logo
blue band <-
  JOURNAL "NP" ISSUES

"Nauchnoe Priborostroenie", 2020, Vol. 30, no. 2. ISSN 2312-2951, DOI: 10.18358/np-30-2-2075

"NP" 2020 year Vol. 30 no. 2.,   ABSTRACTS

ABSTRACTS, REFERENCES

L. N. Gall1, A. S. Berdnikov1, I. R. Gall1, S. I. Maximov1, N. R. Gall2

DIELECTRIC SPECTROSCOPY OF STRUCTURAL CHANGES
IN DILUTE AQUEOUS SOLUTIONS OF SODIUM COMPOUNDS

"Nauchnoe priborostroenie", 2020, vol. 30, no. 2, pp. 3—9.
doi: 10.18358/np-30-2-i39
 

Structural changes in aqueous solutions of sodium compounds for the concentration range 10–2—10–6 M were detected by high-resolution low-frequency dielectric spectroscopy. All experiments were carried out at room temperature. The experimental results in the frequency range 50—800 kHz are presented as the dependences of dielectric loss tangent on the logarithm of the frequency ω of the excitation of the oscillatory circuit, in the inductor of which a glass tube with the test solution is placed. The observed dependences characterizing the dielectric loss in solutions arising as a result of structural polarization changes are of a pronounced spectral nature. In this case, the positions of the peaks in the spectra are reliably reproduced and characterize the cationic and anionic composition of the solution. Concentration changes in the observed spectra allow us to attribute aqueous solutions of electrolyte salts to classical solutions.
 

Keywords: water, structure of electrolyte solutions, low-frequency dielectric spectroscopy, reactive losses, dielectric loss tangent

Captions to figures and tables:

Tab. Parameters of inductance cells of a solution research installation

Fig. 1. The BM-560 Q-meter with an inductance cell (a) and a set of three cells (á) used for measurements in the frequency range 70—800 kHz

Fig. 2. Dependence of tg δ on frequency for bidistillated water in the 50—160 kHz frequency range

Fig. 3. Dependence of tg δ on the logarithm of the frequency for aqueous solutions of NaCl of different molar concentrations. 1 — 10–2; 2 — 10–3, 3 — 10–4, 4 — 10–5, 5 — 10–6 M

Fig. 4. Dependences of tg δ on the logarithm of the frequency for aqueous solutions of NaCl (1), HCl (2), and NaOH (3) at concentrations of ~ 2 × 10–4 M (the curves along the tg δ axis are conventionally spaced).

a — comparison of NaCl (1) and HCl (2) solutions: vertical lines indicate coincident peaks related to water structures associated with Clions; á — comparison of solutions of NaCl (1) and NaOH (3): the coincident peaks assigned to water structures associated with Na+ ions are marked by vertical lines

Authors affiliation:

1Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia
2Ioffe Physical Technical Institute of RAS, Saint Petersburg, Russia

 
Contacts: Gall Lidiya Nikolaevna, lngall@yandex.ru
Article received by the editorial office on 21.02.2020
Full text (In Russ.) >>

REFERENCES

  1. Zhukovskiy. A.P., Rovnov N.V., Petrov L.N., Sorvin S.V., Vuks E.M. [Investigation of the structure of aqueous solutions of dimethyl sulfoxide by IR spectroscopy]. Zhurnal strukturnoy chimii [Magazine of structural chemistry], 1992, no. 4. C. 100—104. (In Russ.).
  2. Lyaschenko A.K., Novskova T.A. [Structural dynamics and spectra of orientation polarization of water and other liquids]. Strukturnaya samoorganizaziya v rastvorach i na granize razdela faz [Structural self-organization in solutions and at the interface], A.Yu. Zivadze, ed. Solution Chemistry Problems Series, Moscow, LKI Publ., 2008, pp. 417—500. (In Russ.).
  3. Semichina L.P. Dielektricheskie i magnitnye svoystva vody v vodnych rastvorach i bioob'ektach v slabych elektromagnitnych polyach [Dielectric and magnetic properties of water in aqueous solutions and bio-objects in weak electromagnetic fields]. Tyumen', TGU Publ., 2006. 164 p. (In Russ.).
  4. Blank T.A., Eksperiandova L.P., Sidlezkiy O.P., Kasyan N.A., Ostras' K.S. [Dielcometry as one of the methods of practical aquametry of functional materials]. Metody i ob'ekty chimicheskogo analiza [Chemical analysis methods and facilities], 2007, vol. 2, no. 2. pp. 156—161. (In Russ.).
  5. Gall L.N., Maksimov S.I., Skuridina T.S., Gall N.R. [ Low frequency inductive dielcometry — informative method for the study of the structuring of water in aqueous solutions ]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2016, vol. 26, no. 1, pp. 26—33. (In Russ.).
    DOI: 10.18358/np-26-1-i2633
  6. TESLA. Q-meter BM-560. Instruction manual.
  7. Lyaschenko A.K., Dunyashev V.S. [Complementary organization of water structure]. Zhurnal strukturnoy chimii [Magazine of structural chemistry], 2003, vol. 44, no. 5, pp. 909—915. URL: https://jsc.niic.nsc.ru/article/15070/ (In Russ.).
 

V. E. Kurochkin, D. A. Belov, Yu. V. Belov, A. N. Zubik

MODEL CONSTANTS DETERMINATION IN THE DNA
MELTING TEMPERATURE CALCULATING

"Nauchnoe Priborostroenie", 2020, vol. 30, no. 2, pp. 10—16.
doi: 10.18358/np-30-2-i1016
 

The factors affecting the value of the DNA melting temperature Tm are described and the degree of their influence is estimated in the article. A review of existing models for calculating the DNA melting temperature is carried out, a significant discrepancy between the results of model application and experimental data is revealed. It’s proposed to use simplified models that take into account the dependence of the temperature Tm on some factors with other factors unchanged. A simplified model is given as an example, taking into account the dependence on the length of the DNA fragment and the content of GC-pairs of nucleotides. A method for determining model constants for calculating the DNA melting temperature based on the experimental results analysis and data from the known literature is described. The error in calculating the melting temperature Tm when using the model adjusted according to experimental data does not exceed 0.29 °C; the standard deviation is 0.13 °C.
 

Keywords: nucleic acid analyzer, real-time PCR, DNA melting point

Captions to figures and tables:

Tab. 1. The estimate of the deviation of the calculated Tm

Fig. Melting graphs (lines 1—3) obtained by analyzing three samples and their derivatives with respect to temperature (lines 4—6)

Tab. 2. Definition of model constants P1 and P2

Authors affiliation:

Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia

 
Contacts: Belov Dmitriy Anatol'evich, onoff_10@mail.ru
Article received by the editorial office on 02.05.2020
Full text (In Russ.) >>

REFERENCES

  1. Chargaff E., Lipshitz R., Green C., Hodes M.E. The composition of the desoxyribonucleic acid of salmon sperm. J. Biol. Chem., 1951, vol. 192, pp. 223—230. PMID 14917668.
  2. Vedenov A.A., Dykhne A.M., Frank-Kamenetskii M.D. [ The helix-coil transition in DNA ]. Uspekhi fizicheskih nauk [Advances in Physical Sciences], 1971, vol. 105, no. 11, pp. 479—519.
    DOI: 10.3367/UFNr.0105.197111d.0479 (In Russ.).
  3. Wartell R.M., Benight A.S. Thermal denaturation of DNA molecules: A comparison of theory with experiment. Physics Reports, 1985, vol. 126, pp. 67—107. DOI: 10.1016/0370-1573(85)90060-2
  4. Rice S.A., Doty P. The Thermal Denaturation of Deoxyribose Nucleic Acid. Journal of American Chemical Society, 1957, vol. 79, pp. 3937—3947. DOI: 10.1021/ja01572a001
  5. Wittwer C.T., Herrmann M.G., Moss A.A., Rasmussen R.P. Continuous fluorescence monitoring of rapid cycle DNA amplification. Biotechniques, 1997, vol. 22, pp. 134—138. DOI:10.2144/97221bi01
  6. Marmur J., Doty P. Heterogeneity in Deoxyribonucleic Acids: I. Dependence on Composition of the Configurational Stability of Deoxyribonucleic Acids. Nature, 1959, vol. 183, no. 4673, pp. 1427—1429. DOI: 10.1038/1831427a0
  7. Marmur J., Doty P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. Journal of Molecular Biology, 1962, vol. 5, no. 1, pp. 109—118. DOI: 10.1016/s0022-2836(62)80066-7
  8. Porschke D. Cooperative non-enzymic base recognition II. Thermodynamics of the helix-coil transition of oligoadenylic + oligouridylic acids. Biopolymers, 1971, vol. 10, pp. 1989—2013. DOI: 10.1002/bip.360101016
  9. Blake R.D. Cooperative lengths of DNA during melting. Biopolymers, 1987, vol. 26, pp. 1063—1074. DOI: 10.1002/bip.360260706
  10. Breslauer K.J., Frank R., Blocker H., Marky L.A. Predicting DNA duplex stability from the base sequence. Proc Natl Acad Sci USA, 1986, vol. 83, pp. 3746—3750. DOI: 10.1073/pnas.83.11.3746
  11. Owczarzy R., You Y., Moreira B.G., Manthey J.A., Huang L., et al. Effects of sodium ions on DNA duplex oligomers: improved predictions of melting temperatures. Biochemistry, 2004, vol. 43, pp. 3537—3554. DOI: 10.1021/bi034621r
  12. Calendar R.N., Syvolap Yu.M. [Polymerase chain reaction with arbitrary oligonucleotide primers]. Biopolimery i kletka [Biopolymers and Cell], 1995, vol. 11, no. 3-4, pp. 55—65. URL: http://www.biopolymers.org.ua/pdf/ru/11/3/055/biopolym.cell-1995-11-3-055-ru.pdf (In Russ.).
  13. DNA.UTAH.EDU Software Methods and Equations. URL: https://www.dna.utah.edu/tm/tool.html
  14. Blake R.D., Delcourt S.G. Thermodynamic effects of formamide on DNA stability. Nucleic Acids Res., 1996, vol. 24, no. 11, pp. 2095—2103. DOI: 10.1093/nar/24.11.2095
  15. Privalov P.L., Ptitsyn O.B., Birshtein T.M. Determination of stability of the DNA double helix in an aqueous medium. Biopolymers, 1969, vol. 8, no.5, pp. 559—571. DOI: 10.1002/bip.1969.360080502
  16. Gudnason H., Dufva M., Bang D.D., Wolff A. Comparison of multiple DNA dyes for real-time PCR: effects of dye concentration and sequence composition on DNA amplification and melting temperature. Nucleic Acids Res, 2007, vol. 35, no. 19, e127. DOI: 10.1093/nar/gkm671
  17. Sochivko D.G., Varlamov D.A., Fedorov A.A., Kurochkin V.E. [Non-contact temperature measurement method in polymerase chain reaction reactors]. Pis'ma v ZHTF [JETP Letters], 2016, vol. 42, no. 7, pp. 53—58. URL: http://journals.ioffe.ru/articles/viewPDF/43031 (In Russ.).
  18. Lomzov A.A., Pyshnyj D.V. [Calculation of melting point of native and modified DNA complexes at different concentrations of metal cations using an extended model of counterion condensation]. Vestnik NGU. Seriya: Fizika [NSU bulletin. Series: Physics], 2008, vol. 3, no. 2, pp. 61—75.
  19. Vologodskii A., Frank-Kamenetskii M.D. DNA melting and energetics of the double helix. Physics of Life Reviews, 2018, vol. 25, pp. 1—21. DOI: 10.1016/j.plrev.2017.11.012
  20. Mudrov A.E. Chislennye metody dlya PEVM na yazykah Bejsik, Fortran i Paskal' [Numerical methods for PEVs in Beisik, Fortran and Pascal]. Tomsk, RASCO Publ., 1991, 272 p. (In Russ.).
  21. Lizunova N.A., Shkroba S.P. Matricy i sistemy linejnyh uravnenij [Matrices and Systems of Linear Equations]. Moscow, Fizmatlit Publ., 2007, 171 p. (In Russ.).
  22. Belov D.A., Belov Yu.V., Shirokorad A.L. [Development of the experimental version software, based on the new dna melting temperature determination technique]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2018, vol. 28, no. 2, pp. 11—19. DOI: 10.18358/np-28-2-i1119 (In Russ.).
 

D. V. Mayorov1, T. T. Gorbacheva2, Yu. O. Velyaev3

CORRECT INTERPRETATION
OF EXPERIMENTAL DATA ON PORE DISTRIBUTION

"Nauchnoe Priborostroenie", 2020, vol. 30, no. 2, pp. 17—26.
doi: 10.18358/np-30-2-i1726
 

The paper reveals that in the graphical interpretation of the experimental data of the porosimetry of samples of any products, the most complete information and practical interest are histograms of the distribution of pores by their diameter. According to such a histogram, it is possible to say exactly what volume pores have in one or another range of their diameters. Presentation of experimental data in the form of graphs in the coordinates (dV/dD, D) or (dV/dlog(D), D), as well as (V, D) is not of practical (scientific) interest and may lead to incorrect conclusions about the predominance of a certain diameter and other errors in the pore sample. If the pore diameter distribution in the coordinates (dV/dD, D), (dV/dlog(D), D) or (V, D) carries any other additional information unknown to researches, then for completeness of information and reliability, they should be presented together with histograms.
 

Keywords: structural and surface properties, porosimetry, pore volume, pore diameter, pore volume distribution

Captions to figures and tables:

Fig. 1. Pores volume distribution curves V (cm3 × g—1) as a function of pores diameter d (nm) for amorphous titanium phosphate

Tab. Experimental data on the distribution of the pores specific volume and area of the synthesized
Mg-Al layered double hydroxide (LDH) sample by their diameters

Fig. 2. Differential (dV/dD—D) (a) and integral (V—D) (á) distributions of pores of the synthesized Mg-Al LDH sample by their diameters (desorption branch). 1 — pore volume V expressed in cm3/g, 2 — in %

Fig. 3. A histogram (form 1) of the pores distribution of the synthesized Mg-Al LDH sample by their diameters (desorption branch) for each volume of the pore diameter ranges (table)

Fig. 4. Histogram (form 2) of the pore distribution of the synthesized Mg-Al LDH sample by their diameters (desorption branch) for total volumes of the selected ranges No. 1—10 of pore diameters (table)

Fig. 5. Pore distribution of the synthesized Mg-Al LDH sample by their diameters (desorption branch).

a — experimental points are indicated on the curve, á — without indicating points

Fig. 6. Pore distribution of the synthesized Mg-Al LDH sample according to their diameter (desorption branch) and processing results. a — the result of data processing Fig. 5,a (using experimental points);
á — the same with additional dots (dotted line)

Fig. 7. Size distribution of titanium dioxide particles [36]

Fig. 8. Differential distribution (a) and histogram (b) of the pore distribution of the synthesized Mg-Al LDH sample by their diameter (desorption branch)

Authors affiliation:

1Tananayev Institute of Chemistry and Technology of Rare Elements and Minerals
(IHTREMS KRC RAS), Apatity, Russia
2Institute of Industrial Ecology of the North (IPPES KRC RAS), Apatity, Russia
3Polytechnical Institute, Sevastopol State University, Sevastopol, Russia

 
Contacts: Mayorov Dmitriy Vladimirovich, d.maiorov@ksc.ru
Article received by the editorial office on 27.04.2020
Full text (In Russ.) >>

REFERENCES

  1. Yakovleva N.V. [Study of the porous characteristics of nanocatalysts based on aluminum oxide and intermetallic compounds of nickel-aluminum]. Voprosy Materialovedeniya [Materials science questions], 2013, vol. 73, no. 1, pp. 95—101.
  2. Glyzdova D.V., Smirnova N.S., Temerev V.L., Khramov E.V., Gulyaeva T.I., Trenikhin M.V., Shlyapin D.A., Tsyrul’nikov P.G. [Study of the Influence Exerted by Zinc Additive on the Structure and Catalytic Properties of Pd/Al2O3Catalysts for Liquid-Phase Hydrogenation of Acetylene]. Zhurnal prikladnoj himii [Russian Journal of Applied Chemistry], 2017, vol. 90, no. 12, pp. 1575—1585. DOI: 10.1134/S1070427217120035
  3. Tregubenko V.Y., Udras I.E., Belyi A.S. [Preparation of Mesoporousγ-Al2O3 from Aluminum Hydroxide Peptized with Organic Acids]. Zhurnal prikladnoj himii [Russian Journal of Applied Chemistry], 2017, vol. 90, no. 12, pp. 1632—1639. DOI: 10.1134/S1070427217120102
  4. Baklanova O.N., Knyazheva O.A., Lavrenov A.V., P’yanova L.G., Puchkov S.S., Kudrya E.N., Arbuzov A.B., Mitryaeva N.S. Russkikh  G.S. [Influence of Mechanical Activation Parameters on the Aggregate Size, Texture, and Functional Composition of the Surface of Carbon Black]. Zhurnal prikladnoj himii [Russian Journal of Applied Chemistry], 2017, vol. 90, no. 12, pp. 1654—1662. DOI: 10.1134/S1070427217120138 ]1
  5. Maslova M.V., Gerasimova L.G., Motina N.V. [Destruction of titanium phosphate during its aqueous treatment]. Khimicheskaya Tekhnologiya [Chemistry and chemical technology], 2011, no. 1, pp. 1—7. (In Russ.).
  6. Maslova M.V., Gerasimova L.G. [Effect of synthesis conditions on the structure and properties of the titanium phosphate]. Perspektivnye Materialy [Perspective materials], 2015, no. 7, pp. 72—83. (In Russ.).
  7. Schmitt M.S, Fernandes C.P., Fabiano G.W., Bellini da Cunha Neto J.A., Rahner C.P., Santiago dos Santos V.S. Characterization of Brazilian tight gas sandstones relating permeability and Angstrom-to micron-scale pore structures. Journal of Natural Gas Science and Engineering, 2015, vol. 27, pp. 785—807. DOI: 10.1016/j.jngse.2015.09.027
  8. Maslova M.V., Gerasimova L.G. Ion-exchange materials based on hydroxooxotitane for waste water purification. Ecology and Safety, 2016, vol. 10, pp. 177—187. URL: https://www.scientific-publications.net/get/1000017/1465309450699597.pdf
  9. Cervantes-Martinez C.V., Emo M., Lebeau B., García-Celmad M.-J., Stébé M.-J., Blin J.-L. Insights of the kolliphor/water system for the design of mesostructured silica materials. Microporous and Mesoporous Materials, 2019, vol. 285, pp. 231—240. DOI: 10.1016/j.micromeso.2019.05.019
  10. Xiao D., Lu Z., Jiang S., Lu S. Comparison and integration of experimental methods to characterize the full-range pore features of tight gas sandstoned. A case study in Songliao Basin of China. Journal of Natural Gas Science and Engineering, 2016, vol. 34, pp. 1412—1421. DOI: 10.1016/j.jngse.2016.08.029
  11. Trublet M., Maslova M.V., Rusanova D., Antzutkin O.N. Mild syntheses and surface characterization of amorphous TiO(OH)(H2PO4)·H2O ion-exchanger. Materials Chemistry and Physics, 2016, vol. 183, pp. 467—475. DOI: 10.1016/j.matchemphys.2016.09.002
  12. Maslova M.V., Rusanova D., Naydenov V., Antzutkin O.N., Gerasimova L.G. Extended study on the synthesis of amorphous titanium phosphates with tailored sorption properties. Journal of Non-Crystalline Solids, 2012, vol. 358, pp. 2943—2950. DOI: 10.1016/j.jnoncrysol.2012.06.033
  13. Zhang L., Lu S., Xiao D., Gu M. Characterization of full pore size distribution and its significance to macroscopic physical parameters in tight glutenites. Journal of Natural Gas Science and Engineering, 2017, vol. 38, pp. 434—449. DOI:  10.1016/j.jngse.2016.12.026
  14. Assaker K., Lebeau B., Michelin L., Gaudin P., Carteret C., Vidal L., Bonne M., Blin J.-L. Zn-TiO2 mesoporous oxides prepared by mechanical milling. Journal of Alloys and Compounds, 2015, vol. 649, pp. 1—10. DOI: 10.1016/j.jallcom.2015.07.085
  15. Naboulsi I., Lebeau B., Michelin L., Carteret C., Bonne M., Blin J.-L. Influence of crystallization conditions and of gaseous ammonia treatment on mesoporous TiO2 properties. Microporous and Mesoporous Materials, 2018, vol. 262, pp. 1—12. DOI: 10.1016/j.micromeso.2017.11.025
  16. Cervantes-Martinez C.V., Emo M., García-Celma M.-J., Stébé M.-J., Blin J.-L. Morphosynthesis of porous silica from biocompatible templates. Chemical Engineering Research and Design, 2019, vol. 151, pp. 179—189. DOI: 10.1016/j.cherd.2019.09.006
  17. Kuznetsova T.F., Eremenko S.I. [Synthesis of aerogel-type mesoporous silica]. Kolloidnyj zhurnal [Colloid Journal], 2014, vol. 76, no. 3, pp. 356—362. DOI: 10.1134/S1061933X14030089 (In Russ.).
  18. Kuznetsova T.F., Eremenko S.I. [Properties of sol-gel derived silica membranes]. Neorganicheskie materialy [Inorganic Materials], 2013, vol. 49, no. 2, pp. 151—157. DOI: 10.1134/S002016851302012X (In Russ.).
  19. Ivanets A.I., Rat'Ko A.I., Kuznetsova T.F., Voronets E.A. [Effect of heat treatment on the physicochemical properties of Cu- and Mn-containing oxide catalysts]. Neorganicheskie materialy [Inorganic Materials], 2012, vol. 48, no. 9, pp. 1028—1033. DOI: 10.1134/S0020168512090075 (In Russ.).
  20. Kuznetsova T.F., Rat'ko A.I., Eremenko S.I. [Textural and adsorption properties of mesoporoussilicophosphate]. Kolloidnyj zhurnal [ Colloid Journal ], 2012, vol. 74, no. 1, pp. 82—89. DOI: 10.1134/S1061933X11060111 (In Russ.).
  21. Zenkovets G.A., Shutilov A.A., GavrilovV.Yu., Tsybulya S.V., Kryukova G.N. [Formation of the structure of cerium oxide-modified titanium dioxide]. Kinetika i kataliz [Kinetics and Catalysis], 2007, vol. 48, no. 5, pp. 792—799. DOI: 10.1134/S0023158407050205 (In Russ.).
  22. Zima T.M., Baklanova N.I., Lyakhov N.Z. [Composites of mesoporous Al2O3 and Fe- or Co-containing nanoparticles]. Neorganicheskie materialy [Inorganic Materials], 2010, vol. 46, no. 8, pp. 949—954. DOI: 10.1134/S0020168510080091 (In Russ.).
  23. Vorontsova O.A., Lebedeva O. E., Roessner F. [Synthesis of layered hydroxides stable in redox media]. Kinetika i kataliz [Kinetics and Catalysis], 2009, vol. 50, no. 6, pp. 899—902. DOI: 10.1134/S002315840906010X (In Russ.).
  24. Novoselova L.Y., Sirotkina E.E. [The influence of thermal treatment on the properties of sorbents prepared from water conditioning precipitates]. Zhurnal fizicheskoj himii [Russian Journal of Physical Chemistry A], 2009, vol. 83, no. 12, pp. 2330—2335. DOI: 10.1134/S003602440912022X (In Russ.).
  25. Atyaksheva L.F., Chukhrai E.S., Ivanova I.I., Knyazeva E.E., Ovsyannikov R.A. [Adsorption kinetics of hemoglobin onto silicate adsorbents]. Zhurnal fizicheskoj himii [Russian Journal of Physical Chemistry A], 2010, vol. 84, no. 6, pp. 1187—1191. DOI: 10.1134/S0036024410060324] (In Russ.)
  26. Dekterev A.A., Chernetskiy M.Y., Osipov P.V., Ryzhkov A.F. [Effect of the rate of pulverized coal preheating on char reactivity]. Himiya tverdogo topliva [Solid Fuel Chemistry], 2017, no. 1, pp. 21—27. DOI: 10.3103/S0361521917010037 (In Russ.).
  27. Julve D., Ramos J., Pérez J., Menéndez M. Analysis of mercury porosimetry curves of precipitated silica, as an example of compressible porous solids. Journal of Non-Crystalline Solids, 2011, vol. 357, pp. 1319—1327. DOI: 10.1016/j.jnoncrysol.2010.12.042
  28. Hua J. Synthesis and characterization of bentonite based inorgano—organo-composites and their performances for removing arsenic from water. Applied Clay Science, 2015, vol. 114, pp. 239—246. DOI: 10.1016/j.clay.2015.06.005
  29. Zaleski R., Kierys A., Grochowicz M., Dziadosz M., Goworek J. Synthesis and characterization of nanostructural polymer—silica composite: Positron annihilation lifetime spectroscopy study. Journal of Colloid and Interface Science, 2011, vol. 358, pp. 268—276. DOI: 10.1016/j.jcis.2011.03.008
  30. Maslova M.V., Gerasimova L.G. [The Influence of Chemical Modification on Structure and Sorption Properties of Titanium Phosphates]. Zhurnal prikladnoj himii [Russian Journal of Applied Chemistry], 2011, vol. 84, no. 1, pp. 3−9. DOI: 10.1134/S1070427211010010 (In Russ.).
  31. Matveev V.A., Majorov D.V. Sposob polucheniya sloistogo gidroksida magniya i alyuminiya [Method of obtaining layered hydroxide of madnesium and aluminium]. Patent RF no. 2678007. Prioritet 05.12.2017. (In Russ.).
  32. Matveev V.A., Kopkova E.K., Majorov D.V., Mikhajlova O.B. [New approach to the synthesis of Mg-Al layered hydroxides]. Khimicheskaya Tekhnologiya [Chemistry and chemical technology], 2020, no. 2, pp. 57—63. DOI: 10.31044/1684-5811-2020-21-2-57-63 (In Russ.).
  33. Zakharov V.I., Matveev V.A., Mayorov D.V., Balbukova  A.A., Kondratenko T.V., Knyazeva A.I. [A study of the effect of nepheline acid processing conditions on structural-surface properties of silica products formed]. Zhurnal prikladnoj himii [Russian Journal of Applied Chemistry], 2012, vol. 85, no. 11, pp. 1729—1735. DOI: 10.1134/S1070427212110018 (In Russ.).
  34. Zhang Z., Yang Z. Theoretical and practical discussion of measurement accuracy for physisorption with micro- and mesoporous materials. Chinese Journal of Catalysis, 2013, vol. 34, pp. 1797—1810. DOI: 10.1016/S1872-2067(12)60601-9
  35. Fedoročková A., Plešingerová B., Sučik G., Raschman P., Doráková A. Characteristics of amorphous silica prepared from serpentinite using various acidifying agents. International Journal of Mineral Processing, 2014, vol. 130, pp. 42—47. DOI: 10.1016/j.minpro.2014.05.005
  36. Gerasimova L.G., Shchukina E.S., Maslova M.V., Gladkikh S.N., Garaeva G.R., Kolobkova V.M. [Synthesis of Rutile Titanium Dioxide from Russian Raw Materials]. Klei, germetiki, tekhnologii [Polymer Science, Series D], 2016, no. 7, pp. 6—10. DOI: 10.1134/S1995421217010099 (In Russ.).
 

E. V. Shreiner1, O. A. Keltsieva1,2, S. S. Gaft1, N. G. Sukhodolov2,3,
M. L. Alexandrova
1, E. P. Podolskaya1,2

EXTRACTION OF DIAZINON PESTICIDE
FROM WATER BY METAL OXIDE SORBENTS

"Nauchnoe Priborostroenie", 2020, vol. 30, no. 2, pp. 27—32
doi: 10.18358/np-30-2-i 2732
 

The specificity of extraction of diazinon from water matrix on synthesized nanoparticles of titanium, zirconium, and iron(III) oxides were studied. Commercial powder TiO2 (P25), widely used for the metal-affinity chromatography method, was selected as the fourth substance for comparison. In the same sorption conditions iron(III) oxides and TiO2 (P25) showed the lowest value of analyte extraction –
20 % and 28 %. The extraction rate of diazinon on titanium oxide particles was 77 %. The best result was shown on the zirconium oxide, the extraction rate reached 86 %. Diazinon extraction with zirconium oxide nanoparticles shown reproducible results over the entire range of selected concentrations. The efficiency of 0.015 % perfluorooctane sulfonic acid (PFOS) solution in 0.5 % aqueous piperidine as eluent was also shown.
 

Keywords: metal-affinity extraction, metal-oxide sorbents, zirconium oxide, diazinon

 
Captions to figures and tables:

Fig. 1. Microphotographs of samples of titanium oxide (a), zirconium oxide (á) and iron oxide (â) obtained by scanning electron microscopy (SEM Inspect SEM FEI (Thermo Fisher Scientific, USA))

Fig. 2. Diazinone extraction diagram from an aqueous matrix on metal oxide structures

Fig. 3. The dependence of the amount of diazinon over the sorbent MOS ZrO2 on the load on the sorbent

Fig. 4. Dependence of the area of the chromatographic peak of diazinon in the solution obtained after desorption on the load of diazinon on the sorbent

Authors affiliation:

1The Institute of toxicology of Federal Medico-Biological Agency, St. Petersburg, Russia
2Institute for analytical instrumentation of RAS, St. Petersburg, Russia
3Department of Chemistry, Saint Petersburg State University, St. Petersburg, Russia

 
Contacts: Keltsieva Olga Aleksandrovna, keltcieva@gmail.com
Article received by the editorial office on 20.04.2020
Full text (In Russ.) >>

REFERENCES

  1. Zhi-gang W., Nan L., Wen-zhi B., Ji-lin Z., Jia-zuan N. Development of the affinity materials for phosphorylated proteins/ peptides enrichment in phosphoproteomics analysis. ACS Appl. Mater. Interfaces, 2015, vol. 7, is. 16, pp. 8377—8392. DOI: 10.1021/acsami.5b01254
  2. Pearson R.G. Hard and soft acids and bases. J. Amer. Chem. SOC., 1963, vol. 85, is. 22, pp. 3533—3539. DOI: 10.1021/ja00905a001
  3. Shreyner E.V., Alexandrova M.L., Sukhodolov N.G., Selyutin A.A., Podolskaya E.P. Extraction of the insecticide dieldrin from water and biological samples by metal affinity chromatography. Mendeleev Communications, 2017, vol. 27, is. 3, pp. 304—306. DOI: 10.1016/j.mencom.2017.05.030
  4. Yang D.S., Ding X.Y., Min H.P., Li B., Su M.X., Niu M.M., Di B., Yan F. Design and synthesis of an immobilized metal affinity chromatography and metal oxide affinity chromatography hybrid material for improved phosphopeptide enrichment. J Chromatogr. A, 2017, vol. 1505, pp. 56—62. DOI: 10.1016/j.chroma.2017.05.025
  5. Ruprecht B., Koch H.,Medard G.,Mundt M., Kuster B., Lemeer S. Comprehensive and reproducible phosphopeptide enrichment using iron immobilized metal ion affinity chromatography (Fe-IMAC) columns. Mol Cell Proteomics, 2015, vol. 14, is. 1, pp. 205—215. DOI: 10.1074/mcp.M114.043109
  6. Garber K., Steeger Th. Problem formulation for the environmental fate and ecological risk, endangered species and drinking water assessments in support of the registration review of diazinon. USA EPA, 2008. 41 p. URL: https://www3.epa.gov/pesticides/chem_search/cleared_reviews/csr_PC-057801_26-Mar-08_a.pdf
  7. Reregistration Eligibility Decision (RED) for Diazinon. US EPA, 2006. 138 p. URL:
  8. Selyutin A.A., Kolonitskiy P.D., Sukhodolov N.G., Shreyner E.V., Krasnov N.V., Podolskaya E.P. [ Synthesis and characterization of nanoregular sorbents based on zirconium oxide ]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2013, vol. 23, no. 1, pp. 115—122. (In Russ.).
  9. Gladilovich V.D., Fedorova A.V., Podolskaya E.P. [ Fe2O3-based metal-oxide sorbent. Synthesis, study of surface and sorption properties ]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2013, vol. 23, no. 4, pp. 63—65. (In Russ.). URL: http://iairas.ru/en/mag/2013/abst4.php#abst8
  10. Gladilovich V., Greifenhagen U., Sukhodolov N. ,Selyutin A., Singerb D., Thieme D., Shirkin A., Bonitenko E., Majovsky P., Hoehenwarter W., Podolskaya E., Frolov A. Immobilized metal affinity chromatography on collapsed Langmuir-Blodgett iron(III) stearate films and iron(III) oxide nanoparticles for bottom-up phosphoproteomics. J. Chromatogr. A, 2016, vol. 1443, pp. 181—190. DOI: 10.1016/j.chroma.2016.03.044
  11. Jensen S.S., Larsen M.R. Evaluation of the impact of some experimental procedures on different phosphopeptide enrichment techniques. Rapid Commun. Mass Spectrom., 2007, vol. 21, is. 22, pp. 3635—3645. DOI: 10.1002/rcm.3254
  12. Fíla J, Honys D. Enrichment techniques employed in phosphoproteomics. Amino Acids, 2012, vol. 43, is. 3, pp. 1025—1047. DOI: 10.1007/s00726-011-1111-z
  13. Hornsby A.G., Wauchope R.D., Herner A.E. Pesticide properties in the environment. N.Y.: Springer-Verlag, 1996. 236 p.
 

V. E. Kurochkin, B. P. Sharfarets

ON THE MOBILITY OF IONS DURING ELECTROPHORESIS
IN A HOMOGENEOUS LIQUID AND IN POROUS MEDIA
IN THE CASE OF A LINEAR DEPENDENCE OF THE VELOCITY
ON THE AMPLITUDE OF THE ELECTRIC VOLTAGE VECTOR

"Nauchnoe Priborostroenie", 2020, vol. 30, no. 2, pp. 33—39.
doi: 10.18358/np-30-2-i3349
 

Various types of mobility of inclusions and ions in a homogeneous liquid and in a porous medium filled with liquid are given, as well as the necessary definitions concerning the properties of porous media. The main attention is paid to ionic electrophoretic mobility in a homogeneous liquid and in a porous medium for the case of a linear relationship between the migration velocity and the amplitude of the electric field vector. The results concerning the determination of nucleotide mobility in various cases are presented. It is noted that in the case of a nonlinear dependence of the migration velocity on the amplitude of the electric field, the mobility ceases to be constant and becomes dependent on this amplitude. The results are useful for DNA sequencing researchers.
 

Keywords: porous media, electrophoresis, mobility, DNA, nucleotides, linear models of electrophoresis, nonlinear electrophoresis models

Authors affiliation:

Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia

 
Contacts: Sharfarets Boris Pinkusovich, sharb@mail.ru
Article received by the editorial office on 13.02.2020
Full text (In Russ.) >>

REFERENCES

  1. Sharfarets B.P., Kurochkin V.E. [On the mobility of particles and molecules in porous media] Nauchnoe priborostroenie [Scientific instrumentation], 2015, vol. 25, no. 4, pp. 43—55. DOI: 10.18358/np-25-4-i4355 (In Russ.).
  2. Leont'ev N.E. Osnovy teorii fil'tracii [Fundamentals of filtration theory]. Moscow, MGU Publ., 2009. 87 p. (In Russ.).
  3. Nield D.A., Bejan A. Convection in porous media. N.Y., Springer, 2013. 778 p.
  4. Vafai K., ed. Handbook of porous media. 2d ed. CRC Press, 2005. 744 p.
  5. Landau L.D., Lifshits E.M. Teoreticheskaya fizika. T. 6. Gidrodinamika [Theoretical physics. Vol. 6. Hydrodynamics]. Moscow, Nauka Publ., 1986. 736 p. (In Russ.).
  6. Bruus H. Theoretical microfluidics. Oxford, University Press, 2008. 346 p.
  7. Newman G. Elektrohimicheskie sistemy [Electrochemical systems]. Moscow, Mir Publ., 1977. 464 p. (In Russ.).
  8. Duhin S.S., Deryagin B.V. Elektroforez [Electrophoresis]. Moscow, Nauka Publ., 1976. 328 p. (In Russ.).
  9. Heller C. Finding a universal low viscosity polymer for DNA separation (II). Electrophoresis, 1998, vol. 19, is. 18, pp. 3114—3127. DOI: 10.1002/elps.1150191813
  10. Heller C. Separation of double-stranded and single-stranded DNA in polymer solutions: I. Mobility and separation mechanism. Electrophoresis, 1999, vol. 20, is. 10, pp. 1962—1977. DOI: 10.1002/(SICI)1522-2683(19990701)20:10<1962::AID-ELPS1962>3.0.CO;2-H
  11. Heller C. Separation of double-stranded and single-stranded DNA in polymer solutions: II. Separation, peak width and resolution. Electrophoresis, 1999, vol. 20, is. 10, pp. 1978—1986. DOI: 1 0.1002/(SICI)1522-2683(19990701)20:10<1978::AID-ELPS1978>3.0.CO;2-G
  12. Heller C. Influence of electric field strength and capillary dimensions on the separation of DNA. Electrophoresis, 2000, vol. 21, is. 3, pp. 593—602. DOI: 10.1002/(SICI)1522-2683(20000201)21:3<593::AID-ELPS593>3.0.CO;2-U
 

Y. A. Popov, I. V. Prozorova, A. A. Prozorov

SIMULATION TECHNIQUE OF MONTE-CARLO
FOR AN HPGE DETECTOR BASED ON A CRYSTAL
OF HIGHLY PURE GERMANIUM

"Nauchnoe Priborostroenie", 2020, vol. 30, no. 2, pp. 40—50.
doi: 10.18358/np-30-2-i4050
 

The technique (principles) of constructing a model of a gamma-ray detector based on a crystal of highly pure germanium is considered. In order to implement the research using a unified (Monte-Carlo) method, computer models of two detectors with different efficiencies were created to describe the process of registering gamma radiation in the crystal volume, taking into account the main processes in the detector crystal. The results of comparing the designed and simulated response efficiency of detectors constructed by the same technique but with different input parameters are obtained. A successful detector model construction scheme was established from the point of view of registration efficiency; the geometric parameters of the main detector components were determined. The development of this approach allows creating detector models based on highly pure germanium using a standard procedure. The research results might be useful for the development of gamma spectrometers or their calibration before use.
 

Keywords: detector, gamma spectrometer, spectrometry, computer model, Monte Carlo method

Captions to figures and tables:

Fig. 1. Main circuit. a — model of the detector GC1020, á — model of the detector GC1518

Fig. 2. Schematic representation of geometric shapes for describing the crystal of the detector.
a — vertical section, á — 3D model; 3, 8 — cylindrical surfaces with the z axis; 1, 2, 10 — flat surfaces in the (xy) plane

Fig. 3. Schematic representation.
a — the dead layer of the detector: 5,6 — cylindrical surfaces with the z axis; 4, 7 — flat surfaces in the (xy) plane. á — boron layer and technological recess: 3,5,8,9 12,13 — cylindrical surfaces with the z axis; 1, 2, 4, 10,11, 14 — flat surfaces in the (xy) plane

Fig. 4. Schematic representation of the crystal holder and detector housing. a — crystal holder; 17, 18,
19 — cylindrical surfaces with the z axis; 7, 15, 16, 20 21, 22, 23, 24 — flat surfaces in the (xy) plane;
á — housing; 27, 28 – cylindrical surfaces with the z axis; 25, 26, 29, 30 — flat surfaces in the (xy) plane

Tab. 1. The values of the variables used in the description of both models of detectors

Fig. 5. Experimental and simulated response curves (functions) for the HPGe GP1020 detector at various source distances

Fig. 6. Experimental and simulated response curves (functions) of the HPGe GP1518 detector at various source distances

Tab. 2. Comparison of efficiency results for 137Cs and 60Co energies calculated from efficiency curves for a 20% HPGe GP1020 detector

Tab. 3. Comparison of efficiency results for 137Cs and 60Co energies calculated from efficiency curves for a 15% HPGe GP1518 detector

Authors affiliation:

Institute of Atomic Energy, National Nuclear Center of Republic of Kazakhstan, Kurchatov

 
Contacts: Prozorova Irina Valentinovna, prozorova@nnc.kz

Article received by the editorial office on 06.04.2020
Full text (In Russ.) >>

REFERENCES

  1. Knoll G.E. Radiation detection and measurement. 3rd ed., N.Y., Wiley, 2000. 802 p.
  2. Rahman M.S., Cho G. HPGe detector energy response function calculation up to 400 keV based on Monte Carlo code. Journal of scientific research, 2010, vol. 2, iss. 3, pp. 479—483. DOI: 10.3329/jsr.v2i3.4668
  3. Lepy M.C, Plagnard J., Ferreux L. Study of the response function of aHPGe detector for low-energy X-rays. Nuclear Instruments and Methods in Physics Research, Section A, 2003, vol. 505, iss. 1-2, pp. 290—293. DOI: 10.1016/S0168-9002(03)01071-4
  4. Kojim Y., Ikuta T., Asai M., Taniguchi A., Shibata M., Yamamoto H., Kawade K. Measurement of response functions of HPGe detectors for monoenergetic electrons and positrons in an energy range of 6.0-9.0 MeV. Nuclear Instruments and Methods in Physics Research, Section B, 1997, vol. 126, iss. 1-4, pp. 419—422.
  5. Conti C.C., Salinas I.C.P., Zylberberg H.A. Detailed procedure to simulate an HPGe detector with MCNP. Progress in Nuclear Energy, 2013, vol. 66, pp. 35—40. DOI: 10.1016/j.pnucene.2013.03.003
  6. Santo A.E.S., Wasserman F.G., Conti C.C. HPGe well detector calibration procedure by MCNP5 Monte Carlo computer code. Ann. Nucl. Energy, 2012, vol. 46,
    pp. 213—217. DOI: 10.1016/j.anucene.2012.03.037
  7. Nakamura T., Suzuki T. Monte Carlo calculation of peak efficiencies of Ge(Li) and pure Ge detectors to voluminal sources and comparison with environmental radioactivity measurement . Nuclear Instruments and Methods in Physics Research , 1983, vol. 205, iss. 1-2., pp. 211—218.
  8. Conti L.L., Bacnett LA., Bertelli L., Lopes K.L. Ge detectors calibration procedure at IRD/CNEN for in situ measurement. Proceedings of II International Symposium on Technologically Enhanced Natural Radiation (II TENR), Rio de Janeiro, 1999, pp. 55—63. URL: https://inis.iaea.org/collection/NCLCollectionStore/_Public/33/016/33016249.pdf?r=1&r=1
  9. Moreira M.C.F., de Carvalho Conti C., Schirru R. A new Nal(Tl) four-detector layout for field contamination assessment using artificial neural networks and the Monte Carlo method for system calibration. Nucl. Instruments Methods Phys. Res. Sec A, 2010, vol. 621, iss. 1-3,
    pp. 302—309. DOI: 10.1016/j.nima.2010.04.027
  10. Salgado C.M., Conti C.C, Becker P.H. Determination of HPGe detector response using MCNP5 for 20-150 keV X-rays. Appl. Radiat. Isot., 2006, vol. 64, iss. 6, pp. 700—705. DOI: 10.1016/j.apradiso.2005.12.011
  11. Dearnaley G., Northrop D.C. Semiconductor counters for nuclear radiations. E. & F.N. SPON LTD, London, 1964 (Russ. ed.: Dirnli G., Nortrop D. Poluprovodnikovye schetchiki yadernych izlucheniy. Moscow, Mir Publ., 1966, 311 p.).
  12. Portnoy A.Yu., Pavlinsky G.V., Gorbunov M.S., Si-dorova Yu.I. [ Background properties of si detector, due to electron transport and charge yield ]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2011, vol. 21, no. 4, pp. 145—150.
  13. MCNP - A general Monte Carlo n-particle transport code. Version 5. Vol. I: Overview and theory. Los Alamos National Laboratory, 2003 (revised 2008). URL: https://mcnp.lanl.gov/pdf_files/la-ur-03-1987.pdf
  14. MCNP - A General Monte Carlo N-particle Transport Code. Version 5. Vol. II: User's guide. Los Alamos National Laboratory. 2003 (revised 2008). URL: https://mcnp.lanl.gov/pdf_files/la-ur-03-1987.pdf
 

I. F. Spivak-Lavrov, S. U. Sharipov, T. Zh. Shugaeva

SOLUTIONS OF THE LAPLACE EQUATION IN CYLINDRICAL COORDINATES, REDUCED TO TWO-DIMENSIONAL HARMONIC POTENTIALS

"Nauchnoe Priborostroenie", 2020, vol. 30, no. 2, pp. 51—60.
doi: 10.18358/np-30-2-i5160
 

The solutions of the Dirichlet problem for the Laplace equation in cylindrical coordinates are considered. The approaches are studied that allow such problems for axisymmetric and transaxial corpuscular optical systems to calculate two-dimensional harmonic potentials to find which methods of the theory of functions of a complex variable (TFCV) are used. A simple analytical formula is derived that accurately describes the electrostatic potential of a quadrupole field with electrodes in the form of a circular cylinder. Analytical formulas are found that describe with quite high accuracy the electrostatic potential of the field of a multi electrode axial symmetric cylindrical lens or mirror. Analytical expressions are also obtained that describe with good accuracy the electrostatic potential of a three-electrode transaxial lens. The found analytical formulas for potentials are in good agreement with the results obtained by other methods.
 

Keywords: Laplace equation in cylindrical coordinates, quadrupole trap, axial symmetric cylindrical lens, transaxial lens

Captions to figures and tables:

Fig. 1. Quadrupole on the cylinder

Fig. 2. Equipotential pattern of a cylindrical monopole field

Tab. 1. Values of the x coordinates of the points of intersection of equipotential lines with the straight line y = x

Fig. 3. Schematic representation of a cylindrical axisymmetric lens

Fig. 4. Equipotential pattern of a four-electrode corpuscular optical system (COS) field

Tab. 2. The coordinates of the surface of the closing electrode

Fig. 5. Capacity distribution on the axis of the four-electric COS

Fig. 6. Schematic representation of a transaxial lens

Fig. 7. Three-electrode electrostatic system with a two-dimensional field

Fig. 8. The boundary problem in the w- plane

Fig. 9. Change of derivative potential along õ axis

Authors affiliation:

Aktobe Regional State University named after K. Zhubanova, Aktobe, Kazakhstan

 
Contacts: Spivak-Lavrov Igor' Feliksovich, spivakif@rambler.ru
Article received by the editorial office on 29.03.2020
Full text (In Russ.) >>

REFERENCES

  1. Tihonov A.N., Samarskiy A.A. Uravneniya matematicheskoy fiziki [Equations of mathematical physics]. Moscow, Nauka Publ., 1977. 736 p. (In Russ.).
  2. Lavrentjev M.A., Shabat B.V. Metody teorii funkciy kompleksnogo peremennogo [Methods of complex variable function theory]. Moscow, Nauka Publ., 1976. 716 p. (In Russ.).
  3. Whittaker E.T., Watson G.N. A Course of Modern Analysis, vol. 2. Cambridge University Press, 1902. 620 p. (Russ. ed.: Uitteker E.T., Vatson G.N. Kurs sovremennogo analiza . T. 2. Moscow, Fizmatgiz Publ., 1963. 516 p.).
  4. Golikov Yu.K., Krasnova N.K. Teoriya sinteza elektrostaticheskih energoanalizatorov [Theory of synthesis of electrostatic energy analyzers]. St. Petersburg, Polytechnical university Publ., 2010. 409 p. (In Russ.).
  5. Glazer V. Osnovy elektronnoj optiki [Fundamentals of electronic optics]. Moscow, GTTI Publ., 1957. 764 p. (In Russ.).
  6. Siladjy M. Elektronnaya i ionnaya optika [Electronic and ionic optics]. Moscow, Mir Publ., 1990. 639 p. (In Russ.).
  7. Hawkes P.W., Spence J.C.H., eds. Springer Handbook of Microscopy, Springer Nature Switzerland AG, 2019. 1543 p. DOI: 10.1007/978-3-030-00069-1
  8. Harting E, Read F.H. Electrostatic Lenses. Amsterdam, Elsevier, 1976. 324 p.
  9. Bimurzaev S.B., Serikbaeva G.S., Yakushev E.M. Calculation of Focusing Quality of the Electrostatic Mirror Objective Free of Third-Order Spherical Aberration. Nucl. Instr. Meth. Research A, 2004, vol. 519, pp. 70—75. DOI: 10.1016/j.nima.2003.11.122
  10. Glikman L.G., et al. [Electron-optical parameters of three-electrode transaxial cylindrical lenses]. Zhurnal tekhnicheskoj fiziki [Journal of Applied Physics], 1971, vol. 41, no. 2,
    pp. 330—335. (In Russ.).
  11. Kelman V.M., Kareckaya S.P., Fedulina L.V., Yakushev E.M. Elektronno-opticheskie elementy prizmennyh spektrometrov zaryazhennyh chastic [Electron-optical elements of prism spectrometers of charged particles]. Alma-Ata, Nauka Publ., 1979. 232 p. (In Russ.).
  12. Spivak-Lavrov I.F. Analytical Methods for The Calculation and Simulation of New Schemes of Static and Time-of-Flight Mass Spectrometers. Advances in Imaging and Electron Physics. Burlington, Academic Press, 2016, vol. 193, pp. 45—128.
  13. Spivak-Lavrov I.F., Baisanov O.A. Nurmukhanova A.A. Ways of Developing Analyzers for Static Mass Spectrometers. Bulletin of the Russian Academy of Sciences: Physics, 2018, vol. 82, no. 10, pp. 1353—1358. DOI: 10.3103/S1062873818100210
  14. Spivak-Lavrov I.F., Nurmukhanov A.A., Shukaeva T.Zh. [Prismatic mass spectrograph with a conical achromatic prism and transaxial lenses]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2019, vol. 29, no. 1, pp. 116—125. (In Russ.). DOI: 10.18358/np-29-1-i116125
  15. Spivak-Lavrov I.F., Shukaeva T.Zh., Kalimatov T.S. Mass analyzer with conic achromatic prism and transaxial lenses. International Journal of Mass Spectrometry, 2019, vol. 444, 116180. DOI: 10.1016/j.ijms.2019.116180
 

D. V. Lisin

CIRCUITRY OF CONTROL DEVICES FOR LINEAR
NMOS PHOTODETECTORS FOR USE IN SPACE EXPERIMENTS

"Nauchnoe Priborostroenie", 2020, vol. 30, no. 2, pp. 61—66.
doi: 10.18358/np-30-2-i6166
 

This article is the final and generalizing in a series of publications reporting the construction of systems for obtaining a useful signal from linear NMOS photodetectors with current output in terms of space experiments. The general principles of building such systems are given and the experience of their implementation in today realities is systematized. Issues that are not covered in the technical literature of manufacturers of photodetectors, such as the choice of the element base of the charge integrator , the circuitry of the reset key of the integrator and the implementation of a logical control circuit based on the PLD, are considered in detail.
In particular, this article summarizes the experience of developing a Hamamatsu NMOS photodetector signal processing unit for use in the promising solar space observatory "Interhelio-Zond" and details the conditions necessary for the construction of such nodes due to gaps in the technical documentation of the manufacturer, as well as the specifics of domestic restrictive listings.
 

Keywords:linear photodetector, control circiut, spacecraft

Captions to figures and tables:

Fig. 1. Illustration of the photo cell charge readout process (from the technical description of Hamamatsu [1])

Fig. 2. Equivalent scheme of readout the signal of the photo cell [1, p. 9, fig. 3-9]

Fig. 3. Scheme of implementation of the integrator digit key

Fig. 4. Scheme of inclusion of a Hamamatsu S8383-512S linear image sensors.
Fst, F1, F2 — logical control signals of the linear image sensors; IR — a logical signal for controlling the integrator's reset key; Èíòeãpaòop 1, Èíòeãpaòop 2 — identical charge integration schemes described in detail in [2]; Këþ÷ — an integrator digit key scheme described in detail in [3]. The marks of the outputs of the linear image sensors correspond to the technical documentation of the manufacturer [1]

Fig. 5. Programmable Logic Device (an example with the use of the Actel element base).
Non-standard logic elements of the circuit:
• count_1M — counter modulo 8 with asynchronous reset at level 0, the operating signal edge is rising/positive, the output is a pulse with a duration of one period of the clock frequency tcnt at the end of the count;
• count_mod97 — counter modulo 97 with an asynchronous reset at level 0 and an enable signal for counting E at level 1, the working signal edge is positive, the output is a pulse with a duration of one clock frequency tcnt at the end of the count;
• countdown — countdown counter with parallel loading at level 1 of the Sload signal of the 14-bit binary code of the required exposure value, the resolution signal of the E account at level 1, the working signal edge is positive, the output is a pulse with a duration of one tcnt clock cycle at the end of the count;
• T1–T3 — D-triggers with enable E at level 1, working signal edge — positive, asynchronous reset input at level 0 (type DFE3A in Actel terminology);
• T4–T5 — D-triggers without enable, working signal edge — positive, asynchronous reset input at level 1 (DFC1);
• T6–T7 — D-triggers without enables and reset, working signal edge — positive (type DF1);
• T8 — D-trigger without enable, working signal edge — positive, asynchronous reset input at level 1 and with inverse output (type DF1A)

Author affiliation:

Pushkov Institute of terrestrial magnetism, ionosphere and radio wave
propagation (IZMIRAN), Troitsk, Moscow, Russia

 
Contacts: Lisin Dmitrij Valer'evich, lisindv@izmiran.ru
Article received by the editorial office on 23.03.2020
Full text (In Russ.) >>

REFERENCES

  1. Characteristic and use of NMOS linear image sensors. Technical information SD-26. URL:
  2. Lisin D.V. Application of domestic operational amplifiers in devices for spectrometric measurements in deep space. Instruments and experimental techniques, 2018, vol. 61, no. 6. pp. 804—808). DOI: 10.1134/S0020441218060088
  3. Lisin D.V., Lebedev N.I. [Creating a precision circuits for discharge of charge integrator for use in spectrometric devices for observations in the far space]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2016, vol. 26, no. 2, pp. 75—81. DOI: 10.18358/np-26-2-i7581 (In Russ.).
 

D. A. Gavrilov1,2, N. N. Schelkunov1

SOFTWARE FOR LARGE FORMAT AEROSPACE IMAGE
MARKING AND TRAINING SAMPLES PREPARATION

"Nauchnoe Priborostroenie", 2020, vol. 30, no. 2, pp. 67—75.
doi: 10.18358/np-30-2-i6775
 

This paper presents software designed for marking objects on aerospace images in visible and infrared spectra, creating a base of samples, and preparing training samples to solve the problem of detecting and localizing objects. The main functionality of the program consists of searching objects of interest, viewing an image, measuring the size of objects, marking up objects of interest on images using special marking tools, editing previously made marking of objects, designation and marking objects. Precedent information for training is aerospace images with images of objects marked on them, highlighted with the greatest possible accuracy. The markup program works in automatic, semi-automatic and manual modes. Work in semi-automatic mode allows the operator to clarify the localization and marking of objects and greatly facilitates and improves the quality of preparation of training samples for the subsequent training of detection and classification algorithms.
 

Keywords: markup of training samples, neural network training, active training

Captions to figures and tables:

Fig. 1. Samples of land objects layouts.
a — marking of buildings using the oblique rectangular-nick tool, á — marking of buildings using the polygon tool, â — marking the boundaries of settlements

Fig. 2. Adjustment of standards.
a — shift, á — rotation, â — proportional scaling of the contour, ã — scaling of the contour horizontally, ä — scaling of the contour vertically

Fig. 3. Samples of objects of an unknown type, selected using the "zero penalty area" tool.
a — an unusual object, á — shooting defects

Tab. Comparison of the number of detected objects

Supplement.
Fig. Ï1. Aircraft marking sample
Fig. Ï2. Ground military equipment marking sample
Fig. Ï3. Marine equipment marking sample

Authors affiliation:

1Moscow Institute of Physics and Technology (National Research University),
Dolgoprudny, Russia
2Lebedev Institute of Precise Mechanics and Computer Engineering, Russian
Academy of Sciences, Moscow, Russia

 
Contacts: Gavrilov Dmitriy Aleksandrovitch, gavrilov.da@mipt.ru
Article received by the editorial office on 13.02.2020
Full text (In Russ.) >>

REFERENCES

  1. Malychina G.F., Merkusheva A.V. [Elements of the statistical learning concept for a neural network and accurate prediction of its operation]. Nauchnoe priborostroenie [Scientific instrumentation], 2005, vol. 15, no. 1, pp. 29—44. URL: http://iairas.ru/en/mag/2005/abst1.php#abst3 (In Russ.).
  2. Dvornik N., Mairal J., Schmid C. On the importance of visual context for data augmentation in scene understanding. IEEE Trans. Pattern Anal. Mach. Intell., 2019. pp. 1—1. DOI: 10.1109/TPAMI.2019.2961896
  3. Shakhuro V.I., Konushin A.S. [Image synthesis with neural networks for traffic sign classification]. Komp'yuternaya optika [Computer optics], 2018, vol. 42, no. 1, pp. 105—112. DOI: 10.18287/2412-6179-2018-42-1-105-112 (In Russ.).
  4. Gilyazev R.A., Turdakov D.Yu. [Active learning and crowdsourcing: a survey of annotation optimization methods]. Trudy Instituta sistemnogo programmirovaniya RAN [Proceedings of ISP RAS], 2018, vol. 30, no. 2, pp. 215—250. DOI: 10.15514/ISPRAS-2018-30(2)-11 (In Russ.).
  5. ImageNet Large Scale Visual Recognition Competition (ILSVRC) [Electronic resource]. URL: http://www.image-net.org/challenges/LSVRC/ (accessed: 13.07.2018).
  6. Gavrilov D.A., Mesteckij L.M., Semenov A.B. [A method for marking images of aircraft in aerospace images based on continuous morphological models] // Programmirovanie [Programming], 2019, no. 6. pp. 3—12. (In Russ.).
  7. Gavrilov D. A. [The computer system testing of algorithms for detection and localization of objects in video sequences]. Nauchnoe priborostroenie [Scientific instrumentation], 2019, vol. 29, no. 1, pp. 149—156. (In Russ.). DOI: 10.18358/np-29-1-i149156
 

PTITSYN VALERIY EDUARDOVICH (OBITUARY)

"Nauchnoe Priborostroenie", 2020, vol. 30, no. 2, pp. 80—80.
doi: 10.18358/np-30-2-i8080
 

Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia
 

Ulitsa Ivana Chernykh, 31-33, lit. A, St. Petersburg, Russia, 198095, P.O.B. 140
tel: (812) 3630719, fax: (812) 3630720, mail: iap@ianin.spb.su

content: Valery D. Belenkov design: Banu S. Kuspanova layout: Anton V. Manoilov