-МАТЕМАТИЧЕСКИЕ МОДЕЛИ—

УДК 537.533.7:537.534.7:621.319.7

© Ю. К. Голиков, Н. К. Краснова, И. А. Марциновский

ОБ АППАРАТНОЙ ФУНКЦИИ ЭЛЕКТРОСТАТИЧЕСКИХ ЭЛЕКТРОННЫХ СПЕКТРОМЕТРОВ

В статье критически изучается понятие аппаратной функции электронных спектрометров, его генезис; строится безразмерная математическая модель, с помощью которой выводится строго определенная и однозначная интегральная связь между энергетическим спектром источника f(E) и регистрируемым на детекторе током J(U) в зависимости от энергии настройки прибора U. Показано, что аппаратная функция всегда зависит только от отношения (E / U), а не от разницы (E - U) и не от обратной величины (U / E), как это декларируется в ряде публикаций. Кроме того, показано, что возникающее уравнение по своей математической природе относится к типу Вольтерра I рода, а не Фредгольма I рода. В статье приводится ряд конкретных конструкций аппаратной функции и описываются их общие качественные свойства.

Кл. сл.: энергоанализ, электронный спектрометр, аппаратная функция, интегральное уравнение Вольтерра I рода, истинный спектр, восстановление спектра, однородное поле, энергоанализатор "Тутанхамон"

ОБЗОР ПРОБЛЕМЫ

Предметом исследования данной статьи является аппаратная функция электростатических электронных спектрометров. Следуя монографии [1], аппаратную функцию A(E,U) можно определить как зависимость выходного тока энергоанализатора от энергии настройки U при условии, что источник ионов моноэнергетический, E = const. Ценность этой функции состоит в том, что с ее помощью можно записать явную связь между реальным электрическим током J(U) на детекторе спектрометра и энергетическим спектром f(E)выбранного физического источника электронов в виде некоего интегрального соотношения. Из него, в принципе, можно найти точную форму спектра f(E) по экспериментально измеренной функции J(U), как решение соответствующего интегрального уравнения, в котором аппаратная функция A(E,U) играет роль ядра. Несмотря на очевидную пользу от самого понятия "аппаратная функция", в большинстве работ по теории спектрометров в первую очередь изучаются такие электронно-оптические параметры, как порядок угловой фокусировки, линейная энергетическая дисперсия, удельная энергетическая дисперсия, светимость, пропускание, разрешающая способность, чувствительность, и где-то на обочине, вскользь упоминается аппаратная функция [1–3].

Причина такого пренебрежения, по-видимому, объясняется слабым интересом физиков к кон-

кретной форме энергетических спектров. До сих пор их вполне устраивало знание точного места пиков на шкале энергий, амплитуды и полуширины. Однако положение вещей постепенно меняется, и уже появился целый ряд работ, посвященных вычислению аппаратной функции для различных систем энергоанализа и решению задачи восстановления истинного спектра по измеренному току на детекторе прибора. В этих статьях мы вдруг обнаруживаем значительные расхождения во мнениях. Факт несколько неожиданный. Так, в работах [1, 4, 5] связь функций J(U) и A(E,U) постулируется без всякой мотивировки в виде классической свертки

$$J(U) = C \int_{0}^{\infty} A(E - U) f(E) dE, \qquad (1)$$

и предлагаются свои алгоритмы для вычисления f(E). В статье [6] приводится без вывода другая формула связи

$$J(U) = C \int_{0}^{\infty} A\left(\frac{U}{E}\right) f(E) dE, \qquad (2)$$

и предлагается свой рецепт приближенного восстановления f(E). В работах [7, 8] используется выражение (2), но уже с некоторой долей физического обоснования. Так, в статье [7] довольно убедительно показано, что свертка (1) принципиально неприменима к спектрометрам, т. к. она несовместима с механическим принципом подобия. В свою очередь уравнение (2) предлагается из общих соображений, как более логичная конструкция, подчиняющаяся физическим правилам подобия траекторий, но также без сколь-нибудь строгого математического доказательства. На базе уравнения (2) авторы предлагают и свой метод определения f(E), который, по сути, является небольшим видоизменением подхода из [6]. Авторы [7] полагают свой алгоритм весьма общим, точным и универсальным. Мы эту высокую оценку, отнюдь, не разделяем по следующей причине. Если свертка (1), в принципе, не отражает работу спектрометров, то связь (2), хоть и ближе к делу, но тоже не верна и требует изрядных уточнений.

Более корректно в литературе поставлен вопрос о вычислении собственно аппаратных функций, хотя и здесь общие свойства до конца не выяснены. Например, в [1] в весьма громоздкой форме исследована аппаратная функция плоского конденсатора, но до решения обратных задач восстановления спектра f(E) дело, конечно, не дошло. Интересной попыткой вычисления конкретных аппаратных функций численными методами является работа [9]. Она проясняет и возможную геометрию аппаратных функций. Подводя итоги этого обсуждения, мы вправе заключить, что вопрос об аппаратной функции достаточно запутан и нуждается в тщательном математическом рассмотрении. Заметим еще, что аппаратная функция не характеризует энергоанализатор сам по себе, но непременно в связке с типом используемого электронного источника. В самом общем случае стационарный источник электронов можно описать плотностью эмиссии *j*, которая зависит от координат рождения электронов ξ, η, λ , кинетической энергии $E = mV^2/2$ и углов θ, γ , определяющих направление вектора скорости V вылета электро-HOB

$$j = F(\xi, \eta, \lambda, \theta, \gamma, E).$$
(3)

Если электроны рождаются в некоторой области пространства с различными направлениями скорости, то при каждом конкретном наборе чисел ξ , η , λ , θ , γ будет получаться свой энергетический спектр. Об энергетическом спектре f(E) такого интегрального источника можно говорить только в том случае, если F распадается на множители вида

$$j = F = R(\xi, \eta, \lambda, \theta, \gamma) \cdot f(E).$$
(4)

Именно с такими источниками имеют дело в обычном энергоанализе, исключение составляют специальные задачи, как, например электронная спектроскопия с угловым разрешением. Характер функций *R* играет исключительную роль в генезисе аппаратных функций, какую бы электродную конфигурацию мы не использовали в качестве энергоанализатора. Легко представить, сколь необозрима эта область. Упомянутые выше работы вообще игнорируют данные факты, и, может быть, поэтому аппаратная функция выглядит несколько загадочным объектом.

Цель данной статьи заключается в том, чтобы математически более корректно разобраться в структуре и классификации аппаратных функций, выводе правильного интегрального соотношения между током J(U) и спектром f(E), а также в выработке общих подходов к решению возникающих интегральных уравнений.

В нашей работе мы будем пользоваться безразмерной моделью описания полей и траекторий, введенной в [10], которая минимизирует число символов и существенно упрощает как математические выкладки, так и физическую интерпретацию. Для наглядности изложим ее кратко, но достаточно полно для понимания.

БЕЗРАЗМЕРНАЯ МОДЕЛЬ

Введем в декартовом физическом пространстве X, Y, Z не определенный пока линейный масштаб ℓ (в метрах) и безразмерные декартовы координаты x, y, z, связав их равенствами

$$X = \ell x, \quad Y = \ell y, \quad Z = \ell z . \tag{5}$$

Кроме того, введем временной масштаб T (в секундах) и свяжем реальное время t с безразмерным текущим параметром времени τ выражением

$$t = T \ \tau \ . \tag{6}$$

Введем физический потенциал электрического поля формулой

$$\Phi = \Phi_0 \cdot \phi(x, y, z) + \Phi_1, \qquad (7)$$

где $\phi(x, y, z)$ — безразмерный лапласов потенциал, а Φ_0, Φ_1 — физические постоянные с размерностью потенциала (в вольтах). Функция ϕ характеризует эквипотенциальный портрет поля — его геометрию — безотносительно к размерам и физическим значениям эквипотенциалей. Пусть по каким-то соображениям мы выбрали две эквипотенциали с номерами ϕ_1 и ϕ_2 в качестве полезадающих, окаймляющих рабочую камеру анализатора. Если домножить координаты x, y, z на этих поверхностях на выбранный масштаб ℓ , то получатся формы реальных электродов. Запитаем их реальными электрическими напряжениями, полагая, например, на эквипотенциали ϕ_1 потенциал нулевым, а на ϕ_2 подадим потенциал Q, тогда получим из (7) следующие связи:

$$\begin{cases} \Phi_0 \phi_1 + \Phi_1 = 0, \\ \Phi_0 \phi_2 + \Phi_1 = Q. \end{cases}$$
(8)

Решая эту систему относительно Φ_0, Φ_1 , получим:

$$\Phi_0 = \frac{Q}{\phi_2 - \phi_1}, \quad \Phi_1 = Q \frac{\phi_1}{\phi_1 - \phi_2}. \tag{9}$$

Тем самым мы всегда можем связать параметры электрического питания с характерным потенциалом Φ_0 , который определяет силовое воздействие поля на частицы. Наиболее проста эта связь, если ϕ_1 и ϕ_2 выбраны из условия

$$\phi_2 - \phi_1 = 1 , \qquad (10)$$

тогда

$$\Phi_0 = Q . \tag{11}$$

Обратимся теперь к динамике частицы с зарядом q и массой m и запишем функцию Лагранжа в физических переменных X, Y, Z, t и безразмерных переменных x, y, z, τ , обозначив производные по τ точкой,

$$L = \frac{m}{2} \left\{ \left(\frac{\mathrm{d}X}{\mathrm{d}t} \right)^2 + \left(\frac{\mathrm{d}Y}{\mathrm{d}t} \right)^2 + \left(\frac{\mathrm{d}Z}{\mathrm{d}t} \right)^2 \right\} - -q\Phi_0\phi(x, y, z) =$$
$$= \frac{m\ell^2}{T^2} \cdot \frac{\dot{x}^2 + \dot{y}^2 + \dot{z}^2}{2} - q\Phi_0\phi(x, y, z) \,. \tag{12}$$

Постоянную Φ_1 в потенциале мы отбрасываем, т. к. она исчезает в уравнениях Лагранжа.

Пусть для удобства $q\Phi_0 > 0$, ибо нужный знак, определяющий направление силы, действующей на частицу, всегда можно ввести в состав безразмерного потенциала $\phi(x, y, z)$. Линейный масштаб ℓ можно подчинить практическим соображениям, например связав его с габаритами предлагаемой электродной конфигурации или с базой осевой траектории. Выбор временно́го масштаба *T* остается на нашем усмотрении, подчиним его условию

$$m\frac{\ell^2}{T^2} = q\Phi_0. \tag{13}$$

Из выражения (12) тогда выделяется общий множитель, который можно сократить в силу инвариантности уравнений Лагранжа относительно операции умножения функции Лагранжа на произвольную постоянную. В результате можно написать безразмерную функцию Лагранжа, свободную от лишних символов

$$L = \frac{\dot{x}^2 + \dot{y}^2 + \dot{z}^2}{2} - \phi(x, y, z).$$
(14)

Характерная единица времени Т при этом имеет величину

$$T = \ell \sqrt{\frac{m}{q\Phi_0}} . \tag{15}$$

Дифференциальные уравнения движения для *L* из (14):

$$\ddot{x} = -\frac{\partial \phi}{\partial x}, \quad \ddot{y} = -\frac{\partial \phi}{\partial y}, \quad \ddot{z} = -\frac{\partial \phi}{\partial z}.$$
 (16)

Физические начальные данные движения $(X_0, Y_0, Z_0, V_1, V_2, V_3)$ при переходе к безразмерным величинам преобразуются, как

$$x_0 = \frac{X_0}{\ell}, \ y_0 = \frac{Y_0}{\ell}, \ z_0 = \frac{Z_0}{\ell},$$
 (17)

$$\dot{x}_0 = \frac{T}{\ell} V_1, \ \dot{y}_0 = \frac{T}{\ell} V_2, \ \dot{z}_0 = \frac{T}{\ell} V_3.$$
 (18)

Введем в (18) $\frac{T}{\ell}$ из условия (15), тогда

$$\dot{x}_0 = \sqrt{\frac{m}{q\Phi_0}} V_1, \ \dot{y}_0 = \sqrt{\frac{m}{q\Phi_0}} V_2, \ \dot{z}_0 = \sqrt{\frac{m}{q\Phi_0}} V_3.$$
 (19)

Составим еще величину $W = \frac{\dot{x}_0^2 + \dot{y}_0^2 + \dot{z}_0^2}{2}$ — безразмерную кинетическую энергию. С помощью (19) получим для W выражение

$$W = \frac{1}{q\Phi_0} \cdot \frac{V_1^2 + V_2^2 + V_3^2}{2} = \frac{E}{q\Phi_0}.$$
 (20)

Таким образом, параметр W выражает начальную кинетическую энергию E частицы в долях характерной потенциальной энергии поля $(q\Phi_0)$. Итак, мы осуществили преобразование реальной физической системы (поле, частица) в абстрактный математический образ — безразмерную модель. Она отличается максимальной лаконичностью и позволяет изучать все нужные "энергоанализирующие характеристики" в форме, свободной от реальных размеров и величин напряженности реальных полей. В эту сторону переход вполне однозначен, когда m, q, ℓ, Φ_0, E выбраны конкретно, однако обратный путь от абстрактной математической траектории в физический мир мно-

71

гозначен и допускает различные физические интерпретации. Предположим, что мы "заморозили" числа $(x_0, y_0, z_0, \dot{x}_0, \dot{y}_0, \dot{z}_0)$, тогда в пространстве x, y, z, τ образуется строго одна кривая — траектория со своей кинематикой частиц вдоль нее. В физическом мире этой кривой соответствует бесконечное множество взаимно подобных кривых, т. к. в силу (17) мы можем пропорционально менять X_0, Y_0, Z_0 и ℓ лишь бы сохранялись левые части. Точно так же в правых частях (19) мы можем менять $m, q, \Phi_0, V_1, V_2, V_3$ без изменения левых частей, а в соотношении (20) можно пропорционально менять энергию E и величину $q\Phi_0$ при неизменном W. Из всего этого легко прочитываются все стандартные правила подобия, которые изучаются в физике и электронной оптике с помощью менее наглядных рассуждений. Здесь же все происходит само собой. Первое, что немедленно из всего этого следует — принцип электрической развертки в электронных спектрометрах. Допустим, что в какой-то полевой структуре мы построили поток частиц с энергией Е и разбросом ΔE . Отображенный в безразмерное пространство он даст семейство траекторий с безразмерной энергией

$$W = \frac{E}{q\Phi_0} \tag{21}$$

и ее разбросом

$$\Delta W = \frac{\Delta E}{q\Phi_0} \,. \tag{22}$$

Если в физическом пространстве поток был сфокусирован при конкретном потенциале Φ_0 на реальную щель размера d, то в безразмерном пространстве он будет сфокусирован на щель

$$S = \frac{d}{\ell} \,. \tag{23}$$

Если рассматривать величину $U = q\Phi_0$, как энергию развертки, и пропорционально менять в (21), (22) величины E, Φ_0 и ΔE так, чтобы левые части W, ΔW сохранялись, то поток безразмерных траекторий $x(\tau)$, $y(\tau)$, $z(\tau)$ останется неизменным, а вместе с ним остаются неизменными физические потоки при соответствующей перестройке энергий и потенциалов. За счет этого свойства и появляется возможность приводить электроны спектра последовательными группами на детектор за счет вариации потенциала настройки Φ_0 . Отсюда же следует и постоянство относительной ошибки измерения E вдоль всего спек-

НАУЧНОЕ ПРИБОРОСТРОЕНИЕ, 2011, том 21, № 3

тра, ибо из (21), (22)

$$\frac{\Delta W}{W} = \frac{\Delta E}{E} = \text{const.}$$
(24)

Таким образом, фокусирующие свойства системы, ее линейную и удельную дисперсии, разрешающую способность и светосилу удобно изучать и оптимизировать в построенной нами безразмерной модели. При конструировании реального прибора физические параметры легко получаются из безразмерных умножением на соответствующие характерные значения. На этой базе легко понять и математическую природу аппаратных функций.

ВЫВОД ОСНОВНОГО ИНТЕГРАЛЬНОГО СООТНОШЕНИЯ

Генезис аппаратных функций лучше всего постигается при использовании самых простейших источников и полей, образующих простые дугообразные электронные струи. Мы остановимся на плоском варианте, полагая, что движение происходит под действием сил с безразмерным потенциалом $\phi(x,z)$. Эту плоскость можно ассоциировать и как основную плоскость двумерных полей так, что

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial z^2} = 0.$$
 (25)

Либо это меридиональная плоскость осесимметричного поля, и потенциал ϕ удовлетворяет уравнению Лапласа для полей с круговой симметрией

$$\frac{1}{x} \cdot \frac{\partial}{\partial x} \left(x \, \frac{\partial \phi}{\partial x} \right) + \frac{\partial^2 \phi}{\partial z^2} = 0 \,. \tag{26}$$

Либо (x, y) — плоскость симметрии трехмерного поля с потенциалом $\psi(x, y, z)$

$$\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2} = 0, \qquad (27)$$

$$\psi\big|_{y=0} = \phi\big(x,z\big). \tag{28}$$

Для простоты рассуждений положим, что

$$\left. \frac{\partial \phi}{\partial x} \right|_{x>0} > 0.$$
 (29)

Тогда для частиц, стартующих из области начала координат x = z = 0, электронные траектории образуют дуги, пересекающие ось *z*. Здесь мы и расположим селектирующую щель и детектор частиц *B* (рис. 1).

Рис. 1. Схема работы электронного спектрометра на базе двумерного поля. $[p,\delta]$ — источник; $[P_1, P_2]$ — пятно засветки; [a, a+S] — селектирующая щель; B — детектор

Динамика частиц описывается здесь системой с начальными данными

$$\begin{cases} \ddot{x} = -\frac{\partial \phi}{\partial x}, \quad x \Big|_{\tau=0} = 0, \quad \frac{\mathrm{d}x}{\mathrm{d}\tau} \Big|_{\tau=0} = \dot{x}_0 = \sqrt{2W} \sin\theta; \\ \ddot{z} = -\frac{\partial \phi}{\partial z}, \quad z \Big|_{\tau=0} = p, \quad \frac{\mathrm{d}z}{\mathrm{d}\tau} \Big|_{\tau=0} = \dot{z}_0 = \sqrt{2W} \cos\theta, \end{cases}$$
(30)

$$W = \frac{\dot{x}_0^2 + \dot{z}_0^2}{2} = \frac{E}{U}, \quad U = q\Phi_0.$$
(31)

Интегрируя эти уравнения, получим зависимости

$$x = x(\tau, p, \theta, W), \quad z = z(\tau, p, \theta, W).$$
(32)

Полагая x = 0, находим момент встречи τ^* траектории с осью *z*; это значение далее встраиваем в зависимость $z(\tau, p, \theta, W)$ и получаем основную функцию такого абстрактного энергоанализатора

$$z\big|_{\tau=\tau^*} = P\big(p,\theta,W\big). \tag{33}$$

В ней содержится вся основная информация об энергоанализирующих свойствах системы: о качестве фокусировки, о величине дисперсии $D = W \frac{\partial P}{\partial W}$, о разрешающей способности $\frac{W}{\Delta W}$, светимости и светосиле, но, конечно, в рамках этой плоской модели. Все это можно изучить только при конкретном задании потенциала $\phi(x,z)$, однако нас интересует общая ситуация и вносить какуюлибо конкретность нам нежелательно.

Энергоанализ заключается в том, что через щель S мы пропускаем поток траекторий со средним значением W_0 и разбросом ΔW возле него. В силу соотношения (31), меняя Φ_0 , мы сможем приводить на детектор B последовательными группами все электроны спектра f(E) заданного источника с функцией эмиссии

$$j = R(p,\theta) \cdot f(E). \tag{34}$$

Абсолютное значение разброса ΔE , пропускаемого щелью, линейно нарастает вместе с основной энергией *E*. Здесь сразу же обнаруживается свойство практически любых систем такого типа, заключающееся в том, что мы обязаны заранее обрезать интервалы изменения начальных данных на источнике, ибо вполне может оказаться, что при любой энергии *W* найдется набор начальных данных, гарантирующий пролет через щель. Следовательно, в этом случае ни о каком энергоанализе не может быть и речи. Положение можно исправить только ценой ограничения на стартовые условия. В нашем варианте они таковы:

$$\begin{array}{l}
0 \le p \le \delta, \\
\theta_1 \le \theta \le \theta_2.
\end{array}$$
(35)

Пусть W = const — фиксированная величина. Поток частиц, удовлетворяющий условиям (35), создаст на оси *z* сплошной отрезок P_1P_2 — пятно засветки. Линейная плотность потока вдоль этого отрезка может меняться весьма прихотливым образом в зависимости от характера функции $R(p, \theta)$, но это для нас пока неважно. При вариации *W* пятно засветки движется как целое и, кроме того, оно может меняться по размерам. Конечно, желательно, чтобы центр пятна засветки с ростом *W* перемещался монотонно вдоль *z* в положительном направлении. Тогда можно найти область значений, при которых пятно пересекает щель *S*.

Теперь настал момент ввести понятие аппаратной функции. Рассуждаем следующим образом: Пусть E в (31) – фиксированная величина, то есть источник стал моноэнергетичным. Будем менять энергию настройки U (или потенциал настройки Φ_0), тогда W будет меняться за счет U, причем малым U отвечают большие W. Теперь можно проследить эволюцию пятна засветки P₁P₂ вдоль оси в процессе вариации энергии настройки U, то есть и в процессе изменения W. Заметим попутно, что линейное во времени изменение U сопровождается нелинейным изменением *W*, причем при каждом значении Е темп этого изменения различный. Однако на данном этапе рассмотрения это не столь уж и важно. Итак, наращивая W от малых значений за счет изменения U, мы добьемся, что

Рис. 2. Вид аппаратной функции спектрометра в общем случае, когда щель гораздо больше пятна засветки $S >> \delta$

Рис. 3. Объемная область в пространстве параметров p, θ, W , которая определяется их вариациями

при каком-то W_0 граница пятна засветки P_2 достигнет левого края щели z = a и пучок начнет "проваливаться" на детектор, создавая ток A(W). Если щель достаточно велика по сравнению с отрезком P_1P_2 , то ток A(W) будет расти монотонно, пока точка P_1 не "упрется" в левый край щели z = a при $W = W_1 > W_0$. После этого некоторое время (изменения W) ток на детекторе будет постоянен A(W) = const, пока точка P_2 не достигнет правого края щели z = a + S при $W = W_2$, и пятно

НАУЧНОЕ ПРИБОРОСТРОЕНИЕ, 2011, том 21, № 3

засветки начинает уходить за пределы щели, и ток A(W) начинает монотонно падать до момента, пока P_1 не достигнет точки z = a + S при $W = W_k$. В результате эпюра тока A(W) принимает вид трапеции с криволинейными боками (рис. 2).

Ширина горизонтального участка определяется соотношением размера пятна засветки и ширины щели S. Если они совпадают, то края трапеции сближаются, горизонтальная часть исчезает и трапеция превращается в треугольник. Если и далее сокращать щель S, то высота треугольника и основание $(W_k - W_0)$ будут сокращаться. Разрешение системы нарастает, но чувствительность падает. Построенный ток A(W) и есть искомая аппаратная функция. Самую большую сложность представляет вычисление формы криволинейных участков. Это легко сделать компьютерным способом в безразмерных координатах, но гораздо большую пользу приносят те случаи, когда эти берега аппаратной функции удается найти в явной аналитической форме. Ниже мы построим такие примеры. Подчеркнем, что при монотонном движении пятна засветки с ростом W совершенно очевиден монотонный характер кривых боков трапеции (рис. 2). Этот факт весьма ценный для всей последующей теории.

Приведем теперь схему расчета аппаратной функции при заданной функции распределения электронов на эмиттере $R(p,\theta)$. Построим пространство параметров p, θ, W (рис. 3). Неравенства (35) вырезают в полупространстве W > 0 прямоугольную трубу. Далее мы должны подчинить функцию прилета $P(p,\theta,W)$ условиям попадания в щель между z = a и z = a + S, что эквивалентно неравенствам

$$a \le P(p,\theta,W) \le a + S. \tag{36}$$

Беря в (36) знак равенства и разрешая соответствующие уравнения относительно W, мы получим две граничные поверхности

$$\begin{cases}
W = \alpha (p, \theta, a), \\
W = \beta (p, \theta, a + S).
\end{cases}$$
(37)

Они вместе с неравенствами (35) вырезают в фазовом пространстве источника p, θ, W сложную объемную фигуру, которая в общем случае достаточно широкой щели состоит из центрального прямоугольного бруса и двух криволинейных наростов сверху и снизу (рис. 3). Чтобы вычислить аппаратную функцию системы с заданной плотностью $R(p, \theta)$ мы должны пересечь фигуру на рис. 3 плоскостью W = const и при каждом ее по-

ложении фиксировать сечение ею допустимой области прилета $\Omega(W)$ и далее интегрировать ее по θ и *p*. Тогда для A(W) получим выражение

$$A(W) = \iint_{\Omega(W)} R(p,\theta) \, \mathrm{d}p \, \mathrm{d}\theta \,. \tag{38}$$

Двигаясь от значения энергии W_0 , при которой, очевидно, $\Omega(W_0) = 0$, мы построим левый берег трапеции (рис. 2) вплоть до точки W_1 , где сечение станет прямоугольником, неизменным вплоть до точки W_2 . На этом участке функция A сохраняет постоянное значение, что отвечает горизонтальному участку трапеции. Двигаясь дальше к W_k , мы построим правый берег трапеции (аппаратной функции). Таким образом, в общем случае ход аппаратной функции всегда разрывной и состоит по крайней мере из трех ненулевых фрагментов

$$A = \begin{cases} 0, & 0 < W < W_0; \\ A_1(W), & W_0 < W < W_1; \\ A_0, & W_1 < W < W_2; \\ A_2(W), & W_2 < W < W_k; \\ 0, & W > W_k. \end{cases}$$
(39)

Сложность всех этих вычислительных процедур определяется характером функций $P(p, \theta, W)$ и $R(p,\theta)$. Уменьшая S, мы можем добиться исчезновения центральной части бруса на рис. 3, так что $W_1 = W_2$. Аппаратная функция становится треугольной. Дальнейшее уменьшение S ведет к тому, что уже сами поверхности $\alpha(p,\theta,a)$ И $\beta(p,\theta,a+S)$ начинают пересекаться между собой и область (W, p, θ) , определяющая пролет через щель начинает сокращаться. Падает чувствительность прибора. Можно предположить, что в какихто особо сложных нетипичных случаях аппаратная функция распадается на более чем 3 фрагмента. Все определяется геометрией фигуры на рис. 3. Распространение данных рассуждений на пространственную ситуацию, когда потенциал явно зависит от всех трех координат x, y, z, электронная струя носит объемный характер, а выходная щель имеет форму круга, прямоугольника, эллипса и тому подобное, в действительности отличается только усложнением вычислительных элементов, но принцип остается тем же: Решается система (16), определяются координаты пересечения траекторий с плоскостью выходной щели, теперь их две $P(\xi,\eta,\lambda,\theta,\gamma,W)$ и $Q(\xi,\eta,\lambda,\theta,\gamma,W)$. Далее в пространстве начальных данных, ограниченных дополнительными условиями, строится гипертело пропускания, которое сечется гиперплоскостями W = const, и интегралы по этим сечениям от плотности на эмиттере $R(\xi,\eta,\lambda,\theta,\gamma)$ как раз и дают искомые фрагменты аппаратной функции. Здесь обстановка неизмеримо более сложная по сравнению с плоскими потоками, ибо в игру еще вступает форма выходной щели. Однако и здесь типичной формой аппаратной функции будет трапеция с криволинейными боками, при малых размерах щели вырождающаяся в треугольник.

ОСНОВНОЕ ИНТЕГРАЛЬНОЕ УРАВНЕНИЕ

Теперь остается вычислить ток через щель анализатора J(U) при наличии распределенного спектра f(E) на источнике. Как мы установили, аппаратная функция A зависит от отношения $W = \frac{E}{U}$

$$A = A(W) = A\left(\frac{E}{U}\right),\tag{40}$$

и полный ток через щель, очевидно, можно записать в виде интеграла

$$J(U) = \int_{0}^{\infty} A\left(\frac{E}{U}\right) f(E) dE.$$
(41)

Однако специфика аппаратной функции такова, что она обращается в нуль на крыльях $0 < W < W_0$ и $W > W_k$, следовательно, интегрирование имеет смысл только на интервале $W_0 < W < W_k$. Из условий

$$W_0 = \frac{E_0}{U}, \quad W_k = \frac{E_k}{U} \tag{42}$$

при каждом фиксированном U можно вычислить соответствующие значения E_0 и E_k , определяющие концы интегрирования в (41):

$$E_0 = W_0 U, \quad E_k = W_k U.$$
 (43)

В результате интеграл (41) приобретает форму

$$J(U) = \int_{W_0U}^{W_kU} A\left(\frac{E}{U}\right) f(E) dE.$$
(44)

В общем случае, когда *А* имеет разное представление на трех фрагментах своей трапеции, интеграл представится суммой вида

$$J(U) = \int_{W_0U}^{W_1U} A_1\left(\frac{E}{U}\right) f(E) dE + A_0 \int_{W_1U}^{W_2U} f(E) dE + \int_{W_2U}^{W_2U} A_2\left(\frac{E}{U}\right) f(E) dE.$$
(45)

Подведем итоги. Мы окончательно продемонстрировали, что свертка (1) не имеет никакого отношения к теории электронных спектрометров. Кроме того, мы строго доказали, что аппаратная функция A явно зависит от отношения $\left(\frac{E}{U}\right)$, а не $\left(\frac{U}{E}\right)$ как в (2) [6–8]. Моот обратного отношения жет показаться, что эта разница несущественна и легко устраняется инверсией переменной, но это явное заблуждение, т. к. гладкая аналитическая функция относительно переменной W может оказаться разрывной относительно переменной Таким образом, формула (2) объективно неверна. И, наконец, связь J(U) и f(E) всегда трактовалась относительно f(E) как уравнение Фредгольма I рода, но теперь в окончательной форме (44) это уравнение следует отнести к типу уравнений Вольтерра I рода, в силу того что пределы интегрирования переменные. Разумеется, существует математическая точка зрения, что уравнения Вольтерра можно рассматривать, как частный случай уравнения Фредгольма с "треугольным ядром", но тут же указывается, что в силу переменности пределов интегрирования для них приходится развивать особую технику решения, отличную от случая уравнений Фредгольма [11]. С этим обстоятельством в нашем случае приходится считаться со всей серьезностью, когда решается задача восстановления истинного спектра f(E)по измеренному току J(U). Можно ли найти ка-

кие-то общие формулы для решения уравнения (44) без всякой конкретизации аппаратной функции A(W)? На наш взгляд, это бессмысленно и чревато радикальными ошибками. Здесь все определяется нюансами поведения ядра интегрального

уравнения $A\left(\frac{E}{U}\right)$, поэтому нас нисколько не убе-

ждает опыт работ [6, 7], в которых авторы пытаются строить общие алгоритмы и без всяких оснований настаивают на их точности. Конечно, если предполагать, например, что эпюра аппаратной функции имеет вид прямолинейной трапеции и треугольника, то можно построить точные или

приближенные решения относительно f(E), но имеют ли они ценность? Следует еще добавить, что на практике сама форма тока J(U) обычно ассоциируется с формой истинного спектра f(E), и это соответствие тем ближе, чем выше разрешающая способность прибора. Однако при очень малых токах определяющую роль начинает играть отношение сигнал/шум, и значение уравнения (44) как источника информации об истинном спектре f(E) существенно возрастает. Как нам кажется, за счет раскрытия щели (увеличения S) можно поднять полезный ток, увеличив отношение сигнал/шум и при этом без утраты информации о спектре, если достаточно точно решать уравнение (44) относительно f(E). Для того чтобы составить верное суждение о трансформирующем действии конкретного анализатора с выбранным типом источника (вид функции R), желательно вычислить ток для ряда типичных форм спектра f(E). На этом пути легко найти и ключ к решению обратной задачи — определению f(E), поскольку станет ясно, какими функциями надо аппроксимировать сигнал J(U), чтобы получить

f(E) в явном выражении.

В этой статье мы ограничимся только некоторыми наметками общего подхода, поскольку эта тема большого отдельного исследования. Построенная общая схема нуждается в иллюстрациях конкретного характера. Несмотря на разрывной характер аппаратной функции в целом, каждый фрагмент ее в (39) обычно аналитичен, поэтому все интегральные операторы в (45) порознь аналитичны и отображают гладкую дифференцируемую функцию f(E) в сигналы $J_1(U), J_2(U)$ и $J_3(U)$ такой же гладкой природы. Этот факт сильно облегчает аналитическую теорию решения уравнения (44). Обратимся к примерам из теории плоского электростатического зеркала в самых простых режимах работы. Несмотря на кажущуюся тривиальность, мы обнаружим в этом материале много нового, если смотреть на него с позиций нашей теории.

ОДНОРОДНОЕ ПОЛЕ

Положим

$$\phi = x \,. \tag{46}$$

Интегрируя уравнения

$$\ddot{x} = -1, \quad \ddot{z} = 0$$
 (47)

с учетом начальных данных

$$x_0 = 0, \quad z_0 = p, \quad \dot{x}_0 = \sqrt{2W} \sin \theta,$$

$$\dot{z}_0 = \sqrt{2W} \cos \theta,$$
 (48)

получим

$$x = -\frac{\tau^2}{2} + \sqrt{2W}\sin\theta \cdot \tau, \quad z = \sqrt{2W}\cos\theta \cdot \tau + p.$$
(49)

Отсюда находим функцию прилета *P* на ось *z*:

$$P = 2W\sin 2\theta + p.$$
 (50)

Щель расположена в области $a \le z \le a + S$. Варьируя характер функции эмиссии $R(p, \theta)$, мы получим разные профили аппаратной функции.

Режим 1

Простейший идеализированный источник электронов можно представить себе в виде бесконечно тонкой струйки интенсивности J_0 , распределенной по энергиям с плотностью f(E), нормированной так, что

$$\int_{0}^{\infty} f(E) dE = J_0.$$
 (52)

Струйка впрыскивается в плоский конденсатор через точку x = z = 0 под углом θ_0 . Очертив дугу, частицы вернутся на ось в точках

$$P = K \cdot W, \quad K = 2\sin 2\theta \,. \tag{53}$$

Моноэнергетичный источник E = const той же интенсивности J_0 можно описать δ -функцией Дирака. В этом случае при U = const, т. е. W = const, пятно засветки суть точка с координатой (53), движущейся вправо по оси z с ростом W, если энергия настройки U, напротив, меняется от больших значений к меньшим. Пока точка засветки P не достигнет левого края щели z = a, ток на детекторе за щелью есть нуль. Как только точка сместится чуть правее, при

$$W_0 = \frac{a}{K},\tag{54}$$

ток достигает максимального значения J_0 и сохраняет эту величину вплоть до

$$W_k = \frac{a+S}{K}, \qquad (55)$$

когда точка достигнет правого края щели z = a + S, после чего ток на детекторе исчезает. Таким образом, аппаратная функция A, каковой является наблюдаемый нами ток, в данном случае имеет вид прямоугольника, дополненного "нуле-

Рис. 4. Аппаратной функции от точечного источника в плоском электростатическом зеркале

выми крыльями" (рис. 4). С помощью этих величин составляем интегральное выражение тока J(U) в предположении, что теперь спектр f(E) — произвольная, обычно гладкая функция, нормированная условием (52). Следуя формуле (44), можно записать

$$J(U) = J_0 \int_{W_0U}^{W_kU} f(E) dE .$$
(56)

По-видимому, это самый простой тип интегрального уравнения, который вообще можно встретить в теории энергоанализаторов. Если продифференцировать данное уравнение Вольтерра по *U*, то оно превращается в функциональное уравнение вида

$$J'(U) = J_0 \Big[W_k f(W_k U) - W_0 f(W_0 U) \Big].$$
 (57)

Это уравнение можно решить точно разными способами, сведя например с помощью экспоненциальной замены переменной к уравнению в конечных разностях и далее применяя стандартный фурье-анализ.

Режим 2

Обобщим предыдущую ситуацию и рассмотрим непрерывный ряд параллельных струек, заполняющих полосу

$$0$$

с однородной плотностью

$$j = \frac{J_0}{\delta}.$$
 (59)

Полагая сначала струю моноэнергетической E = const, проследим динамику пятна засветки, которое здесь имеет неизменную ширину δ в процессе развертки U. Пятно движется как целое с ростом W по закону

$$P = K \cdot W + p \tag{60}$$

НАУЧНОЕ ПРИБОРОСТРОЕНИЕ, 2011, том 21, № 3

и достигает края щели *z* = *a* при

$$W_0 = \frac{a - \delta}{K} \,. \tag{61}$$

В этот момент на детекторе начинает нарастать ток, очевидно, по линейному закону относительно W. Если щель много шире струи $S >> \delta$, то ток A(W) будет расти, пока струя полностью не войдет в щель при $P|_{p=0} = a$, или

$$W_1 = \frac{a}{K}.$$
 (62)

Ток при этом достигает своего максимума J_0 и сохраняется при росте W до значения

$$W_2 = \frac{a+S-\delta}{K},\tag{63}$$

когда правый край струи $p = \delta$ не достигнет правого края щели z = a + S, после чего ток будет падать по линейному закону до значения W_k

$$W_k = \frac{a+S}{K} \,, \tag{64}$$

Рис. 5. Аппаратная функция от моноэнергетического источника с параллельным вводом пучка небольшой протяженности δ в плоском электростатическом зеркале

Рис. 6. Видоизмененная аппаратная функция при совпадении размеров пятна засветки δ и выходной щели *S*

НАУЧНОЕ ПРИБОРОСТРОЕНИЕ, 2011, том 21, № 3

когда и левая граница струи p = 0 уйдет за пределы щели, и на детекторе ток A(W) исчезнет. В результате аппаратная функция имеет график в виде симметричной трапеции с нулевыми крыльями справа и слева (рис. 5).

Будем теперь уменьшать щель S до тех пор, пока она не совпадет по ширине с поперечником струи δ

$$S = \delta . \tag{65}$$

В этом случае $W_1 = W_2$ и горизонтальный участок трапеции исчезает. Она превращается в треугольник (рис. 6).

Дальнейшая эволюция профиля аппаратной функции при уменьшении щели по сравнению со струей $(S < \delta)$ заключается в том, что аппаратная функция снова превращается в трапецию с уменьшающей высотой, причем, чем уже щель *S*, тем меньше высота, но основание трапеции $(W_k - W_0)$ плавно уменьшается вместе с *S* в соответствие с формулой

$$W_k - W_0 = \frac{\delta + S}{K} \,. \tag{66}$$

В пределе при S = 0 ширина неразрешенного интервала

$$\Delta W = \frac{\delta}{K} \tag{67}$$

определяется только шириной струи, но высота трапеции A при этом стремится к нулю. С точки зрения функционирования такого анализатора наилучшим следует признать вариант треугольника (рис. 6) при $\delta = S$.

Запишем интегральное уравнение для спектра f(E) в общем случае широкой щели $S >> \delta$; для этого запишем аналитически аппаратную функцию:

$$A = \begin{cases} 0, & 0 < W < W_0; \\ \frac{J_0}{W_1 - W_0} \cdot (W - W_0), & W_0 < W < W_1; \\ J_0, & W_1 < W < W_2; \\ \frac{J_0}{W_k - W_2} \cdot (W_k - W), & W_2 < W < W_k; \\ 0, & W > W_k. \end{cases}$$
(68)

Тогда формула (45) дает уравнение

$$J(U) = \frac{J_0}{W_1 - W_0} \int_{W_0 U}^{W_0} \left(\frac{E}{U} - W_0\right) f(E) dE +$$

$$+J_{0}\int_{W_{1}U}^{W_{2}U}f(E)dE + \frac{J_{0}}{W_{k} - W_{2}}\int_{W_{2}U}^{W_{k}U}\left(W_{k} - \frac{E}{U}\right)f(E)dE.$$
 (69)

Если (69) рассматривать как уравнение Вольтерра относительно f(E) при известной (измеренной) функции J(U), то вопрос о его точном решении требует особых подходов и отдельного исследования, что выходит за рамки нашей статьи.

Режим 3. Фокусировка при $\theta = \frac{\pi}{4}$

Рассмотрим теперь классический случай точечного изотропного источника в начале координат, стреляющего в интервале углов

$$\frac{\pi}{4} - \nu < \theta < \frac{\pi}{4} + \nu , \qquad (70)$$

при полной интенсивности J_0 . Здесь мы должны положить

$$P = 2\sin 2\theta \cdot W \,. \tag{71}$$

При $\theta = \frac{\pi}{4}$ точка *P* удаляется на максимальное

расстояние, а точки $\theta = \frac{\pi}{4} - v$ и $\theta = \frac{\pi}{4} + v$ стоят ближе к началу координат

$$P\Big|_{\theta=\frac{\pi}{4}} = P_k = 2W , \qquad (72)$$

$$P\Big|_{\theta=\frac{\pi}{4}-\nu} = P\Big|_{\theta=\frac{\pi}{4}+\nu} = P_0 = 2\cos 2\nu \cdot W .$$
(73)

Пятно засветки здесь

$$P_{k} - P_{0} = 2(1 - \cos 2\nu) \cdot W .$$
(74)

С ростом W оно расплывается и одновременно удаляется по оси z от точки старта x = z = 0.

Плотность потока на пятне засветки распределена неравномерно, при увеличении W характер ее зависимости от θ сохраняется, но интенсивность в каждой точке падает. Все это значительно усложняет картину прохождения потока через щель и генезис аппаратной функции. Здесь имеет смысл действовать по общей методике, изложенной выше, ибо одного созерцания динамики пятна уже недостаточно. На фазовой плоскости источника (W, θ) определим область пропускания потока щелью, полагая

$$a \le P(W, \theta) \le a + S, \tag{75}$$

$$\frac{\pi}{4} - \nu \le \theta \le \frac{\pi}{4} + \nu . \tag{76}$$

Рис. 7. Фигура пропускания на плоскости параметров (θ, W) для точечного изотропного источника в электростатическом зеркале в режиме фокусировки I порядка $\theta = 45^{\circ}$

Рис. 8. Аппаратная функция от точечного источника в электростатическом зеркале в режиме фокусировки I порядка $\theta = 45^{\circ}$

Из (75) и (71) можно записать

$$\frac{a}{2\sin 2\theta} \le W \le \frac{a+S}{2\sin 2\theta} \,. \tag{77}$$

Взяв из (77) граничные кривые, с помощью (76) начертим на плоскости (W, θ) фигуру пропускания (рис. 7), полагая, что щель *S* широкая. Далее мы должны пересечь фазовое пространство и проинтегрировать поток по заштрихованному фрагменту. Ввиду изотропности источника все сводится к умножению вариации угла θ на плотность тока J/2v. Двигаясь по *W* снизу от 0, получим нулевой фрагмент аппаратной функции. Далее, двигаясь от $W_0 = a/2$ до $W_1 = a/(2\cos 2\nu)$, построим левый берег криволинейной трапеции. Выше по W угловой размах сохраняется вплоть до $W_2 = (a+S)/2$ и появляется полка трапеции $A_2 = J_0$. Продолжение движения вверх до $W = W_k$ дает разорванный фрагмент сечения, и здесь выстраивается правый берег трапеции, падающий до нуля в точке $W_k = \frac{a+S}{2\cos 2\nu}$, вслед за которой вы-

страивается правое нулевое крыло. Аналитически все это записывается формулой

$$A = \begin{cases} A_{0=}0, & 0 < W < W_0; \\ A_1 = \frac{J_0}{2\nu} \cdot \arccos \frac{a}{2W}, & W_0 < W < W_1; \\ A_2 = J_0, & W_1 < W < W_2; \\ A_3 = \frac{J_0}{2\nu} \cdot \left(2\nu - \arccos \frac{a+S}{2W} \right), & W_2 < W < W_k; \\ A_4 = 0, & W > W_k. \end{cases}$$

Графически аппаратная функция выглядит как кривобокая асимметричная трапеция с нулевыми крыльями, и этим она существенно отличается от предыдущих вариантов (рис. 8). Если пятно засветки совпадает по ширине со щелью *S*, то трапеция превращается в заштрихованный треугольник. Более сложные типы электронных источников в случае плоского зеркала, конечно, дают видоизмененные берега аппаратной функции, но вполне можно предположить, что радикальных характеристических перестроек не произойдет.

ЭНЕРГОАНАЛИЗАТОР "ТУТАНХАМОН" [12]

Теперь для сравнения рассмотрим энергоанализатор с идеальной фокусировкой в плоскости (x,z) для точечного источника в начале координат x = z = 0 (рис. 9). Ход потенциала в плоскости (x,z) задается выражением

$$\phi \Big|_{y=0} = \text{th}^2 \,\pi x \,. \tag{79}$$

Функция прилета $P(\theta, W)$ здесь имеет вид [13, 14]

$$P = \cos\theta \cdot \sqrt{\frac{W}{1 - W\sin^2\theta}} \ . \tag{80}$$

В отличие от плоского зеркала здесь зависимость от безразмерной энергии W сугубо нелинейная, причем при W = 1 зависимость от угла θ ис-

НАУЧНОЕ ПРИБОРОСТРОЕНИЕ, 2011, том 21, № 3

Рис. 9. Траектории в электростатическом энергоанализаторе "Тутанхамон" с идеальной фокусировкой по углу в плоскости симметрии

чезает, и система идеально фокусирует весь поток в интервале углов θ от 0 до $\pi/2$ в одну точку

$$z_f = P|_{W=1} = 1.$$
 (81)

Следует еще отметить быстрый рост энергетической дисперсии при $\theta \rightarrow \pi/2$ по формуле

$$D = W \frac{\partial P}{\partial W} = \frac{1}{2\cos^2 \theta} \,. \tag{82}$$

Идеальная фокусировка (рис. 9) вносит свои нюансы в профиль аппаратной функции. Не разбирая все мыслимые режимы работы этой системы, рассмотрим 3 варианта расположения щели Sвблизи точки идеальной фокусировки $z_f = 1$: при щели, примыкающей к этой точке либо слева, либо справа, либо при положении точки фокусировки в середине щели. Это наиболее практичные режимы работы "Тутанхамона".

Пусть z = a и z = b — координаты краев щели и a < b. Условие пропускания частиц щелью состоит в неравенстве

$$a \le \cos\theta \sqrt{\frac{W}{1 - W\sin^2\theta}} \le b , \qquad (83)$$

или

$$\frac{a^2}{1 + (a^2 - 1)\sin^2\theta} \le W \le \frac{b^2}{1 + (b^2 - 1)\sin^2\theta}.$$
 (84)

Взяв знак равенства, мы построим граничные кривые, окаймляющие на плоскости (θ ,W) область пропускания. Но к ним надо еще добавить две вертикали $\theta_1 = \text{const}$ и $\theta_2 = \text{const}$, задающие сектор вылета частиц из источника. Наиболее типичная ситуация при a < 1, b > 1, когда точка фокусировки внутри щели (рис. 10). Кроме этих ограничений следует еще подчинить связь W и θ условию положительности подрадикального выражения в (80)

$$W \le \frac{1}{\sin^2 \theta} \,. \tag{85}$$

Вырезает ли это неравенство что-либо из фигуры пропускания?

Найдем пересечение граничной кривой из (85) с верхней кривой из (84), наложив условие

$$\frac{b^2}{1+(b^2-1)\sin^2\theta} = \frac{1}{\sin^2\theta}.$$
 (86)

Отсюда

$$\sin^2 \theta = 1, \ \theta = \frac{\pi}{2}.$$
 (87)

Следовательно, единственная общая точка этих кривых лежит вне фигуры на рис. 10. Для вычисления аппаратной функции надо вычислить вариацию угла на параллельных секущих W = const, и в силу изотропности источника интенсивности J_0 домножить на угловую плотность $J_0/(\theta_2 - \theta_1)$. Двигаясь снизу от W = 0 до W_0 , мы получим нулевое значение, далее на участке между W_0 и W_1 аппаратная функция монотонно растет, потом на участке между W_1 и W_2 она сохраняет постоянное значение J_0 , и, начиная с W_2 при движении к W_k она монотонно падает. После W_k мы имеем 0 тока на детекторе. В аналитическом выражении получается

$$A = \begin{cases} 0, & 0 < W < W_{0}; \\ \frac{J_{0}}{\theta_{2} - \theta_{1}} \cdot \left[\arcsin \sqrt{\frac{W - a^{2}}{W(1 - a^{2})}} - \theta_{1} \right], & W_{0} < W < W_{1}; \\ J_{0}, & W_{1} < W < W_{2}; \\ \frac{J_{0}}{\theta_{2} - \theta_{1}} \cdot \left[\arcsin \sqrt{\frac{b^{2} - W}{W(b^{2} - 1)}} - \theta_{1} \right], & W_{2} < W < W_{k}; \\ 0, & W > W_{k}. \end{cases}$$
(88)

Рис. 10. Фигура пропускания на плоскости параметров (θ, W) для точечного изотропного источника в энергоанализаторе "Тутанхамон" в плоскости симметрии

Рис. 11. Аппаратная функция от точечного изотропного источника в энергоанализаторе "Тутанхамон" в плоскости симметрии

На рис. 11 A(W) образует трапецию с асимметричными берегами. Эта трапеция превращается в треугольник, если $\theta_2 = \pi/2$ — случай физически нереальный.

Варианты расположения щели либо ближе точки фокусировки a < b < 1, либо дальше нее 1 < a < b перемещают обе границы фигуры либо выше линии W = 1 либо ниже нее, что дает свою форму аппаратной функции, существенно отличную от фигуры на рис. 11. Все эти детали приобретают особое значение не при нашем обзорном исследовании, а в задаче восстановления спектра, о чем в этой статье речи нет.

выводы

Наши общие математические рассуждения и конкретные расчеты позволяют сделать следующие принципиальные выводы.

1. Аппаратная функция *А* любого электростатического спектрометра является однозначной кусочно-аналитической функцией безразмерного ар-

гумента
$$W = \frac{E}{U}$$
, $A = A\left(\frac{E}{U}\right)$.

2. График аппаратной функции при отсутствии фокусировки по углу либо наличии одной фокусировки для точечного источника имеет вид трапеции с криволинейными боками, которая может вырождаться в кривобокий треугольник при совпадении размеров пятна засветки и выходной щели.

3. Связь энергетического спектра f(E) с выходным током J(U) и аппаратной функцией

 $A\left(\frac{E}{U}\right)$ всегда имеет вид интегрального уравнения

Вольтерра I рода, а, отнюдь, не Фредгольма, и ни в коем случае не классической свертки, как это до сих пор не изжито в текущей литературе.

4. Разрывной характер аппаратной функции требует разработки особых алгоритмов для восстановления спектра f(E) по измеряемому току J(U).

СПИСОК ЛИТЕРАТУРЫ

1. Афанасьев В.П., Явор С.Я. Электростатические энергоанализаторы для пучков заряженных частиц. М.: Наука, 1978. 224 с.

- 2. Козлов И.Г. Методы энергетического анализа электронных потоков. М.: Атомиздат, 1971. 190 с.
- Фридрихов С.А. Энергоанализаторы и монохроматоры для электронной спектроскопии. Л.: Изд-во Ленингр. ун-та, 1978. 158 с.
- 4. Коротких В.Л., Косарев Е.Л., Ормонт А.Б., Коротких А.В. Улучшение энергетического разрешения фотоэлектронных спектров программной коррекцией на аппаратную функцию // ПТЭ. 1994. № 6. С. 88–95.
- 5. Горелик В.А., Яковенко А.В. Восстановление формы спектра без изменения аппаратной функции анализатора // ЖТФ. 1997. Т. 67, № 1. С. 110–114.
- 6. Жабрев Г.И., Жданов С.К. Восстановление истинного энергетического распределения частиц, прошедших через спектрометр с известной аппаратной функции // ЖТФ. 1979. Т. 49, № 11. С. 2450–2454.
- 7. *Курнаев В.А., Урусов В.А.* Влияние аппаратных функций электростатических и магнитных анализаторов на обработку экспериментальных результатов // ЖТФ. 1997. Т. 67, № 6. С. 86–91.
- 8. *Курнаев В.А., Урусов В.А.* Восстановление энергетических спектров для спектрометров с предварительным замедлением из диафрагм с круглыми отверстиями // Письма в ЖТФ. 2010. Т. 36, № 10. С. 24–31.
- 9. Шевченко С.И. Метод вычисления аппаратной функции аксиальных электростатических энергоанализаторов // Научное приборостроение. 2010. Т. 20, № 2. С. 73–81.
- 10. Голиков Ю.К., Краснова Н.К. Теория синтеза электростатических энергоанализаторов. СПб.: Изд-во Политехн. ун-та, 2010. 409 с.
- 11. Краснов М.Л. Интегральные уравнения. М.: Наука, 1975. 303 с.
- Электростатический энергоанализатор. А. с. 544307 СССР, № 2091369/25; заявл. 03.01.75.
 Голиков Ю.К. Энергоанализирующие свойства
- Голиков Ю.К. Энергоанализирующие свойства электростатических полей с плоскостью симметрии. Дис. ... канд. физ.-мат. наук. Л., 1977. 105 с.
- Голиков Ю.К., Уткин К.Г., Григорьев Д.В. Обратные задачи теории электростатических энергоанализаторов // ЖТФ. 1999. Т. 69, № 9. С. 128–132.

Санкт-Петербургский государственный политехнический университет

Контакты: Краснова Надежда Константиновна, n.k.krasnova@mail.ru

Материал поступил в редакцию 29.03.2011.

ON THE INSTRUMENT FUNCTION OF ELECTROSTATIC ELECTRON SPECTROMETERS

Yu. K. Golikov, N. K. Krasnova, I. A. Martsinovski

Saint-Petersburg Polytechnic State University

The article critically analyses a conception of electron spectrometers instrument function. By means of a dimensionless mathematical model built here a strict defined integral correlation between a source energy spectrum f(E) and a current J(U) registered by detector in dependence of a device working energy U is defined. It is proved that the instrument function always depends only on a ratio (E / U), but not a difference (E - U), and not an inverse ratio (U / E) as it is declared in some articles. The main integral equation built in the article is of Volterra equation of I^{st} type, but not one of Fredholm of I^{st} type. Some concrete structures of instrument function are calculated and presented in the article. Their common features are described and discussed.

Keywords: energy analysis, electron spectrometer, instrument function, Volterra equation of Ist type, real spectrum, restoration of spectrum, homogeneousness field, energy analyzer "Tutanhamon"