logo
blue band <-
  JOURNAL "NP" ISSUES

"Nauchnoe Priborostroenie", 2023, Vol. 33, no. 1. ISSN 2312-2951

"NP" 2023 year Vol. 33 no. 1.,   ABSTRACTS

ABSTRACTS, REFERENCES

L. E. Ermakova1, B. P. Sharfarets2, S. P. Dmitriev2, V. E. Kurochkin2

IMPLEMENTATION OF AN ACOUSTO-ELECTRIC CONVERTER.
2. ELECTROKINETIC CHARACTERISTICS OF MICROFILTRATION MEMBRANES

"Nauchnoe priborostroenie", 2023, vol. 33, no. 1, pp. 3—16.
 

The methods of measuring the specific electrical conductivity of membranes, flow potentials, and structural parameters (volumetric porosity and structural resistance coefficients) of microfilters are presented. Issues related to increasing the efficiency of acoustoelectric conversion in electrolytes are considered using the results of measurements of the characteristics of microfilters made of borosilicate glass fiber (Whatman GF/A) in NaCl solutions. The results obtained are intended to increase the sensitivity of the hydrophone based on the application of electrokinetic effects.
 

Keywords: flow potential, zeta potential, electrokinetic radius, electric double layer, electric double layers overlap, sensitivity of acoustoelectric, transformation of electrokinetic effects

Author affiliations:

1Institute of Chemistry of Saint Petersburg State University, Petergof, Russia
2Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia

 
Contacts: Sharfarez Boris Pinkusovich, sharb@mail.ru
Article received by the editorial office on 07.10.2022

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Ermakova L.E., Sharfarets B.P., Dmitriev S.P., Kurochkin V.E. [Implementation of an acousto-electric converter. 1. Dependence of electrokinetic phenomena on the structure of membrane materials in aqueous electrolyte solutions]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2022, vol. 32, no. 4, pp. 20—34. DOI: 10.18358/np-32-4-i2034
  2. SOMATCO. Filter Papers and Membranes. Glass microfiber filters. URL: www.somatco.com
  3. Grigorov O.N., Koz'mina Z.P., Markovich A.V., Fridrichsberg D.A. Elektrokineticheskie svoystva kapillyarnych sistem [Electrokinetic properties of capillary systems]. Moscow, Leningrad, Academy of sciences of the USSR, Publ., 1956. 352 p.
  4. Ermakova L.E., Volkova A.V., Antropova T.V., Murtuzalieva F.G. [Colloidal and chemical characteristics of porous glasses of different composition in KNO3 solutions. 1. Structural and Electrokinetic membrane characteristics]. Kolloid. zhurn. [Colloid. magazine], 2014, vol. 76, no. 5, pp. 594—601. DOI: 10.7868/S0023291214050073
  5. Bogdanova N.F., Sidorova M.P., Ermakova L.E., Savina I.A. [Electrokinetic characteristics of fused quartz in solutions of 1:1, 2:1 and 3: 1-charge electrolytes]. Kolloid. zhurn. [Colloid. magazine], 1997, vol. 59, no 4, pp. 452—459. URL: https://www.elibrary.ru/item.asp?id=14939421
 

I. N. Moskalev1, A. V. Semenov2, S. N. Ekimchev1, D. A. Khapov3

NON-SEPARATION ANALYZER OF VOLUME FRACTIONS OF GAS, CONDENSATE AND WATER IN PRODUCTS EXTRACTED FROM GAS CONDENSATE WELLS

"Nauchnoe Priborostroenie", 2023, vol. 33, no. 1, pp. 17—29.
 

When developing a non-separation technique for recording the components of the production of gas condensate and oil and gas condensate wells, it is necessary to solve the problem of determining the volumetric contents of these components. A promising direction for solving this problem is the technique of probing a gas-liquid flow with decimeter radio waves. By passing the flow through the microwave resonator and measuring the frequency shift of the resonator and its quality factor, it is possible to determine the volume fraction of gas, water, and condensate.
The algorithm for determining the volume fractions of gas, water and hydrocarbon condensate of a gas-liquid flow using the analysis of information from a microwave resonator provides an acceptable accuracy in determining the amount of condensate only at high gas-condensate factors (~ 300—1000 cm3/m3) and low water-gas factors (~ 30—100 cm3/m3). With an increase in the proportion of water or a decrease in the proportion of condensate, the error in determining the gas-condensate factor becomes unacceptably large, which devalues this measurement method. The error can be reduced by introducing a bypass line into the flow meter containing a filter that separates the liquid phase and a reference resonator that registers the frequency shift due to the gas phase. The filter is probed with an 8 mm radio beam, which reacts to the content of only the water component. The data obtained from the resonator and filter significantly expand the range of recorded condensate-gas and water-gas factors.
 

Keywords: gas-liquid flow, multiphase flow meter, microwave resonator, millimeter range, measurement error, well

Author affiliation:

1 Aksion Holding Izhevsk Motor Plant, Izhevsk, Russia
2 Moscow Witte University, Russia
3Arzamas Instrument-Building Plant, Arzamas, Russia

 
Contacts: Khapov Dmitry Aleksandrovich, khda@mail.ru
Article received by the editorial office on 19.10.2022

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Abramov G.S. [Solving the problem of reliable component-by-component production of oil wells]. Materialy II Obscherossiyskoy konferenzii po raschodometrii [Proceedings of the II All-Russian Conference on Consumometry], Moscow, OJSC VNIIOENG, 2005, pp. 14—27. (In Russ.).
  2. Kremlevskiy P.P. Izmerenie raschoda mnogofaznych potokov [Multiphase flow measurement], Leningrad, Mashinostroenie Publ., 1982. 214 p. (In Russ.).
  3. Kremlevskiy P.P. Raschodomery i schetchiki kolichestva veschestva. Kn. 2 [Flowmeters and substance quantity meters. Book 2], Sankt Petersburg, Politechnika Publ., 2004. 412 p. (In Russ.).
  4. Malyshev S.L. Kontrol' i vosproizvedenie dvuchfaznogo potoka na etalone massovogo raschoda gazozhidkostnych smesey [Control and reproduction of two-phase flow on the standard of mass flow of gas-liquid mixtures]. Diss. ... Ph. D. Kazanskiy nazional'nyy issledovatel'skiy technicheskiy universitet im. A.N. Tupoleva, Kazan', 2017. 139 p. (In Russ.).
  5. Katalog produkzii OOO NPO "Vympel" [Catalog of products of NPO Vympel LLC]. (In Russ.). URL: https://etpgpb.ru/suppliers/117821-ooo-npo-vympel/
  6. Ermolkin O.V. [Modern measuring instruments and equipment for oil and gas production]. Gazovaya promyshlennost' [Gas industry], 2014, no. 1, pp. 79—81. URL: https://www.elibrary.ru/item.asp?id=21183767 (In Russ.).
  7. Novopashin V.F., Belyaev V.B., Orechov Yu.I. et al. [Testing of flowmeter RGZh-001-01 at well 24.2 of Zapolyarnoye OGCF]. Gazovaya promyshlennost' [Gas industry], 2011, no. 6, pp. 36—39. (In Russ.). URL: https://www.elibrary.ru/item.asp?id=16351561
  8. TU 4213-064-00158758-2005. Mobil'naya zamernaya ustanovka dlya issledovaniy gazokondensatnych i neftyanych skvazhin. Technicheskie usloviya [Specifications 4213-064-00158758-2005. Mobile metering unit for testing gas condensate and oil wells. Specifications]. LLC TyumenNIIGiprogaz, Tyumen, 2005. (In Russ.).
  9. Grishin D.V., Golod G.S., Moskalev I.N., Derevyagin G.A., Chapov D.A., Kochnev V.V. [Method and technique of continuous determination of gases compressibility factor]. Avtomatizaziya, telemechanizaziya i svyaz' v neftyanoy promyshlennosti [Automation and informatization of the fuel and energy complex], 2016, no. 1, pp. 11—20. URL: https://www.elibrary.ru/item.asp?id=25256843 (In Russ.).
  10. Moskalev I.N., Semenov A.V. [An algorithm for determining the volume fractions of gas, water and condensate in the products of gas condensate and oil and gas condensate wells with a high content of the liquid phase]. Avtomatizaziya, telemechanizaziya i svyaz' v neftyanoy promyshlennosti [Automation and informatization of the fuel and energy complex], 2019, no. 10 (555), pp. 12—18. DOI: 10.33285/0132-2222-2019-10(555)-12-18 (In Russ.).
  11. Moskalev I.N., Semenov A.V., Gorbunov I.A., Gorbunov Yu.A. [Organization of high-precision measurements of volume fractions of gas, water and condensate in the products of gas condensate and oil and gas condensate wells]. Avtomatizaziya, telemechanizaziya i svyaz' v neftyanoy promyshlennosti [Automation and informatization of the fuel and energy complex], 2020, no. 7 (564), pp. 5—12. DOI: 10.33285/0132-2222-2020-7(564)-5-12 (In Russ.).
 

V. A. Talipov1,2, A. M. Baranov2, I. I. Ivanov2, Ju. Yangyang3

STUDY OF THE ACTIVITY OF THERMOCATALYTIC
HYDROGEN SENSORS AT NEGATIVE AMBIENT TEMPERATURES

"Nauchnoe Priborostroenie", 2023, vol. 33, no. 1, pp. 30—42.
 

The response of thermocatalytic hydrogen sensors with platinum group catalysts (Pt+3Pd and Ir) to heating voltage (S-shaped patterns) was studied at ambient temperatures from 17 ºC to (–48) ºC. It has been shown that for sensors with a Pt+3Pd catalyst, a decrease in the ambient temperature leads to a shift in the onset of the reaction of catalytic hydrogen combustion from 0 mV to 442 mV. The threshold temperature at which the catalytic combustion of hydrogen begins is determined and lies in the range of 17—22 ºC. It is shown that for iridium-based catalysts, the response of hydrogen sensors does not depend on the ambient temperature, and combustion starts at 1.5 V, which corresponds to a temperature from 222 ºC to 190 ºC when the ambient temperature changes from 17 ºC to (–48) ºC, respectively.
 

Keywords: thermal catalytic hydrogen sensor, platinum group catalysts, low-temperature catalytic combustion, self-initiation reaction temperature

Author affiliations:

1Scientific and Technical Center for Gas Sensing Sensors named after E.F. Karpov, Lyubertsy
2Moscow Aviation Institute, Moscow
3Beijing Institute of Technology, Beijing

 
Contacts: Ivanov Ivan Ivanovich, i.ivan1993@yandex.ru
Article received by the editorial office on 18.12.2022

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Darmadi I., Anggoro F., Nugroho A., Langhammer Ch. High-performance nanostructured palladium-based hydrogen sensors – current limitations and strategies for their mitigation. ACS Sens., 2020, vol. 5, is. 11, pp. 3306—3327. DOI: 10.1021/acssensors.0c02019
  2. Li Z., Yao Z., Haidry A.A., Plecenik T., Xie L., Sun LCh. Fatima Q. Resistive-type hydrogen gas sensor based on TiO2: A review. International Journal of Hydrogen Energy, 2018, vol. 43, is. 45, pp. 21114—21132. DOI: 10.1016/j.ijhydene.2018.09.051
  3. Zhang T., Zhou Yu., Liu P, Hu J. A novel strategy to identify gases by a single catalytic combustible sensor working in its linear range. Sensors & Actuators B: Chemical, 2020, vol. 321. DOI: 10.1016/j.snb.2020.128514
  4. EN 1127-1:2019 Explosive atmospheres - Explosion prevention and protection - Part 1: Basic concepts and methodology.
  5. Ivanov I.I., Baranov A.M., Talipov V.A., Mironov S.M., Kolesnik I.V., Napolskii K.S. [Development of effective sensors for detecting pre-explosive H2 concentrations]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2021, vol. 31, no. 3, pp. 25—36. (In Russ.). DOI: 10.18358/np-31-3-i2536
  6. Haruta M., Sano H. Catalytic combustion of hydrogen I – Its role in hydrogen utilization system and screening of catalyst materials. Int. J. Hydrogen Energy, 1981, vol. 6, is. 6, pp. 601—608. DOI: 10.1016/0360-3199(81)90025-2
  7. Kalinin A.P., Rubtsov N.M., Vinogradov A.N., Egorov V.V., Matveeva N.A., Rodionov A.I., Sazonov A.Yu., Troshin K.Y a ., Tsvetkov G.I., Chernysh V.I. [Ignition of hydrogen-hydrocarbon (C1—C6) mixtures — air above the palladium surface at 1—2 atm concentrations]. Khimicheskaya fizika [Chemical physics], 2020, vol. 39, no. 5, pp. 23—32. DOI: 10.31857/S0207401X20050052 (In Russ.).
  8. Talipov V.A., Baranov A.M., Ivanov I.I., Mironov S.M. [Low temperature methods for selective determination of hydrogen concentration in gas analytical technology]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2022, vol. 32, no. 1, pp. 35—47. (In Russ.). DOI: 10.18358/np-32-1-i3547
  9. Ivanov I.I., Baranov A.M., Lyamin A.N., Mironov S.M. [Investigation of the sensitivity and selectivity of a thermocatalytic sensor of hydrogen]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2022, vol. 32, no. 2, pp. 42—54. (In Russ.). DOI: 10.18358/np-32-2-i4254
  10. Karpov-Sensor. Proizvodstvo termokataliticheskikh sensorov goryuchikh gazov [Production of thermocatalytic sensors of combustible gases]. URL: http://karpov-sensor.com/ (accessed 14.12.2022) (InRuss.).
  11. Ivanov I.I., Baranov A.M., Talipov V.A., Mironov S.M., Akbari S., Kolesnik I.V., Orlova E.D., Napolskii K.S. Investigation of catalytic hydrogen sensors with platinum group catalysts. Sensors and Actuators B: Chemical, 2021, vol. 346. DOI: 10.1016/j.snb.2021.130515
 

E. E. Maiorov1, Y. M. Borodyansky2, R. B. Guliyev3, A. V. Dagaev4, V. V. Kurlov1, I. S. Tayurskaya5

INVESTIGATION OF OPTICAL SURFACES OF PLANE-CONVEX LENSES BY AN EXPERIMENTAL INTERFERENCE SETUP WITH A DIFFRACTED REFERENCE WAVEFRONT

"Nauchnoe Priborostroenie", 2023, vol. 33, no. 1, pp. 43—53.
 

The paper describes a layout of an experimental interferometric setup, the operation of which is based on the formation of a reference wavefront using a pinhole diaphragm. Optical devices and complexes built according to this scheme enable the carrying out of measurements on the surfaces of optical parts and elements intended for high-precision optics (interferometers for various purposes, interference microscopes, etc.), therefore, the work is promising and relevant. The paper presents an optical layout of the interferometer, as well as technical and operational characteristics of the experimental setup. The objects and the method of research are stated. Interferograms were obtained from the surfaces of plane-convex lenses made of K8 colorless optical glass, KÈ quartz glass (fused quartz SiO2), and zinc selenide (ZnSe). The images of interference fields were analyzed, and the main parameters of wavefronts were revealed. Optical surfaces were controlled using an experimental setup with an accuracy of not worse than 0.01 λ. The reflectivity of the optical surfaces of the provided samples was investigated, and the dependences of the reflection coefficient along the x and y coordinates were obtained.
 

Keywords: accuracy, sensitivity, optical control, interference methods, flat-convex lenses, vibration resistance, micro lens

Author affiliations:

1Saint Petersburg state university of aerospace instrumentation (GUAP), Saint Petersburg, RF
2The Bonch-Bruevich Saint Petersburg State University of Telecommunications, Saint Petersburg, RF
3University at the EurAsEC inter-parliamentary Assembly, Saint Petersburg, RF
4Ivangorodskii Humanitarian-Technical Institute (branch of) State educational institution for higher
professional education "Saint Petersburg University of Aerospace Instrumentation", Ivangorod, RF

5Saint Petersburg university of management technologies and economics, Saint Petersburg, RF

 
Contacts: Maiorov Evgeniy Evgen'evich, majorov_ee@mail.ru
Article received by the editorial office on 12.01.2023

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Born M., Wolf E. Principles of optics. Oxford, London, Edinburgh, New York, Paris, Frankfurt: Pergamon Press, 1968. 859 p. (Russ. Ed.: Born M., Vol'f Eh. Osnovy optiki. Translate S.N. Breus, A.I. Golovashkina, A.A. Shubina. Moscow, Nauka Publ., 1970. 855 p.).
  2. Kirillovsky V.K. Diffraction reference wavefront laser interferometer. SPIE. The International Society for Optical Engineering Proceed. "Miniature and Microoptics: Fabrication and System Applications", 1992, vol. 5 (1751), pp. 197—200. DOI: 10.1117/12.138881
  3. Landsberg G.S. Optika [Optics]. Moscow, Nauka Publ., 1976. 926 p. (In Russ.).
  4. Malacara D. Optical Shop Testing. New York, Chichester, Brisbane, Toronto, John Wiley and Sons. 862 p. (Russ. Ed.: Malakara D. Opticheskii proizvodstvennyi kontrol'. Translate E.V. Mazurova, A.N. Sosnov, T.V. Ushakova. Moscow, Mashinostroenie Publ., 1985. 340 p.).
  5. Kreopalova G.V., Lazareva N.L., Puryaev D.T. Opticheskie izmereniya [Optical measurements]. Moscow, Mashinostroenie Publ., 1987. 264 p. (In Russ.).
  6. Afanas'ev V.A. Opticheskie izmereniya [Optical measurements]. Moscow, Nedra Publ., 1968. 263 p. (In Russ.).
  7. Levin B.M. [Optical methods for determining the nature of the surface profile]. Optiko-mekhanicheskaya promyshlennost' [Soviet Journal of Optical Technology], 1938, no. 10-11, pp. 37—41. (In Russ.).
  8. Zakhar'evskii A.N. Interferometry [Interferometers]. Moscow, Oborongiz Publ., 1952. 296 p. (In Russ.).
  9. Kolomiitsev Yu.V. Interferometry [Interferometers]. Leningrad, Mashinostroenie Publ., 1976. 296 p. (In Russ.).
  10. Prokopenko V.T., Maiorov E.E. Interferometriya diffuzno otrazhayushchikh objektov [Interferometry of diffuse reflecting objects]. Moscow, NIU ITMO Publ., 2014. 195 p. (In Russ.).
  11. Maiorov E.E., Prokopenko V.T., Ushveridze L.A. [Dynamic parameters optimization for trigger type optical probe]. Nauchno-tekhnicheskii vestnik informatsionnykh tekhnologii, mekhaniki i optiki [Scientific and technical journal of information technologies, mechanics and optics], 2012, no. 2 (78), pp. 13—16. (In Russ.). URL: https://elibrary.ru/item.asp?id=17755116
  12. Maiorov E.E., Prokopenko V.T., Ushveridze L.A. [Calculation of scanning parameters of the interferometric system for controlling the shape of diffusively reflecting objects]. Pribory [Instruments], 2012, no. 7 (145), pp. 23—25. URL: https://elibrary.ru/item.asp?id=17910855 (In Russ.).
  13. Maiorov E.E., Mashek A.C., Prokopenko V.T., Chistyakova N.Ya. [Study of metrological characteristics of a measuring optical-mechanical head]. Izvestiya vysshikh uchebnykh zavedenii. Priborostroenie [Journal of instrument engineering], 2012, vol. 55, no. 7, pp. 61—67.
    URL: https://elibrary.ru/item.asp?id=17790991 (In Russ.).
  14. Maiorov E.E., Prokopenko V.T., Sherstobitova A.S. [Investigating an optoelectronic system for interpreting holographic interferograms]. Opticheskii zhurnal [Journal of Optical Technology], 2013, vol. 80, no. 3, pp. 47—51. URL: https://elibrary.ru/item.asp?id=23285864 (In Russ.).
  15. Maiorov E.E., Prokopenko V.T. [Study of the speckle structure influence on the formation of the interference signal and measurement error]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2013, vol. 23, no. 2, pp. 38—46. URL: http://iairas.ru/mag/2013/abst2.php#abst5 (In Russ.).
  16. Maiorov E.E., Prokopenko V.T. [Derivation of an analytical expression for the path difference of the rays passed through Jamin interferometer]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2013, vol. 23, no. 3, pp. 76—81. URL: http://iairas.ru/mag/2013/abst3.php#abst10 (In Russ.).
  17. Maiorov E.E., Prokopenko V.T., Ushveridze L.A. [Coherent Speclogram Processing System for Examination of Dental Tissue Surfaces]. Meditsinskaya tekhnika [Biomedical Engineering], 2013, no. 6 (282), pp. 25—27. URL: https://elibrary.ru/item.asp?id=21034782 (In Russ.).
  18. Maiorov E.E., Mashek A.C., Udakhina S.V., Tsygankova G.A., Khaidarov G.G., Chernyak T.A. [Development of a computer interference system for monitoring non-smooth surfaces]. Pribory [Instruments], 2015, no. 11 (185), pp. 26—31. URL: https://elibrary.ru/item.asp?id=25340893 (In Russ.).
  19. Prokopenko V.T., Maiorov E.E., Mashek A.C., Udakhina S.V., Tsygankova G.A., Khaidarov A.G., Chernyak T.A. [Optical-electronic instrument for control over geometrical parameters of diffuse reflecting objects]. Izvestiya vysshikh uchebnykh zavedeniy. Priborostroenie [Journal of Instrument Engineering], 2016, vol. 59, no. 5, pp. 388—394. DOI: 10.17586/0021-3454-2016-59-5-388-394 (In Russ.).
  20. Maiorov E.E., Dagaev A.V., Ponomarev S.E., Chernyak T.A. [The study of a shearing interferometer in the phase measuring devices and systems of decoding holographic interferograms]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2017, vol. 27, no. 2, pp. 32—40. DOI: 10.18358/np-27-2-i3240 (In Russ.).
  21. Maiorov E.E., Prokopenko V.T., Mashek A.C., Tsygankova G.A., Kurlov A.V., Khokhlova M.V., Kirik D.I., Kapralov D.D. [Experimental study of metrological characteristics of an automated interferometric system for measuring the shape of the surface of diffusively reflecting objects]. Izmeritel'naya tekhnika [Measuring technique], 2017, no. 10, pp. 33—37. URL: https://elibrary.ru/item.asp?id=30525791 (In Russ.).
  22. Kurlov V.V., Koskovich V.B., Maiorov E.E., Pushkina V.P., Tayurskaya I.S. [Experimental study of the developed interference system for measuring the surface of objects of complex shape]. Izvestiya tul'skogo gosudarstvennogo universiteta. Tekhnicheskie nauki [News of the Tula state university. Technical sciences], 2020, no. 8, pp. 179—189. URL: https://elibrary.ru/item.asp?id=44038077 (In Russ.).
  23. Tsygankova G.A., Maiorov E.E., Chernyak T.A., Konstantinova A.A., Mashek A.C., Pisareva E.A. [Investigation of a developed cross-shear interferometer to adjust interference bands in interferogram processing]. Pribory [Instruments], 2021, no. 2, pp. 20—25. URL: https://elibrary.ru/item.asp?id=44906824 (In Russ.).
  24. Khokhlova M.V., Dagaev A.V., Maiorov E.E., Arefyev A.V., Guliev R.B., Gromov O.V. [An investigation of the optoelectronic system in the processing of holographic plates]. Mezhdunarodnyi nauchno-issledovatel'skii zhurnal [International research journal], 2021, no. 8 (110), pp. 103—108. DOI: 10.23670/IRJ.2021.110.8.015 (In Russ.).
  25. Khokhlova M.V., Dagaev A.V., Maiorov E.E., Arefyev A.V., Guliev R.B., Gromov O.V. [Interference system for measuring the geometric parameters of reflecting surfaces]. Mezhdunarodnyi nauchno-issledovatel'skii zhurnal [International research journal], 2021, no. 6 (108), pp. 184—189. DOI: 10.23670/IRJ.2021.108.6.029 (In Russ.).
 

V. S. Kondratenko, A. Yu. Rogov, A. V. Sorokin, A. I. Tsvetkov

A NEW METHOD AND TECHNICAL MEANS FOR DETECTING HYDROCARBON LEAKS

"Nauchnoe Priborostroenie", 2023, vol. 33, no. 1, pp. 54—64.
 

The paper considers the issue of leaks in the infrastructure for transportation and storage of hydrocarbons. A novel technique for finding leaks of hydrocarbon liquids based on detecting changes in the concentration of hydrocarbons is proposed. A novel kind of hydrocarbon sensor and a detecting digital device have been developed to build a multi-channel wireless system for locating hydrocarbon leaks.
 

Keywords: leakage, hydrocarbon liquid, hydrocarbon sensor, wireless channel, GSM alert, system, microcontroller, leak detection method

Author affiliations:

Institute of Advanced Technologies and Industrial Programming
"MIREA – Russian technological University", Moscow, RF

 
Contacts: Tsvetkov Artem Igorevich, cartem@bk.ru
Article received by the editorial office on 15.12.2022

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Yunusa Z., Nizar-Hamidon M., Kaiser A., Awang Z. Gas Sensors: A Review. Sensors & Transducers, 2014, vol. 168, is. 4, pp. 61—75. URL: https://www.sensorsportal.com/HTML/DIGEST/P_1957.htm
  2. Orduña-Reyes E., Téllez-García R. New sensor cable for the detection and location of leaks in pipelines for transportation of hydrocarbons. Journal of Applied Research and Technology , 2012, vol. 10, is. 4, pp. 585—589. DOI: 10.22201/icat.16656423.2012.10.4.380
  3. Mamonova T.E. [Diagnostic methods for the linear part of petroleum products for oil detection]. Problemy informatiki [Problems of computer science], 2012, no. S3 (17), pp. 103—122. (In Russ.). URL: https://www.elibrary.ru/item.asp?id=20260387
  4. Manukyan M.M. [Import replacement of oil and gas equipment as the basis of economic energy growing]. Vestnik Samarskogo universiteta. Ehkonomika i uprav­lenie [Vestnik of Samara University. Economics and ìanagement], 2017, vol. 8, no. 2, pp. 31—35. URL: https://www.elibrary.ru/item.asp?id=34963353 (In Russ.).
  5. Mamonova T.E. [The account of the geometrical oil pipeline profile for leaks parameters determination]. Ehlektronnyi nauchnyi zhurnal neftegazovoe delo [Electronic scientific journal Oil and Gas Business], 2012, no. 2, pp. 85—102. (In Russ.). URL: https://www.elibrary.ru/item.asp?id=20891930
  6. Kondratenko V.S., Rogov A.Yu., Kobysh A.N. [A new approach to hydrocarbon liquids leakages control onboard an aircraft]. Trudi MAI [Proceedings of the Moscow Aviation Institute], 2018, no. 102, pp. 18—18. (In Russ.). URL: https://www.elibrary.ru/item.asp?id=36589973
  7. Kondratenko V.S., Rogov A.Yu., Sakunenko Yu.I., Sorokin A.V. [Development of methods to determine the size and location of water leaks with the help of sorption of hydro-sensor cable]. Kontrol’. Diagnostika [Testing. Diagnostics], 2018, no. 5, pp. 32—37. DOI: 10.14489/td.2018.05.pp.032-037 (In Russ.).
  8. Kudzh S.A., Kondratenko V.S., Rogov A.Yu., Sakunenko Yu.I., Druzhinin E.A. [Sorption cable sensor with large sensing range and fields of its application]. Rossiiskii tekhnologicheskii zhurnal [Russian Technological Journal], 2020, vol. 8, no. 3, pp. 59—80. DOI: 10.32362/2500-316X-2020-8-3-59-80 (In Russ.).
  9. Rogov A.Yu. [Improving the efficiency of detection of leaks by using sorption cable sensors]. Bazis [Basis], 2019, no. 2 (6), pp. 21—28. (In Russ.). URL: https://www.elibrary.ru/item.asp?id=41374365
  10. Rogov A.Yu. [Method for monitoring the operability of liquid cooling systems of supercomputers based on sorption cable sensor]. Pribory [Devices], 2022, no. 4 (262), pp. 32—37. (In Russ.). URL: https://www.elibrary.ru/item.asp?id=48932440
  11. Belov A.V. Sozdaem ustroistva na mikrokontrollerakh [Create devices on microcontrollers]. Saint Petersburg, Nauka i tekhnika Publ., 2007. 307 p. (In Russ.).
 

M. A. Korobkov, V. D. Zajkin, E. S. Mareichev, O. V. Khomutskaya, F. V. Vasiliev

DIRECT EXPOSURE SYSTEM BASED ON A LIQUID CRYSTAL DISPLAY

"Nauchnoe Priborostroenie", 2023, vol. 33, no. 1, pp. 65—85.
 

The paper investigates the possibility of using liquid crystal displays (LCDs) as photomasks for transferring
a conductive pattern to a photosensitive material using ultraviolet light in the workflow of printed circuit boards (PCBs). In the course of the study, an analysis of the exposure technologies used in the PCB workflow was carried out. A block diagram of the direct exposure system with the use of LCD has been developed, and the main elements of its design have been determined. Based on the monochrome LCD PengJi PJ3D623V1, a prototype of the exposure device was created, on which a number of experiments were carried out. During the experiments, the following design parameters of the device were clarified: the type of lens (with frosted glass), the distance between the lens and the LCD (37 mm), the wavelength of the ultraviolet light source (365 nm). The experiments also allowed us to determine the manufacturing parameters of the exposure operation: the required exposure time for sources with various wavelengths, the minimum reproducible dimensions of the conductive pattern (conductor width and spacing). The possibility of using the developed system has been confirmed: a PCB corresponding to the fourth accuracy class according to GOST R 53429-2009 with a minimum width of 0.2 mm conductors and spaces has been successfully manufactured (thickness of the copper foil is 35 μm). The advantages and disadvantages of the system are analyzed, on the basis of which the scope of possible applications of the technology under study is determined, as well as the prospects for its development.
 

Keywords: direct exposure, printed circuit boards manufacturing processes, liquid crystal matrix

Author affiliations:

Moscow Aviation Institute (National Research University), Russian Federation

 
Contacts: Khomutskaya Olga Vladislavovna, khomutskayaov@gmail.com
Article received by the editorial office on 20.12.2022

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Vantsov S.V., Medvedev A.M. [Reliability of incoming inspection]. Nadezhnost' i kachestvo slozhnych sistem [Reliability and quality of complex systems], 2015, no. 4 (12), pp. 91—100. (In Russ.). URL: https://elibrary.ru/item.asp?id=25515024
  2. Vasil'ev F.V., Vantsov S.V., Medvedev A.M., Stepanova M.A., Chomutskaya O.V. [Evaluation of reliability of non-soldered press joints by ohmic resistance]. Nadezhnost' i kachestvo slozhnych sistem [Reliability and quality of complex systems], 2016, no. 3 (15), pp. 85—91. DOI: 10.21685/2307-4205-2016-3-13 (In Russ.).
  3. Isaev V. [Relationship of parameters affecting printed circuit board reliability]. Elektronika: Nauka, Technologiya, Biznes [Electronics: Science, Technology, Business], 2020, no. 5 (196), pp. 128—137. (In Russ.). DOI: 10.22184/1992-4178.2020.196.5.128.134
  4. Vantsov S.V., Vasil'ev F.V., Medvedev A.M., Khomutskaya O.V. Quasi-determinate model of thermal phenomenain drilling laminates. Russian engineering research, 2018, vol. 38, no 12, pp. 1074—1076. DOI: 10.3103/S1068798X18120316
  5. Mozharov V.A., Chomutskaya O.V. [Impact of non-functional pads on different PCB characteristics]. Elektronika: Nauka, Technologiya, Biznes [Electronics: Science, Technology, Business], 2017, no. 3 (163), pp. 166—176. (In Russ.). DOI: 10.22184/1992-4178.2017.163.3.166.176
  6. Sokol'skiy A.M., Sokol'skiy M.L. [Analysis of factors affecting electrochemical migration intensity]. Trudy MAI [Proceedings of the Moscow Aviation Institute], 2016, no. 90, pp. 17—17. (In Russ.). URL: https://elibrary.ru/item.asp?id=27540410.
  7. Sokol'skiy A., Sokol'skiy M. [On prevention of electrochemical migration in avionics printed circuit boards]. Elektronika: Nauka, Technologiya, Biznes [Electronics: Science, Technology, Business], 2017, no. 9 (170), pp. 116—124. (In Russ.). DOI: 10.22184/1992-4178.2017.170.9.116.124
  8. Vantsov S.V., Medvedev A.M., Maung-Maung Z., Chomutskaya O.V. [Analysis of hole drilling process in composite materials of printed circuit board bases]. Nadezhnost' i kachestvo slozhnych sistem [Reliability and quality of complex systems], 2016, no. 2 (14), pp. 37—44. URL: https://elibrary.ru/item.asp?id=26024122 (In Russ.).
  9. Isaev V.V., Korobkov M.A. [Impact of design and process parameters on the probability of defects on printed circuit boards]. Tezisy 19-y Mezhdunarodnoy konferenzii "Aviaziya i kosmonavtika", Moskva, 23—27 noyabrya 2020 [Theses of the 19th International Conference "Aviation and Cosmonautics," Moscow, November 23-27, 2020], pp. 265—267. (In Russ.). URL: https://elibrary.ru/item.asp?id=44580770&pff=1
  10. Ed. K.F. Kumbza. Platy pechatnye: Spravochnik [Printed boards: Reference book] v 2-ch knigach. Kniga 1. Moscow, Technosfera Publ., 2011. 1016 p. (In Russ.).
  11. Orzel, B., Stecula, K. Comparison of 3D Printout Quality from FDM and MSLA Technology in Unit Production. Symmetry, 2022, vol. 14, is. 5, id. 910. DOI: 10.3390/sym14050910
  12. Khomutskaya O.V., Medvedev A.M., Korobkov M.A., Vancov S.V. The method of automated evaluation of the deformation of the printed circuit board. 2021 6th International Conference on Communication and Electronics Systems (ICCES), pp. 510—512. DOI: 10.1109/ICOECS52783.2021.9657420
  13. GOST R 53429-2009. Platy pechatnye. Osnovnye parametry konstrukzii [GOST R 53429-2009. Printed boards. Basic design parameters]. Moscow, Standartinform Publ., 2018.
  14. Rezonit. Mnogosloynye pechatnye platy. Technologicheskie vozmozhnosti proizvodstva [Resonates. Multilayer printed circuit boards. Technological capabilities of production]. (In Russ.). URL: https://www.rezonit.ru/pcb/mnogosloynye-platy-tipovye-sborki/
  15. Kulikov N., Chomutskaya O., Vantsov S. [Digital method for automated evaluation of PCB deformation]. Elektronika: Nauka, Technologiya, Biznes [Electronics: Science, Technology, Business], 2018, no. 2 (173), pp. 186—191. (In Russ.). DOI: 10.22184/1992-4178.2018.173.2.186.191
  16. Korobkov M.A., Vasil'ev F.V. [Application of artificial intelligence in process control]. Tezisy dokladov 20-y Mezhdunarodnoy konferenzii "Aviaziya i kosmonavtika", Moskva, 22—26 noyabrya 2021 [Abstracts of reports 20th International Conference "Aviation and Cosmonautics," Moscow, November 22-26, 2021], pp. 233—234. (In Russ.).
  17. Korobkov M.A. [Digital Manufacturing Site Challenge Study]. Sbornik tezisov rabot XLVII Mezhdunarodnoy molodezhnoy nauchnoy konferenzii, Moskva, 20—23 aprelya 2021 [Collection of theses of the XLVII International Youth Scientific Conference, Moscow, April 20-23, 2021], pp. 311—312. (In Russ.). URL: https://elibrary.ru/item.asp?id=46258855&pff=1
 

L. V. Novikov, A. G. Kuzmin, Yu. A. Titov

ANALYSIS OF MULTIDIMENSIONAL DATA ON THE COMPOSITION OF GASES EMITTED
FROM FAULTS IN THE EARTH'S SURFACE

"Nauchnoe Priborostroenie", 2023, vol. 33, no. 1, pp. 86—94.
 

The composition and intensity of gases recorded at fault location on the earth's surface are used to make an express forecast of the state of the earth's crust (including the forecast of earthquakes and volcanic eruptions) by. The method is based on unsupervised learning using a large amount of pre-collected data on the composition and concentration of gases released in the fault zone of the earth's crust. The composition and concentration of these gases contain information about the processes occurring in the depths of the earth, which makes it possible to predict earthquakes or other catastrophic events with some probability. The collected data serve to train the recognition system for newly received data by forming a system of clusters, each of which is a marker of a particular process in the earth's crust. The proximity of new data in the multidimensional space to the core of the cluster is a probabilistic measure of the event that caused the release of a gas mixture similar to a cluster.
 

Keywords: express diagnostics, cluster analysis, multivariate probability density, multivariate data processing

Author affiliations:

Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia

 
Contacts: Kuzmin Aleksey Georgievich, agqz55@rambler.ru
Article received by the editorial office on 24.10.2022

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Kuzmin Yu.D., Kuzmin A.G.[Mass spectrometry analysis of gas composition at Kamchatka thermal sites in the field]. Trudy III nauchno-technicheskoy konferenzii "Problemy kompleksnogo geofizicheskogo monitoringa Dal'nego Vostoka Rossii", g. Petropavlovsk-Kamchatskiy, 9—15 oktyabrya 2011 g. [Proceedings of the III Scientific and Technical Conference "Problems of Integrated Geophysical Monitoring of the Russian Far East", Petropavlovsk-Kamchatsky, October 9—15, 2011], Obninsk, GS RAN Publ., 2011, pp. 1—5. (In Russ.).
  2. Bolshakov A.A., Karimov R.N. Metody obrabotki mnogomernych dannych i vremennych ryadov. Uchebnoe posobie dlya vuzov [Methods for processing multidimensional data and time series. A textbook for universities]. Moscow, Goryachaya liniya-Telekom Publ., 2007. 522 p. (In Russ.).
  3. Ayvazyan S.A., Buchshtaber V.M., Enyukov I.S., Meshalkin L.D. Prikladnaya statistika. Klassifikaziya i snizhenie razmernosti [Applied statistics. Classification and dimensioning]. Moscow, Finansy i statistika Publ., 1989. 607 p. (In Russ.).
  4. Mandel I.D. Klasternyy analiz [Cluster analysis]. Moscow, Finansy i statistika Publ., 1988. 176 p. (In Russ.).
 

A. G. Lapushkin1, D. A. Gavrilov1, O. A. Potkin2

SYNTHESIZED DATA CREATION SOFTWARE AND FEEDBACK SIMULATOR FOR TESTING
MACHINE LEARNING ALGORITHMS

"Nauchnoe Priborostroenie", 2023, vol. 33, no. 1, pp. 95—108.
 

This paper presents software that allows the creation of new training data and tests existing algorithms in simulation mode. The developed program allows obtaining related data sets, including combined sets of the visible and infrared ranges using a single camera or stereo pair, additional information in the form of lidar data or a depth map, a segmentation pattern, and data on the location of objects of interest in a photo or video image. The structure of the developed software allows for further improvement of the approaches and possibilities for finalizing the resulting pipeline for different purposes and tasks.
 

Keywords: machine learning, training sets, training of neural network algorithms, algorithm testing, simulator

Author affiliations:

1Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
2Sber Automotive Technologies, Moscow, Russia

 
Contacts: Lapushkin Andrey Georgievich, lapushkin.ag@mipt.ru
Article received by the editorial office on 31.10.2022

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Medvedev M., Kadhim A., Brosalin D. Developmentof the Neural-Based Navigation System for a Ground-Based Mobile Robot. 7th International Conference on Mechatronics and Robotics Engineering, ICMRE 2021, 2021, pp. 35—40. DOI: 10.1109/ICMRE51691.2021.9384825
  2. Kaftannikov I.L., Parasich A.V. [Problems of training set’s formation in machine learning tasks]. Vestnik YurGU. Seriya "Komp'yuternye tekhnologii, upravlenie, radioehlektronika" [Bulletin of the South Ural State University. Series: Computer Technology, Automatic Control, Radio Electronics], 2016, vol. 16, no. 3, pp. 15—24. DOI: 10.14529/ctcr160302 (In Russ.).
  3. Roh Y., Heo G., Whang S.E. A survey on data collection for machine learning: a big data AI integration perspective. IEEE Transactions on Knowledge and Data Engineering, 2021, vol. 33, is. 4, pp. 1328—1347. DOI: 10.1109/ TKDE.2019.2946162
  4. Gavrilov D.A., Schelkunov N.N. [Software for large format aerospace image marking and training samples preparation]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2020, vol. 30, no. 2, pp. 67—75. DOI: 10.18358/np-30-2-i6775 (In Russ.).
  5. Gavrilov D.A. [The computer system testing of algorithms for detection and localization of objects in video sequences]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2019, vol. 29, no. 1, pp. 149—156. DOI: 10.18358/np-29-1-i149156 (In Russ.).
  6. Lapushkin A.G., Gavrilov D.A., Shchelkunov N.N., Bakeev R.N. [The main approaches to the preparation of visual data for training neural network algorithms]. Iskusstvennyi intellekt i prinyatie reshenii [Artificial intelligence and decision making], 2021, no. 4, pp. 62—74. DOI: 10.14357/20718594210406 (In Russ.).
  7. Pisareva O.M., Alexeev V.A., Mednikov D.N., Starikovsky A.V. [Characteristics of vulnerability zones and threats sources for information security by the operation of unmanned vehicles in an intelligent transport system]. Nauchno-tekhnicheskie vedomosti SPbGPU. Ehkonomicheskie nauki [St. Petersburg State Polytechnical University journal. Economics], 2021, vol. 14, no. 4, pp. 20—36. DOI: 10.18721/JE.14402 (In Russ.).
  8. Li L., Huang W.-L., Liu Y., Zheng N.-N., Wang F.-Y. Intelligence testing for autonomous s vehicles: a new approach. IEEE Transactions on Intelligent Vehicles, 2016, vol. 1, is. 2, pp. 158—166. DOI: 10.1109/TIV.2016.2608003
 

Ulitsa Ivana Chernykh, 31-33, lit. A, St. Petersburg, Russia, 198095, P.O.B. 140
tel: (812) 3630719, fax: (812) 3630720, mail: iap@ianin.spb.su

content: Valery D. Belenkov design: Banu S. Kuspanova layout: Anton V. Manoilov