—908. DOI: 10.1109/CVPR.2019.00099
  28. Wenzel P., Wang R., Yang N., Cheng Q., Khan Q., von Stumberg L., Zeller N., Cremers D. 4Seasons: A Cross-Season Dataset for Multi-Weather SLAM in Autonomous Driving. Proceedings of the German Conference on Pattern Recognition (GCPR), 2020. P. 404—417. DOI: 10.1007/978-3-030-71278-5_29
  29. Lapushkin A.G., Gavrilov D.A., Potkin O.A. [Synthesized data creation software and feedback simulator for testing machine learning algorithms]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2023, vol. 33, no. 1, pp. 95—108. URL: http://iairas.ru/mag/2023/abst1.php#abst8 (In Russ.).
  30. Lapushkin A.G., Gavrilov D.A., Shchelkunov N.N., Bakeev R.N. [The main approaches to the preparation of visual data for training neural network algorithms]. Iskusstvennyi intellekt i prinyatie reshenii [Artificial intelligence and decision making], 2021, no. 4, pp. 62—74. DOI: 10.14357/20718594210406 (In Russ.).
 

V. L. Odivanov, Ya. V. Fattakhov

IMPROVEMENT OF NMR TECHNIQUES TO INCREASE
ACCURACY OF THE MEASUREMENTS
OF SELF-DIFFUSION AND FLUID MOTION

"Nauchnoe Priborostroenie", 2023, vol. 33, no. 3, pp. 49—59.
 

A method is described for reducing the effect of non-identical gradient pulses on the accuracy of NMR measuring the diffusion parameters of a sample and fluid flow rate using a series of several gradient pulses before the first radio frequency pulse, due to which a dynamic equilibrium is established in the measuring system, as a result of which the impact of gradient impulses levels out. This leads to increased accuracy and extended measurement range.
 

Keywords: NMR, magnetic field pulse gradient, self-diffusion, flow speed, magnetic-resonance imaging

Author affiliations:

Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, Kazan, Russia

 
Contacts: Odivanov Vladimir Leonidovich, odivanov@mail.ru
Article received by the editorial office on 11.04.2023

Full text (In Russ./In Eng.) >>

REFERENCES

  1.   Neronov Yu.I., Ivanov V.K. [A method to study diffusion of gadolinium atoms in water by means of a nuclear magnetic resonance tomograph]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2006, vol. 16, no. 2, pp. 101—104. URL: http://iairas.ru/mag/2006/abst2.php#abst11 (In Russ.).
  2. Vecherukhin N.M., Melnikov A.V. [Nuclear magnetic resonance sensors as fluid velocity / frequency converters]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2007, vol. 12, no. 2, pp. 39—47. URL: http://iairas.ru/mag/2007/abst2.php#abst4 (In Russ.).
  3. Marusina M.Ya., Neronov Yu.I. [Method for the definition of motor oil proton time relaxation and possibilities of its practical use]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2010, vol. 20, no. 2, pp. 37—41. URL: http://iairas.ru/mag/2010/abst2.php#abst4 (In Russ.).
  4. Takekawa R., Kawamura J. Measurement of the diffusion of multiple nuclei in restricted spaces by pulsed field gradient NMR. Journal of Magnetic Resonance, 2021, vol. 326, art. 106958. DOI: 10.1016/j.jmr.2021.106958
  5. Dvoyashkin N.K., Skirda V.D., Maklakov A.I. et al.  Peculiarities of self-diffusion of alkane molecules in kaolinite. Apl. Magn. Resonance, 1991, vol. 2, iss. 1, art. 83. DOI: 10.1007/BF03166269
  6. Vasina E.N., Skirda V.D., Volkov V.I. Samodiffuziya v regulyarnykh poristykh sistemakh metodom YAMR s impul'snym gradientom magnitnogo polya. Uchebnoe posobie [Self-diffusion in regular porous systems by NMR with a pulse gradient of the magnetic field. Tutorial]. Kazan: KGU Publ., 2000. 50 p. (In Russ.).
  7. Blum F.D., Pickup S., Waggoner R.A. NMR Measurements of Solvent Self-Diffusion Coefficients in Polymer Solutions. ResearchGate. 1989. URL: https://www.researchgate.net/publication/235174154_NMR_Measurements_of_Solvent_Self-Diffusion_Coefficients_in_Polymer_Solutions
  8. Maklakov A.I., Skirda V.D., Fatkullin N.F. Samodiffuziya v rastvorakh i rasplavakh polimerov [Self-diffusion in polymer solutions and melts]. Kazan, KGU Publ., 1987. 220 p. (In Russ.).
  9. Nesmelova I.V., Fedotov V.D. [Self-diffusion of myoglobin and water molecules in solutions]. Vysokomolekulyarnye soedineniya. Seriya A [Polymer Science, Series A], 1997, vol. 39, no. 3, pp. 525—526. (In Russ.).
  10. Viel S., Ziarelli F., et al. Pulsed field gradient magic angle spinning NMR self-diffusion measurements in liquids. Journal of Magnetic Resonance, 2008, vol. 190, iss. 1, pp. 113—123. DOI: 10.1016/j.jmr.2007.10.010
  11. Kiraly P., Swan I., Morris G.A. Improving accuracy in DOSY and diffusion measurements using triaxial field gradients. Journal of Magnetic Resonance, 2016, vol. 270, pp. 24—30. DOI: 10.1016/j.jmr.2016.06.011
  12. Stejskal E.O., Tanner J.E. Spin Diffusion Measurements: Spin echoes in presence of a time-dependent field gradient. J. Chem. Phys., 1965, vol. 42, no. 1, pp. 288—292. DOI: 10.1063/1.1695690
  13. Anisimov A.V. Sposob izmereniya diffuzii adsorbirovannykh molekul zhidkosti. Avt. svid. SSSR no. 649996. [Author's Certificate of the USSR: a method for measuring diffusion of adsorbed liquid molecules]. Prioritet 28.02.1979. (In Russ.).
  14. Aslanyan A.M., Davydov D.A., Odivanov V.L. Impul'snaya posledovatel'nost' dlya izmereniya parametrov samodiffuzii metodom yadernogo magnitnogo rezonansa. Patent RF no. 2517762. [Patent for the pulse sequence for measurement of self-diffusion parameters by nuclear magnetic resonance method]. Prioritet 12.09.2012. (In measurement of self-diffusion parameters by nuclear magnetic resonance method]. Prioritet 12.09.2012. (In Russ.).
  15. Skirda V.D. Metody izmereniya potokov zhidkosti v YAMR. Metodicheskoe posobie. Ch. 1 [Methods for measuring fluid flows in NMR. Methodological manual. Part 1. Kazan, KGU Publ., 2014. 25 p. (In Russ.).
 

B. M. Mamikonyan, S. A. Ghazaryan

MEASUREMENT OF THE COMPONENTS OF THE COMPLEX
RESISTANCE OF MUTUAL INDUCTION

"Nauchnoe Priborostroenie", 2023, vol. 33, no. 3, pp. 60—73.
 

A microcontroller device for digital measurement of the components of the complex resistance of mutual induction of magnetically coupled coils has been developed for the case, when due to the effects of "capacitance" and "eddy currents", an "impurity" and a "phase defect" arise in the EMF of mutual induction. An active component appears in the complex resistance of mutual induction. For invariant measurement of the components of this resistance, a phase method was used in combination with a timing separation of the measurement channel. The measuring circuit (MC) is powered by the current of a controlled generator for sinusoidal signals. An informative parameter of the MC output signal is the angle of the phase shift between two voltages. These voltages are supplied to the analog inputs of the programmable microcontroller (MCU). During the measurement, the MCU sets the generator frequency, controls the switching of the measurement channel, measures the phase shift angle between the MC output voltages, and calculates the components of the complex mutual induction resistance according to the given algorithms. The theory of the method, the technique for calculating the parameters of the MC elements, the evaluation of the sensitivity of the conversion, and the analysis of measurement errors are presented.
 

Keywords: mutual induction, complex resistance, measurement, phase method, phase shift angle, measurement error

Author affiliations:

National polytechnic university of Armenia, Gyumri Branch, Gyumri city, Republic of Armenia

 
Contacts: Mamikonyan Boris Mamikonovich, bomam@yandex.ru
Article received by the editorial office on 08.05.2023

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Silsbee F.B. A study of the inductance of four-terminal resistance standards. London, Forgotten Books Publisher, 2016. 54 p.
  2. Zhang J., Lui W., Pan X. et al. Design and measurement of the nH level mutual inductor. 19th IMEKO TC-4 Symposium and 17th IWADC Workshop Advances Instrumentation and Sensors Interoperability, 18—19.07.2013, Barcelona, Spain, pp. 389—390. URL: https://www.imeko.org/publications/tc4-2013/IMEKO-TC4-2013-096.pdf
  3. Veksler A.Z. Measurement of angle errors of mutual inductance coils by means of an alternating current bridge. Measurement Techniques , 1959, vol. 2, is. 6, pp. 445—447. DOI: 10.1007/BF00975983
  4. P 5017 magazin kompleksnoy vzaimnoy induktivnosti [P517 complex mutual inductance magazine]. https://ross.com.ru/magazin-kompleksnoi-vzaimnoi-induktivnosti-r-5017
  5. Budovsky I. Measurement of phase angle errors of precision current shunts in the frequency range from
    40 Hz to 200 kHz. IEEE Trans. Instrum. Meas., 2007, vol. 56, no. 2, pp. 284—288. DOI: 10.1109/TIM.2007.891117
  6. Pan X., Zhang J., Ma X., et al. A Coaxial time constant standard for determination of phase error of current shunts up to 200 kHz. IEEE Trans. Instrum. Meas., 2013, vol. 62, no. 1, pp. 199—204. DOI: 10.1109/TIM.2012.2212595
  7. Nefedov V.I., Sigov A.S., Bityukov V.K., Samochina E.V. Elektroradioizmereniya. Uchebnik [Electroradio-measurements. Textbook]. Moscow, FORUM, INFRA-M Publ., 2018. 383 p. (In Russ.).
  8. Lushin E.V., Dolgov A.N. [Methods of inductance measurement]. Privolzhskiy nauchnyy vestnik [Volga Scientific Bulletin Publ.], 2013, no. 12, part. 2, pp. 36—40. (In Russ.). URL: https://elibrary.ru/item.asp?id=21072153
  9. Marchenko A.L., Opadchiy Yu.F. Elektrotechnika i elektronika. Uchebnik [Electrical equipment and electronics. Textbook], Moscow, INFRA-M Publ., 2022. 391 p. (In Russ.).
  10. Divin, A.G., Ponomarev S.V. Metody i sredstva izmereniy, ispytaniy i kontrolya. Uchebnoe posobie. Ch. 1. [Methods and means of measurement, testing and control. Tutorial. PART 1]. Tambov, Izd-vo GOU VPO TGTU Publ., 2011. 104 p. (In Russ.).
  11. Mamikonyan B.M., Mamikonyan Ch.B. [Methods and means of separate measurement of parameters of AC inductors]. Vestnik NPUA: Elektrotechnika, energetika [NPUA Bulletin: Electrical Engineering, Power Engineering], 2014, no. 2, pp. 9—24. (In Russ.). URL: https://elibrary.ru/item.asp?id=35061218
  12. AD9833 Programmable Waveform Generator. https://static.chipdip.ru/lib/691/DOC011691452.pdf
  13. PIC32MX695F512H. Vysokoproizvoditel'nyy 32-razryadnyy mikrokontroller s interfeysami USB i Ethernet [PIC32MX695F512H. High-performance 32-bit microcontroller with USB interfaces è Ethernet]. (In Russ.). http://www.triatron.ru/upload/catalog_photo/elements/pdf/035343.pdf
  14. Rezistory postoyannye metallofol'govye C5-61 [Permanent metal-fiber resistors C5-61]. (In Russ.). http://amb-lab.narod.ru/References/ES/0004-3-1992/016.pdf
  15. Novizkiy P.V., Zograf I.A. Ozenka pogreshnostey rezul'tatov izmereniy [Evaluation of measurement results errors]. Leningrad, Energoatomizdat Publ., 1985. 248 p.
  16. Ornatskiy P.P. Avtomaticheskie izmereniya i pribory [Automatic Measurements and Instruments]. Kiev, Vischa shkola Publ., 1986. 504 p.
 

A. S. Berdnikov, S. V. Masyukevich

NUMERICAL ALGORITHM FOR MINIMAX POLYNOMIAL
APPROXIMATION OF FUNCTIONS WITH A GIVEN WEIGHT

"Nauchnoe Priborostroenie", 2023, vol. 33, no. 3, pp. 74—91.
 

The article discusses a rapidly converging numerical algorithm for determining the coefficients of polynomials. The algorithm provides the optimal approximation of a given function in the minimax norm with a given weight on a given interval. The approximation is made under the condition that the weight function does not turn to zero on the considered interval, except, perhaps, for the initial and/or final points of the interval.
 

Keywords: minimax norm, Chebyshev polynomials, optimal approximation

Author affiliations:

Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia

 
Contacts: Berdnikov Aleksandr Sergeevich, asberd@yandex.ru
Article received by the editorial office on 28.03.2023

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Lanczos C. Applied Analysis. New York, Prentice Hall Inc., 1956. (Russ. ed.: Lantsosh K. Prakticheskie metody prikladnogo analiza. Spravochnoe rukovodstvo. Moscow: GIFML, 1961. 524 p.).
  2. Berezin I.S., Zhidkov N.P. Metody vychislenii, T. 1 [Methods of computing. Vol. 1]. Moscow, GIFML, 1962. 464 p. (In Russ.).
  3. Danilov Yu.A. Mnogochleny Chebysheva [Chebyshev polynomials]. Minsk, Vyshehishaya shkola, 1984. 157 p. (In Russ.).
  4. Paszkowski S. Numerical Applications of Chebyshev Polynomials. Warszawa: Państwowe Wydawnictwo Naukowe, 1975. (Russ. ed.: Pashkovskii S. Vychislitel'nye primeneniya mnogochlenov i ryadov Chebysheva. Moscow, Nauka, 1983. 384 p.).
  5. Gribkova V.P. Ehffektivnye metody ravnomernykh priblizhenii, osnovannye na polinomakh Chebysheva [Effective methods of uniform approximation based on the Polynomas of Chebyshev]. Moscow, Sputnik Publ., 2017. 193 p. (In Russ.).
  6. Goncharov V.L. Teoriya interpolirovaniya i priblizheniya funktsii [Theory of interpolation and approximation of functions]. Moscow, Leningrad, GTTI Publ., 1934. 316 p. (In Russ.).
  7. Achiezer N.I. Lektsii po teorii approksimatsii [Lectures on approximation theory]. Moscow, Leningrad, OGIZ Publ., 1947. 324 p. (In Russ.).
  8. Achiezer N.I. Lektsii po teorii approksimatsii. 2-e izd [Lectures on approximation theory, 2nd ed.]. Moscow, Nauka Publ., 1965. 407 p. (In Russ.).
  9. Berdnikov A., Solovyev K., Krasnova N., Golovitski A., Syasko M. Algorithm for Constructing the Chebyshev-Type Polynomials and the Chebyshev-Type Approximations with a Given Weight. Proceedings of 2022 Int. Conference on Electrical Engineering and Photonics (EExPolytech), 2022 Oct 21—22, pp. 143—145. DOI: 10.1109/EExPolytech56308.2022
  10. Chebyshev P.L. [Theory of mechanisms known by the name of parallelograms]. P.L. Chebyshev. Izbrannye trudy [See P.L. Chebyshev. Selected works], Moscow, Izd. Akademii Nauk SSSR, 1955, pp. 611—648. (In Russ.).
  11. Chebyshev P.L. [Questions about the best approximations related to approximate representations of functions]. P.L. Chebyshev. Izbrannye trudy [See P.L. Chebyshev. Selected works], Moscow, Izd. Akademii Nauk SSSR, 1955, pp. 462—578. (In Russ.).
  12. Chebyshev P.L. [On the functions that are the least deviating from zero]. P.L. Chebyshev. Izbrannye trudy [See P.L. Chebyshev. Selected works], Moscow. Izd. Akademii Nauk SSSR, 1955, pp. 579—608. (In Russ.).
  13. Bernstein S.N. [On the best approximation of continuous functions through polynomials of a given degree]. Soobshcheniya Khar'kovskogo matematicheskogo obshchestva. Vtoraya ser. [Transactions of the Kharkov mathematical society. 2 series], 1912, vol. 13, no. 2-3, pp. 49—144. (In Russ.).
  14. Bernstein S.N. [On the best approximation of the functions of several variables through polynomials or trigonometric sums]. Trudy MIAN SSSR [Proceedings of the Steklov Institute of Mathematics], 1951, vol. 38, pp. 24—29. (In Russ.).
  15. De la Vallée-Poussin Ch.J. Sur les polynomes d'approximation et la représentation approchée d'un angle. Bulletin de la classe des sciences, Académie royale de Belgique, 1910, no. 12, pp. 808—845.
  16. De la Vallée-Poussin Ch.J. Leçons sur l'approximation des fonctions d'une variable réelle: professées à la Sorbonne. Paris, Gauthier-Villars, 1919.
  17. Butzer P.L., Nessel R.J. Aspects of de La Vallée Poussin's work in approximation and its influence. Archive for History of Exact Sciences, 1993, vol. 46, pp. 67—95. DOI: 10.1007/BF00387727
  18. Remez E. Sur un procédé convergent d'approximations successives pour determiner les polynomes d'appproximation. Compt. Rend. Acad. Sci., Paris, 1934, vol. 198, pp. 2063—2065.
  19. Remez E.Ya. Sur le calcul effectif des polynomes d'approximation de Tschebyscheff. Compt. Rend. Acad. Sci., Paris, 1934, vol. 199, pp. 337—340.
  20. Dzyadyk V.K. Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami [Introduction to the theory of uniform approximation of functions by polynomas]. Moscow, Nauka Publ., Glavnaya redaktsiya fiziko-matematicheskoi literatury, 1977. 508 p. (In Russ.).
  21. Remez E.Ya. Osnovy chislennykh metodov chebyshevskogo priblizheniya [Fundamentals of the numerical methods of the Chebyshev approximation]. Kyiv, Naukova Dumka, 1969. 624 p. (In Russ.).
  22. Laurent P.-G. Approximation et optimization. Paris, Herrmann, 1972 (Russ. ed.: Loran P.-Zh. Approksimatsiya i optimizatsiya. Moscow: Mir Publ., 1975. 496 p.).
  23. Wolfram Mathematica: naibolee polnaya sistema dlya matematicheskikh i tekhnicheskikh vychislenii [The world's definitive system for modern technical computing]. URL: https://www.wolfram.com/mathematica/ (accessed 21.03.2023). (In Russ.).
 

Ya. A. Fofanov1, I. M. Sokolov1,2, V. V. Manoilov1, A. S. Kuraptsev2

DYNAMIC POLARIZATION-OPTICAL ANALYSIS OF ORDERED
FUNCTIONAL MATERIALS AND NANOSYSTEMS
(OVERVIEW)

"Nauchnoe Priborostroenie", 2023, vol. 33, no. 3, pp. 92—116.
 

The instrumental features of transformation and registration of analytical signals in dynamic polarizing optical analysis are considered. The optimal experimental conditions are determined for studying the dynamics of weak polarization responses. A consistent statistical analysis of the polarization magneto-optical responses of magnetic nanofluids in a wide concentration range of three orders of magnitude is described. A quantitative grounding has been obtained for the adequacy of the physical models used and the analytical functions following from them, which describe the orientational ordering of magnetic nanoparticles in an external magnetic field. The detected variations in the prediction errors of diagnostic parameters indicate non-random features of the dynamics of polarization responses and related parameters (properties) of the studied magnetic nanofluids.
Studies of non-resonant nanosystems are supplemented by a theoretical analysis of the dynamics of pulsed scattering of coherent light by atomic ensembles cooled to sub-Doppler temperatures. It is shown that the polarization and spectral composition of the secondary radiation of such ensembles undergo qualitative changes during the afterglow process. This opens up the prospect of developing new experimental and theoretical approaches to the study of various resonant ensembles of point scatterers.
Described in this review theoretical and highly sensitive laser methods of quantitative polarizing optical analysis and the performed statistical analysis of the obtained data form the basis for high-precision polarizing optical nanodiagnostics (quantitative characterization) of ordered functional materials and nanosystems.
The developed methods of polarization nanodiagnostics can be used to study materials, objects, and systems of different nature and composition, for example, metamaterials, biological fluids and tissues, etc.
 

Keywords: laser, polarization-optical analysis, statistical analysis of experimental data, analytical approximation, magnetic nanofluids, optoelectronics, magneto-optics, laser polarization-optical nanodiagnostics

Author affiliations:

1Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia
2Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia

 
Contacts: Manoylov Vladimir Vladimirovich, manoilov_vv@mail.ru
Article received by the editorial office on 27.06.2023

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Aleksandrov A.Ya., Akhmetzyanov M.Kh. Polyarizatsionno-opticheskie metody mekhaniki deformiruemogo tela [Polarization-optical methods of mechanics of a deformable body]. Moscow, Nauka Publ., 1973. 576 p. (In Russ.).
  2. Azzam R.M.A., Bashara N.M. Ehllipsometriya i polyarizovannyi svet [Ellipsometry and polarized light]. Moscow, Mir Publ., 1981. 583 p. (In Russ.).
  3. Schellman J., Jensen H.P. Optical spectroscopy of oriented molecules. Chem . Rev., 1987, vol. 87, iss. 6, pp. 1359—1399. DOI: 10.1021/cr00082a004
  4. Grishchenko A.E., Cherkasov A.N. [Orientational order in polymer surface layers]. Uspekhi Fizicheskikh Nauk [Advances in the physical sciences], 1997, vol. 167, no. 3, pp. 269—285. DOI: 10.3367/UFNr.0167.199703b.0269 (In Russ.).
  5. Merkulov V.S. [Generalized ellipsometry of anisotropic media]. Optika i spektroskopiya [Optics and Spectroscopy], 2007, vol. 103, no. 4, pp. 646—648. URL: https://www.elibrary.ru/item.asp?id=9551798 (In Russ.).
  6. Ishchenko E.F., Sokolov A.L. Polyarizatsionnaya optika. 3-e izdanie [Polarization optics. 3rd edition]. Moscow, Fizmatlit Publ., 2019. 571 p. (In Russ.).
  7. Zapasskii V.S. [Polarimetry of regular and stochastic signals in magnetooptics]. Fizika tverdogo tela [Physics of the Solid State], 2019, vol. 61, no. 5, pp. 946—951. DOI: 10.21883/FTT.2019.05.47599.01F (In Russ.).
  8. Fofanov Ya.A. Threshold sensitivity in optical measurements with phase modulation. The Report of tenth Union Symposium and School on High-Resolution Molecular Spectroscopy - Proc. SPIE, 1992, vol. 1811, pp. 413—414. DOI: 10.1117/12.131190
  9. Klyshko D.N., Masalov A.V. [Photon noise: observation, squeezing, interpretation]. Uspekhi Fizicheskikh Nauk [Advances in the physical sciences], 1995, vol. 165, no. 11, pp. 1249—1278. DOI: 10.3367/UFNr.0165.199511b.1249 (In Russ.).
  10. Sokolov I.M., Fofanov Ya.A. Investigations of the small birefringence of transparent objects by strong phase modulation of probing laser radiation. J. Opt. Soc. Am. A, 1995, vol. 12, no 7, pp. 1579—1588. DOI: 10.1364/JOSAA.12.001579
  11. Fofanov Ya.A. Quantum and high-sensitive laser technologies for polarization-optical diagnostics. EPJ Web of Conferences, 2019, vol. 220, Id. 01004. DOI: 10.1051/epjconf/201922001004
  12. Fofanov Ya.A. Ch. 4. Nonlinear and fluctuation phenomena under conditions of strong selective reflection in inclined geometry. Oswald M.R., eds. Advances in Optoelectronics Research. New York, Nova Science Publishers, 2014. pp. 75—114.
  13. Fofanov Ya.A., Pleshakov I.V., Kuz'min Yu.I. [Laser polarization-optical detection of the magnetization process of a magnetically ordered crystal]. Opticheskii zhurnal [Journal of Optical Technology], 2013, vol. 80, no. 1, pp. 88—93. URL: https://elibrary.ru/item.asp?id=23285816 (In Russ.).
  14. Acher O., Bigan E., Drevillon B. Improvements of phase- modulated ellipsometry. Rev. Sci. Instrum., 1989, vol. 60, no. 1, pp. 65—77. DOI: 10.1063/1.1140580
  15. Gupta V.K., Kornfield J.A., Ferencz A., Wegner G. Controlling molecular order in "Hairy-rod" Langmuir-Blodgett films: A polarization-modulation microscopy study. Science, 1994, vol. 265, iss. 5174, pp. 940—942. DOI: 10.1126/science.265.5174.940
  16. Shindo Y., Kani K., Horinaka J., Kuroda R., Harada T. The application of polarization modulation method to investigate the optical homogeneity of polymer films. J. Plast. Film Sheeting, 2001, vol. 17, no. 2, pp. 164—183. DOI: 10.1106/1VGU-5D4Y-2KON-RBQF
  17. Fofanov Ya.A., Pleshakov I.V., Prokofiev A.V. [Study of polarization magneto-optical responses of poorly concentrated ferrofluid]. Pis'ma v ZHTF [Technical Physics Letters], 2016, vol. 42, no. 20, pp. 66—72. (In Russ.).
  18. FofanovY.A., Sokolov I.M., Kaiser R., Guerin W. Subradiance in dilute atomic ensembles excited by nonresonant radiation. Phys. Rev. A, 2021, vol. 104, iss. 2, Id. 023705. DOI: 10.1103/PhysRevA.104.023705
  19. Davis H.W., Llewellyn J.P. Magnetic birefringence of ferrofluids: I. Estimation of particle size. J. Phys. D: Appl. Phys., 1979, vol. 12, no. 2, pp. 311—319. DOI: 10.1088/0022-3727/12/2/018
  20. Scherer C., Figueiredo Neto A.M. Ferrofluids: Properties and applications. Braz. J. Phys., 2005, vol. 35, no. 3A, pp. 718—727. DOI: 10.1590/S0103-97332005000400018
  21. Zhao Y., Lv R., Zhang Y., Wang Q. Novel optical devices based on the transmission properties of magnetic fluid and their characteristics. Opt. Lasers Eng, 2012, vol. 50, no. 9, pp. 1177—1184. DOI: 10.1016/j.optlaseng.2012.03.012
  22. Philip J., Laskar J.M. Optical Properties and Applications of Ferrofluids — A Review. Journal of Nano fl uids, 2012, vol. 1, no. 1, pp. 3—20. DOI: 10.1166/jon.2012.1002
  23. Bitar A., Kaewsaneha C., Eissa M., Jamshaid T., Tangboriboonrat P., Polpanich D., Elaissari A. Ferrofluids: from preparation to biomedical applications. Journal of Colloid Science and Biotechnology, 2014, vol. 3, no. 1, pp. 3—18. DOI: 10.1166/jcsb.2014.1080
  24. Agruzov P.M., Pleshakov I.V., Bibik E.E., Shamray A.V. Magneto-optic effects in silica core microstructured fibers with a ferrofluidic cladding. Applied Physics Letters, 2014, vol. 104, no. 7, Id. 071108. DOI: 10.1063/1.4866165
  25. Zakinyan A.R., Dikansky Yu.I. Effect of microdrops deformation on electrical and rheological properties of magnetic fluid emulsion. Journal of Magnetism and Magnetic Materials, 2017, vol. 431, pp. 103—106. DOI: 10.1016/j.jmmm.2016.09.057
  26. Fofanov Ya.A., Manoilov V.V., Zarutskiy I.V., Kuraptsev A.S. [Statistical analysis of the data of highly sensitive laser polarization-optical probing of magnetic nanofluids]. Opticheskii zhurnal [Journal of optical technology], 2020, vol. 87, no. 2, pp. 36—43. DOI: 10.17586/1023-5086-2020-87-02-36-43 (In Russ.).
  27. Skibin Y.N., Chekanov V.V., Raikher Yu.L. [Birefringence in a ferromagnetic liquid]. ZHEHTF [Soviet Physics — JETP], 1977, vol. 72, no. 3, pp. 949—955. URL: https://www.elibrary.ru/item.asp?id=19083100 (In Russ.).
  28. Scholten P.C. The origin of magnetic birefringence and dichroism in magnetic field. IEEE Trans. Magn., 1980, vol. 16, no. 2, pp. 221—225. DOI: 10.1109/TMAG.1980.1060595
  29. Coleman T.F., Li Y. An Interior, Trust Region Approach for Nonlinear Minimization Subject to Bounds. SIAM Journal on Optimization, 1996, vol. 6, no. 2, pp. 418—445. DOI: 10.1137/0806023
  30. Coleman T.F., Li Y. On the convergence of reflective Newton methods for large-scale nonlinear minimization subject to bounds. Mathematical Programming, 1994, vol. 67, no. 2, pp. 189—224. DOI: 10.1007/BF01582221
  31. Dennis J.E. Nonlinear least-squares. Jacobs D., eds. State of the art in numerical analysis. Academic Press, 1977, pp. 269—312.
  32. Levenberg K. A method for the solution of certain problems in least-squares. Quarterly Applied Mathematics, 1944, vol. 2, iss. 2, pp. 164—168. DOI: 10.1090/qam/10666
  33. Marquardt D.W. An algorithm for least-squares estimation of nonlinear parameters. SIAM Journal Applied Mathematics, 1963, vol. 11, no. 2, pp. 431—441. DOI: 10.1137/0111030
  34. Moré J.J. The Levenberg—Marquardt algorithm: implementation and theory. Watson G.A., eds. Numerical Analysis. Lecture Notes in Mathematics. Vol. 630, Springer Verlag, 1977, pp. 105—116. DOI: 10.1007/BFb0067700
  35. Ortega J.M., Rheinboldt W.C. Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, 1970. (Russ. ed.: Ortega Dzh., Reinboldt Ver. Itera-tsionnye metody resheniya nelineinykh uravnenii so mnogimi neizvestnymi. Translate by Eh.V. Vershkov, N.P. Zhidkov, I.V. Konoval'tsev, eds. I.V. Konoval'tsev. Moscow: Mir Publ., 1975. 560 p.). (In Russ.).
  36. Fofanov Ya.A., Manoilov V.V., Zarutskiy I.V., Kuraptsev A.S. [Laser polarization-optical diagnostics of ordered objects and structures]. Izvestiya RAN. Ser. Fizicheskaya [Bulletin of the Russian Academy of Sciences: Physics], 2020, vol. 84, no. 3, pp. 341—344. DOI: 10.31857/S0367676520030114 (In Russ.).
  37. Fofanov Ya.A., Manoilov V.V., Zarutskiy I.V., Bardin B.V. [On the similarity of the polarization-optical responses of magnetic nanofluids. Part I]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2018, vol. 28, no. 1, pp. 45‒52. Part II. Nauchnoe Priborostroenie [Scientific Instrumentation], 2018, vol. 28, no. 2, pp. 54‒62. (In Russ.).
  38. Kuraptsev A.S., Sokolov I.M., Fofanov Ya.A. Coherent specular reflection of resonant light from a dense ensemble of motionless point-like scatters in a slab geometry. Int. J. Mod. Phys. Conf. Ser., 2016, vol. 41, Id. 1660141. DOI: 10.1142/S2010194516601411
  39. Larionov N.V., Sokolov I.M., Fofanov Y.A. [Features of the angular distribution of light scattered by a cold atomic ensemble placed in a static electric field]. Izvestiya RAN. Seriya fiz [Bulletin of the Russian Academy of Sciences: Physics], 2019, vol. 83, no. 3, pp. 306—310. DOI: 10.1134/S0367676519030116 (In Russ.).
  40. Hau L.V. Optical information processing in Bose—Einstein condensates. Nature Photon, 2008, vol. 2, pp. 451—453. DOI: 10.1038/nphoton.2008.140
  41. Bouwmeester D., Ekert A., Zeilinger A. The physics of quantum information. Berlin, Springer, Heidelberg, 2010. 293 p.
  42. Bloom B.J., Nicholson T.L., Williams J.R., et al. An optical lattice clock with accuracy and stability at the 10−18 level. Nature, 2014, vol. 506, pp. 71—75. DOI: 10.1038/nature12941
  43. Foldy L.L. The multiple scattering of waves. I. General theory of isotropic scattering by randomly distributed scatterers. Phys. Rev., 1945, vol. 67, pp. 107—119. DOI: 10.1103/PhysRev.67.107
  44. Lax M. Multiple scattering of waves. Rev. Mod. Phys., 1951, vol. 23, iss. 4, pp. 287—310. DOI: 10.1103/RevModPhys.23.287
  45. Sokolov I.M., Kupriyanov D.V., Havey M.D. [Microscopic theory of scattering of weak electromagnetic radiation by a dense ensemble of ultracold atoms]. Zhurnal ekspe-rimental'noj i teoreticheskoj fiziki [Journal of Experimental and Theoretical Physics], 2011, vol. 139, no. 2, pp. 288—304. (In Russ.).
  46. Kuraptsev A.S., Sokolov I.M., Havey M.D. Angular distribution of single photon superradiance in a dilute and cold atomic ensemble. Phys. Rev. A, 2017, vol. 96, iss. 2, Id. 023830. DOI: 10.1103/PhysRevA.96.023830
  47. van Rossum M.C.W., Nieuwenhuizen Th.M. Multiple scattering of classical waves: microscopy, mesoscopy, and diffusion. Rev. Mod. Phys., 1999, vol. 71, iss. 1, pp. 313—371. DOI: 10.1103/RevModPhys.71.313
  48. Bozhokin S.V., Sokolov I.M. [Comparison of the wavelet and Gabor transforms in the spectral analysis of nonstationary signals]. ZHTF [Technical Physics], 2018, vol. 88, no. 12, pp. 1771—1778. (In Russ.).
 

B. P. Sharfarets

JUSTIFICATION OF THE POSSIBILITY OF USING
THE HYDRODYNAMIC MODEL OF A VISCOUS INCOMPRESSIBLE FLUID IN SOFTWARE SIMULATION OF THE RADIATED FIELD
OF THE ELECTROOSMOTIC ELECTROACOUSTIC RADIATOR

"Nauchnoe Priborostroenie", 2023, vol. 33, no. 3, pp. 117—124.
 

The paper substantiates the possibility of using a hydrodynamic model – a viscous, incompressible, heat-conductive fluid to calculate the parameters of an electroosmotic flow in a porous medium filled with liquid under the conditions of the application of constant and alternating electric fields to this medium. The conditions of transition to this model from the model of a viscous, compressible fluid are given. The boundaries of the problem parameters are specified, in particular, the boundaries of the flow velocities and frequency limitations, for the justification of such a transition. The acquired results can be used with computational tools to model the aforementioned processes.
 

Keywords: electroosmotic radiator, viscous incompressible fluid, Navier — Stokes equations, general equation of heat transfer, frequency constraints

Author affiliations:

Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia

 
Contacts: Sharfarets Boris Pinkusovich, sharb@mail.ru
Article received by the editorial office on 16.05.2023

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Ostroumov G.A. Vzaimodeystvie elektricheskich i gid-rodinamicheskich poley [Interaction of electrical and hydrodynamic fields]. Ìoscow, Nauka Publ., 1979. 320 p. (In Russ.).
  2. Sharfarets B.P. [Application of the system of electrohydrodynamics equations for mathematical modeling of a new method of electro-acoustic transformation]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2018, vol. 28, no. 4, pp. 127–134. (In Russ.). DOI: 10.18358/np-28-4-i127134
  3. Sharfarets B.P. [System electrohydrodynamics equations applied to electroosmotic processes]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2019, vol. 29, no. 1, pp. 135–142. (In Russ.). DOI: 10.18358/np-29-1-i135142
  4. Rudenko O.V., Soluyan S.I. Teoreticheskie osnovy nelineynoy akustiki [Theoretical foundations of nonlinear acoustics]. Ìoscow, Nauka Publ., 1975. 287 p. (In Russ.).
  5. Landau L.D., Lifshiz E.M. Teoreticheskaya fizika. Uchebnoe posobie v 10 t. T. VI. Gidrodinamika. 3-e izd. [Theoretical physics. Tutorial in 10 vol. Vol. V. Hydrodynamics. 3rd ed.], Ìoscow, Nauka Publ., Gl. red. Fiz.-mat. lit., 1986. 736 p. (In Russ.).
  6. Isakovich M.A. Obschaya akustika [General acoustics]. Ìoscow, Nauka Publ., 1973. 496 p. (In Russ.).
  7. Sharfarets B.P., Kurochkin V.E., Sergeev V.A., Gulyaev Yu.V. [About the electroacoustic transformation method based on electrokinetic phenomena]. Akust. zhurn. [Acoustic magazine], 2020, vol. 66, no. 4, pp. 453–462. (In Russ.).
    URL: https://sciencejournals.ru/view-issue/?j=akust&y=2020&v=66&n=4
  8. Duchin S.S., Deryagin B.V. Elektroforez [Electrophoresis]. Ìoscow, Nauka Publ., 1976. 332 p. (In Russ.).
 

Ulitsa Ivana Chernykh, 31-33, lit. A, St. Petersburg, Russia, 198095, P.O.B. 140
tel: (812) 3630719, fax: (812) 3630720, mail: iap@ianin.spb.su

content: Valery D. Belenkov design: Banu S. Kuspanova layout: Anton V. Manoilov