logo
blue band <-
  JOURNAL "NP" ISSUES

"Nauchnoe Priborostroenie", 2015, Vol. 25, no. 1, ISSN 2312-2951, DOI: 10.18358/np-25-1-745

"NP" 2015 year Vol. 25 ¹1,  ABSTRACTS

ABSTRACTS, REFERENCES

I. V. Kukhtevich1,2, K. I. Belousov2, A. S. Bukatin1,3, A. A. Evstrapov1,2,3

DESIGNS OF MICROFLUIDIC DEVICES FOR CELL MIGRATION STUDY IN CHEMICAL GRADIENTS (REVIEW)

"Nauchnoe Priborostroenie", 2015, vol. 25, no. 1, pp. 3—16. doi: 10.18358/np-25-1-i316
 

Directional cell migration plays an important role in physiological processes, such as living beings protection from infections and virus, wound healing, cancer metastasis, etc. Cell migration, among other things, depend on exposure of chemical concentration gradients on cells. Recently, microfluidic devices have been applied to the study of cell migration. These devices allow to perform precise configure and manipulation of chemical gradients that is opening up new possibilities in studies of complex interactions of cells within a population and an environment. The review is devoted to achievements related to the development of microfluidic devices for the study of chemical gradients influence on cell migration. Moreover, a classification of these devices and their comparison with conventional approaches used in cell biology to solve similar problems have been highlighted.

 
Keywords: microfluidic device, cell migration, chemical gradient

Author Affiliations

1Institute for Analytical Instrumentation of RAS, Saint-Petersburg, RF
2ITMO University, Saint-Petersburg, RF
3Saint-Petersburg Academic University — Nanotechnology Research and Education Center of RAS, RF
Contacts: Kukhtevich Igor' Vladimirovich, ba@inbox.ru

Full text (In Russ.) >>


REFERENÑES

  1. Vicente-Manzanares M., Webb D.J., Horwitz A.R. Cell migration at a glance. Journal of Cell Science, 2005, vol. 118, pp. 4917–4919. doi: 10.1242/jcs.02662.
  2. Berzat A., Hall A. Cellular responses to extracellular guidance cues. EMBO Journal, 2010. vol. 29, pp. 2734–2745. doi: 10.1038/emboj.2010.170.
  3. Jin T., Xu X., Hereld D. Chemotaxis, chemokine receptors and human disease. Cytokine, 2008, vol. 44, pp. 1–8. doi: 10.1016/j.cyto.2008.06.017.
  4. Zhao M. Electrical fields in wound healing-an overriding signal that directs cell migration. Seminars in Cell and Developmental Biology, 2009, vol. 20, pp. 674–682. doi: 10.1016/j.semcdb.2008.12.009.
  5. Campbell J., Butcher E. Chemokines in tissue-specific and microenvironment-specific lymphocyte homing. Current Opinion Immunology, 2000, vol. 12, pp. 336–341.doi: 10.1016/S0952-7915(00)00096-0.
  6. Baggiolini M. Chemokines and leukocyte traffic. Nature, 1998, vol. 392, pp. 565–568. doi: 10.1038/33340
  7. Fletcher D.A., Theriot J.A. An introduction to cell motility for the physical scientist. Physical Biology, 2004, vol. 1, pp. 1–10.doi: 10.1088/1478-3967/1/1/T01.
  8. Darnton N.C., Turner L., Rojevsky S., Berg H.C. On torque and tumbling in swimming Escherichia coli. Journal of Bacteriology, 2007, vol. 189, pp. 1756–1764. doi: 10.1128/JB.01501-06.
  9. Ridley A.J., Schwartz M.A., Burridge K. et al. Cell migration: integrating signals from front to back. Science, 2003, vol. 302, pp. 1704–1709. doi: 10.1126/science.1092053.
  10. Luster A., Alon R., Von A. U.H. Immune cell migration in inflammation: present and future therapeutic targets. Nature Immunology, 2005, vol. 6, pp. 1182–1190. doi: 10.1038/ni1275.
  11. Yonekawa K., Harlan J.M. Targeting leukocyte integrins in human diseases. Journal of Leukocyte Biology, 2005, vol. 77, pp. 129–140.doi: 10.1189/jlb.0804460.
  12. Muller A., Homey B., Soto H., Ge N. et al. Involvement of chemokine receptors in breast cancer metastasis. Nature, 2001, vol. 410, pp. 50–56. doi: 10.1038/35065016.
  13. Raman D., Baugher P.J., Thu Y.M., Richmond A. Role of chemokines in tumor growth. Cancer Letters, 2007, vol. 256, pp. 137–165. doi: 10.1016/j.canlet.2007.05.013.
  14. Beeh K.M., Kornmann O., Buhl R. et al. Neutrophil chemotactic activity of sputum from patients with COPD: role of interleukin 8 and leukotriene B4. CHEST Journal, 2003, vol. 123, pp. 1240–1247. doi: 10.1378/chest.123.4.1240.
  15. McCaig C., Colin D., Rajnicek A.M., Song B., Zhao M. Controlling cell behavior electrically: current views and future potential. Physiological Reviews, 2005, vol. 85, pp. 943–978. doi: 10.1152/physrev.00020.2004.
  16. Boyden S. The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. Journal of Experimental Medicine, 1962, vol. 115, pp. 453–466. doi: 10.1084/jem.115.3.453.
  17. Zigmond S. Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors. Journal of Cell Biology, 1977, vol. 75, pp. 606–616. doi: 10.1083/jcb.75.2.606.
  18. Lohof A., Quillan M., Dan Y., Poo M. Asymmetric modulation of cytosolic cAMP activity induces growth cone turning. Journal of Neuroscience, 1992, vol. 12, pp. 1253–1261.
  19. Zicha D., Dunn G, Jones G. Analyzing chemotaxis using the Dunn directviewing chamber. Methods in Molecular Biology, 1997, vol. 75, pp. 49–457.
  20. Nelson R.D., Quie P.G., Simmons R.L. Chemotaxis under agarose: a new and simple method for measuring chemotaxis and spontaneous migration of human polymorphonuclear leukocytes and monocytes. Journal of Immunology, 1975, vol. 115, pp. 1650–1656.
  21. Li J., Lin F. Microfluidic devices for studying chemotaxis and electrotaxis. Trends in Cell Biology, 2011, vol. 21, no. 8, pp. 489–497. doi: 10.1016/j.tcb.2011.05.002.
  22. Chung B.G., Choo J. Microfluidic gradient platforms for controlling cellular behavior. Electrophoresis, 2010, vol. 31, pp. 3014–3027. doi: 10.1002/elps.201000137.
  23. Kim S., Kim H.J., Jeon N.L. Biological applications of microfluidic gradient devices. Integrative Biology, 2010, vol. 2, pp. 584–603. doi: 10.1039/c0ib00055h.
  24. Saadi W., Wang S.-J., Lin F., Jeon N.L. Chemotaxis of metastatic breast cancer cells in parallel gradient microfluidic chambers. NSTI-Nanotech, 2005, vol. 1, pp. 15–18.
  25. Haessler U., Kalinin Y., Swartz M.A., Wu M. An agarose-based microfluidic platform with a gradient buffer for 3D chemotaxis studies. Biomedical Microdevices, 2009, vol. 11, pp. 827–835. doi: 10.1007/s10544-009-9299-3.
  26. Fernandes J.T.S., Tenreiro S., Gameiro A. et al. Modu­lation of alpha-synuclein toxicity in yeast using a novel microfluidic-based gradient generator. Lab on a Chip, 2014, vol. 14, pp. 3949–3957. doi: 10.1039/C4LC00756E.
  27. Lin F. A microfluidics-based method for analyzing leukocyte migration to chemoattractant gradients. Methods in Enzymology, Tracy M.H. and Damon J.H. eds., Chapter 15, Academic Press, 2009, pp. 333–347.doi: 10.1016/S0076-6879(09)05415-9.
  28. Lin F., Butcher E. T cell chemotaxis in a simple microfluidic device. Lab on a Chip, 2006, vol. 6, pp. 1462–1469. doi: 10.1039/b607071j.
  29. Lin F., Saadi W., Rhee S.W., Wang S.J., Mittal S., Jeon N.L. Generation of dynamic temporal and spatial concentration gradients using microfluidic devices. Lab on a Chip, 2004, vol. 4, pp. 164–167. doi: 10.1039/b313600k.
  30. Irimia D., Liu Su-Y., Tharp W.G. et al. Microfluidic system for measuring neutrophil migratory responses to fast switches of chemical gradients. Lab on a Chip, 2006, vol. 6, pp. 191–198.doi: 10.1039/B511877H.
  31. Lin F., Nguyen C.M., Wang S.J. et al. Neutrophil migration in opposing chemoattractant gradients using microfluidic chemotaxis devices. Annals of Biomedical Engineering, 2005, vol. 33, pp. 475–482. doi: 10.1007/s10439-005-2503-6.
  32. Englert D.L., Manson M.D., Jayaraman A. Investigation of bacterial chemotaxis in flowbased microfluidic devices. Nature Protocols, 2010, vol. 5, pp. 864–872. doi: 10.1038/nprot.2010.18.
  33. Saadi W., Wang S., Lin F., Jeon N.L. A parallel-gradient microfluidic chamber for quantitative analysis of breast cancer cell chemotaxis. Biomedical Microdevices, 2006, vol. 8, pp. 109–118.doi: 10.1007/s10544-006-7706-6.
  34. Ricart B.G., John B., Lee D., Hunter C.A., Hammer D.A. Dendritic cells distinguish individual chemokine signals through CCR7 and CXCR4. Journal of Immunology, 2011, vol. 186, pp. 53–61. doi: 10.4049/jimmunol.1002358.
  35. Lin F., Nguyen C.M., Wang S.J. et al. Effective neutrophil chemotaxis is strongly influenced by mean IL-8 concentration. Biochemical and Biophysical Research Communications, 2004, vol. 319, pp. 576–581. doi: 10.1016/j.bbrc.2004.05.029.
  36. Diao J.P., Young L., Kim S. et al. A three-channel microfluidic device for generating static linear gradients and its application to the quantitative analysis of bacterial chemotaxis. Lab on a Chip, 2006, vol. 6, pp. 381–388.doi: 10.1039/B511958H.
  37. Chung S., Sudo R., Mack P.J. et al. Cell migration into scaffolds under co-culture conditions in a microfluidic platform. Lab on a Chip, 2009, vol. 9, pp. 269–275. doi: 10.1039/B807585A.
  38. Chen Z., Chen W., Yuan B. et al. In vitro model on glass surfaces for complex interactions between different types of cells. Langmuir, 2010, vol. 26, pp. 17 790–17 794. doi: 10.1021/la103132m.
  39. Abhyankar V.V., Lokuta M.A., Huttenlocherbc A., Beebe D.J. Characterization of a membrane-based gradient generator for use in cell-signaling studies. Lab on a Chip, 2006, vol. 6, pp. 389–393. doi: 10.1039/b514133h.
  40. Chung B., Lin F., Jeon N.L. A microfluidic multi-injector for gradient generation. Lab on a Chip, 2006, vol. 6, pp. 764–768. doi: 10.1039/b512667c.
  41. Huang C.P., Lu J., Seon H. et al. Engineering microscale cellular niches for three-dimensional multicellular co-cultures. Lab on a Chip, 2009, vol. 9, pp. 1740–1748.doi: 10.1039/b818401a.
  42. Ambravaneswaran V., Wong I.Y., Aranyosi A.J. et al. Directional decisions during neutrophil chemotaxis inside bifurcating channels. Integrative Biology, 2010, vol. 2, pp. 639–647.doi: 10.1039/c0ib00011f.
  43. Rhoads D.S., Nadkarni S.M., Song L. et al. Cell migration: developmental methods and protocols, Ed. J.-L. Guan, Vol. 294, Totowa (NJ), Humana Press Inc., 2004.
  44. Wells C.M., Ridley A.J. Analysis of cell migration using the Dunn chemotaxis chamber and time-lapse microscopy. Methods in Molecular Biology, 2005, vol. 294, pp. 31–41.
  45. Mandarino G.L., Suarez A.F., Hirata A.A., Ward P.A. Chemotaxis under agarose utilizing human serum depleted of C-5 derived peptides. Journal of Immunological Methods, 1981, vol. 45, pp. 283–299. doi: 10.1016/0022-1759(81)90306-9.
  46. Wu H.-J., Liu Y.-J., Li H.-Q. et al. Analysis of microglial migration by a micropipette assay. Nature Protocols, 2014, vol. 9, pp. 491–500. doi: 10.1038/nprot.2014.015.
  47. Mao H.B., Cremer P.S., Manson M.D. A sensitive, versatile microfluidic assay for bacterial chemotaxis.Proceedings of the National Academy of Sciences of the United States of America, 2003, vol. 100, pp. 5449–5454. doi: 10.1073/pnas.0931258100.
  48. Lanning L.M., Ford R.M., Long T. Bacterial chemotaxis transverse to axial flow in a microfluidic channel. Biotechnology and Bioengineering, 2008, vol. 100, pp. 653–663.doi: 10.1002/bit.21814.
  49. Long T., Ford R.M. Enhanced transverse migration of bacteria by chemotaxis in a porous T-sensor. Environmental Science & Technology, 2009, vol. 43, pp. 1546–1552.doi: 10.1021/es802558j.
  50. Moore T.I., Chou C.S., Nie Q. et al. Robust spatial sensing of mating pheromone gradients by yeast cells. PLoS One, 2008, vol. 3, pp. e3865. doi: 10.1371/journal.pone.0003865.
  51. Chung B. G., Manbachi A., Saadi W. et al. A gradient-generating microfluidic device for cell biology. Journal of Visualized Experiments, 2007, v. 7, pp. 271
  52. Park J.Y., Kim S.K., Woo D.H. et al. Differentiation of neural progenitor cells in a microfluidic chip-generated cytokine gradient. Stem Cells, 2009, v. 27, pp. 2646–2654.doi: 10.1002/stem.202.
  53. Chang W., Cheng Y.-J., Tu M. et al. A polydimethylsiloxane–polycarbonate hybrid microfluidic device capable of generating perpendicular chemical and oxygen gradients for cell culture studies. Lab on a Chip, 2014, vol. 14, pp. 3762–3772. doi: 10.1039/C4LC00732H.
  54. Hung P.J., Lee P.J., Sabounchi P. et al. Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays. Biotechnology and Bioengineering, 2005, vol. 89, pp. 1–8. doi: 10.1002/bit.20289.
  55. Wang S.J., Saadi W., Lin F. et al. Differential effects of EGF gradient profiles on MDA-MB-231 breast cancer cell chemotaxis. Experimental Cell Research, 2004. v. 300, pp. 180–189.doi: 10.1016/j.yexcr.2004.06.030.
  56. Chung B.G., Flanagan L.A., Rhee S.W. et al. Human neural stem cell growth and differentiation in a gradient-generating microfluidic device. Lab on a Chip, 2005, vol. 5, pp. 401–406.doi: 10.1039/b417651k.
  57. Dertinger S.K.W., Jiang X.Y., Li Z.Y. et al. Gradients of substrate-bound laminin orient axonal specification of neurons.Proceedings of the National Academy of Sciences of the United States of America, 2002, vol. 99, pp. 12542–12547. doi: 10.1073/pnas.192457199.
  58. Paliwal S., Iglesias P.A., Campbell K. et al. MAPK-mediated bimodal gene expression and adaptive gradient sensing in yeast. Nature, 2007, vol. 446, pp. 46–51. doi: 10.1038/nature05561.
  59. Diao J.P., Young L., Kim S. et al. A three-channel microfluidic device for generating static linear gradients and its application to the quantitative analysis of bacterial chemotaxis. Lab on a Chip, 2006, vol. 6, pp. 381–388.doi: 10.1039/B511958H.
  60. Abhyankar V.V., Beebe D.J. Spatiotemporal micropatterning of cells on arbitrary substrates. Analytical Chemistry, 2007, vol. 79, pp. 4066–4073. doi: 10.1021/ac062371p.
  61. Keenan T.M., Folch A. Biomolecular gradients in cell culture systems. Lab on a Chip, 2008, vol. 8, pp. 34–57. doi: 10.1039/B711887B.
  62. Kamholz A.E., Weigl B.H., Finlayson B.A., Yager P. Quantitative analysis of molecular interaction in a microfluidic channel: the T-sensor. Analytical Chemistry, 1999, vol. 71, no. 23, pp. 5340–5347. doi: 10.1021/ac990504j.
  63. Englert D.L., Manson M.D., Jayaraman A. Applied and Environmental Microbiology, 2009, vol. 75, pp. 4557–4564. doi: 10.1128/AEM.02952-08.
  64. Cooksey G.A., Sip Ñ.G., Folch A. A multi-purpose microfluidic perfusion system with combinatorial choice of inputs, mixtures, gradient patterns, and flow rates. Lab on a Chip, 2009, vol. 9, no. 3, pp. 417–426. doi: 10.1039/B806803H.
  65. Cheng S.Y., Heilman S., Wasserman M. et al. A hydrogel-based microfluidic device for the studies of directed cell migration. Lab on a Chip, 2007, vol. 7, pp. 763–769.doi: 10.1039/b618463d.
  66. Ahmed T., Shimizu T.S., Stocker R. Bacterial chemo­taxis in linear and nonlinear steady microfluidic gradients. Nano Letters, 2010, vol. 10, pp. 3379–3385. doi: 10.1021/nl101204e.
  67. Mendelson A., Cheung Y.K., Paluch K. et al. Competitive stem cell recruitment by multiple cytotactic cues. Lab on a Chip, 2013, vol. 13, pp. 1156–1164. doi: 10.1039/c2lc41219e.
  68. Law A.M.J., Aitken M.D. Continuous-flow capillary assay for measuring bacterial chemotaxis. Applied and Environmental Microbiology, 2005, vol. 71, pp. 3137–3143.doi: 10.1128/AEM.71.6.3137-3143.2005.
  69. Atencia J., Morrow J., Locascio L.E. The microfluidic palette: A diffusive gradient generator with spa­tio-temporal control. Lab on a Chip, 2009, vol. 9, pp. 2707–2714.doi: 10.1039/b902113b.
  70. Kim T., Pinelis M., Maharbiz M.M. Generating steep, shear-free gradients of small molecules for cell culture. Biomedical Microdevices, 2009. vol. 11, pp. 65–73. doi: 10.1007/s10544-008-9210-7.
  71. Scherber C., Aranyosi A.J., Kulemann B. et al. Epithelial cell guidance by self-generated EGF gradients. Integrative Biology, 2012, vol. 4, pp. 259–269. doi: 10.1039/c2ib00106c.
  72. Choi E., Chang H.-K., Lim C.Y. et al. Concentration gradient generation of multiple chemicals using spatially controlled self-assembly of particles in microchan­nels. Lab on a Chip, 2012, vol. 12, pp. 3968–3975. doi: 10.1039/c2lc40450h.
  73. Cho H., Hamza B., Wonga E.A., Irimia D. On-demand, competing gradient arrays for neutrophil chemotaxis. Lab on a Chip, 2014, vol. 14, pp. 972–978. doi: 10.1039/c3lc50959a.
  74. Jin B.-J., Ko E.-A., Namkung W., Verkman A.S. Microfluidics platform for single-shot dose – response analysis of chloride channel-modulating compounds. Lab on a Chip, 2013, vol. 13, pp. 3862–3867. doi: 10.1039/c3lc50821h.
  75. Baker B.M., Trappmann B., Stapleton S.C. et al. Microfluidics embedded within extracellular matrix to define vascular architectures and pattern diffusive gradients. Lab on a Chip, 2013, vol. 13, pp. 3246–3252. doi: 10.1039/c3lc50493j.
  76. Xu B.-Y., Hu S.-W., Qian G.-S. et al. A novel microfluidic platform with stable concentration gradient for on chip cell culture and screening assays. Lab on a Chip, 2013, vol. 13, pp. 3714–3720. doi: 10.1039/c3lc50676b.
  77. Sip C.G., Bhattacharjeea N., Folcha A. Microfluidic transwell inserts for generation of tissue culture-friendly gradients in well plates. Lab on a Chip, 2014, vol. 14, pp. 302–314.doi: 10.1039/C3LC51052B.

 

A. N. Arseniev1, D. N. Alekseev1, G. V. Belchenko1, M. A. Gavrik1, N. V. Krasnov1, P. S. Koryakin1, I. A. Krasnov1, I. V. Kurnin1, Sh. U. Myaldzin1, M. Z. Muradymov1, A. G. Monakov1, V. G. Pavlov1, A. V. Zvereva1, S. N. Nikitina1, E. P. Podolskaya1, S. S. Prisyach1, S. Yu. Semenov2, M. N. Krasnov3, A. V. Samokish3

SPECTROSCOPY OF PEPTIDES, PROTEINS AND OLIGONUKLEOTIDES FROM SOLUTIONS BY ION MOBILITY

"Nauchnoe Priborostroenie", 2015, vol. 25, no. 1, pp. 17—26. doi: 10.18358/np-25-1-i1726
 

The capability of producing an ion mobility spectra of peptides, proteins and oligonucleotides in positive and negative modes using an ion source with field desorption ion from solution under dynamic flow dividing spraying liquid at atmospheric pressure and normal conditions. As of the objects used solutions: aliphatic quaternary amines Me4N and Et4N, arginine (175 Da), reserpine (608.68 Da) in positive mode, macro biomolecules Human serum albumin (69 367 Da), Hemoglobin Human (16 000 Da), Apoferritin (445 000 Da), Myoglobin (17 083 Da), Chymotrypsinogen A (25 666 Da), and synthetic oligonucleotides doditsela sodium sulfate (265 Da) in positive and negative modes. The studies were conducted on the prototype analytical complex ES-IDS (electrospray ion source — ion drift spectrometer), developed at the request of FMBA of Russia under the Federal Target Program "National System of chemical and biological safety of the Russian Federation (2009–2014)".

 
Keywords: mobility spectrometer, peptides, proteins, oligonukleotides, electrospray liquid

Author Affiliations

1Institute for Analytical Instrumentation of RAS, Saint-Petersburg, RF
2Scientific and Technical Center for Radiation and Chemical Safety and Hygiene of the Federal Medical and Biological Agency of Russia, Moscow, RF
3Ltd "Grant Instrument", Saint-Petersburg, RF
Contacts: Krasnov Nikolay Vasil'evich, krasnov@alpha-ms.com

Full text (In Russ.) >>


REFERENÑES

  1. Cohen M.J., Karasek F.W. Plasma chromatography — a new dimension for gas chromatography and mass spectrometry. J. Chrom. Sciens, 1970, vol. 8, no. 6, pp. 330–337. doi: 10.1093/chromsci/8.6.330.
  2. Gas Chromatograph Detector. PCP, inc Ion mobility spectrometer. NASA SBIR Success. US.
  3. Coy S.L., Krylov E.V., Nazarov E.G., Fornace A.Y.Jr., Kidd R.D. Differential mobility spectrometry with nanospray ion sourse as a compact detector for small organics and inorganics. Int. J. Ion Mobil. Spec., 2013. vol. 16, no. 3. pp. 217–227. doi: 10.1007/s12127-013-0136-3.
  4. Hoiness H., Almirall J. Speciation effect of solvent chemistry on the abalysis of drugs and explosives by electrospray ion mobility mass spectrometry. Int. J. Ion Mobil. Spec., 2013. vol. 16, no. 2, pp. 237–246. doi: 10.1007/s12127-013-0136-2.
  5. Samokish V.A., Krasnov N.V, Muradymov M.Z. [Electrospray ion source with a dynamic division of fluid flow]. Nauchnoe Priborostroenie [Science Instrumentation], 2012, vol. 22, no. 3, pp. 5–12. (In Russ.).
  6. Samokish V.A., Krasnov N.V., Muradymov M.Z. Electrospray ion sourse with a dynamic liquid flow splitter. Rapid Commun. mass spectrometry, 2013, vol. 27, no. 8, pp. 904–908. doi: 10.1002/rcm 6524.
  7. Arseniev A.N., Krasnov N.V., Muradymov M.Z. [Researches of stability of electrodispersion at dynamic division of a stream of liquid]. Mass-spektrometriya [Mass Spectrometry], 2014, vol. 11, no. 1, pp. 36–38. (In Russ.).
  8. Arseniev A.N., Krasnov N.V., Muradymov M.Z. Investigation of electrospray stability with dynamic liquid flow splitter. J. Anal. Chem., 2014, vol. 69, no. 14, pp. 30–32. doi: 10.1134/S1061934814140020.
  9. Kurnin I.V., Krasnov N.V., Samokish V.A. [Optimum operating mode of a lock of Bradbury—Nielsen in an ion a drift spectrometer]. Nauchnoe Priborostroenie [Science Instrumentation], 2011, vol. 21, no. 2, pp. 34–40. (In Russ.).
  10. Kurnin I.V., Krasnov N.V., Semenov S.Y., Smirnov V.N. Bradbery—Nilsen gate electrode potential switching modes optimizing the ion packet time width in an ion mobility spectrometer. Int. J. Ion Mobil. Spec., June 2014, vol. 17, no. 2, pp. 79–85. doi: 10.1007/s1227-014-0152-x.
  11. Cox K.A., Julian R.K., Cooks R.G., Kaiser R.E. Conformer selection of protein ions by ion mobility in a triple quadrupole mass spectrometer. J. Am. Soc. Mass Spectrom., 1994, vol. 5, pp. 127–136. doi: 10.1016/1044-0305(94)85025-9.
  12. Guevremont R., Michael K.W., Wang S.J., Ding L. Combined ion mobility/time-of-flight mass spectrometry study of electrospray-generated ions. J. Anal. Chem., 1997, vol. 69, pp. 3959–3965.
  13. Wyttenbach T., Batka J.T., Gidden J., Bowers M.T. Host/quest conformation of biological systems: valinomycin alkali ions. Int. J. Mass Spectrom., 1999, vol. 193, pp. 143–152.
  14. Karas M., Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10 000 daltons. Anal. Chem., 1988, vol. 60, pp. 2 299–2 301. doi: 10.1021/ac00171a028.
  15. Kirpekar F., Nordhoff E., Kristiansen K. et al. Matrix assisted laser desorption/ionization mass spectrometry of enzymatically synthesized RNA up to 150 kDa. Nucleic Acids Res., 1994, vol. 22, pp. 3866–3870. doi: 10.1093/nar/22.19.3866.
  16. Fenn J.B., Mann M., Meng C.K, Wong S.F. et al. Electrospray ionization for spectrometry of large biomolecules. Science, 1989, vol. 246, no. 4 926, pp. 64–71. doi: 10.1126/science.2675315.

 

A. G. Varekhov

POTENTIOMETRIC MEASUREMENTS OF TRANSMEMBRANE POTENTIAL OF CELLS WITH USE OF THE PENETRATING IONS

"Nauchnoe Priborostroenie", 2015, vol. 25, no. 1, pp. 27—35. doi: 10.18358/np-25-1-i2735
 

There are methodical restrictions arising at potentiometric measurements of the transmembrane potential of cells with use of the penetrating (lipophilic) ions are discussed in the article. The analysis of the experimental results of measurements of transmembrane potential of B.subtilis cells on exposure to a gramicidin A is made that was received with using TPP+ selective membrane electrode. The analysis is based on the assumption of almost reversible adsorption of indicator cations on a cellular surface. It is shown that result of such measurements is more considerable value dipolar potential of a membrane rather the transmembrane potential. There is offered the estimation method of changes of the membrane potential, using the irreversible connected part of the penetrating ions immobilized in membrane channels on exposure to the gramicidin for calculation. Area density of the adsorbed charge, concentration of places of binding of indicator cations and parameters of a double electric layer are calculated.

 
Keywords: measurements, gramicidin, TPP+ selective electrode, dipolar potential, transmembrane potential

Author Affiliations

Saint-Petersburg State University of Aerospace Instrumentation, RF
Contacts: Varechov Aleksey Grigor'evich, varekhov@mail.ru

Full text (In Russ.) >>


REFERENÑES

  1. Liberman E.A., Topali V.P., Tsofina L.M. et al. Mechanism of coupling of oxidative phosphorylation and the membrane potential of mitochondria. Nature, 1969, vol. 222, pp. 1076–1078. doi: 10.1038/2221076a0.
  2. Trendeleva T.A., Rogov A.G., Cherepanov D.A. et al. [Interaction a tetrafenilfosfoniya and a dodetsil-trifenilfosfoniya with lipidic membranes and mitochondrions]. Biochimiya [Biochemistry], 2012, vol. 77, no. 9, pp. 1230–1239. (In Russ.).
  3. Koryta I. [Ions. Electrodes. Membranes]. M., Mir Publ., 1983. 227 p. (In Russ.).
  4. Grinyus L.L., Daugelavichyus R.Yu., Al'kimavichyus G.A. [Research of membrane potential of cages of Bacillus subtilis and Escherichia Coli by method of the getting ions]. Biochimiya [Biochemistry], 1980, vol. 45, no. 9. pp. 1609–1618. (In Russ.).
  5. Rottenberg H. Membrane potential and surface potential in mitochondria: Uptake and binding of lipophilic cations. J. of Membrane Biol., 1984, vol. 81, no. 2, pp. 127–138. doi: 10.1007/BF01868977.
  6. Muratsugu M., Kamo N., Kobatake Y., Kimura K. Determination of membrane potential of Escherichia coli with use of an electrode sensitive to tetraphenyl phosphonium. J. of Electroanalyt. Chem. and Interfacial Electrochem., 1979, vol. 104, pp. 477–491. doi: 10.1016/S0022-0728(79)81062-1.
  7. Kamo N., Muratsugu M., Hongoh R., Kobatake Y. Membrane potential of mitochondria measured with electrode sensitive to tetraphenyl phosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady state. J. of Membrane Biol., 1979, vol. 49, pp. 105–121. doi: 10.1007/BF01868720.
  8. Lolkema J.S., Hellingwerf K.J., Konings W.H. The effect of «probe binding» on the quantitative determination of the proton-motive force in bacteria. Biochimica et Biophysica Acta, 1982, vol. 681, pp. 85–94. doi: 10.1016/0005-2728(82)90281-X.
  9. Lolkema J.S., Abbing A., Hellingwerf K.J., Konings W.H. The transmembrane electrical potential in Rhodopseudomonas sphaeroides determined from the distribution of tetraphenylphosphonium after correction for its binding to cell components. FEBS J., 1983, vol. 130, no. 2, pp. 287–292. doi: 10.1111/j.1432-1033.1983.tb07149.x.
  10. Breeuwer P., Abee T. Assesment of the membrane potential, intracellular pH and respiration of bacteria employing fluorescence techniques. Molecular Microbial Ecology Manual, Second Edition, 2004, pp. 1563–1580.
  11. Grinyus L.L., Daugelavichyus R.Yu., Al'kimavichyus G.A. [Ionselektivny membrane electrode]. Patent USSR, no. 1136611, 1984. (In Russ.).
  12. Ostroumova O.S., Efimova S.S., Malev V.V., Schagina L.V. [Ionic channels in model lipidic membranes]. St. Petersburg, Institute of cytology RAS Publ., 2012. 32 p. (In Russ.).
  13. Weiss L. The cell periphery. Intern. Rev. Cytology, 1970, vol. 26, pp. 63. doi: 10.1016/S0074-7696(08)61634-4.
  14. Rubin A.B. [Biophysics, vol. 1: Theoretical biophysics]. Ì., 1999. 81 p. (In Russ.).
  15. Zlenko D.V., Krasil'nikov P.M. [Molecular modeling lipidic bisloynykh of membranes]. Komp'yuternye issledovaniya i modelirovanie [Computer researches and modeling], 2009, vol. 1, no. 4, pp. 423–436. (In Russ.).
  16. Ermakov Yu.A. [Bioelectrochemistry bisloynykh of lipidic membranes]. Rossiyskiy chimicheskiy zhurnal [Russian chemical magazine], 2005, vol. 49, no. 5, pp. 114–120. (In Russ.).
  17. Brockman H. Dipole potential of lipid membranes. Chemistry and Physics of Lipids, 1994, vol. 73, no. 1-2. pp. 57–79. doi: 10.1016/0009-3084(94)90174-0.
  18. Frenkel' Ya.I. [Theory of the phenomena of atmospheric electricity]. Ì.—L., GITTL Publ., 1949. 155 p. (In Russ.).

 

S. I. Maximov1, A. V. Kretinina1, N. S. Fominà1,2, L. N. Gall1

COMBINED RADIATOR FOR SPECTROPHOTOMETER IN THE SPECTRAL RANGE FROM 200 TO 1100 nm

"Nauchnoe Priborostroenie", 2015, vol. 25, no. 1, pp. 36—41. doi: 10.18358/np-25-1-i3641
 

The paper is devoted to the previously proposed combined emitter for spectrophotometers (S. I. Maximov et al., 2010; L. N. Gall et al., 2005) improvement which provides the emission range expansion from hard ultraviolet to infrared. The improvement consists in the simultaneous introduction of two electrodeless lamps filled with various metals that are installed on axis of the common resonator. It allows to increase the emitter power and brightness in the UV region significantly and at the same time to leave its compactness unchanged. Also the implementations features of the proposed principle were described and the new combined emitter construction was shown. Moreover an example of the emission spectrum in one of the operating modes was demonstrated.

 
Keywords: spectrophotometry, spectrophotometer, combined emitter, electrodeless lamp, spectral lines

Author Affiliations

1Institute for Analytical Instrumentation of RAS, Saint-Petersburg, RF
2Ioffe Physical Technical Institute of RAS, Saint-Petersburg, RF
Contacts: Fominà Natal'ya Sergeevna, kolomna.88@mail.ru

Full text (In Russ.) >>


REFERENÑES

  1. Maximov S.I., Chizh E.P., Kretinina A.V., Gal L.N., Sukhanov V.L. [Small-size doublebeam converters for specialized spectrophotometers]. Nauchnoe Priborostroenie [Science Instrumentation], 2010, vol. 20, no. 1, pp 46–51. (In Russ.).
  2. Gall L.N., Kretinina A.V., Maximov S.I. [The light source for the spectrophotometer]. RF Patent № 2264604 of 20 November 2005, priority from 18.12.2002. (In Russ.).
  3. Zeidel A.N., Prokofiev V.K., Raiyskii S.M., V.A. Slavnyi, Shreyder E.Ya. [Tables of spectral lines]. Moscow, Nauka Publ., 1969. 340 p. (In Russ.).
  4. Striganov A.R., Sventizkiy N.S. [Tables of spectral lines of neutral and ionized atoms]. Atomizdat Publ., 1966. 899 p. (In Russ.).
  5. Promotional sheet of electrodeless lamp VSB-2 plant "discharge", Vladikavkaz. (In Russ.).

 

A. I. Zhernovoy, S. V. Diachenko

DETERMINATION OF THE DISPERSION MAGNETIC MOMENT OF THE NANOPARTICLES IN MAGNETIC FLUID

"Nauchnoe Priborostroenie", 2015, vol. 25, no. 1, pp. 42—47. doi: 10.18358/np-25-1-i4247
 

At the initial part of the magnetization curve of paramagnet its magnetization on the theory of Langevin proportional to the square of the magnetic moment P of paramagnetic particles: Min= (nP2B/(3kT)), where the n — concentration of particle, B — magnetic induction, T — temperature, k — Boltzmann constant. Saturation magnetization, measured at the final part of the magnetization curve is proportional to the magnetic moment in the first degree: Msat = nP. At the presence of dispersion of the magnetic moment of the particle measured magnetization Min and Msat averaged. In the result turns Min= n(P2)midÂ/(3kÒ) Msat = nPmid, where (P2)mid è Pmid — middle values P2 and P. Since the value of the magnetic moment of particular paramagnetic particle is random variable, at any function of the distribution of particles on values P, dispersion distribution D can be found by the formula: D = (P2)mid – (Pmid)2, received values (P2)mid è (Pmid)2 from experimental magnetization curve. The method is illustrated determining the dispersions of distribution of the magnetic moments of nanoparticles 3 magnetic fluids.

 
Keywords: magnetic fluid, magnetization curve, magnetic moment of the nanoparticles, dispersion of the distribution of magnetic moments

Author Affiliations

Saint-Petersburg State Institute of Technology (Technical University), RF
Contacts: Zhernovoy Aleksandr Ivanovich, azhspb@rambler.ru

Full text (In Russ.) >>


REFERENÑES

  1. Kopcansky P., Tomasovicova N., Roneracka M., et al. Ìagnetic fluid and their technical and biomedical application. Nonkonventyonal Technologies Review, 2008, no. 3, pð. 29–36.
  2. Zhernovoy A.I. Magnitnyy sposob izmereniya ter-modinamicheskoy temperatury [Magnetic way of measurement of thermodynamic temperature]. Patent RF, no. 2452940, 2012. (In Russ.).
  3. Zhernovoy A.I., Naumov V.N., Diachenko S.V. [Research of dependence of a constant of Curie on induction of a magnetic field]. Nauchnoe Priborostroenie [Science Instrumentation], 2012, vol. 22, no. 3, pp. 50–60. (In Russ.).
  4. Pshenichnicov A.F., Mekhonoshin V.V., Lebedev A.V. Magneto-granulometric analisis of concentrated ferrocolloids. Journal of Magnetism and Magnetic Materials, 1996, no. 161, pp. 94–102.
    doi: 10.1016/S0304-8853(96)00067-4.
  5. Zhernovoy A.I., Naumov V.N., Rudakov Yu.R. [Paramagnetic nanoglobules dispersion curve definition via magnetization and magnetizable field using NMR method]. Nauchnoe Priborostroenie [Science Instru­mentation], 2009, vol. 19, no. 3, pp. 57–61. (In Russ.).
  6. Berkovskiy B.M., Medvedev V.F., Krakov M.S. Magnitnye zhidkosti [Magnetic liquids]. Ì., Chimiya Publ., 1989. 240 p. (In Russ.).

 

A. S. Berdnikov

RECALCULATION OF INITIAL CONDITIONS WHEN THE TRAJECTORY OF A CHARGED PARTICLE CROSSES THE BOUNDARY WITH À JUMP OF ELECTRIC AND MAGNETIC FIELD. I. ELECTRIC FIELD

"Nauchnoe Priborostroenie", 2015, vol. 25, no. 1, pp. 48—64. doi:10.18358/np-25-1-i4864
 

When the trajectories of charged particles in electric fields and/or magnetic fields are simulated, sometimes the case occurs when the trajectory crosses the line with a jump of the electric or magnetic field. It is necessary to recalculate carefully the coordinates and the velocities of the charged particle not to produce strange numerical artifacts like the violation of the conservation of energy. This paper introduces and proves mathematically strictly the principle of refraction — namely, only the normal velocity component should be corrected in such a way that the total energy remains constant while all other velocity components as well as the coordinates of the charged particle just keep their original values.

 
Keywords: numerical solutions of differential equations, trajectrory tracing in pulsed electric fields, artifacts of numerical algorithms

Author Affiliations

Institute for Analytical Instrumentation of RAS, Saint-Petersburg, RF
Contacts: Berdnikov Aleksandr Sergeevich, asberd@yandex.ru

Full text (In Russ.) >>


REFERENÑES

  1. Arzimovich L.A., Luk'yanov S.Yu. [Motion of charged particles in electric and magnetic fields]. Moscow, Nauka Publ., 1978. 224 p. (In Russ.).
  2. Sherstnev L.G. [Electron optics and electron-beam tubes]. Moscow, Energiya Publ., 1971. 368 p. (In Russ.).
  3. Glazer W. Grundlagen der Elektronenoptik. Springer-Verlag, Wien, 1952. (Russ. ed.: Glazer V. Osnovy elektronnoy optiki (per. s nem.). M., GITTL Publ., 1957. 763 p.).
  4. Grinberg G.A. [Selected problems of the mathematical theory of electrical and magnetic phenomena]. Moscow—Leningrad, 1948. 727 p. (In Russ.).
  5. Brüche E., Scherzer O. Geometrische Elektronenoptik: Grundlagen und Anwendungen. Springer, Berlin, 1934. 332 p. (Russ. ed.: Bryuche E., Sherzer O. Geometricheskaya elektronnaya optika (per. s nemezkogo). Leningrad, Lenizdat Publ., 1943. 496 p.).
  6. Kel'man V.M., Yavor S.Ya. [Electron optics]. Leningrad, Nauka Publ., 1968. 487 p. (In Russ.).
  7. Strashkevich A.M. [Electron optics of electrostatic systems]. Moscow—Leningrad, Energiya Publ., 1966, 327 p. (In Russ.).
  8. Zinchenko N.S. [Lectures on electron optics]. Char'kov, 1961. 362 p. (In Russ.).
  9. Rusterchol'z A. Elektronnaya optika (per. s nemezkogo) [Electron optics]. Moscow, IL Publ., 1952. 263 p. (In Russ.).
  10. Golikov Yu.K., Utkin K.G., Cheparuchin V.V. [Calculation of elements of electrostatic electron-optical systems]. Leningrad, LPI im. M.I. Kalinina Publ., 1984. 80 p. (In Russ.).
  11. Siga-Michaylovskiy D.Yu. [Electron optics]. Kiev, 1977. (In Russ.).
  12. Bonshtedt B.E., Markovich M.G. [Focusing and deflection of beams in electron beam devices]. Moscow, Sovetskoe radio Publ., 1967. 272 p. (In Russ.).
  13. Steffen K.G. High Energy Beam Optics. Interscience publishers, New-York, 1965. (Russ. ed.: Shteffen K. Optika puchkov vysokoy energii. Moscow, Mir Publ., 1969. 223 p.).
  14. Grivet P. Electron Optics. 2nd English Edition. Pergamon Press, Oxford, 1972. 598 p.
  15. Hawkes P.W., Kasper E. Principles of electron optics. 3rd Edition. Vol. 1–3. Academic Press, 2012. (Russ. ed.: Choks P., Kasper E. Osnovy elektronnoy optiki. Ò. 1-2 (per. s angliyskogo). Moscow, Mir Publ., 1993. 551, 477 p.).
  16. Yavor M.I. Optics of charged particle analyzers. Elsevier, Amsterdam, Ser. Advances of Imaging and Electron Physics, 2009, vol. 157. 381 p.
  17. Wollnik H. Optics of charged particles. Academic Press, Orlando, 1987. (Russ. ed.: Vol'nik G. Optika zaryazhennych chastiz. Saint-Petersburg, Energoatomizdat Publ., 1992. 280 p.).
  18. Rose H.H. Geometrical charged particle optics. Berlin/Heidelberg, Springer-Verlag, 2009. 412 p.
  19. 19. Greenfield D., Monastyrskiy M. Selected problems of computational charged particle optics. Elsevier, Amsterdam, Ser. Advances of Imaging and Electron Physics, 2009, vol. 155. 346 p.
  20. Zworykin V.K., Morton G.A. Television; the electronics of image transmission in color and monochrome. J. Wiley & Sons, New York, 1954. (Zvorykin V.K., Morton D.A. Televidenie. Voprosy elektroniki v peredache zvetnogo i monochromnogo izobrazheniy. IIL Publ., 1956. 780 p.).
  21. Golikov Yu.K., Krasnov N.V., Bublyaev R. A. [A modified mass reflectron]. Nauchnoe priborostroenie [Science Instrumentation], 2005, vol. 15, no. 4, pp. 42–50. (In Russ.).
  22. Kel'man V.M., Rodnikova I.V., Sekunova L.M. [Static mass spectrometers]. Alma-Ata, Nauka Publ., 1985. 263 p. (In Russ.).
  23. Sysoev A.A., Samsonov G.A. [Theory and calculation of static mass analyzers. Part 1–2]. Moscow, MIFI Publ., 1972. 172, 109 p. (In Russ.).
  24. Samsonov G.A., Sysoev A.A. [Fringing field effects in the general theory of sector charged particle analyzers]. Deponirovannye rukopisi, 1979, no. 12, b/î 647. (In Russ.).
  25. Wollnik Í., Ewald Í. The influence of magnetic and electric fringing fields on the trajectories of charged particles. Nuclear Instruments and Methods A. 1965, vol. 36, no. l, pp. 93–104. doi: 10.1016/0029-554X(65)90410-6.
  26. Wollnik H. Image aberrations of second order for magnetic and electrostatic sector fields including all fringing fields effects. Nuclear Instruments and Methods A. 1965, vol. 38, pp. 56–58. doi: /10.1016/0029-554X(65)90103-5.
  27. Kel'man V.M., Karezkaya S.P., Fedulina L.V., Yakushev E.M. [The electro-optical elements for prism spectrometers of charged particles]. Alma-Ata, Nauka Publ., 1979. 232 p. (In Russ.).
  28. Shpak, E.V., Yavor, S.Ya., Lyubchik Ya.G. Optical diagrams of prism spectrometers with quadrupole lenses. Nuclear Instruments and Methods A. 1968, vol. 64, no. 1, pp. 97–103. doi: 10.1016/0029-554X(68)90231-0.
  29. Petrov A., Shpak E.V., Yavor S.Ya. Electrostatic prism spectrometer with quadrupole lenses. Nuclear Instruments and Methods A, 1972, vol. 101, no. 3, pp. 505–508. doi: 10.1016/0029-554X(72)90038-9.
  30. Ding Li, Sudakov M., Kumashiro S. A simulation study of the digital ion trap mass spectrometer. International Journal of Mass Spectrometry. 2002, vol. 13, no. 2, pp. 1–22.
  31. Sudakov M. AXSIM — new software for simulation of modern mass spectrometry devices. Abstracts the 7th International Conference of Charged Particle Optics. Cambridge, UK, 2006, 717 p.
  32. Sudakov M.Yu., Apazkaya M.V., Vituchin V.V., Trubizin A.A. [New linear trap with simple electrodes]. Mass spektrometriya [Mass Spectrometry], 2012, vol. 9, no. 1, pp. 43–52. (In Russ.).
  33. Dahl D.A. SIMION for the personal computer in reflection. International Journal of Mass Spectrometry. 2000, vol. 200, pp. 3–25. doi: 10.1016/S1387-3806(00)00305-5.
  34. SIMION: Charged particle optics software. URL: (http://www.simion.com).
  35. Berdnikov A.S., Chmelik J. New algorithms for testing accuracy of numerically calculated trajectories of charged particles. Optik — International Journal for Light and Electron Optics. 1996, vol. 102, no. 1, pp. 13–17.
  36. Landau L.D., Lifshitz E.M. The classical theory of fields. (Course of theoretical physics, vol. 2). Pergamon Press, 1971. (Russ. ed.: Landau L.D., Lifshiz E.M. Teoriya polya (Ser. «Teoreticheskaya fizika», tom 2). Moscow, Nauka Publ., 1973. 504 p.).
  37. Levich V.G. [Course of theoretical physics. Vol. 1]. Moscow, Nauka Publ., 1969. 911 p. (In Russ.).
  38. Ios G. [Course of theoretical physics. Vol. 1]. Moscow, Minpros RSFSR Publ., 1963. 579 p. (In Russ.).
  39. Feynman R.P., Leighton R.B., Sands M. The Feynman Lectures on Physics. Vol. 2. Addison-Wesley, 1989. (Russ. ed.: Feynman R., Leyton R., Sends M. Elektrichestvo i magnetizm (ser. «Feynmanovskie lekzii po fizike», tom 5). Moscow, Mir Publ., 1965. 412 p.).
  40. Sivuchin D.V. [Electricity. Vol. 3]. Moscow, Fizmatlit Publ., 2004. 654 p. (In Russ.).
  41. Tamm I.E. [Fundamentals of the theory of electricity]. Moscow, Fizmatlit Publ., 2003. 616 p. (In Russ.).
  42. Kalashnikov S.G. [Electricity: A manual for universities]. Moscow, Fizmatlit Publ., 2003. 624 p. (In Russ.).
  43. Irodov I.E. [The basic laws of electromagnetism. General physics course]. Moscow, Vysshaya shkola Publ., 1991. 288 p. (In Russ.).
  44. Frish S.E., Timofeeva A.V. [Electrical and electromagnetic phenomena. General physics course]. Moscow, Fizmatlit Publ., 1962. 515 p. (In Russ.).
  45. Savel'ev I.V. [Electricity and Magnetism. Waves. Optics. General physics course in three volumes]. Moscow, Nauka Publ., 1982. 496 p. (In Russ.).
  46. Pursell E.M., Morin D.J. Electricity and Magnetism. Cambridge University Press, 2013. (Russ. ed.: Parsell E. Elektrichestvo i magnetizm (ser. «Berkleevskiy kurs fiziki», tom 2). Saint-Petersburg, Lan' Publ., 2005. 416 p.).
  47. Zil'berman G.E. [Electricity and magnetism]. Moscow, Nauka Publ., 1970. 384 p. (In Russ.).
  48. Detlaf A.A., Yavorskiy B.M., Milkovskaya L.B. [Electricity and Magnetism. Physics course]. Moscow, Vysshaya shkola Publ., 1977. 376 p. (In Russ.).
  49. Mirolyubov N.N., Kostenko M.V., Levinshteyn M.L., Tichodeev N.N. [Methods of calculation of electrostatic fields]. Moscow, Vysshaya shkola Publ., 1963. 418 p. (In Russ.).
  50. Smythe W.R. Static and dynamic electricity. McGraw-Hill Book Company Inc., New York, 1950. (Russ. ed.: Smayt V. Elektrostatika i elektrodinamika. Moscow, IIL Publ., 1954. 606 p.).
  51. Stratton J.A. Electromagnetic theory. McGraw-Hill Book Company Inc., New York, 1941. (Russ. ed.: Stretton Dzh.A. Teoriya elektromagnetizma. Moscow, GITTL Publ., 1948. 539 p.).
  52. Sommerfeld A. Electrodynamics (ser «Lectures on Theoretical Physics», vol. 3). Academic Press, New York, 1952. 372 p. (Russ. ed.: Zommerfel'd A. Elektrodinamika. Moscow, IL Publ., 1958. 502 p.).
  53. de Boor C. A practical guide to splines. (Ser. «Applied Mathematical Sciences», vol. 27). Springer-Verlag, New York-Berlin, 1978. 392 p. (Russ. ed.: De Bor K. Prakticheskoe rukovodstvo po splaynam. Moscow, Radio i svyaz' Publ., 1985. 304 p.).
  54. Bernshteyn S.N. [Analytical nature of solutions of the differential equations of elliptic type]. Char'kov, Izd-vo ChGU Publ., 1956. 95 p. (In Russ.).

 

B. P. Sharfarets, E. B. Sharfarets

ABOUT THE CHOICE OF METHODS FOR SOLVING POISSON'S EQUATION IN THE GENERAL CASE OF THE DISTRIBUTION OF THE VOLUME CHARGE DENSITY AND ABOUT THE FORMULATION OF BOUNDARY CONDITIONS IN ELECTROKINETIC PROBLEMS (REVIEW)

"Nauchnoe Priborostroenie", 2015, vol. 25, no. 1, pp. 65—75. doi: 10.18358/np-25-1-i6575
 

We consider the situation when the distribution of the space charges in the Poisson equation differs from the Boltzmann distribution. This required the usage of the theory of correctly solution of boundary value problems for equations of Laplace and Poisson. The most general methods for solving these tasks were used. Boundary conditions, used in electrokinetic phenomena, were considered. Closed system of equations, which allow to model mathematically the electrokinetic processes in the absence of thermodynamic equilibrium, was presented.

 
Keywords: double electrical layer, electrokinetic phenomena, the Poisson equation, the Laplace equation, Neumann's boundary problem, Dirichlet's boundary problem

Author Affiliations

Institute for Analytical Instrumentation of RAS, Saint-Petersburg
Contacts: Sharfarets Boris Pinkusovich, sharb@mail.ru

Full text (In Russ.) >>


REFERENÑES

  1. Knyaz'kov N.N., Sharfarez B.P., Sharfarez E.B. [Mo­deling the dynamics of the electrical double layer in the non-stationary time process. Part 1. About the simple layer potential]. Nauchnoe Priborostroenie [Science Instrumentation], 2014, vol. 24, no. 4, pp. 22–29. (In Russ.).
  2. Vladimirov V.S. [Equations of mathematical physics]. Ì., Nauka Publ., 1981. 512 p. (In Russ.).
  3. Tichonov A.N., Samarskiy A.A. [Equations of mathematical physics]. Ì., Nauka Publ., 2004. 798 p. (In Russ.).
  4. Koshlyakov N.S., Gliner E.B., Smirnov M.M. [The equations in private derivatives of mathematical physics]. M., The higher school Publ., 1970. 712 p. (In Russ.).
  5. Mors F.M., Feshbach G. [Methods of theoretical physics. Vol. 1]. Ì., IL Publ., 1958. 931 p. (In Russ.).
  6. Aramanovich I.G., Levin V.I. [Equations of mathematical physics]. Ì., Nauka Publ., 1969. 288 p. (In Russ.).
  7. Vladimirov V.S., Zharinov V.V. [Equations of mathematical physics]. Ì., Fizmatlit Publ., 2004. 400 p. (In Russ.).
  8. N'yumen Dzh. [Electrochemical systems]. Ì., Mir Publ., 1977. 464 p. (In Russ.).
  9. Israelachvili J.N. Intermolecular and surface forces. 2nd ed. San Diego, Academic Press, 1992. 450 p.
  10. Gladkova E.V., Dyshlovenko P.E., Titarenko Yu.G., Chernyat'ev D.V. [Elastic constants of a two-dimensional colloidal crystal in model of the equation of Poisson—Boltzmann]. Izv. Samarskogo nauchnogo zentra [News of the Samara scientific center], 2012, vol. 4, no. 3, pp. 808–811. (In Russ.).
  11. Perel V., Shklovskii B. Screening of a macroion by multivalent ions: A new boundary condition for the Poisson—Boltzmann equation and charge inversion. Physica A, 1999, vol. 274, pp. 446–453. doi: 10.1016/S0378-4371(99)00379-9.
  12. Stretton Dzh.A. [Theory of electromagnetism]. Ì., Ogiz Publ., 1948. 539 p. (In Russ.).
  13. Bruus H. Theoretical microfluidics. Oxford University Press, 2008. 346 p.
  14. Duchin S.S., Deryagin B.V. [Electrophoresis]. Ì., Nauka Publ., 1976. 332 p. (In Russ.).
  15. Knyaz'kov N.N., Sharfarez B.P., Sharfarez E.B. The basic expressions used in the electrokinetic phenomena (review). Nauchnoe Priborostroenie [Science Instrumentation], 2014, vol. 24, no. 4, pp. 13–21. (In Russ.).
  16. Sharfarez B.P., Knyaz'kov N.N., Pashovkin T.N. [About mathematical tasking for movement of viscous compressible heat-conducting fluids in thermoelastic tube]. Nauchnoe Priborostroenie [Science Instru­mentation], 2013, vol. 23, no. 4, pp. 85–90. (In Russ.).

 

S. K. Savelyev1,2, A. V.Bakhtiarov1, V. G. Semenov1, N. B. Klimova2

SOFTWARE TOOLKIT FOR THE EDUCATION IN X-RAY FLUORESCENCE ANALYSIS

"Nauchnoe Priborostroenie", 2015, vol. 25, no. 1, pp. 76—82. doi: 10.18358/np-25-1-i7682
 

The issues that arise during the process of students training in the class of complicated physic methods of analysis are outlined. It is demonstrated that significant portion of those issues may be resolved by means of conventional universal software solutions specialized for the named area. One of such solutions called X-Energo is described with description of the main ideas of this package dealing with the possibilities of simulation of X-ray fluorescence spectrometers of different types and determination of analytical characteristics of element analysis of different stuff on such devices. X-Energo provides software realizations of the adequate, efficient, detailed models for different components and the whole X-ray fluorescence spectrometer as well as the diversified tools for data acquisition, processing and interpretation.

 
Keywords: X-ray fluorescence analysis, universal software simulation complex, X-ray fluorescent spectrometers, energy dispersive spectrometer, modified method standard background

Author Affiliations

1Saint-Petersburg State University, Institute of Chemistry, Saint-Petersburg, RF
2Immanuel Kant Baltic Federal University, Kaliningrad, RF
Contacts: Savelyev Sergey Konstantinovich, ssav@x-energo.com

Full text (In Russ.) >>


REFERENÑES

  1. Savelyev S.K., Plotnikov R.I., Fedorov S.I. [Modeling of a power dispersive x-ray spectrometer in the computing environment X-Energo]. Optika i spektroskopiya [Optics and spectroscopy], 1995, vol. 78, no.1, pp. 174–176. (In Russ.).
  2. Holden N.E. Atomic weight 1977. Pure and applied chemistry, 1979, vol. 51, no. 2, pp. 405–433.
  3. Cauchois Y., Senemaud C. Wavelengths of X-ray emission lines and absorption edges. International tables of selected constants, Pergamon Press, 1978, vol. 18, pp. 1–217.
  4. Sevier K.D. Atomic electron binding energies. Atom. Data and Nuclear Data Tables, 1979, vol. 24, no. 4, pp. 323–371. doi: 10.1016/0092-640X(79)90012-3.
  5. Krause M.O. Atomic radiative and radiationless yields for K and L shells. J. Phys. Chem. Ref. Data, 1979, vol. 8, no. 2, pp. 307–327. doi: 10.1016/0092-640X(79)90012-3.
  6. Bambynek W., Crasemann B., Fink R.W. et al. X-ray fluorescence yields, Auger and Coster -Kronig transition probabilities. Rev. Mod. Phys., 1972, vol. 44, no. 4, pp. 716–813. doi: 10.1103/RevModPhys.44.716.
  7. Salem S.I., Panossian S.L., Krause R.A. Experimental K and L relative X-ray emission rates. Atom. Data and Nucl. Data Tables, 1974, vol. 14, no. 2, pp. 91–109. http://dx.doi.org/10.1016/S0092-640X(74)80017-3
  8. Scofield J.H. Hartree-Fock values of L X-ray emission rates. Phys. Rev. A, 1974, vol. 10, no. 5, pp. 1507–1510. doi: 10.1103/PhysRevA.10.1507.
  9. Komyak N.I., ed. Tablizy i formuly rentgenospektral'nogo analiza. Metodicheskie rekomendazii. Tom 3 [Tables and formulas of the X-ray spectral analysis. Methodical recommendations. Vol. 3]. Leningrad, NPO "Burevestnik" Publ., 1981. (In Russ.).
  10. Hubbell J.H., Overbo I. Relativistic atomic form factors and photon coherent scattering cross-sections. J. Phys. Chem. Ref. Data, 1979, vol. 8, no. 1, pp. 69–105. doi: 10.1063/1.555593.
  11. Marenkov O.S., Savelyev S.K. X-ray atomic constants and cross-sections reference data in the range 1–150 keV on new approaches to hi-tech 98 .International workshop "Nondestructive Testing and Computer Simulations in Science and Engineering", NDTCS-98. 8–12 June 1998, St. Petersburg, Russia, A 16.
  12. Bakhtiarov A.V. Rentgenospektral'nyy fluoreszentnyy analiz v geologii i geochimii [ The X-ray spectral fluorescent analysis in geology and geochemistry]. Leningrad, 1985. 143 ñ. (In Russ.).
  13. Finkel'shteyn A.L., Afonin V.P. [Calculation of intensity of x-ray fluorescence]. Metody rentgeno­spektral'nogo analiza [Methods of the X-ray spectral analysis], Novosibirsk, 1986, pp. 5–11. (In Russ.).
  14. Panvlinskiy G.V., Velichko Yu.V., Revenko A.G. [Program of calculation of intensivnost of analytical lines of a x-ray range of fluorescence]. Zavodskaya laboratoriya [Factory laboratory], 1977, vol. 43, no. 4, pp. 433–436. (In Russ.).
  15. Backtiarov A.V., Savelyev S.K., Zayzev V.A. et al. [The X-ray fluorescent analysis on the modified way of the standard background in system of analytical control of solid-phase products of meta-lurgichesky production of precious metals]. Zavodskaya laboratoriya[Factory laboratory], 2014, vol. 80, no. 11, pp. 5–11. (In Russ.).
  16. Bakhtiarov A.V., Savelyev S.K., Zayzev V.A. et al. [Application of the X-ray fluorescent analysis on the modified way of the standard background in system of analytical control of solid-phase products of metallurgical production of precious metals]. Sbornik tezisov. XX Mezhdunarodnaya Chernyaevskaya konferenziya po chimii, analitike i technologii platinovych metallov. Krasnoyarsk: 7–12 oktyabrya 2013 [Proc. XX International Chernyaevsky conference on chemistry, analytics and technology of platinum metals. Krasnoyarsk: October 7-12, 2013], Sibirskiy feder. un-t. Publ., 2013. P. 77. ISBN 978-5-7638-2891-7. (In Russ.).

 

A. S. Berdnikov

RECALCULATION OF INITIAL CONDITIONS WHEN THE TRAJECTORY OF A CHARGED PARTICLE CROSSES THE BOUNDARY WITH À JUMP OF ELECTRIC AND MAGNETIC FIELD. II. MAGNETIC FIELD

"Nauchnoe Priborostroenie", 2015, vol. 25, no. 1, pp. 83—103. doi: 10.18358/np-25-1-i83103
 

When the trajectories of charged particles in electric fields and/or magnetic fields are simulated, sometimes the case occurs when the trajectory crosses the line with a jump of the electric or magnetic field. It is necessary to recalculate carefully the coordinates and the velocities of the charged particle not to produce strange numerical artifacts like the violation of the conservation of energy. This paper introduces and proves mathematically strictly the expressions how to recalculate the coordinates and the velocities of the charged particle when the trajectory intersects with the boundary of the jump of electric and magnetic fields with a weak singularity.

 
Keywords: numerical solutions of differential equations, trajectrory tracing in pulsed electric fields, artifacts of numerical algorithms

Author Affiliations

Institute for Analytical Instrumentation of RAS, Saint-Petersburg, RF
Contacts: Berdnikov Aleksandr Sergeevich, asberd@yandex.ru

Full text (In Russ.) >>


REFERENÑES

  1. Berdnikov A.S. [Recalculation of initial conditions when the trajectory of a charged particle crosses the boundary with à jump of electric and magnetic field. I. Electric field]. Nauchnoe Priborostroenie [Science Instrumentation], 2015, vol. 25, no. 1, pp. 48–64. (In Russ.).
  2. Golikov Yu.K., Krasnov N.V., Bublyaev R.A. [A mo­dified mass reflectron]. Nauchnoe Priborostroenie [Science Instrumentation], 2005, vol. 15, no. 4, pp. 42–50. (In Russ.).
  3. Landau L.D., Lifshiz E.M. The classical theory of fields. (Course of theoretical physics, vol. 2). Pergamon Press, 1971. (Russ. ed.: Landau L.D., Lifshiz E.M. Teoriya polya (Ser. «Teoreticheskaya fizika», tom 2). Moscow, Nauka Publ., 1973. 504 p.).
  4. Levich V.G. [Course of theoretical physics. Vol. 1]. Moscow, Nauka Publ., 1969. 911 p. (In Russ.).
  5. Ios G. [Course of theoretical physics. Vol. 1]. Moscow, Minpros RSFSR Publ., 1963. 579 p. (In Russ.).
  6. Stratton J.A. Electromagnetic theory. McGraw-Hill Book Company Inc., New York, 1941. (Russ. ed.: Stretton Dzh.A. Teoriya elektromagnetizma. Moscow, GITTL Publ., 1948. 539 p.).
  7. Sommerfeld A. Electrodynamics (ser «Lectures on Theoretical Physics», vol. 3). Academic Press, New York, 1952. 372 p. (Russ. ed.: Zommerfel'd A. Elektrodinamika. Moscow, IL Publ., 1958. 502 p.).
  8. En.Wikipedia. Maxwell's equations. URL: (https://en.wikipedia.org/wiki/Maxwell%27s_equations).
  9. En.Wikipedia. Mathematical descriptions of the electromagnetic_field. URL: (https://en.wikipedia.org/wiki/Mathematical_descriptions_of_the_electromagnetic_field).
  10. Kochin N.E. [Vector calculation and beginnings of tensor calculation]. L., ONTI Publ., 1934. 456 p. (In Russ.).
  11. En.Wikipedia. Vector potential. URL: (https://en.wikipedia.org/wiki/Vector_potential).
  12. En.Wikipedia. Helmholtz decomposition. URL:(https://en.wikipedia.org/wiki/Helmholtz_decomposition).
  13. En.Wikipedia. Gauge fixing. URL: https://en.wikipedia.org/wiki/Gauge_fixing).
  14. En.Wikipedia. Biot-Savart law. URL: (https://en.wikipedia.org/wiki/Biot-Savart_law).
  15. Golikov Yu.K., Utkin K.G., Cheparuchin V.V. [Calculation of elements of electrostatic electron-optical systems]. L., Izd-vo LPI im. M.I. Kalinina Publ., 1984. 80 p. (In Russ.).
  16. Dahl D.A. SIMION for the personal computer in reflection. International Journal of Mass Spectrometry, 2000, vol. 200, pp. 3–25. doi: 10.1016/S1387-3806(00)00305-5.
  17. SIMION Industry standard charged particle optics simulation software. URL: (http://www.simion.com).
  18. Kalimov A.G. [Development of numerical methods of calculation of the electromagnetic fields based on application of the spatial integrated equations. Dr. eng. sci. diss.]. St. Petersburg, SPbPU Publ., 2013. (In Russ.).
  19. Evgrafov M.A. Analytic Functions (Ser. «Saunders Mathematical Books»). W.B.Saunders Co., Philadelphia, 1966. 336 p. (Russ. ed.: Evgrafov M.A. Analiti­cheskie funkzii: Ucheb. posobie dlya vuzov. Ì., Nauka Publ., 1991. 447 p.).
  20. Boss V. [Lectures on mathematics. vol. 9: Theory of functions of a complex variable]. Ì., URSS Publ., 2010. 213 p. (In Russ.).
  21. Arzimovich L.A., Luk'yanov S.Yu. [Motion of charged particles in electric and magnetic fields]. Ì., Nauka Publ., 1978. 224 p. (In Russ.).
  22. Berdnikov A.S. [High frequency electromagnetic fields with ‘archimedean’ properties which are calculated taken maxwell’s terms into account]. Nauchnoe Priborostroenie [Science Instrumentation], 2014, vol. 24, no. 1, pp. 104–127. (In Russ.).
  23. de Boor C. A practical guide to splines. Ser. «Applied Mathematical Sciences», vol. 27. Springer-Verlag, New York-Berlin, 1978. 392 p. (Russ. ed.: De Bor K. Prakticheskoe rukovodstvo po splaynam. Moscow, Radio i svyaz' Publ., 1985. 304 p.).
  24. Greenfield D., Monastyrskiy M. Selected problems of computational charged particle optics. Ser. Advances of Imaging and Electron Physics, vol. 155, 2009, Amsterdam, Elsevier. 346 p.
  25. Yavor M.I. Optics of charged particle analyzers. Ser. Advances of Imaging and Electron Physics, Elsevier, Amsterdam, 2009, Vol. 157. 381 p.
  26. Kel'man V.M., Rodnikova I.V., Sekunova L.M. [Static mass spectrometers]. Alma-Ata, Nauka Publ., 1985. 263 p. (In Russ.).
  27. Wollnik H. Optics of charged particles. Academic Press, Orlando, 1987. (Russ. ed.: Vol'nik G. Optika zaryazhennych chastiz. St. Petersburg, Energoatomizdat Publ., 1992. 280 p.).
  28. Wollnik Í., Ewald Í. The influence of magnetic and electric fringing fields on the trajectories of charged particles. Nuclear Instruments and Methods A, 1965, vol. 36, no. l, pp. 93–104.
  29. Malov A.F. [About some ion-optical properties of static axial and symmetric magnetic and electric fields. Dr. phys. and math. sci. diss.]. Ì., MIFI Publ., 1961. 11 p. (In Russ.).
  30. Sysoev A.A., Samsonov G.A. [Theory and calculation of static mass analyzers. Part 1-2]. Ì., MIFI Publ., 1972. 172 p., 109 p. (In Russ.).
  31. Camsonov G.A., Sysoev A.A. [Fringing field effects in the general theory of sector charged particle analyzers]. The deposited manuscripts, 1979, no. 12, b/î 647. (In Russ.).
  32. Trikomi F.G. Lezioni sulle equazioni a derivative parziali. Edutrice Gheroni, Torino, 1954. (Russ. ed.: Trikomi F. Lekzii po uravneniyam v chastnych pro-izvodnych.Ì ., Izd. IL Publ., 1957. 444 p.).
  33. Gyunter N.M. [Integration of the equations of the first order in private derivatives]. Ì.–L., ONTI Publ., 1934. 359 p.

Ulitsa Ivana Chernykh, 31-33, lit. A, St. Petersburg, Russia, 198095, P.O.B. 140
tel: (812) 3630719, fax: (812) 3630720, mail: iap@ianin.spb.su

content: Valery D. Belenkov design: Banu S. Kuspanova layout: Anton V. Manoilov