logo
blue band <-
  JOURNAL "NP" ISSUES

"Nauchnoe Priborostroenie", 2016, Vol. 26, no. 1 ISSN 2312-2951, DOI: 10.18358/np-26-1-0596

"NP" 2016 year Vol. 26 no. 1,   ABSTRACTS

ABSTRACTS, REFERENCES

K. I. Belousov1, A. S. Bukatin2,3, V. I. Chubinskiy-Nadezhdin4, V. Y. Vasilyeva4,
Y. A. Negulyaev4,5, A. A. Evstrapov1,2,3, I. V. Kukhtevich1,2

MICROFLUIDIC DEVICE WITH Y-SHAPED DESIGN FOR STUDY OF CELL MIGRATION IN CONCENTRATION GRADIENT OF CHEMOATTRACTANTS

"Nauchnoe priborostroenie", 2016, vol. 26, no. 1, pp. 3—10.
doi: 10.18358/np-26-1-i310
 

Results of a development of microfluidic device for a study of cell migration under an influence of chemoattractant are discussed. Numerical simulation of chemoattractant distribution in various designs of microfluidic chip and estimations of the cells’ interaction with the liquid flow are conducted. Microfluidic chip design is chosen based on the simulation results. Microfluidic devices for experimental research are made by a soft lithography method in polydimethylsiloxane. The results of experiments carried out using CHO and HepG2 cells confirm the efficiency of the microfluidic chip and proposed approach.
 

Keywords: microfluidics, microfluidic device, cell migration, concentration gradient, computer simulation

Author affiliations:

1ITMO University, Saint-Petersburg, Russia
2Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia
3Saint-Petersburg National Research Academic University RAS, Russia
4Institute of Cytology RAS, Saint-Petersburg, Russia
5Peter the Great Saint-Petersburg Polytechnic University, Russia

 
Contacts: Belousov Kirill Il'ich, belousov_k.i@mail.ru
Article received in edition: 23.12.2015
Full text (In Russ.) >>

REFERENCES

  1. Jin T., Xu X., Hereld D. Chemotaxis, chemokine receptors and human disease. Cytokine, 2008, vol. 44, pp. 1—8. Doi: 10.1016/j.cyto.2008.06.017.  
  2. Zhao M. Electrical fields in wound healing-an overriding signal that directs cell migration. Seminars in Cell and Developmental Biology, 2009, vol. 20, pp. 674—682.Doi: 10.1016/j.semcdb.2008.12.009.
  3. Luster A.D., Alon R., von Andrian U.H. Immune cell migration in inflammation: present and future therapeutic targets. Nature Immunology, 2005, vol. 6, pp. 1182—1190. Doi: 10.1038/ni1275.
  4. Yonekawa K., Harlan J.M. Targeting leukocyte integrins in human diseases. Journal of Leukocyte Biology, 2005, vol. 77, pp. 129—140. Doi: 10.1189/jlb.0804460.
  5. Boyden S. The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. Journal of Experimental Medicine, 1962, vol. 115, pp. 453—466. Doi: 10.1084/jem.115.3.453.
  6. Nelson R.D., Quie P.G., Simmons R.L. Chemotaxis under agarose: a new and simple method for measuring chemotaxis and spontaneous migration of human polymorphonuclear leukocytes and monocytes. Journal of Immunology, 1975, vol. 115. pp. 1650—1656.
  7. Lohof A.M., Quillan M., Dan Y., Poo M.M. Asymmetric modulation of cytosolic cAMP activity induces growth cone turning. Journal of Neuroscience, 1992, vol. 12, no. 4, pp. 1253—1261.
  8. Zigmond S. Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors. Journal of Cell Biology, 1977, vol. 75, pp. 606—616. Doi: 10.1083/jcb.75.2.606.
  9. Zicha D., Dunn G., Jones G. Analyzing chemotaxis using the Dunn direct viewing chamber. Methods in Molecular Biology, 1997, vol. 75, pp. 449—457. Doi: 10.1385/0-89603-441-0:449.
  10. Kim S., Kim H.J., Jeon N. Biological applications of microfluidic gradient devices. Integrative Biology, 2010, vol. 2, pp. 584—603. Doi: 10.1039/c0ib00055h.
  11. Kukhtevich I.V., Belousov K.I., Bukatin A.S., Evstrapov A.A. [Designs of microfluidic devices for cell migration study in chemical gradients (review)]. Nauchnoe Priborostroenie [Science Instrumentation], 2015, vol. 25, no. 1, pp. 3—16. Doi: 10.18358/np-25-1-i316 (In Russ.).
  12. Yamamoto A., Mishima S., Maruyama N., Sumita M. Quantitative evaluation of cell attachment to glass, polystyrene, and fibronectin- or collagen-coated polystyrene by measurement of cell adhesive shear force and cell detachment energy. Journal of Biomedical Materials Research, 2000, vol. 50, no. 2, pp. 114—124.
  13. Hu Z.Z., Du J., Yang L. et al. GEP100/Arf6 is required for epidermal growth factor-induced ERK/Rac1 signaling and cell migration in human hepatoma HepG2 cells. PLoS ONE, 2012, vol. 7, no. 6, e38777. Doi: 10.1371/journal.pone.0038777.
 

E. N. Chernova1, Y. V. Russkikh1, E. P. Podolskaya1,2, Z. A. Zhakovskaya1

DETERMINATION OF MICROCYSTINS AND ANATOXIN-A USING LIQUID CHROMATO-MASS-SPECTROMETRY OF UNIT RESOLUTION

"Nauchnoe Priborostroenie", 2016, vol. 26, no. 1, pp. 11—25.
doi: 10.18358/np-26-1-i1125
 

We proposed the method for microcystins and anatoxin-a detection using tandem mass spectrometry of unit resolution. The method involves a unique fragment approach.
Diagnostic ions are suggested, and tandem spectra and fragmentation pattern of 9 most widespread microcystins and anatoxin-a obtained using LC/MS/MS under ion trap conditions were described. The approach used in this work is capable to carry out very reliable identification of known microcystins and to state the structural variants when standards are not available. Based on the fragment mass spectra and systematic literature data suggested a new classification of ion products microcystins, greatly facilitates the process of identifying them, and allows for a set of diagnostic fragments to determine the structure of different variants of MS without using standard compounds. The method of the determination of microcystins and anatoxin-a in the environmental samples and drinking water using tandem mass-spectrometry using the ion trap of unit resolution was described.
 

Keywords: microcystins, anatoxin-a, LC/MS/MS of unit resolution, diagnostic ion-products, identification

Author affiliations:

1 Saint-Petersburg Scientific-Research Centre for Ecological Safety RAS (SRCES RAS), Russia
2Institute for Analytical Instrumentation of RAS, Saint-Petersburg , Russia

 
Contacts: Chernova Ekaterina Nikolaevna, s3561389@yandex.ru
Article received in edition: 16.12.2015
Full text (In Russ.) >>

REFERENCES

  1. Matishov G.G., Kovaleva G.V. [Blossoming of water in reservoirs of the South of Russia and failures in water supply (on the example of Volgodonsk)]. Vestnik Yuzhnogo nauchnogo zentra RAN [Bulletin of the Southern Russian Academy of Sciences scientific center], 2010, vol. 6, no. 1, pp. 71—79. (In Russ.).
  2. Matishov G.G., Matishov D.G., Fushtey T.V., Rudnev M.I., Soyer V.G., Zimakov D.V. [Detection of toxins öèaíoïpoêapèoò in a plankton of the lower Don by a mass spectrometry method]. Vestnik Yuzhnogo nauchnogo zentra RAN [Bulletin of the Southern Russian Academy of Sciences scientific center], 2006, vol. 2, no. 2, pp. 75—78. (In Russ.).
  3. Ezhova E., Lange E., Russkikh Y., Chernova E., Zhakovskaya Z. Dynamics of toxic HABs in the Curonian Lagoon, Baltic Sea during 2010—2013. Book of abstracts. ICES Annual Science Conference (ASC) 15—19 September 2014, La Coruna, Spain. H26.
  4. Korneva L.G., Solov'eva V.V., Russkich Y.V., Chernova E.N. [Condition of a phytoplankton and the maintenance of tsianotoksin in Rybinsk, Gorky and Cheboksary reservoirs in abnormally hot summer of 2010]. Voda: chimiya i ekologiya [Water: chemistry and ecology], 2014, no. 8, pp. 24—29. (In Russ.).
  5. Sidelev S.I., Zubishina A.A., Babanazarova O.V., Kutuzova V.Yu., Mart'yanov O.V. [Monitoring of the maintenance of tsianotoksin of microcystines in reservoirs of the Top Volga: molecular and genetic and analytical approaches]. Voda: chimiya i ekologiya [Water: chemistry and ecology], 2014, no. 8. pp. 88—94. (In Russ.).
  6. Sidelev S.I., Golokolenova T.B., Chernova E.N., Russkich Ya.V. [The analysis of a phytoplankton of the Tsimlyansk reservoir (Russia) on existence of genes of synthesis the tsianobakterialnykh gepato-and neurotoxins]. Mikrobiologiya [Microbiologi], 2015, vol. 84, no. 6, pp. 1—11. (In Russ.).
  7. Chernova E.N., Russkich Ya.V., Voyakina E.Yu., Zhakovskaya Z.A. [Researches of natural ekotoksikant – metabolites of blue-green seaweed in polytypic reservoirs of Severo West of Russia]. Regional'naya ekologiya [Regional ecology], 2014, vol. 35, no. 1-2, pp. 88—95. (In Russ.).
  8. Mazur-Marzec H., Spoof L., Kobos J., Pliński M., Meriluoto J. Cyanobacterial hepatotoxins, microcystins and nodularins, in fresh and brackish waters of the Pomeranian Province, northern Poland. Oceanological and Hydrobiological Studies International Journal of Oceanography and Hydrobiology, 2008, vol. 37, no. 46, pp. 3—21. Doi: 10.2478/v10009-008-0014-0.
  9. Seafood and Freshwater Toxins. Pharmacology, Physiology and Detection. Ed. L.M. Botana. Second Edition. Boca Raton: CRC Press Taylor & Francis Group, 2008. 941 p.
  10. WHO. Guidelines for Drinking Water Quality. 4th ed: World Health Organization. 2011. URL: http://www.who.int/water_sanitation_health/publications/2011/dwq_guidelines/en.
  11. Sivonen K., Jones G. Cyanobacterial toxins. Toxic cyanobacteria in water: A guide to their Public health Consequences, Monitoring and Management. Eds. I. Chorus, J. Bartram. London: E & FN Spon, 1999, pp. 41—111.
  12. Pflugmacher S., Jung K., Lundvall L., Neumann S., Peuthert A. Effects of cyanobacterial toxins and cyanobacterial cyanobacterial cell-free crude extract on germination of Alfalfa (Medicago sativa) and induction of oxidative stress. Environmental Toxicology and Chemistry, 2006, vol. 25, pp. 2381—2387. Doi: 10.1897/05-615R.1.
  13. Fawell J.K., Mitchell R.E., Hill R.E., Everett D.J. The toxicity of cyanobacterial toxins in the mouse: II Anatoxin-a. Hum. Exp. Toxicol., 1999, vol. 18, pp. 168—173. Doi: 10.1191/096032799678839833.
  14. Dimitrakopoulos I.K., Kaloudis T.S., Hiskia A.E., Thomaidis N.S., Koupparis M.A. Development of a fast and selective method for the sensitive determination of anatoxin-a in lake waters using liquid chromatography—tandem mass spectrometry and phenylalanine-d5 as internal standard. Anal. Bioanal. Chem., 2010, vol. 397, pp. 2245—2252. Doi: 10.1007/s00216-010-3727-3.
  15. Kaya K., Sano T., Inoue H., Takagi H. Selective determination of total normal microcystin by colorimetry, LC/UV detection and/or LC/MS. Anal. Chim. Acta., 2001, vol. 450, pp. 73—80.Doi: 10.1016/S0003-2670(01)01391-5.
  16. Brittain S.M., Wang J., Babcock-Jackson L., Carmichael W.W., Rinehart K.L., Culver D.A. Isolation and characterization of microcystins, cyclic heptapeptidehepatotoxins from a Lake Erie Strain of Microcystis aeruginosa. J. Great Lakes Res., 2000, vol. 26, pp. 241—249. Doi: 10.1016/S0380-1330(00)70690-3.
  17. Chernova E.N., Russkikh Y.V., Podolskaya E.P., Zhakovskaya Z.A. et al. [Analysis of cyanotoxines using an LTQ ORBITRAP (Thermo Finnigan): the optimization of mass-spectrometry method]. Nauchnoe priborostroenie [Science Instrumentation], 2013, vol. 23, no. 1. pp. 20—29. (In Russ.). URL: http://213.170.69.26/mag/2013/full1/Art2.pdf (In. Russ.).
  18. Mil’man B.L., Russkikh Y.V., Nekrasova L.V., Zhakovskaya Z.A.[Approach to mass-spectrometry identification cianobakterial peptides. Demetil-microcystine-LR example]. Mass-spektrometriya [Mass-spectrometry], 2011, vol. 8, no. 1, pp. 51—60. (In Russ.).
  19. Neffling M.-R., Spoof L., Quilliam M., MeriluotoJ. LC-ESI-Q-TOF-MS for faster and accurate determination of microcystins andnodularins in serum. J. Chromatogr. B, 2010, vol. 878, no. 26, pp. 2433—2441. Doi: 10.1016/j.jchromb.2010.07.018.
  20. Spoof L., Vesterkvist P., Lindholm T., Meriluoto J. Screening for hepatotoxins, microcystins and nodularin in environmental water samples by reversed-phase liquid chromatography–electrospray ionization mass spectrometry. J. Chromatogr. A, 2003, vol. 1020, pp. 105—119. Doi: 10.1016/S0021-9673(03)00428-X.
  21. Duncan M.W. Good mass spectrometry and its place in good science. J. Mass Spectrom., 2012, vol. 47, no. 6, pp. 795—809. Doi: 10.1002/jms.3038.
  22. Lebedev A.T. Mass-spektrometriya dlya analiza ob’ektov okruzhayushchej sredy [Mass spectrometry for the analysis of objects of environment]. Moscow, Tekhnosfera Publ., 2013. 632 p. (In Russ.).
  23. Mayumi T., Kato H., Imanishi S., Kawasaki Y., Hasegawa M., Harada K. Structural characterization of microcystins by LC/MS/MS under ion trap conditions. J. Antibiot., 2006, vol. 59, no. 11, pp. 710—719.
  24. Zweigenbaum J.A., Henion J.D., Beattie K.A., Codd G.A., Poon G.K. Direct analysis of microcystins by microbore liquid chromatography electrospray ionization ion-trap tandem mass spectrometry. J. Pharm. Biomed. Anal., 2000, vol. 23, no. 4, pp. 723—733. Doi: 10.1016/S0731-7085(00)00354-X.
  25. Gosetti F., Mazzucco E., Zampieri D., Gennaro M.C. Signal suppression/enhancement in high-performance liquid chromatography tandem mass spectrometry. Review. J. Chromatogr. A, 2010, vol. 1217, pp. 3929—3937.
  26. King R., Bonfiglio R., Fernandez-Metzler C., Miller-Stein C., Olah T. Mechanistic investigation of ionization suppression in electrospray ionization. J. Am. Soc. Mass. Spectrom., 2000, vol. 11, no. 11, pp. 942—950.
  27. Neffling M.-R., Spoof L., Meriuoto J.Rapid LC-MS detection of cyanobacterial hepatotoxins microcystins and nodularins - comparison of columns. Anal. Chim. Acta., 2009, vol. 653, no. 2, pp. 234—241.
  28. Diehnelt C.W., Dugan N.R., Peterman S.M., Budde W.L. Identification of microcystin toxins from a strain of Microcystis aeruginosa by liquid chromatography introduction into a hybrid linear ion trap-Fourier transform ion cyclotron resonance mass spectrometer. Anal. Chem., 2006, vol. 78, pp. 501—512. Doi: 10.1021/ac051556d.
  29. TOXIC: Cyanobacterial Monitoring and Cyanotoxin Analysis. Eds. J. Meriluoto, G.A. Codd. ÅboAkademi University Press (Turku), 2005. 149 p.
  30. Furey A., Crowley J., Hamilton B., Lehane M., James K.J. Strategies to avoid the mis-identification of anatoxin-a using mass spectrometry in the forensic investigation of acute neurotoxic poisoning. J. Chromatogr. A, 2005, vol. 1082, pp. 91—97. Doi: 10.1016/j.chroma.2005.05.040.
  31. Sanchez J.A., Otero P., Alfonso A. et al. Detection of anatoxin-a and three analogs in anabaena spp. cultures: new fluorescence polarization assay and toxin profile by LC-MS/MS. Toxins, 2014, no. 6, pp. 402—415.
    Doi: 10.3390/toxins6020402.
  32. Urban J., Hrouzek P., Štys D., Martens H.Estimation of ion competition via correlated responsivity offset in linear ion trap mass spectrometry analysis: Theory and practical use in the analysis of cyanobacterial hepatotoxin microcystin-LR in extracts of food additives. BioMed Research International, 2013, vol. 2013. Article ID 414631. 14 pages. Doi: 10.1155/2013/414631.
  33. Russkikh Y.V., Chernova E.N.,Voyakina E.Y., Nikiforov V.A.,Zhakovskaya Z.A. [Definition of cianotoxin in a water matrix by method of a highly effective liquid chromatography–mass spectrometry of high resolution]. Izvestiya Sankt-Peterburgskogo gosudarstvennogo tekhnologicheskogo instituta (tekhnicheskogo universiteta) [News of the St. Petersburg state institute of technology (technical university)], 2012, vol. 17, no 43. pp. 61—66.
 

L. N. Gall1, S. I. Maximov1, T. S. Skuridina1, N. R. Gall1,2

LOW FREQUENCY INDUCTIVE DIELCOMETRY – INFORMATIVE METHOD FOR THE STUDY OF THE STRUCTURING OF WATER IN AQUEOUS SOLUTIONS

"Nauchnoe Priborostroenie", 2016, vol. 26, no. 1, pp. 26—33.
doi: 10.18358/np-26-1-i2633
 

Possibility to study inner water structure using frequency dependence of dielectric loss tangent by low-frequency inductive dielcometry has been considered. Experimental setup at the range 40—800 kHz was based on a standard Q-meter with specialized inductance coils. Features of the method and setup have been demonstrated using bi-distilled water, and solutions of non-organic electrolytes and biologically active molecules with concentrations varied in a wide range.
It has been shown that bi-distillate water presents decreased frequency dependences of dielectric loss tangent; one should use fresh samples to provide good reproducibility. LiNO3 solutions shows strong and non-monotonic dispersion of dielectric loss tangent for the concentration range of 10-4—10-6M; this results in formation of discrete spectra, strongly variable with concentration within the range. At a concentration < 10-6 M, lithium salts present curves similar to those for bi-distilate. On the contrary, bio-active molecular solutions, like potassium phenozan, show nearly similar dispersion spectra for a very wide concentration range at least from 10-5 to 10-16 M.
We propose to interpret the low frequency range of the dielectric loss tangent spectrum as a result of inner water structure originated in contact with the ions and organic molecules.
 

Keywords: strukturing of water, electrolytes, radiospectroscopy, dielcometry

Author affiliations:

1Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia
2Ioffe Physical Technical Institute of the RAS , Saint-Petersburg, Russia

 
Contacts: Gall Lidiya Nikolaevna, lngall@yandex.ru
Article received in edition: 24.11.2015
Full text (In Russ.) >>

REFERENCES

  1. Zhukovskiy A.P., Rovnov N.V., Zhukovskiy M.A. [Comparative research of structure of the microstratified solutions water–dioxane and water–a dimethyl sulfoxide]. Zhurnal strukturnoy chimii [Journal of structural chemistry], 1993, vol. 34, no. 4, pp. 83—88. (In Russ.).
  2. Konovalov A.I. [Formation of nanodimensional molecular ensembles in the high-diluted water solutions]. Vestnik RAN [Bulletin of the Russian Academy of Sciences]. 2013, vol. 83, no. 12, pp. 1076—1082.
  3. Kiselev V.F., Salezkiy A.M., Semichina L.P. [About influence of weak magnetic fields and microwave radiations on some dielectric and optical properties of water and water solutions]. Teoreticheskaya i eksperimental'naya chimiya [Theoretical and experimental chemistry], 1988, no. 3. pp. 330—334. (In Russ.).
  4. Semichina L.P. [An inductive method for determination of dielectric properties of liquids]. Nauchnoe Priborostroenie [Science Instrumentation], 2005, vol. 15, no. 3, pp. 83—87. URL: http://213.170.69.26/mag/2005/full3/Art8.pdf. (In Russ.).
  5. Brazychin E.A., Shul'gina E.S. Technologiya plasticheskich mass: Uchebnoe posobie dlya technikumov. 3-e izd., pererab. i dop. [Technology of plastics: Manual for technical schools. 3rd ed., additional.], Leningrad, Chimiya Publ., 1982. 121 p. (In Russ.).
  6. Samoylov O.Ya. Struktura vodnych rastvorov elektrolitov i gidrataziya ionov [Structure of water solutions of electrolytes and hydration of ions]. Moscow, Izd-vo AN SSSR (In-t obschey i neorgan. chimii.), 1957. 179 p. (In Russ.).
  7. Lyaschenko A.K., Novskova T.A. [Structural dynamics and ranges of orientation polarization of water and other liquids]. Strukturnaya samoorganizaziya v rastvorach i na granize razdela faz. Pod red. A.Yu. Zivadze [Structural dynamics and ranges of orientation polarization of water and other liquids. Ed. A.Yu. Zivadze], Moscow, Izd-vo LKI, 2008, pp. 417—500 (Part 7). (In Russ.).
  8. Gall L.N., Gall N.R. [To a question of the nature of abnormal physical and chemical properties of strongly diluted water solutions]. Doklady RAN [Reports of the Russian Academy of Sciences], 2015, vol. 461, no. 6, pp. 673—676. Doi: 10.7868/S0869565215120142. (In Russ.).
 

D. A. Belov1, D. G. Petrov1, Yu. V. Belov1, N. N. Knyaz'kov1, I. G. Kiselev2

EXPERIMENTAL DETERMINATION OF POLYMERASE CHAIN REACTION AMPLIFICATION PARAMETERS OF NUCLEIC ACID ANALIZER

"Nauchnoe Priborostroenie", 2016, vol. 26, no. 1, pp. 34–40.
doi: 10.18358/np-26-i3440
 

The purpose of this article is to identify the conditions that allow to achieve the required test results in minimum time. The method of determination of the real-time polymerase chain reaction (RT-PCR) amplification basic parameters (PCR efficiency and the thermal cycle duration) was suggested. An example of the threshold cycles measuring and calculation of the PCR efficiency of test samples with fluorescent dyes FAM and ROX using breeding techniques. The PCR efficiency measuring error and PCR efficiency dependence on the temperature cycle duration were determined. As a result of the experiments and calculations, the temperature mode with the maximum PCR efficiency closed to the most achievable value was determined. The most effective temperature conditions selection and the cycle time reducing can significantly cut down on the performance of the analysis (it is decreased by 19 % in the experiment).
 

Keywords: real-time PCR, DNA, threshold cycle, PCR efficiency, thermal cycle duration

Author affiliations:

1Institute for Analytical Instrumentation of RAS, Saint-Petersburg , Russia
2Petersburg State Transport University, Russia

 
Contacts: Belov Yuriy Vasil'evich, bel3838@mail.ru
Article received in edition: 30.01.2016
Full text (In Russ.) >>

REFERENCES

  1. Chernyshev A.V., Bakay D.A., Kurochkin V.E, Sokolov V.N., Skoblilov E.Yu. [Thermal state modeling for the microvials with samples during the polymerase chain reaction]. Nauchnoe Priborostroenie [Science Instru­mentation], 2005, vol. 15, no. 3, pp. 54—62. URL: http://213.170.69.26/mag/2005/full3/Art5.pdf. (In Russ.).
  2. Chernyshev A.V., Belova O.V. [Development of a generalized structure and a conceptual design model of DNA amplifiers]. Nauchnoe Priborostroenie [Science Instrumentation], 2006, vol. 16, no. 2, pp. 58—65. URL: http://213.170.69.26/mag/2006/full2/Art5.pdf. (In Russ.).
  3. Alekseev Ya.I., Belov Yu.V., Varlamov D.A. et al. [Devices for diagnostics of biological objects based on the real-time polymerase chain reaction (RT-PCR) method]. Nauchnoe Priborostroenie [Science Instrumentation], 2006, vol. 16, no. 3, pp. 132—136. URL: http://213.170.69.26/mag/2006/full3/Art14.pdf. (In Russ.).
  4. Belov Yu.V., Petrov A.I., Lavrov V.V., Kurochkin V.E. [Optimisation of RT-PCR nucleic acid quantitative analysis]. Nauchnoe Priborostroenie [Science Instrumentation], 2011, vol. 21, no. 1, pp. 44—49. URL: http://
    213.170.69.26/mag/2011/full/Art4.pdf
    . (In Russ.).
  5. Belov Yu.V., Petrov A.I., Lavrov V.V., Kurochkin V.E. [Influence of detector noise on errors of quantitative analysis of nucleic acids using real-time PCR]. Nauchnoe Priborostroenie [Science Instrumentation], 2011, vol. 21, no. 2, pp. 27—33. URL: http://213.170.69.26/mag/2011/full2/Art4.pdf. (In Russ.).
  6. Teoreticheskie osnovy polimeraznoy zepnoy reakzii [Theoretical bases of polimerazny chain reaction]. Corp. "Tul'skaya diagnosticheskaya laboratoriya". URL: http://tdlab.ru/pcr.php.
  7. Petrov D.G., Makarova E.D., Korneva N.A., Al'dekeeva A.S., Knyaz'kov N.N. [Influence of different kind external fields on DNA yield at isolation on silica from model solutions. 1. Effect of temperature]. Nauchnoe Priborostroenie [Science Instrumentation], 2015, vol. 25, no. 2, pp. 91—101. Doi: 10.18358/np-25-2-i91101. (In Russ.).
 

M. M. Ignatchik1, Y. S. Posmitnaya1,2, A. A. Evstrapov1,2,3

STUDY OF MODIFICATION WETTING PROPERTIES OF THE SURFACE OF POLYDIMETHYLSILOXANE AND THE MICROCHANNEL AFTER EXPOSURE BY HIGH-FREQUENCY PLASMA IN OXYGEN

"Nauchnoe Priborostroenie", 2016, vol. 26, no. 1, pp. 41—46.
doi: 10.18358/np-26-1-i4146
 

Soft lithography is a general technique for micro patterns fabrication in polydimethylsiloxane (PDMS). The surface of PDMS should be treated by physical and/or chemical methods depending on the end goal of modification. An important factor to ensure reproducible measurements on microfluidic chips is the stability of the obtained properties of treatment surfaces in time. We have investigated the change of wetting properties of the microchannel and the open surface of PDMS after plasma treatment depending on storage time. The estimation of the contact angle in the microchannel allow to evaluate the efficiency of processing or modification of the working surface. The possibility of determining the relationship between the contact angle on the substrate of PDMS and the meniscus of the liquid in the channel is discussed.
 

Keywords: microfluidic chip, contact angle, plasma treatment, polydimethylsiloxane

Author affiliations:

1ITMO University, Saint-Petersburg , Russia
2Institute for Analytical Instrumentation of RAS, Saint-Petersburg , Russia
3Saint-Petersburg National Research Academic University, Russian Academy of Sciences, Russia

 
Contacts: Ignatchik Makar Michaylovich, marchibald93@gmail.com
Article received in edition: 11.01.2016
Full text (In Russ.) >>

REFERENCES

  1. Tan S.H., Nguyen N.-T., Chua Y.C., Kang T.G. Oxygen plasma treatment for reducing hydrophobicity of a sealed polydimethylsiloxane microchannel. Biomicrofluidics, 2010, vol. 4, no. 3, 032204. Doi: 10.1063/1.3473720.
  2. Hemmila S., Cauich-Rodriguez J.V., Kreutzer J. et al. Rapid, simple, and cost-effective treatments to achieve long-term hydrophilic PDMS surfaces. Applied Surface Science, 2012, vol. 258, no. 24, pp. 9864—9875. Doi: 10.1016/j.apsusc.2012.06.044.
  3. Prakash S., Karcaor M.B., Banerjee S. Surface modification in microsystems and nanosystems. Surface Science Report, 2009, vol. 64, no. 7, pp. 233—254. Doi: 10.1016/j.surfrep.2009.05.001.
  4. Bhattacharya S., Datta A., Berg J.M. et al. Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength. Journal of microelectromechanical systems, 2005, vol. 14, no. 3, pp. 590—597. Doi: 10.1109/JMEMS.2005.844746.
  5. Zhao L.H., Lee J., Sen P.N. Long-term retention of hydrophilic behavior of plasma treated polydimethylsiloxane (PDMS) surfaces stored under water and Luria-Bertani broth. Sensors and Actuators A: Physical, 2012, vol. 181, pp. 33—42. Doi: 10.1016/j.sna.2012.04.038.
  6. Xia Y., Whitesides G.M. Soft lithography. Angewandte Chemie International Edition, 1998, vol. 37, no. 5, pp. 550—575. Doi: 10.1002/(SICI)1521-3773(19980316) 37:5%3C550::AID-ANIE550%3E3.3.CO;2-7.
  7. URL: http://bigwww.epfl.ch/demo/dropanalysis/.
 

A. V. Grebenyuk1, S. M. Irkaev1, V. V. Panchuk1,2, V. G. Semenov1,2

AB INITIO CALCULATION OF OPTIMUM ABSORBER THICKNESS IN MÖSSBAUER SPECTROSCOPY

"Nauchnoe Priborostroenie", 2016, vol. 26, no. 1, pp. 47—53.
doi: 10.18358/np-26-1-i4753
 

The aim of study is to optimize the Mossbauer experiment parameters. The main criterion for optimization is the quality of the experimental spectrum SNR, which is determined by the signal to noise ratio S / N. One of the most important parameters affecting on the quality of the spectrum is the absorber thickness.
The introduction of the article is devoted to the theoretical consideration of the influence of the absorber thickness on the quality of spectrum. Analysis of the theoretical dependence of the shape of the spectrum allowed us to propose the technique of choosing the optimal thickness, based on the ab initio calculation of the transmission integral.
On the basis of the proposed technique were calculated the optimum thickness for the model samples, which have spectra with different hyperfine structure and the different contributions of non-resonant absorption. When selecting the chemical composition of model samples the main attention was paid to the influence of matrix effects. These effects are directly depend from the ratio of resonant to nonresonant atoms in the absorber.
The experimental part of the project was dedicated to test the theoretically predicted optimum absorber thickness with real ones. We measured the number of Mössbauer spectra of synthesized samples with different thicknesses. The results of these measurements were plotted as dependence of the experimental spectrum quality with the absorber thickness. Experimentally found optimum thickness values coincided with the theoretically calculated one. It was shown that the optimum thickness depends strongly on the matrix in which the resonance isotopes are placed. In the case of heavy matrix with a high influence of non-resonant absorption the optimum thickness of the absorber shifts towards lower values. The presence of background only reduces the absolute values of the signal / noise ratio and does not affect on the position of the maximum.
 

Keywords: ab initio calculation, Mössbauer spectroscopy, Lamb–Mössbauer factor, optimum absorber thickness, quality of experimental spectrum

Author affiliations:

1Institute for Analytical Instrumentation RAS, RF
2Sankt-Petersburg State University, RF

 
Contacts: Irkaev Sobir Mulloevich, sobir_irkaev@mail.ru
Article received in edition: 2.12.2015
Full text (In Russ.) >>

REFERENCES

  1. Pelzl J. Optimum absorber thickness for single line Mössbauer effect in the presence of strong non-resonatabsorption. Nuclear instruments and methods, 1972, vol. 102, pp. 349—351. Doi: 10.1016/0029-554X(72)90734-3.
  2. Long G.J., Cranshaw T.E., Longworth G. The ideal Mössbauer effect absorber thicknesses. Mössbauer effect reference and data journal, 1983, vol. 6, no. 2, pp. 42—49.
  3. Sarma P.R., Prakash V., Tripathi K.C. Optimization of the absorber thickness for improving the quality of a Mössbauer spectrum. Nuclear instruments and methods, 1980, vol. 178, pp. 167—171. Doi: 10.1016/0029-554X(80)90872-1.
  4. Bravo J.A., Ceron M. L., Fabian J. Optimization criteria in Mössbauer spectroscopy. Hiperfine Interactions, 2003, vol. 148, pp. 253—261. Doi: 10.1023/B:HYPE.0000003787.44308.ae.
  5. Belyaev A.A., Irkaev S.M., Volodin V.V., Panchuk V.V., Semenov V.G. Methodological problems of quantitative analysis in Mössbauer spectroscopy. Bulletin of the Russian academy of sciences: Physics, 2010, vol. 74, no. 3, pp. 326. Doi: 10.3103/S1062873810030081.
  6. Yi-Long Ch., De-Ping Ya. Mössbauer effect in lattice dynamics: Experimental techniques and applications. WILEY-VCH Verlag, GmbH & Co, KGaA, Weinheim, 2007. 423 p.
 

A. I. Zhernovoy, S. V. Diachenko

COMPARE OF SIZES END OF MAGNETIC MOMENTS NANOPARTICLES OF A MAGNETIT IN A COLLOID SOLUTION AND IN A POWDER, PREPARED BY A CEMICAL SEDYMENTATION

"Nauchnoe Priborostroenie", 2016, vol. 26, no. 1, pp. 54—57.
doi: 10.18358/np-26-1-i5457
 

The magnetization curves of a powder and of a colloidal solution be received to define a sizes and a magnetic moments of nanoparticles. Size of a powder nanoparticle prove to be equal 2.88 of size a nanoparticle of colloidal solution, and a magnetic moment of a powder nanoparticle prove to be equal 1.44 of that colloidal solution. That`s why, powder nanoparticle content 2—3 nanoparticles of colloid solution with a nonparallel magnetic moments.
 

Keywords: magnetite powder, colloidal solution of nanoparticles of magnetite, nanoparticle size, magnetic moment of a nanoparticle

Author affiliations:

Saint-Petersburg State Institute of Technology (Technical University)

 
Contacts: Zhernovoy Aleksandr Ivanovich, azhspb@rambler.ru
Article received in edition: 21.12.2015
Full text (In Russ.) >>

REFERENCES

  1. Zhernovoy A.I., Naumov V.N., Rudakov Yu.R. [Paramagnetic nanoglobules dispersion curve definition via magnetization and magnetizable field using NMR method]. Nauchnoe Priborostroenie [Science Instru­mentation], 2009, vol. 19, no. 3. pp. 57—61.
    URL: http://213.170.69.26/mag/2009/full3/Art8.pdf (In Russ.) .
  2. Berkovskiy B.M., Medvedev V.F., Krakov M.S. Magnitnye zhidkosti [Magnetic liquids]. Moscow, Chemistry Publ., 1989. 239 p. (In Russ.).
 

Ya. A. Fofanov, B. V. Bardin

ON THE POLARIZATION RESPONSES OF THE OBJECTS WITH A SMALL OPTICAL ANISOTROPY

"Nauchnoe Priborostroenie", 2016, vol. 26, no. 1, pp. 58—61.
doi: 10.18358/np-26-1-i5861
 

The polarization-optical methods are effective means of studying of the most various objects and systems. Materials and elements with high optical and structural homogeneity, the ordered substances and materials, resonant and nonresonant ensembles of the point scatterers, and so on may be the subject of research and technological monitoring. Nevertheless, the prospects for further development and application of the methods are limited in some cases due to the lack of sufficiently complete picture of their capabilities. Some features of polarization responses of the objects with small optical anisotropy are considered in this work. It is shown that these responses possess properties of linearity and additivity, that are important for practice. Principle possibility of the description of magnetization in terms of orientational order is discussed.
This work is supported by RFBR, grant ¹ 15-02-08703.
 

Keywords: laser, polarization-optical analysis, magnetooptics, optoelectronics, optical materials

Author affiliations:

Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia

 
Contacts: Fofanov Yakov Andreevich, yakinvest@yandex.ru
Article received in edition: 7.12.2015
Full text (In Russ.) >>

REFERENCES

  1. Billardon B.M., Canit J.C., Russel M.F.J. Sensitive devices to determine the state and degree of polarization of a light beam using a birefringence modulator. J. Optics (Paris), 1977, vol. 8, no. 6, pp. 373—384.
  2. Fofanov Ya.A. Threshold sensitivity in optical measurements with phase modulation. Proc. SPIE. The Report of tenth Union Symposium and School on High-Resolution Molecular Spectroscopy, 1992, vol. 1811, pp. 413—414. Doi: 10.1117/12.131190.
  3. Sokolov I.M., Fofanov Ya.A. Investigations of the small birefringence of transparent objects by strong phase modulation of probing laser radiation. J. Opt. Soc. Am. A., 1995, vol. 12, no 7, pp. 1579—1588.
  4. Fofanov Ya.A., Afanas'ev I.I., Borozdin S.N. [Structural birefringence in crystals of optical fluorite]. Opticheskiy zhurnal [Optical journal], 1998, vol. 65, no. 9, pp. 22—25. (In Russ.).
  5. Fofanov Ya.A. [Methods and devices for quantitative analysis of structural birefringence of materials and substantives]. Nauchnoe Priborostroenie [Science Instrumentation], 1999, vol. 9, no. 3, pp. 104—110. (In Russ.).
  6. Fofanov Ya.A. [Selective reflection of obliquely incident polarized light]. Kvantovaya elektronika [Quantum electronics], 2009, vol. 39, no. 6, pp. 585—590.
  7. Fofanov Ya.A., Kuraptsev A.S., Sokolov I.M., Havey M.D. Dispersion of the dielectric permittivity of dense and ultracold atomic gases. Phys. Rev. A., 2011, vol. 84, pp. 053811. Doi: 10.1103/PhysRevA.84.053811.
  8. Fofanov Ya.A., Kuraptsev A.S., Sokolov I.M., Havey M.D. Spatial distribution of optically induced atomic excitation in a dense and cold atomic ensemble. Phys. Rev. A., 2013, vol. 87, pp. 063839.
  9. Fofanov Ya.A. Optical saturation of strong selective reflection. Universal Journal of Physics and Application, 2013, vol. 7, no. 4, pp. 370—375.
  10. 13189/ujpa.2013.010402">10.13189/ujpa.2013.010402.
  11. Fofanov Ya.A., Bardin B.V. [On the principles of automation of high sensitivity laser methods for qualitative polarization-optical analysis]. Nauchnoe Priborostroenie [Science Instrumentation], 2002, vol. 12, no. 3, pp. 64—67. (In Russ.).
  12. Diehl R., Jantz W., Noläng B.I., Wettling W. Growth and properties of iron borate, FeBO3. Currents Topics in Material Science, vol. 11, Ed. Kaldis E., Elsevier Science Publisher, 1984, pp. 241—387.
  13. Fofanov Ya.A., Pleshakov I.V., Kuz'min Yu.I. [Laser polarization-optical detection of the magnetization process of a magnetically ordered crystal]. Opticheskiy zhurnal [Optical journal], 2013, vol. 80, no. 1, pp. 88—93. (In Russ.).
  14. Salanskiy N.M., Glozman E.A., Seleznev V.N. [NMR and the domain structure in FeB03 single crystals]. ZhETF [JETP], 1975, vol. 68, no. 4, pp. 1413—1417. (In Russ.).
  15. Grischenko A.E., Cherkasov A.N. [Orientational order in polymer surface layers]. UFN [Advances in Physical Sciences], 1997, vol. 167, no. 3. pp. 269—285. (In Russ.).
  16. Rudyak V.M. [Barkgauzen's effect]. UFN [Advances in Physical Sciences], 1970. vol. 101, no. 3, pp. 429—462. (In Russ.).
  17. Fofanov Ya. On the analogy in evolution processes and the behavior of a magnetically ordered systems. Natural Science, 2013, vol. 5, no. 4A, pp. 14—17. Doi: 10.4236/ns.2013.54A003.
  18. Fofanov Ya.A. [On the criteria for weak and strong signals in a polarization-optical research]. Nauchnye trudy Mezhdunarodnogo kongressa "Slabye i sverchslabye polya i izlucheniya v biologii i medizine" [Proc. of the International congress "Weak and superweak fields and radiations in biology and medicine"], vol. 7. Saint-Petersburg, 2015, pp. 101. (In Russ.).
 

D. V. Dvortsov, V. A. Parfenov

USING LASER DIODES FEATURES FOR REGISTRATION ABSORPTION LINES OF IODINE

"Nauchnoe Priborostroenie", 2016, vol. 26, no. 1, pp. 62—67.
doi: 10.18358/np-26-1-i6267
 

The problems arising from the using of red FP (Fabry–Perot) laser diodes for registration of Doppler broadened absorption lines of iodine (127I2) are considered in the paper. They represent the features of single-frequency mode regime of generation of these lasers. The influence of temperature and injection current on single-frequency operation range is one of them. Another problem is associated with a considerable slope of the dependence of the generation frequency versus temperature and current. The boundaries of single longitudinal mode regime range were defined by registration of spectrum and intensity of modes by means of scanning interferometer. To make the registration of Iodine absorption lines easier we used frequency tuning with simultaneous frequency scanning by modulation of laser current and discrete temperature tuning. Obtained results can be used for registration of another gas absorption lines and stabilization of frequency of laser diodes radiation.
 

Keywords: laser diode, semiconductor laser, single-frequency mode of operation, single longitudinal mode regime, frequency tuning, absorption line of iodine

Author affiliations:

Peter the Great Saint-Petersburg Polytechnic University, Russia

 
Contacts: Parfenov Vladimir Aleksandrovich, ppparfen@mail.ru
Article received in edition: 22.12.2015
Full text (In Russ.) >>

REFERENCES

  1. Thorlabs, Inc. URL: (http://www.thorlabs.de/navigation.cfm?guide_id=2164).
  2. Dvortsov D.V., Parfenov V.A. [Single-frequency operating mode of laser diodes]. NTV SPbGPU. Fiziko-matematicheskie nauki [Scientific and technical sheets CÏáÃÏÓ. Physical and mathematical sciences], 2013, no. 2 (170), pp. 89—96. (In Russ.).
  3. Dvortsov D.V., Parfenov V.A. [Spectral characteristics of single-frequency mode of operation of diode lasers]. Nauchnoe priborostroenie [Science Instrumentation], 2014, vol. 24, no. 3, pp. 42—48. URL: http://213.170.69.26/mag/2014/full3/Art6.pdf. (In Russ.).
  4. Camparo J.C. The diode laser in atomic physics. Contemp. Phys., 1985, vol. 26, no. 5, pp. 443—477. Doi: 10.1080/00107518508210984.
  5. Wieman C.E., Hollberg L. Using diode lasers for atomic physics. Rev. Sci. Instrum., 1991, vol. 62, no. 1, pp. 1—20. Doi: 10.1063/1.1142305.
  6. Ohtsu M., Teramachi Y. Analyses of mode partition and mode hopping in semiconductor lasers. IEEE J. Quantum Electronics, 1989, vol. 25, no. 1, pp. 31—38. Doi: 10.1109/3.16237.
  7. Gray G.R., Roy R. Bistability and mode-hopping in a semiconductor laser. J. Opt. Soc. Am. B, 1991, vol. 8, no. 3, pp. 632—638. Doi: 10.1364/JOSAB.8.000632.
  8. Acsente T. Laser diode mode hopping noise. Rom. Reports in Physics, 2007, vol. 59, no. 1, pp. 87—92.
 

V. V. Gorbatsky1, V. A. Elokhin2, V. I. Nikolaev2, T. D. Ershov2, A. Yu. Elizarov3

RESEARCH DISSOLVED IN SEA WATER BY MEANS OF GAS MASS SPECTROMETER WITH MEMBRANE SEPARATOR INTERFACE

"Nauchnoe Priborostroenie", 2016, vol. 26, no. 1, pp. 68—76.
doi: 10.18358/np-26-1-i6876
 

Underwater mass spectrometer has been used to detect and measure the concentration of oil in the sea water by measuring the concentrations of the three hydrocarbons: benzene, toluene and xylene in the area of specialized sea oil port of Primorsk in the Gulf of Finland in situ. Sample input seawater into the quadrupole mass spectrometer was monitored through the membrane interface with a silicone membrane. The resulting mass spectra demonstrated the ability to measure the concentration of oil in the sea water and determine the type of oil without sample preparation. We investigated the sensitivity of the mass spectrometer at different temperatures of sea water and the suspension of oil droplets of different diameters. It is shown that the use of a mass spectrometer with membrane separator interface allows to measure the concentration of hydrocarbons with high precision, which is currently not supported in commercially available monitors.
 

Keywords: mass spectrometer, pollution, express analysis, membrane ecology hydrocarbons, shelf, oil refining

Author affiliations:

1Krylov State Research Center, Saint-Petersburg, Russia
2Scientific Instruments, Saint-Petersburg, Russia
3Ioffe Physical Technical Institute of the RAS, Saint-Petersburg, Russia

 
Contacts: Elizarov Andrei Yurievich, a.elizarov@mail.ioffe.ru
Article received in edition: 24.11.2015
Full text (In Russ.) >>

REFERENCES

  1. Zheltov Yu.P. Razrabotka neftyanych mestorozhdeniy [Development of oil fields]. "Nedra" Publ., 1998. 365 p. (In Russ.).
  2. Brkic B., France N., Taylor S. Oil-in-water monitoring using membrane inlet mass spectrometry. A nal. Chem., 2011, vol. 83, no. 16, pp. 6230—6236. Doi: 10.1021/ac2008042.
  3. Proekt razvitiya porta Ust'-Luga. Mnogozelevoy terminal. Ozenka vozdeystviya na okruzhayuschuyu sredu. Doklad ministerstva transporta [Project of development of the port of Ust-Luga. Multi-purpose terminal. Assessment of impact on environment. Report of the ministry of transport]. 2003. 87 p. (In Russ.).
  4. Inzhenerno-ekologicheskie izyskaniya dlya stroitel'stva SP11-102-97 [Engineering-ecological researches for construction of SP11-102-97]. Gos. Stroy Rossii GUP ZPP. 2001. 42 p. (In Russ.).
  5. Hoch G., Kok B. A mass spectrometer inlet system for sampling gases dissolved in liquid phases. Archives of Biochem and Biophys, 1963, vol. 101, no. 1. pp. 160—170.
  6. Freeborn S.S., Hannigan J., Greig F., Suttie R.A., MacKenzie H.A. A pulsed photoacoustic instrument for the detection of crude oil concentrations in produced water. Rev. Sci. Instrum., 1998, vol. 69, no. 11, pp. 3948—3952. Doi: 10.1063/1.1149204.
 

N. N. Knyaz'kov, B. P. Sharfarets

ACOUSTICS OF POROUS-ELASTIC FLUID SATURATED MEDIUM
(AN OVERVIEW OF THE BIOT THEORY)

"Nauchnoe Priborostroenie", 2016, vol. 26, no. 1, pp. 77—84.
doi: 10.18358/np-26-1-i7784
 

The overview provides the basic elements of the Biot theory for acoustics of porous fluid saturated media. The theory is valid and for actually porous and for granular structures. The coupled equations of motion in frequency-spatial domain are given, which allow to calculate the various fields describing the dynamics of the harmonic problems of acoustics of porous media. All the data, allowing to put and solve the corresponding boundary value problems are given. Held fairly comprehensive bibliographic review, which allows if necessary yourself to add not covered in the review elements of the Biot theory. The theory allows to solve, among them various problems of analytical instrumentation.
 

Keywords: saturated porous medium, saturated granular medium, Biot theory, coupled equations, frequency-spatial representation

Author affiliations:

Institute for Analytical Instrumentation of RAS, Saint-Petersburg , Russia

 
Contacts: Sharfarets Boris Pinkusovich, sharb@mail.ru
Article received in edition: 11.12.2015
Full text (In Russ.) >>

REFERENCES

  1. Darcy H. Les fontaines publiques de la ville de Dijon: exposition et application des principes à suivre et des formules à employer dans les questions de distribution d'eau. Paris, V. Dalmont, 1856. 647 p.
  2. Fillunger P. Der Auftrieb von Talsperren, Teil I-III. Osterr, Wochenschrift fur den offentlicen Baudienst, 1913. (7) S. 10—532.
  3. Von Terzaghi K. Die Berechnung der Durchlassischen Spannungserscheinungen. Sitzungsber, Akad. Wissensch. Math.-Naturwiss. Klasse, 1923, (132) S. 125—128.
  4. Tolstoy I. Acoustics, elasticy, and thermodynamics of porous media: Twenty-one papers by M.A. Biot. New-York, AIP Press, 1992. 272 p.
  5. Gorodezkaya N.S. [Waves in the porous and elastic porous environments sated with liquid]. Akustichniy visnik [Acoustic messenger], 2007, vol. 10, no. 2, pp. 43—63. (In Ukrain.).
  6. Biot M.A. Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range. J. Acoust. Soc. Am., 1956, vol. 28, pp. 168—178. Doi: 10.1121/1.1908239.
  7. Biot M.A. Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. J. Acoust. Soc. Am., 1956, vol. 28, pp. 179—191. Doi: 10.1121/1.1908241.
  8. Biot M.A. Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys., 1955, vol. 26, pp. 182—185. Doi: 10.1063/1.1721956.
  9. Biot M.A. Generalized theory of acoustic propagation in porous dissipative media. J. Acoust. Soc. Am., 1962, vol. 34, pp. 1254—1264. Doi: 10.1121/1.1918315.
  10. Biot M.A. Mechanics of deformation and acoustic propagation in porous media. J. Appl. Phys., 1962, vol. 33, pp. 1482—1498. Doi: 10.1063/1.1728759.
  11. Biot M.A. [Theory of elasticity and consolidation for a porous anisotropic solid]. Mechanika. Period. sb. perevodov inostr. Statey, 1957, vol. 1, no. 35, pp. 140—147. (In Russ.).
  12. Biot M.A. [Generalized theory of acoustic propagation in porous dissipative media]. Mechanika. Period. sb. perevodov inostr. Statey, 1963, vol. 6, no. 82, pp. 135—155. (In Russ.).
  13. Biot M.A. [Mechanics of deformation and acoustic propagation in porous media]. Mechanika. Period. sb. perevodov inostr. Statey, 1963, vol. 6, no. 82, pp. 103—134. (In Russ.).
  14. Frenkel' Ya.I. [To the theory of the seismic and seismoelectric phenomena in the damp soil]. Izv. AN SSSR. Ser. geograf. i geofiz. [News of Academy of Sciences of the USSR. Series geographer. and geophysical], 1944, vol. 8, no. 4, pp. 133—149. (In Russ.).
  15. Mavko G. et al. The Rock Physics Handbook. 2nd ed., Cambridge University Press, 2009. 329 p. Doi: 10.1017/CBO9780511626753.
  16. Carcione J.M. Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media. Pergamon-Elsevier (Handbook of Geophysical Exploration, vol. 31, Seismic Exploration), 2001.
  17. Allard J.F., Atalla N. Propagation of Sound in Porous Media. 2nd ed. Wiley, 2009. Doi:10.1002/9780470747339.
  18. Leont'ev N.E. Osnovy teorii fil'trazii [Bases of the theory of a filtration]. Moscow, MGU Publ., 2009. 88 p.
  19. Sharfarets B.P., Kurochkin V.E. [To the question of mobility of particles and molecules in porous media]. Nauchnoe Priborostroenie [Science Instrumentation], 2015, vol. 25, no. 4, pp. 43—55. Doi: 10.18358/np-25-4-i4355 (In Russ.).
  20. Dazel O., Brouard B., Depollier C., Griffiths S. An alternative Biot’s displacement formulation for porous materials. J. Acoust. Soc. Am., 2007, vol. 121, pp. 3509—3516.
  21. Atalla N., Panneton R., Debergue P. A mixed displacement pressure formulation for poroelastic materials. J. Acoust. Soc. Am., 1998, vol. 104, pp. 1444—1452. Doi: 10.1121/1.424355.
  22. Smirnov V.I. Kurs vysshey matematiki. T. IV, ch. 1 [Course of the higher mathematics. Vol. 4, Part 1]. Moscow, Nauka Publ., 1974. 336 p.
  23. Landau L.D., Lifshiz E.M. Teoreticheskaya fizika. T. VII, Teoriya uprugosti [Theoretical physics. Vol. VII, Theory of elasticity]. Moscow, Nauka Publ., 1987. 248 p.
 

Ulitsa Ivana Chernykh, 31-33, lit. A, St. Petersburg, Russia, 198095, P.O.B. 140
tel: (812) 3630719, fax: (812) 3630720, mail: iap@ianin.spb.su

content: Valery D. Belenkov design: Banu S. Kuspanova layout: Anton V. Manoilov