logo
blue band <-
  JOURNAL "NP" ISSUES

"Nauchnoe Priborostroenie", 2022, Vol. 32, no. 4. ISSN 2312-2951, DOI: 10.18358/np-32-4-e110

"NP" 2022 year Vol. 32 no. 4.,   ABSTRACTS

ABSTRACTS, REFERENCES

V. E. Kurochkin, S. V. Mjakin, N. A. Bubis, L. M. Kuznetzov, A. Y. Shmykov

REGULATION OF HYDROPHILIC-HYDROPHOBIC PROPERTIES OF SILICON WAFERS

"Nauchnoe priborostroenie", 2022, vol. 32, no. 4, pp. 3—10.
doi: 10.18358/np-32-4-i310
 

The possibility of a wide range of adjustment of hydrophilic-hydrophobic properties of silicon wafers is demonstrated by means of treatment with hydrofluoric acid, Caro's acid, and various concentrations of hydrogen peroxide solutions. By measuring the contact angles of wetting and calculating the total, polar and dispersive components of the surface energy, it has been found that the most significant hydrophilization of the silicon surface as well as the maximum increase in the surface energy is achieved when the surfice is treated with Caro’s acid, while consecutive processing with Caro’s acid and hydrofluoric acid leads to the most prominent hydrophobization and a decrease in the surface energy.
 

Keywords: silicon, surface energy, hydrophilicity, Caro’s acid, hydrofluoric acid, hydrogen peroxide

Author affiliations:

Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia

 
Contacts: Shmykov Aleksey Yur'evich, shmykov.alexey@gmail.com
Article received by the editorial office on 25.08.2022

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Evstrapov A.A. [Microfluidic Chips for Biological and Medical Research]. Rossijskij himicheskij zhurnal [Russian Chemical Journal], 2011, vol. 55, no. 2, pp. 99—110.
    URL: https://elibrary.ru/item.asp?id=16567720 (In Russ.)
  2. Manz A., Harrison D.J., Verpoorte E.M.J., Fettinger J.C., Lüdi H., Widmer H.M. Miniaturization of chemical analysis systems - A look into next century's technology or just a fashionable craze? Chemia, 1991, vol. 45, pp. 103—105. DOI: 10.2533/chimia.1991.103
  3. Skvortsov A.M. [Surface structuring of silicon single crystals in electronic engineering]. Nauchno-tekhnicheskii vestnik informatsionnykh tekhnologii, mekhaniki i optiki [Scientific and Technical Journal of Information Technologies, Mechanics and Optics], 2005, no. 20, pp. 186—191. (In Russ.) URL: https://cyberleninka.ru/article/n/strukturirovanie-poverhnosti-monokristallov-kremniya-v-elektronnoy-tehnike (accessed: 17.07.2022).
  4. Belostotskaya I.S. Khimiya kremniya [Silicon chemistry]. Moscow, Infra-M Publ., 2008. 64 p. (In Russ.)
  5. Messina A., Desidero C., De Rossi A., Bachechi F., Sinibaldi M. Capillary electrochromatography on methacrylate based monolithic columns: evaluation of column performance and separation of polyphenols. Chromatographia, 2005, vol. 62, pp. 409—416. DOI: 10.1365/s10337-005-0642-4
  6. Orlov A.M., Kostishko B.M., Skvortsov A.A. Fizicheskie osnovy tekhnologii poluprovodnikovykh priborov i integral'nykh mikroskhem: uchebnoe posobie, 2-e izd., pererab. i dop [Physical basics of semi-conductor devices and integrated micro-circuits technology: tutorial, 2nd ed., Rev. and add]. Ulyanovsk: UlGU Publ., 2014. 423 p. (In Russ.)
  7. Abdullin F.A., Pautkin V.E., Pecherskaya E.A., Pecherskiy A.V. [Application of methods of selective drying of silicon for estimation of quality of plates at the manufacture of micromechanical sensors]. Modeli, sistemy, seti v ehkonomike, tekhnike, prirode i obshchestve [Models, systems, networks in economics, engineering, nature and society], 2018, no. 1(25), pp. 72—79. URL: https://mss.pnzgu.ru/mss7118 (In Russ.)
  8. Shcheglov A.A., Shmykov A.Yu., Maltsev V.G. [Purposeful regulation of electroosmotic flow in chemically modified fused-silica capillaries for optimization of capillary electrophoresis of proteins]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2003, vol. 13, no. 4, pp. 22—27.
    URL: http://iairas.ru/mag/2003/abst4.php#abst2 (In Russ.)
  9. Kurochkin V.E., Myakin S.V., Shmykov A.Yu. [Synthesis of consecutive diisocyanate and sulfonated polystyrene layers on silica glass surface for the production of fused silica capillary columns]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2012, vol. 22, no. 4, pp. 46—49. URL: http://iairas.ru/mag/2012/abst4.php#abst6 (In Russ.)
  10. Shmykov A.Ju., Mjakin S.V., Vasiljeva I.V., Filippov V.N., Vylegzhanina M.E., Sukhanova T.E., Kurochkin V.E. Electron beam initiated grafting of methacryloxypropyl-trimethoxysilane to fused silica glass. Applied Surface Science, 2009, vol. 255, is. 12, pp. 6391—6396. DOI: 10.1016/j.apsusc.2009.02.023
  11. Bodnevich K.S., Pozhidaev A.I., Komarov N.V., Ermakova A.S. [Features of chemical treatment of silicon wafers in acid etchants]. Sbornik trudov mezhdunarodnoi konferentsii "Innovatsionnye podkhody k resheniyu tekhniko-ehkonomicheskikh problem" [Proc. of the international conference "Innovative approaches to solving technical and economic problems"], 2020. Moscow, "Natsional'nyi issledovatel'skii universitet "Moskovskii institut ehlektronnoi tekhniki" Publ., 2020. pp. 70—75. (In Russ.)
  12. Tsvetkov Yu.B. Protsessy i oborudovanie mikrotekhnologii: Moduli 1 i 2: uchebnoe posobie [Microtech Processes and Equipment: Modules 1 and 2: Tutorial]. Moscow, MGTU im. N.Eh. Baumana Publ., 2017. 122 p. (In Russ.)
  13. Shmykov A.Ju., Mjakin S.V., Bubis N.A., Kuznetsov L.M., Esikova N.A., Kurochkin V.E. [Optimization of methods for preparing the surface of channels of microfluidic chips made of borosilicate glass]. Fizika i himia stekla [Physics and Chemistry of Glass], 2020, vol. 46, no. 5, pp. 490—496. DOI: 10.31857/S013266512005011X (In Russ.)
  14. Krasovskii A.N., Myakin S.V., Osmolovskaya N.A., Pak V.G., Sychev M.M., Shmykov A.Yu. Opredelenie kraevykh uglov smachivaniya i poverkhnostnoi ehnergii polimernykh plenok i kompozitov (metodicheskie ukazaniya) [Determination of edge angles of wetting and surface energy of polymer films and com-posites (guidelines)]. Saint Petrsburg, SPbGTI (TU) Publ., 2015. 16 p. (In Russ.)
  15. Krasovsky A.N., Shmykov A.Ju., Filippov V.N., Vasiljeva I.V., Mjakin S.V., Osmolovskaya N.A., Borisova S.V., Kurochkin V.E. [Study of the surface properties of coatings comprising a mixture of polystyrene and poly(styrenesulfonic acid) on the fused silica glass]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2009, vol. 19, no. 4, pp. 51—58. URL: http://iairas.ru/mag/2009/abst4.php#abst6 (In Russ.)
  16. Krasovskii A.N., Shmykov A.Yu., Osmolovskaya N.A., Mjakin S.V., Kurochkin V.E. [IR spectra and surface structure of polystyrene and polystyrene sulfonic acid coatings on fused silica glass]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2014, vol. 24, no. 2, pp. 5—15. URL: http://iairas.ru/mag/2014/abst2.php#abst1 (In Russ.)
 

D. A. Belov, Yu. V. Belov, A. N. Zubik, V. E. Kurochkin

INCREASING THE DNA MELTING METHOD VALIDITY BY RE-ANALYSIS IMPLEMENTATION

"Nauchnoe Priborostroenie", 2022, vol. 32, no. 4, pp. 11—19.
doi: 10.18358/np-32-4-i1119
 

The article explores the possibility of using repeated analyses based on the DNA melting method to increase their validity, namely, to reduce the error in determining the DNA melting temperature Tm. A statistically significant difference in the Tm values of the analyzed samples in successive analyses was experimentally revealed, which prevents the validity increase. It is shown that an increase in the temperature Tm on average by 0.12 deg. in the series of experiments is due to the evaporation of 1.65% of water from the test tube. A change in mass by 0.8 ± 0.1% of the total mass of water in test tubes was experimentally revealed as a result of a thermal regime similar to the analysis by the melting method, which partially confirms the assumption. It is recommended to take into account this effect during re-analyses using the DNA melting method and to implement measures that prevent water evaporation. Analytical expressions are given for the relative assessment of the sodium ion concentration changes and the water volume in the sample.
 

Keywords: DNA melting, HRMA, evaporation

Author affiliation:

Institute for Analytical Instrumentation of RAS, Saint Petersburg , Russia

 
Contacts: Belov Dmitriy Anatol'evich, onoff_10@mail.ru
Article received by the editorial office on 30.09.2022

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Ririe K.M., Rasmussen R.P., Wittwer C.T. Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Anal Biochem, 1997, vol. 245, no. 2, pp. 154—160. DOI: 10.1006/abio.1996.9916
  2. Montgomery J.L., Sanford L.N., Wittwer C.T. High-resolution DNA melting analysis in clinical research and diagnostics. Expert Rev Mol Diagn, 2010, vol. 10, no. 2, pp. 219—240. DOI: 10.1586/erm.09.84
  3. Wright T.A., Stewart J.M., Page R.C., Konkolewicz D. Extraction of thermodynamic parameters of protein unfolding using parallelized differential scanning fluorimetry. J Phys Chem Lett., 2017, vol. 8, no. 3, pp. 553—558. DOI: 10.1021/acs.jpclett.6b02894
  4. Vedenov A.A., Dykhne A.M., Frank-Kamenetskii M.D. [The helix-coil transition in DNA]. Uspekhi fizicheskikh nauk [Soviet Physics Uspekhi], 1971, vol. 105, no. 11, pp. 479—519. DOI: 10.3367/UFNr.0105.197111d.0479 (In Russ.).
  5. Pholwat S., Liu J., Stroup S., et al. Integrated microfluidic card with TaqMan probes and high-resolution melt analysis to detect tuberculosis drug resistance mutations across 10 genes. mBio, 2015, vol. 6, no. 2, Id e02273. DOI: 10.1128/mBio.02273-14
  6. Al'dekeeva A.S., Belov D.A., Belov Yu.V., Shirokorad A.L. [Development of an experimental version of quantitative PCR analysis software]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2019, vol. 29, no. 2, pp. 22—29. DOI: 10.18358/np-29-2-i2229 (In Russ.).
  7. Belov D.A., Korneva N.A., Aldekeeva A.S., Belov Yu.V., Kiselev I.G. [Genetic analyzer resolution increasing at DNA melting temperature determination]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2016, vol. 26, no. 2, pp. 17—22. DOI: 10.18358/np-26-2-i1722 (In Russ.).
  8. Wittwer C.T., Reed G.H., Gundry C.N., Vandersteen J.G., Pryor R.J. High-resolution genotyping by amplicon melting analysis using LCGreen. Clinical Chemistry, 2003, vol. 49, no. 6, pp. 853—860. DOI: 10.1373/49.6.853
  9. Gundry C.N., Vandersteen J.G., Reed G.H., et al. Amplicon melting analysis with labeled primers: A closed-tube method for differentiating homozygotes and heterozygotes. Clinical Chemistry, 2003, vol. 49, no. 3, pp. 396—406. DOI: 10.1373/49.3.396
  10. Herrmann M., Durtschi J., Bromley L., Wittwer C., Voelkerding K. Amplicon DNA melting analysis for mutation scanning and genotyping: Cross-platform comparison of instruments and dyes. Clinical chemistry, 2006, vol. 52, no. 3, pp. 494—503.
    DOI: 10.1373/clinchem.2005.063438
  11. Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P. Numerical recipes in C. 2nd ed., 1992, Cambridge University Press, New York. 994 p.
  12. Calendar R.N., Syvolap Yu.M. [Polymerase chain reaction with arbitrary primers]. Biopolymers and cell , 1995, vol. 11, no. 3-4, pp. 55—65. (In Russ.).
    URL: https://www.elibrary.ru/item.asp?id=23336409
  13. Howley P.M., Israel M.F., Law M.-F., Martin M.A. A rapid method for detecting and mapping homology between heterologous DNAs. Evaluation of polyomavirus genomes. J. Biol. Chem., 1979, vol. 254, no. 11, pp. 4876—4883. DOI: 10.1016/S0021-9258(17)30093-5
  14. SantaLucia J., Allawi H.T., Seneviratne P.A. Improved nearest-neighbor parameters for predicting DNA duplex stability. Biochemistry, 1996, vol. 35, no. 11, pp. 3555—3562. DOI: 10.1021/bi951907q
  15. Panjkovich A., Melo F. Comparison of different melting temperature calculation methods for short DNA sequences. Bioinformatics, 2005, vol. 21, no. 6, pp. 711—722. DOI: 10.1093/bioinformatics/bti066
  16. Kurochkin V.E., Belov D.A., Belov Yu.V., Zubik A.N. [Model constants determination in the DNA melting temperature calculating]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2020, vol. 30, no. 2, pp. 10—16. DOI: 10.18358/np-30-2-i1016 (In Russ.).
  17. Belov D.A., Belov Yu.V., Kiselev I.G. Modeling of the DNA melting point dependence on various analysis factors. IEEE 2020 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon), 2020, pp. 1—3. (In Russ.).
    DOI: 10.1109/FarEastCon50210.2020.9271634
  18. Polini A., Mele E., Sciancalepore A.G., et al. Reduction of water evaporation in polymerase chain reaction microfluidic devices based on oscillating-flow. Biomicrofluidics, 2010, vol. 4, no. 3. Id 036502. DOI: 10.1063/1.3481776
 

L. E. Ermakova1, B. P. Sharfarets2, S. P. Dmitriev2, V. E. Kurochkin2

IMPLEMENTATION OF AN ACOUSTO-ELECTRIC CONVERTER.
1. DEPENDENCE OF ELECTROKINETIC PHENOMENA ON THE STRUCTURE
OF MEMBRANE MATERIALS IN AQUEOUS ELECTROLYTE SOLUTIONS

"Nauchnoe Priborostroenie", 2022, vol. 32, no. 4, pp. 20—34.
doi: 10.18358/np-32-4-i2034
 

The features of the flow potential in the electrolyte which are significant for implementing a liquid acousto-electric converter are presented. The electrochemistry of the flow potential in electrolytes is considered. The peculiarity of the process in the electrolyte solutions associated with the influence of the ionic strength of the electrolyte and its dependence on the electrokinetic radius are noted. It is shown that at small values of the electrokinetic radius, the effect of overlapping of the electric double layer occurs, leading to a sharp decrease in the absolute values of the flow potential and, consequently, to the practical impossibility of implementing the acoustoelectric transformation. The results obtained can find wide practical application.
 

Keywords: flow potential, zeta potential, electrokinetic radius, electric double layer, electric double layers overlap, sensitivity of acoustoelectric, transformation of electrokinetic effects

Author affiliations:

1Institute of Chemistry of Saint Petersburg State University, Petergof, Russia
2Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia

 
Contacts: Sharfarets Boris Pinkusovich, sharb@mail.ru
Article received by the editorial office on 24.09.2022

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Sharfarets B.P. [Implementation of receiving antenna using mechanism of electrokinetic phenomenon "flow potential"]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2019, vol. 29, no. 2, pp. 103—108.
    DOI: 10.18358/np-29-2-i103108 (In Russ.).
  2. Sharfarets B.P., Dmitriev S.P., Kurochkin V.E., Sergeev V.A. [About the method of acoustoelectric transformation based on electrokinetic phenomena]. Akusticheskij zhurnal [Acoustic journal], 2022, vol. 68, no. 5, pp. 571—578. DOI: 10.31857/S0320791922050112 (In Russ.).
  3. Sharfarets B.P., Dmitriev S.P., Kurochkin V.E., Legusha F.F. [Acoustoelectric transducer based on electrokinetic phenomenon flow potential]. Pis'ma v ZhTF [Technical Physics Letters], 2021, vol. 47, no. 24, pp. 24—26. DOI: 10.21883/PJTF.2021.24.51794.18970 (In Russ.).
  4. Hunter R.J. Zeta potential in colloid science.Principles and applications. London, Academic Press, 1981. 391 p.
  5. Lyklema J. Fundamentals of interface and colloid science. San Diego, Academic Press, 2001, vol. 2. 786 p.
  6. Fridrikhsberg D.A. Kurs kolloidnoi khimii. 4-e izd., ispr. i dop [Colloidal chemistry course. 4th ed., rev. and add]. Saint Petersburg, Moscow, Krasnodar, Lan' Publ., 2010. 411 p. (In Russ.).
  7. Dukhin S.S., Deryagin B.V. Ehlektroforez [Electrophoresis]. Moscow, Nauka Publ., 1976. 328 p. (In Russ.).
  8. Shchukin E.D., Pertsov A.V., Amelina E.A. Kolloidnaya khimiya [Colloid chemistry]. Moscow, Vysshaya shkola Publ., 2004. 445 p. (In Russ.).
  9. N'yumen Dzh. Ehlektrokhimicheskie sistemy [Electrochemical systems]. Moscow, Mir Publ., 1977. 465 p. (In Russ.).
  10. Prohorov A.M., ed. Fizicheskaya ehnciklopediya T. 5 [Physical encyclopedia]. Vol. 5. Moscow, Bol'shaya Rossiiskaya ehntsiklopediya Publ., 1998. 760 p. (In Russ.).
  11. Grigorov O.N., Koz'mina Z.P., Markovich A.V., Fridrikhsberg D.A. Ehlektrokineticheskie svoistva ka-pillyarnykh sistem [Electrokinetic properties of capillary systems]. Moscow, Leningrad, AN SSSR Publ, 1956. 352 p. (In Russ.).
  12. Levine S., Marriott J.R., Neale G., Epstein N. Theory of electrokinetic flow in fine cylindrical capillaries at high zeta-potentials. J. Colloid Interface Sci., 1975, vol. 52, is. 1, pp. 136—149. DOI: 10.1016/0021-9797(75)90310-0
  13. Ermakova L.E., Kuznetsova A.S., Volkova A.V., Antropova T.V. Structural and electrosurface properties of iron-containing nanoporousglasses in KNO3 solutions. Colloids and Surfaces A, Physicochemical and Engineering Aspects, 2019, vol. 576, pp. 91—102. DOI: 10.1016/j.colsurfa.2019.05.037
 

O. A. Mirgorodskaya1, A. V. Protasov1, Yu. P. Kozmin2, R. A. Bublyaev3, J. Gobom4

FEATURES OF MASS SPECTROMETRIC DETECTION BETA AMYLOID PEPTIDES (ALZHEIMER'S PEPTIDES)

"Nauchnoe Priborostroenie", 2022, vol. 32, no. 4, pp. 35—48.
doi: 10.18358/np-32-4-i3548
 

Mass spectrometry combined with the use of isotope-labeled standards is one of the favored methods for quantitative measurement of beta-amyloid concentrations in biological media. This article is devoted to the prevention of typical systematic errors in such measurements arising from the neglect of the possibility of beta-amyloid transformation into the denatured form, which gives in mass spectra signals three times more intense than the native form. The degree of this denaturation was determined by the ability of the native form to set up
a complex with α-2-macroglobulin. The denaturing form lacks this point. It was shown that denaturation can occur in the case of heat treating in an acidic environment or when DMSO is used as a solvent. Measurement error occurs when the isotope-labeled standard and the analyte are of different forms. There are suggested recommendations to overcome systematic errors in the quantitative analysis of these compounds by forcing denaturation of the mixture of the analyte with the standard before analysis.
 

Keywords: quantitative mass spectrometry, beta-amyloids, α-2-macroglobulin

Author affiliations:

1Smorodintsev Research Institute of Influenza of Ministry of Health of the Russian Federation,
Saint Petersburg, Russia
2Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
3Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia
4University of Gothenburg, Göteborg, Vaestra Goetaland, Sweden

 
Contacts: Bublyaev Rostislav Anatol'evich, bub-slava@yandex.ru
Article received by the editorial office on 27.08.2022

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Laurents D.V., Pantoja-Uceda D., Lopez C., Carrodeguas A., Mompean M., Jimenez M.A., Sancho J. DMSO affects Aβ(1—40)' s conformation and interactions with aggregation inhibitors as revealed by NMR. Rsc Advances, 2015, vol. 5, is. 85, pp. 69761—69764. DOI: 10.1039/C5RA12100K
  2. Protasov A.V., Mirgorodskaya O.A., Kozmin Y.P., Gobom J. A mass spectrometric approach to study the interaction of amyloid β peptides with human α-2-macroglobulin. Biochimie, 2021, vol. 191, pp. 62—68. DOI: 10.1016/j.biochi.2021.08.008
  3. Penazzi L., Lorengel J., Sundermann F., Golovyashkina N., Marre S., Mathis C.M.B., Lewejohann L., Brandt R., Bakota L. DMSO modulates CNS function in a preclinical Alzheimer's disease model. Neuropharmacology, 2017, vol. 113, part A, pp. 434—444. DOI: 10.1016/j.neuropharm.2016.10.020
 

E. V. Gubina1, A. G. Kuzmin2, Yu. A. Titov2, A. A. Cherednikova2,
M. M. Guzenko
2, A. Yu. Zaitceva2

EXPLORING THE POSSIBILITY OF INTELLIGENT QUALITY CONTROL OF FERMENTED
DAIRY PRODUCTS USING A GAS QUADRUPOLE MASS SPECTROMETER

"Nauchnoe Priborostroenie", 2022, vol. 32, no. 4, pp. 49—57.
doi: 10.18358/np-32-4-i4957
 

The aim of the research was to create a hardware-software method for quality control of fermented dairy products with the ability to determine the degree of compliance with a given reference standard. A real-time mass spectrometric analysis of the gas composition of three groups of farm and industrial fermented dairy product samples was performed. Group 1 consisted of yoghurts from individual farms made of cow's and goat's milk. Group 2 consisted of samples of other fermented products from individual farms (kefir, yoghurt, sour cream). Group 3 consisted of samples of industrial yoghurts made of cow's milk. A total of nineteen samples of fermented dairy products were analysed. Analysis of sample composition was performed on a small-sized quadrupole mass spectrometer MS7-200 with direct sample introduction at atmospheric pressure. Samples were taken into specially prepared medical syringes of 20 ml capacity. The use of statistical analysis methods enables the assignment of groups of samples with similar properties and the classification of production as industrial or piece production. Mass-spectrometric techniques using multivariate data analysis methods have been shown to be promising as universal technologies for the analysis of foodstuffs.
 

Keywords: mass spectrometric analysis, food industry, dairy products, principal component method

Author affiliations:

1Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
2Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia

 
Contacts: Gubina Evgeniya Vyacheslavovna, gubina.z@yandex.ru
Article received by the editorial office on 05.08.2022

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Ermashov A.I. Mikroflora kislomolochnykh produktov raznykh torgovykh marok [Microflora of fermented milk products of different brands]. URL: https://school-science.ru/3/1/32980 (accessed: 01.04.2022). (In Russ.).
  2. Komarova O.N., Havkin A.I. [Cultured milk foods in children’s nutrition: nutritional and biological value]. Rossiyskiy Vestnik Perinatologii i Pediatrii [Russian Bulletin of Perinatology and Pediatrics], 2017, vol. 62, no. 5, pp. 80—86. DOI: 10.21508/1027-4065-2017-62-5-80-86 (In Russ.).
  3. Amarowicz R. Squalene: a natural antioxidant? European journal of lipid science and technology, 2009, vol. 111, no. 5, pp. 411—412. DOI: 10.1002/ejlt.200900102
  4. Lu H., Zhang H., Chingin K., Xiong J., et al. Ambient mass spectrometry for food science and industry. TrAC Trends in Analytical Chemistry, 2018, vol. 107, pp. 99—115. DOI: 10.1016/j.trac.2018.07.017
  5. Shiby V.K., Mishra H.N. Fermented milks and milk products as functional foods – A review. Critical reviews in food science and nutrition, 2013. vol. 53, no. 5, pp. 482—496.
    DOI: 10.1080/10408398.2010.547398
  6. Manoilov V.V., Novikov L.V., Zarutskii I.V., Kuzmin A.G., Titov Y.A. Methods for processing mass spectrometry signals from exhaled gases for medical diagnosis . Biomedical engineering , 2020, vol. 53, no. 5, pp. 355—359. DOI:  10.1007/s10527-020-09942-0
  7. Manoilov V.V., Kuzmin A.G., Titov U.A. Extraction of information attributes from the mass spectrometric signals of air. Journal of Analytical Chemistry , 2016, vol. 71, no. 14, pp. 1301—1308. DOI: 10.1134/S1061934816140094
  8. Manoilov V.V., Kuzmin A.G., Zarutskii I.V., Titov U.A. Samsonova N.S. [Methods of processing and investigation of the possibilities of classification of mass spectra of exhaled gases]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2019, vol. 29, no. 1, pp. 106—111.
    DOI: 10.18358/np-29-1-i106110 (In Russ.).
  9. Mazing M.S., Zaitceva A.Y., Kislyakov Y.Y., Davydov V.V., Kondakov N.S., Avdyushenko S.A. Analytical complex for study of the oxygen status of tissues of the human organism. Journal of Physics: Conference Series. IOP Publishing, 2020, vol. 1695, Id. 012065.
    DOI: 10.1088/1742-6596/1695/1/012065
  10. Mazing M.S., Zaitceva A.Y., Kislyakov Y.J. Development of a method for assessing of the oxygen supply of tissues based on a multi-channel spectrum analyzer. International Youth Conference on Electronics, Telecommunications and Information Technologies. Springer, Cham., 2020, pp. 233—239. DOI: 10.1007/978-3-030-58868-7_26
 

M. M. Guzenko, A. Yu. Zaitceva

INTELLIGENT ION COMPOSITION SENSOR RANKING SYSTEM BREAST MILK

"Nauchnoe Priborostroenie", 2022, vol. 32, no. 4, pp. 58—67.
doi: 10.18358/np-32-4-i5867
 

An intelligent sensor system has been developed and investigated that allows qualitative medical ranking of breast milk and dairy products. Electrochemical sensors with sensitivity to the principal significant components of the biological medium under study were used. It was found that the 'digital images' of the breast milk of women who had undergone disease differed significantly from those of healthy women. The principal component method has been applied to rank breast milk and cow's milk, and groups of biological media similar in their properties have been identified. Analyzing the results of the studies, it is possible to state the effectiveness of the developed method for biomedical research.
 

Keywords: breast milk, ranking system, sensor system, principal component method, electrochemical sensors

Author affiliations:

Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia

 
Contacts: Zaitceva Anna Yurievna, anna@da-24.ru
Article received by the editorial office on 24.09.2022

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Kislyakova L.P. Dinamika formirovaniya vodno-solevogo sostava moloka. Avtoref. dis. d-ra biolog. nauk. [Dynamics of milk water-salt composition formation. Autoref. Dr. Biologist. sci. dis.], Saint Petersburg State University Publ., 1996. 33 p. (In Russ.).
  2. Lawrence P.B. Breast milk: best source of nutrition for term and preterm infants. Pediatric Clinics of North America, 1994, vol. 41, is. 5, pp. 925—941. DOI: 10.1016/S0031-3955(16)38839-3
  3. Walker A. Breast milk as the gold standard for protective nutrients. The Journal of pediatrics, 2010, vol. 156, is. 2, pp. S3—S7. DOI: 10.1016/j.jpeds.2009.11.021
  4. Kislyakova L.P., Bulyanitsa A.L., Kislyakov Yu.Ya., Gulyaev V.I. [Estimation of a people’s functional condition after physical activities based on the indicators of the exhaled air condensate registered by polyselective electrochemical sensors with using the projective methods of the multidimensional analysis]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2016, vol. 26, no. 2, pp. 37—47. (In Russ.). DOI: 10.18358/np-26-2-i3747
  5. Pechenkina I.A., Mikhelson K.N. Materials for the ionophore-based membranes for ion-selective electrodes: Problems and achievements. Russian Journal of Electrochemistry, 2015, vol. 51, no. 2, pp. 93—102. DOI: 10.1134/S1023193515020111
  6. Tenenev V.A., Shaura A.S. [Application of data dimensionality reduction methods to the construction of fuzzy neural networks]. Intellektual'nye sistemy v proizvodstve [Intelligent systems in manufacturing], 2020, vol. 18, no. 4, pp. 109—116. (In Russ.).
    DOI: 10.22213/2410-9304-2020-4-109-116
  7. Bondarev A.E., Galaktionov V.A. [Investigation of multidimensional data in multivariable optimization problems]. Novye informatsionnye tekhnologii v avtomatizirovannykh sistemakh [New Information Technologies in Automated Systems], 2013, no. 16, pp. 84—92. (In Russ.).
  8. Esbensen K.H. Multivariate Data Analysis — in practice. CAMO Sosftware, 5th Edition, Oslo, 2010. 597 p.
  9. Jolliffe I.T.  Principal component analysis for special types of data. Principal component analysis , Springer, New York, 2002, pp. 338—372. DOI: 10.1007/0-387-22440-8_13
 

M. V. Zhukov, S. Yu. Lukashenko, I. D. Sapozhnikov, M. L. Felshtyn,
O. M. Gorbenko, S. V. Pichakhchi, A. O. Golubok

MULTIMODE SCANNING ION CONDUCTION MICROSCOPE
WITH PIEZO-INERTIAL MOVING SYSTEM

"Nauchnoe Priborostroenie", 2022, vol. 32, no. 4, pp. 68—87.
doi: 10.18358/np-32-4-i6887
 

A scanning ion conductivity microscope (IDS) has been developed, operating in several modes: DC mode, current modulation mode and hopping mode. It is built with a piezoinertial movement system, nanosonds in the form of glass nanopipettes have been created and tested with an internal radius of r ~ 50 nm. Volt-ampere characteristics I (V) and current dependence on the distance between the probe and the sample I (z) (input/output curves) were measured. Images of a polymer test object with a periodic structure and a biological object (CHO cell) were obtained, their quality was assessed, the features of the SMIP operation in various modes are discussed. Multimode SMIP provides non-destructive non-contact visualization of soft objects in a liquid conducting medium with nanometer spatial resolution in various measuring modes and can be used in biology, cytology, electrochemistry and medicine when studying inorganic soft objects, biological objects in buffer media, etc.
 

Keywords: nanopipette, probe, electrode, ion conductivity, scanning probe microscopy,
scanning ion-conductance microscope

Author affiliations:

Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia

 
Contacts: Zhukov Mikhail Valeryevich, cloudjyk@yandex.ru
Article received by the editorial office on 03.10.2022

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Hansma P.K., Drake B., Marti O., Gould S.A., Prater C.B. The scanning ion-conductance microscope. Science, 1989, vol. 243, is. 4891, pp. 641—643. DOI: 10.1126/science.2464851
  2. Happel P., Dietzel I.D. Backstep scanning ion conductance microscopy as a tool for long term investigation of single living cells. J. Nanobiotechnol, 2009, vol. 7, no. 7.
    DOI: 10.1186/1477-3155-7-7
  3. Morris C.A., Chen C.-C., Baker L.A. Transport of redox probes through single pores measured by scanning electrochemical-scanning ion conductance microscopy (SECM-SICM). Analyst, 2012, vol. 137, no. 13, pp. 2933—2938. DOI: 10.1039/C2AN16178H
  4. Zhang P., Aydemir N., Alkaisi M., Williams D.E., Travas-Sejdic J. Direct writing and characterization of three-dimensional conducting polymer PEDOT arrays. ACS Appl. Mater. Interfaces., 2018, vol. 10, no. 14, pp. 11888—11895. DOI: 10.1021/acsami.8b02289
  5. Pellegrino M., Orsini P., Pellegrini M., Baschieri P., Dinelli F., Petracchi D., Tognoni E., Ascoli C. Integrated SICM-AFM-optical microscope to measure forces due to hydrostatic pressure applied to a pipette. Micro & Nano Lett., 2012, vol. 7, no. 4, pp. 317—320. DOI: 10.1049/mnl.2011.0670
  6. Zhukov M.V., Sapozhnikov I.D., Golubok A.O., Chubinskiy-Nadezhdin V.I., Komissarenko F.E., Lukashenko S.Y. Scanning ion-conductance and atomic force microscope with specialized sphere-shaped nanopippettes. J. Phys.: Conf. Ser., 2017, vol. 917, Id. 042022. DOI: 10.1088/1742-6596/917/4/042022
  7. Page A., Perry D., Unwin P.R. Multifunctional scanning ion conductance microscopy. Proc. R. Soc. A, 2017, vol. 473, is. 2200. DOI: 10.1098/rspa.2016.0889
  8. Novak P., Li Ch., Shevchuk A.I., et al. Nanoscale live-cell imaging using hopping probe ion conductance microscopy. Nature methods, 2009, vol. 6, no. 4, pp. 279—281. DOI: 10.1038/nmeth.1306
  9. Sa N., Baker L.A. Experiment and Simulation of Ion Transport through Nanopipettes of Well-Defined Conical Geometry. Journal of The Electrochemical Society, 2013, vol. 160, no. 6, pp. 376—381. DOI: 10.1149/2.128306jes
  10. Wei Ch., Bard A.J., Feldberg S.W. Current rectification at quartz nanopipet electrodes. Anal. Chem., 1997, vol. 69, is. 22, pp. 4627—4633. DOI: 10.1021/ac970551g
  11. Li P., Liu L., Yang Y., Zhou L., Wang D., et al. Amplitude modulation mode of scanning ion conductance microscopy. Journal of Laboratory Automation, 2015, vol. 20, no. 4, pp. 457—462. DOI: 10.1177/2211068215573191
  12. Li P., Liu L., Wang Y., Yang Y., Zhang Ch., Li G. Phase modulation mode of scanning ion conductance microscopy. Applied physics letters, 2014, vol. 105, is. 5, Id. 053113. DOI: 10.1063/1.4891571
  13. Klenerman D., Shevchuk A., Novak P., Korchev Y.E., Davis S.J. Imaging the cell surface and its organization down to the level of single molecules. Philos. Trans. R. Soc., B, 2013, vol. 368, is. 1611, Id. 20120027. DOI: 10.1098/rstb.2012.0027
  14. Zhuang J., Cheng L., Liao X., Zia A.A., Wang Zh. A fuzzy control for high-speed and low-overshoot hopping probe ion conductance microscopy. Rev. Sci. Instrum., 2020, vol. 91, is. 3, Id. 033703. DOI: 10.1063/1.5114642
  15. Wang Z., Zhuang J., Gao Z., Liao X. A fast scanning ion conductance microscopy imaging method using compressive sensing and low-discrepancy sequences. Rev. Sci. Instrum., 2018, vol. 89, is. 11, Id. 113709. DOI: 10.1063/1.5048656
  16. Zhuang J., Jiao Y., Mugabo V. A new scanning mode to improve scanning ion conductance microscopy imaging rate with pipette predicted movement. Micron, 2017, vol. 101, pp. 177—185.
    DOI: 10.1016/j.micron.2017.07.007
  17. Gesper A., Hagemann P., Happel P. A low-cost, large field-of-view scanning ion conductance microscope for studying nanoparticle—cell membrane interactions. Nanoscale, 2017, vol. 9, is. 37, pp. 14172—14183. DOI: 10.1039/C7NR04306F
  18. Watanabe S., Ando T. High-speed XYZ-nanopositioner for scanning ion conductance microscopy. Appl. Phys. Lett., 2017, vol. 111, no. 11, Id. 113106. DOI: 10.1063/1.4993296
  19. Jung G.E., Noh H., Shin Y.K., Kahng S.J., Baik K.Y., Kim H.B., Cho N.J., Cho S.J. Closed-loop ARS mode for scanning ion conductance microscopy with improved speed and stability for live cell imaging applications. Nanoscale, 2015, vol. 7, is. 25, pp. 10989—10997. DOI: 10.1039/C5NR01577D
  20. Shevchuk A., Tokar S., Gopal S., Sanchez-Alonso J.L., et al. Angular approach scanning ion conductance microscopy. Biophysical Journal, 2016, vol. 110, no. 10, pp. 2252—2265. DOI: 10.1016/j.bpj.2016.04.017
  21. Rheinlaender J., Schäffer T.E. Image formation, resolution, and height measurement in scanning ion conductance microscopy. Journal of applied physics, 2009, vol. 105, is. 9. Id. 094905. DOI: 10.1063/1.3122007
  22. Rheinlaender J., Schäffer T.E. An accurate model for the ion current-distance behavior in SICM allows for calibration of pipet tip geometry and tip-sample distance. Analytical Chemistry, 2017. vol. 89, is. 21, pp. 11875—11880. DOI: 10.1021/acs.analchem.7b03871
  23. Sapozhnikov I., Gorbenko O., Felshtyn M., Zhukov M., Golubok A. SPM-unit combined with optical microscope objective. AIP Conf. Proc., 2019, vol. 2064, is. 1. Id. 020003. DOI: 10.1063/1.5087659
  24. Sapozhnikov I.D., Gorbenko O.M., Felshtyn M.L., Zhukov M.V., Golubok A.O. Features of combining of scanning probe microscopy with optical and scanning electron microscopy. IOP Conference Series: Materials Science and Engineering, 2019, vol. 699. Id. 012040.
    DOI: 10.1088/1757-899X/699/1/012040
  25. Zhukov M.V., Lukashenko S.Yu., Sapozhnikov I.D., Golubok A.O. Creation and study of liquid nanojunction using SPM-base technology. J. Phys.: Conf. Ser. 2020, vol. 1695. Id. 012167.
    DOI: 10.1088/1742-6596/1695/1/012167
  26. Zhukov M.V., Lukashenko S.Yu., Sapozhnikov I.D., Felshtyn M.L., Gorbenko O.M., Golubok A.O. Scanning ion-conductance microscope with modulation of the sample position along the Z coordinate and separate Z-axial and lateral (X, Y) scanning. J. Phys.: Conf. Ser. 2021, vol. 2086. Id. 012074. DOI: 10.1088/1742-6596/2086/1/012074
 

K. I. Sukhachev, K. E. Voronov, A. S. Dorofeev, D. A. Shestakov, A. A. Artyushin

DEVELOPMENT OF A HIGH-PERFORMANCE COMPUTING SYSTEM
BASED ON AN IP-CORE FOR SPACE SCIENTIFIC EQUIPMENT

"Nauchnoe Priborostroenie", 2022, vol. 32, no. 4, pp. 88—106.
doi: 10.18358/np-32-4-i88106
 

The article presents the result of the development and implementation of a universal synthesized processor core based on integrated circuits FPGAs of domestic and foreign production. The possibility of creating a high-performance computing system based on FPGA is shown. The description of the structure of the system, the main processor core and associated modules is given. The system of processor commands is presented. The process of developing a program for a synthesized controller and a variant of implementing a control system based on the developed controller are presented.
 

Keywords: FPGA, IP processor core, microcontrollers, onboard control systems

Author affiliations:

Samara National Research University, Samara, Russian Federation

 
Contacts: Artyushin Andrey Alekseevich, artyushin.aa@ssau.ru
Article received by the editorial office on 01.09.2022

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Voronov K.E., Sukhachev K.I., Vorobev D.S. [Development of control module based on a computing IP-core]. Raketno-kosmicheskoe priborostroenie i informatsionnye sistemy [Rocket-Space Device Engineering and Information Systems], 2021, vol. 8, no. 1, pp. 24—38. DOI: 10.30894/issn2409-0239.2021.8.1.24.38 (In Russ.).
  2. Haskell R.E., Hanna D.M. A VHDL--Forth Core for FPGAs. Microprocessors and Microsystems, 2004, vol. 28, is. 3, pp. 115—125.
  3. Ehliar A., Karlstrom P., Liu D. A high performance microprocessor with DSP extensions optimized for the virtex-4 FPGa. 2008 International Conference on Field Programmable Logic and Applications, IEEE, 2008, pp. 599—602.
  4. Tamagnone M., Martina M., Masera G. An application specific instruction set processor based implementation for signal detection in multiple antenna systems. Microprocessors and Microsystems, 2012, vol. 36, is. 3. pp. 245—256.
  5. Zotov V. [PicoBlaze is a family of eight-bit microprocessor cores based on Xilinx FPGAs]. Komponenty i technologii [Components and Technologies], 2003, no. 30, pp. 194—198.
  6. Jesman R., Vallina F.M., Saniie J. MicroBlaze tutorial creating a simple embedded system and adding custom peripherals using Xilinx EDK software tools. Embedded Computing and Signal Processing Laboratory, Illinois Institute of Technology, 2006.
  7. Atehortúa J.C.B. Desarrollo e implementación del procesador soft-core LatticeMico32 en una FPGA. 2016. URL: https://1library.co/document/ye9524eq-desarrollo-implementacion-procesador-soft-core-latticemico-fpga.html
  8. Pokale M.S.M., Kulkarni M.K., Rode S.V. NIOS II processor implementation in FPGA: an application of data logging system. Int. J. Sci. Technol. Res., 2012, vol. 1, is. 11.
  9. AO "Voronezhskii zavod poluprovodnikovykh priborov" (VZPP-S). Katalog izdelii 2020. [Product Catalog 2020]. URL: http://www.vzpp-s.ru/production/catalog.pdf (accessed 01.07.2022). (In Russ.).
  10. Nikitin A.A. [Implementation of radiation-resistant encoding within the framework of chip-to-chip interconnections in systems consisting of several field-programmable gate arrays]. Kosmicheskaya tekhnika i tekhnologii [Space Engineering and Technology], 2018, no. 4 (23), pp. 100—110. (In Russ.).
 

N. O. Borshchev

PARAMETRIC IDENTIFICATION OF THE THERMAL
CONDUCTIVITY COEFFICIENT OF MIRROR MATERIALS
OPERATING IN THE ORBITAL FLIGHT SECTION

"Nauchnoe Priborostroenie", 2022, vol. 32, no. 4, pp. 107—123.
doi: 10.18358/np-32-4-i107123
 

This paper presents a method for determining the thermal conductivity coefficient of mirror materials of spacecraft operating in the orbital flight section. This problem is solved as a problem of searching for the global extremum of the parametrized coefficient of thermal conductivity in the course of minimizing the root-mean-square functional of the discrepancy between the theoretical and experimental temperature fields in the places where temperature sensors are installed. Inverse problems are considered incorrect due to "noisy" input data. To overcome this, it is necessary to apply regularization. This study employs the iterative regularization method, with the iteration number serving as the regularized parameter. The method of conjugate gradients is chosen as the optimization algorithm, as the most accurate method of the first order of convergence.
 

Keywords: inverse heat conduction problem, iterative regularization method, root-mean-square error, temperature field, spacecraft

Author affiliations:

Astrocosmic Center of the Federal State Institution of Science S.A. Lebedev Institute, Moscow, Russia

 
Contacts: Borshchev Nikita Olegovich, www.moriarty93@mail.ru
Article received by the editorial office on 05.08.2022

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Zaletaev V.M., Kapinos Yu.V., Surguchev O.V. Raschet teploobmena kosmicheskogo apparata [Spacecraft Heat Exchange Calculation]. Moscow, Mashinostroenie Publ., 1979. 208 p. (In Russ.).
  2. Krein S.G., Prozorovskaya O.I. [Analytic semigroups and incorrect problems for evolutionary equations]. Doklady Akademii Nauk SSSR [Reports of the USSR Academy of Sciences], 1960, vol. 133,  no. 2 , pp. 277—280. URL: http://mi.mathnet.ru/dan23812 (In Russ.).
  3. Basistov Yu.A., Yanovsky Yu.G. [Ill-posed problems of mechanics (rheology) of viscoelastic media and theirs regularization]. Mekhanika kompozitsionnykh materialov i konstruktsii [Mechanics of composite materials and structures] , 2010, vol. 16, no. 1, pp. 117—143. URL: https://www.elibrary.ru/item.asp?id=15056455 (In Russ.).
  4. Bakushinskii A.B., Kokurin M.Y., Kokurin M.M. [Direct and converse theorems for iterative methods of solving irregular operator equations and finite difference methods for solving ill-posed Cauchy problems]. Zhurnal vychislitel'noi matematiki i matematicheskoi fiziki [Computational Mathematics and Mathematical Physics], 2020, vol. 60, no. 6 , pp. 939—962. DOI: 10.31857/S0044466920060022 (In Russ.).
  5. Efanov V.V., Martynov M.B., Karchaev Kh.Zh. [Flightborne vehicles by Lavochkin association (to the eightieth anniversary of Lavochkin association)]. Vestnik NPO im. S.A. Lavochkina [Bulletin of the NPO named after S.A. Lavochkin], 2017, no. 2, pp. 5—16. URL: https://www.elibrary.ru/item.asp?id=29237867 (In Russ.).
  6. Blokh A.G., Zhuravlev Yu.A., Ryzhkov L.N. Teploobmen izlucheniem. Spravochnik [Heat exchange by radiation. Reference book]. Moscow, Ehnergoatomizdat Publ., 1991. 432 p. (In Russ.).
  7. Tulin D.V., Finchenko V.S. [Theoretical and experimental methods for designing systems for ensuring the thermal regime of spacecraft]. Proektirovanie avtomaticheskikh kosmicheskikh apparatov dlya fundamental'nykh nauchnykh issledovanii [Design of automatic spacecraft for basic scientific research]. Moscow, MAI-PRINT, 2014, vol. 3, pp. 1320—1437. URL: https://www.elibrary.ru/item.asp?id=25577466 (In Russ.).
  8. Tsaplin S.V., Bolychev S.A., Romanov A.E. Teploobmen v kosmose [Heat exchange in space]. Samara, Samarskii universitet, 2013. 53 p. URL: http://tf.samsu.ru/pdf/heat_in_space.pdf (In Russ.).
  9. Alifanov O.M., Artyukhin E.A., Rumyantsev S.V. Ehkstremal'nye metody resheniya nekorrektnykh zadach [Extreme methods of solving incorrect backdrops]. Moscow, Nauka Publ., 1988. 288 p. (In Russ.).
  10. Alifanov O.M. Obratnye zadachi teploobmena [Reverse heat exchange problems]. Moscow, Mashinostroenie Publ., 1988. 280 p. (In Russ.).
  11. Formalev V.F. Teploperenos v anizotropnykh tverdykh telakh [Heat transfer in anisotropic solids]. Moscow, Fizmatlit Publ., 2015. 238 p. (In Russ.).
  12. Vasin V.V. [Modified quick descent method for nonlinear regular operator equations]. Doklady Akademii nauk [Reports of the Academy of Sciences], 2015, vol. 462,  no. 3 , pp. 264. DOI: 10.7868/S0869565215150086 (In Russ.).
  13. Golichev I.I. [Modified gradient fastest descent method for solving linearized non-stationary Navier-Stokes equations]. Ufimskii matematicheskii zhurnal [Ufa Mathematical Journal] , 2013, vol. 5,  no. 4, pp. 60—76. URL: https://www.elibrary.ru/item.asp?id=20930477 (In Russ.).
  14. Formalev V.F., Reviznikov D.L. Chislennye metody [Numerical methods]. Moscow, Fizmatlit Publ., 2004. 400 p. (In Russ.).
  15. Formalev V.F. [Analysis of two-dimensional temperature fields in anisotropic bodies taking into account mobile boundaries and a large degree of anisotropy]. Teplofizika vysokikh temperatur [Thermophysics of high temperatures], 1990, vol. 28, no. 4, pp. 715—721. (In Russ.).
  16. Formalev V.F. [Identification of two-dimensional heat flows in complex anisotropic forms]. Inzhenerno-fizicheskii zhurnal [Journal of Engineering Physics and Thermophysics], 1989, vol. 56, no. 3, pp. 382—386. (In Russ.).
  17. Formalev V.F., Kolesnik S.A. [Analytical solution of the second initial-boundary problem of anisotropic thermal conductivity]. Matematicheskoe modelirovanie [Mathematical Models and Computer Simulations], 2003, vol. 15, no. 6, pp. 107—110. (In Russ.).
 

S. V. Vantsov, F. V. Vasiliev, O. V. Khomutskaya, M. A. Korobkov

MANUFACTURING PROCESS CONTROL TASKS

"Nauchnoe Priborostroenie", 2022, vol. 32, no. 4, pp. 124—137.
doi: 10.18358/np-32-4-i124137
 

Obtaining a quality end product is the goal of any manufacturing process control. In the formal description of control problems, this goal allows us to form the boundary conditions for solving the control task. An additional condition for choosing a solution is to ensure the reliability of the process. The starting conditions for solving the control problem are the components of the vector of initial state parameters, determined by the degree of adjustment of the initial parameters and process modes. Understanding the initial and boundary conditions of existence allows us to formulate a generalized formal problem of process control, which consists in finding a vector of control variables that provide a minimum of error, taking into account the influence of a vector of random external variables. The problem is solved by the method of successive approximations. The stages of primary and secondary optimization in the construction of control algorithms are considered. The possibility of reducing the complexity of control tasks is shown by refusing to control individual components of the state vector and transforming control to ensure a minimum of the generalized error measure. In this formulation, the problem of process control can be reduced to the problem of process regulation. A process control scheme is presented. It considers the separability of error minimization for each component of the state vector. The assertions are illustrated by the example of the problem of managing a digital production site for performing the technological operation of etching printed circuit boards. This operation most fully reflects the initial provisions on the continuity of the procedures performed during its implementation and the degradation of the original state vector.
 

Keywords: manufacturing process, reliability, digitalization of production, control systems, printed circuit boards, printed circuit board etching, manufacturing, industry 4.0

Author affiliations:

Moscow Aviation Institute (National Research University), Russia

 
Contacts: Khomutskaya Ol'ga Vladislavovna, khomutskayaov@gmail.com
Article received by the editorial office on 22.09.2022

Full text (In Russ./In Eng.) >>

REFERENCES

  1. GOST 27.002-2009 "Nadezhnost' v technike. Terminy i opredeleniya" [GOST 27.002-2009 Reliability in technology. Terms and Definitions]. URL: https://meganorm.ru/Data/524/52431.pdf (In Russ.).
  2. Vasil'ev F.V., Vantsov S.V., Medvedev A.M., Stepanova M.A., Khomutskaya O.V. [Evaluation of reliability of non-soldered press joints by ohmic resistance]. Nadezhnost' i kachestvo slozhnykh sistem [Reliability & quality of complex systems], 2016, no. 3 (15), pp. 85—91.
    DOI: 10.21685/2307-4205-2016-3-13 (In Russ.).
  3. Vantsov S.V., Vasil’ev F.V., Medvedev A.M., Khomutskaya O.V. Influence of nonfunctional contact pads on printed-circuit performance. Russian Engineering Research, 2020, vol. 40, no. 5, pp. 442—445.
    DOI: 10.3103/S1068798X20050202
  4. Leng J., Wang D., Shen W., Li X., Liu Q., Chen X. Digital twins-based smart manufacturing system design in Industry 4.0: A review. Journal of Manufacturing Systems, 2021, vol. 60 , pp. 119—137.
    DOI: 10.1016/j.jmsy.2021.05.011
  5. Pronikov A.S. Nadezhnost' mashin [Machine reliability]. Moscow, Mashinostroenie Publ., 1978. 592 p. (In Russ.).
  6. Zhikeev A.A., Aldasheva D.T., Zhaksylykova A. [Automated control system of technological process (ACS TP)]. Vestnik of M. Kozybayev North Kazakhstan University [Bulletin of the North Kazakhstan University named after M. Kozybaev], 2022, no. 1 (53), pp. 157—160. DOI: 10.54596/2309-6977-2022-1-157-160 (In Kazakh.).
  7. Korobkov M.A. [Explore design and manufacturing aspects of printed circuit boards with embedded components]. Sbornik tezisov rabot XLVII Mezhdunarodnoi molodezhnoi nauchnoi konferentsii [Proc. XLVII International Youth Scientific Conference], Moscow, 2021, pp. 218—219. (In Russ.).
    URL: https://gagarin.mai.ru/files/2022/abstracts2022.pdf
  8. Vantsov S.V., Medvedev A.M., Maung-Maung Z., Khomutskaya O.V. [Analysis of hole drilling process in composite materials of printed circuit board bases]. Nadezhnost' i kachestvo slozhnykh sistem [Reliability & quality of complex systems], 2016, no. 2 (14), pp. 37—44.
    URL: https://www.elibrary.ru/item.asp?id=26024122 (In Russ.).
  9. Khomutskaya O.V., Medvedev A.M., Korobkov M.A., Vancov S.V. The method of automated evaluation of the deformation of the printed circuit board. ICOECS 2021: 2021 International Conference on Electrotechnical Complexes and Systems, Ufa, pp. 510—512.
    DOI: 10.1109/ICOECS52783.2021.9657420
  10. Korobkov M.A., Vasilyev F.V. [Application of artificial intelligence in manufacturing process control]. Tezisy 20-i Mezhdunarodnoi konferentsii "Aviatsiya i kosmonavtika" [20th International Conference "Aviation and Cosmonautics" (AviaSpace-2021)], Moscow, 2021, pp. 233—234. URL: https://aik.mai.ru/files/abstracts2021.pdf (In Russ.).
  11. Khomutskaya O.V. [Technical process quality management using data mining]. 14-ya Mezhdunarodnaya konferentsiya "Aviatsiya i kosmonavtika — 2015", Tezisy [14 th International Conference "Aviation and Cosmonautics — 2015"], Moscow, 2015, pp. 465—467. URL: https://files.mai.ru/site/conf/aik/2015/sbornik_aik.pdf?referer=https%3A%2F%2Fwww.google.com%2F (In Russ.).
  12. Korobkov M., Vasilyev F., Mozharov V. A comparative analysis of printed circuit boards with surface-mounted and embedded components under natural and forced convection. Micromachines, 2022, vol. 13, no. 4, Id. 634. DOI: 10.3390/mi13040634
  13. Liyn E.A. [Process optimization analysis]. Sbornik tezisov rabot mezhdunarodnoi molodezhnoi nauchnoi konferentsii XLVIII [Proc. of international youth scientific conference XLVIII], Moscow, 2022, pp. 261—262. URL: https://gagarin.mai.ru/files/2022/abstracts2022.pdf (In Russ.).
  14. Barakovsky F., Vantsov S., Vasiliev F. [Spray method for PCB conductive pattern formation]. Ehlektronika: Nauka, tekhnologiya, biznes [Electronics: Science, Technology, Business], 2020, no. 3 (194), pp. 108—113. DOI: 10.22184/1992-4178.2020.194.3.108.112 (In Russ.).
  15. Isaev V.V., Korobkov M.A. [Influence of design parameters and technological processes on probability of defects on PCB]. 19-ya Mezhdunarodnaya konferentsiya "Aviatsiya i kosmonavtika", Tezisy [19th International Conference "Aviation and Cosmonautics" (AviaSpace-2020)], Moscow, 2020, pp. 265–267. (In Russ.). URL: https://aik.mai.ru/files/abstracts2020.pdf
  16. Markin S. [How to poison boards?]. Khimiya i zhizn' [Chemistry and Life], 1990, no. 7, pp. 76—77. URL: ftp://nozdr.ru/biblio/j/hj/1990/ (In Russ.).
  17. Dzyubanenko A.A. [Implementation of M2M on the process line of automatic installation of printed circuit boards in conditions of digitalization of production]. Cbornik materialov V Mezhdunarodnoi nauchno-prakticheskoi konferentsii [Proc. of V international scientific and practical conference], Makhachkala, 2021, pp. 104—107. (In Russ.). URL: https://www.elibrary.ru/item.asp?id=46415984
 

ISSN 0868–5886      NAUCHNOE PRIBOROSTROENIE, 2022, Vol. 32, No. 4, pp. 138–143

CONTENTS OF VOLUME 32

doi: 10.18358/np-32-4-i138143


 NUMBER 1
 SYSTEM ANALYSIS OF MEASURING DEVICES AND METHODS (pp. 3–20)
 PHYSICS OF INSTRUMENT MAKING (pp. 21–67)
 MATHEMATICAL METHODS AND MODELLING IN INSTRUMENT MAKING (pp. 68–92)
 
 NUMBER 2
 INSTRUMENT MAKING FOR BIOLOGY AND MEDICINE (pp. 3–32)
 PHYSICS OF INSTRUMENT MAKING (pp. 33–83)
 
 NUMBER 3
 REVIEWS (pp. 3–58)
 MATHEMATICAL METHODS AND MODELLING IN INSTRUMENT MAKING (pp. 59–128)
 
 NUMBER 4
 PHYSICS AND CHEMISTRY OF INSTRUMENT MAKING (pp. 3–34)
 INSTRUMENT MAKING FOR BIOLOGY AND MEDICINE (pp. 35–67)
 DEVELOPMENT OF MEASURING DEVICES AND SYSTEMS (pp. 68–106)
 MATHEMATICAL METHODS AND MODELLING IN INSTRUMENT MAKING (pp. 107–137)
 Contents of volume 32 (pp. 138–143)
 
 Contents of volume 32 (pp. 138–143)
 The authors index of volume 32 (p. 144)

Full text (In Russ./In Eng.) >>

 

THE AUTHORS INDEX OF VOLUME 32

"Nauchnoe Priborostroenie", 2022, vol. 32, no. 4, p. 144.
doi: 10.18358/np-32-4-i144144
 

Full text (In Russ.) >>

Ulitsa Ivana Chernykh, 31-33, lit. A, St. Petersburg, Russia, 198095, P.O.B. 140
tel: (812) 3630719, fax: (812) 3630720, mail: iap@ianin.spb.su

content: Valery D. Belenkov design: Banu S. Kuspanova layout: Anton V. Manoilov