= ОРИГИНАЛЬНЫЕ СТАТЬИ =

УДК 541:537

© А. И. Жерновой, В. Н. Наумов, Ю. Р. Рудаков

ИССЛЕДОВАНИЕ НЕОДНОРОДНОГО УШИРЕНИЯ ЛИНИИ ЯМР В ДИСПЕРСИИ ПАРАМАГНИТНЫХ НАНОЧАСТИЦ

Исследовались зависимости сдвига и ширины линии ЯМР в водной дисперсии наночастиц магнетита от концентрации *С* твердой фазы. Получена зависимость от *С* неоднородной ширины линии в однородном по-ле.

введение

Считается, что неоднородное уширение линии ЯМР жидкости в однородном внешнем магнитном поле наблюдается, если в ней присутствуют парамагнитные или диамагнитные частицы размером больше микрона [1]. Однако в работах [2, 3] методом спин-эха наблюдалось проявление неоднородного уширения в жидкости, содержащей парамагнитные частицы размером 10 нм. Парамагнитные наночастицы на основе магнетита применяются в наномедицине [4]. Естественные парамагнитные наночастицы (гемы) содержатся во многих живых тканях [5]. Создаваемое этими наночастицами неоднородное уширение линии ЯМР вносит искажения в ЯМР-томограммы и спектры высокого разрешения биологических объектов. Поэтому изучение неоднородного уширения линии ЯМР в присутствии магнитных наночастиц является актуальным. В настоящей работе получена зависимость неоднородного уширения от концентрации парамагнитных наночастиц, которая ранее не исследовалась.

ИЗМЕРЕНИЯ И РАСЧЕТЫ

Исследуемая магнитная дисперсия — стабилизированный олеатом натрия коллоидный раствор в воде однодоменных частиц магнетита размером около 10 нм. Сигнал ЯМР протонов растворителя регистрировался импульсным спектрометром C-200 фирмы Bruker с рабочей частотой $f_0 =$ = 200 МГц, источником магнитного поля в виде сверхпроводящего соленоида и цилиндрическим датчиком диаметром 5 мм с осью, параллельной напряженности поля.

На рис. 1 приведены записи линий ЯМР протонов двух образцов магнитной дисперсии с разными концентрациями магнетита *C*, полученными путем разбавления водой исходной дисперсии с объемной концентрацией магнетита $C_0 = 2.7$ %. По оси абсцисс отложена разница установленной напряженности магнитного поля *H* спектрометра ЯМР и напряженности этого поля H_0 , при которой наблюдается максимум сигнала ЯМР от протонов эталонного вещества, в качестве которого

Рис. 1. Записи сигналов ЯМР протонов магнитной дисперсии при объемных концентрациях магнетита $C = 0.1 C_0$ (а) и $C = 0.2 C_0$ (б). Химический сдвиг Δ относительно сигнала воды и ширина δ указаны в миллионных долях (ppm), 1 ppm = 3.74 A/м

взят чистый растворитель (вода). Из рис. 1 можно определить химический сдвиг Δ (величину $H - H_0$, при которой сигнал ¹Н ЯМР от магнитной дисперсии максимален) и ширину линии на полувысоте δ . На рис. 2 приведены зависимости Δ и δ от объемной концентрации *C* магнетита. Из рисунка видно, что химический сдвиг Δ пропорционален *C*, а δ с ростом *C* увеличивается нелинейно.

Приведенную на рис. 2 зависимость Δ от *С* можно представить в виде

$$\Delta = -K_{\Delta} \cdot C \,, \tag{1}$$

где $K_{\Delta} = 6.9 \cdot 10^4 \text{ A/м}$. Подробно зависимость Δ от *С* исследована в [6].

Ширина линии δ складывается из однородного δ_0 и неоднородного δ_H уширений [7]:

$$\delta = \sqrt{\delta_0^2 + \delta_H^2} \ . \tag{2}$$

Однородное уширение в коллоидных растворах обычно пропорционально концентрации [8]

$$\delta_0 = K_0 C, \qquad (3)$$

где коэффициент K_0 от C не зависит. Неоднородное уширение также представим пропорциональной зависимостью

$$\delta_H = K_H \cdot C \,. \tag{4}$$

Рис. 2. Экспериментальные зависимости химического сдвига Δ (1) и ширины сигнала на полувысоте δ (2) от объемной концентрации *C* магнетита

Из (2-4):

$$\delta = \sqrt{K_0^2 + K_H^2} \cdot C \tag{5}$$

и модуль отношения равен

$$\left|\frac{\delta}{\Delta}\right| = \frac{\sqrt{K_0^2 + K_H^2}}{K_\Delta}.$$
 (6)

На рис. 3 приведена экспериментальная зависимость $|\delta/\Delta|$ от *C*, из которой видно, что с ростом *C* отношение $|\delta/\Delta|$ уменьшается, что, согласно (6), говорит об уменьшении K_H с ростом *C*. Из рис. 3 также видно, что при $(C/C_0) \ge 0.8$ отношение $|\delta/\Delta|$ от *C* практически не зависит. Это означает, что при $C/C_0 \approx 1$ $K_H << K_0$ и, из (6):

$$\left|\frac{\delta}{\Delta}\right| = \frac{K_0}{K_\Delta}.$$
(7)

Из рис. З также следует, что при $C/C_0 \sim 1$ отношение $|\delta/\Delta| = 0.5$, откуда с учетом (7) получается значение $K_0 = \frac{K_{\Delta}}{2}$, подставив которое в (3) и (5), получаем $\delta_0 = \frac{K_{\Delta}C}{2} = \frac{\Delta}{2}$ и $\delta = \sqrt{\frac{\Delta^2}{4} + \delta_H^2}$, откуда находим связь неоднородного уширения

Рис. 3. Экспериментальная зависимость модуля отношения $|\delta/\Delta|$ от объемной концентрации *С* магнетита

Рис. 4. Экспериментальная зависимость δ_{H} от *C*

с экспериментальными величинами Δ и δ :

$$\delta_{H} = \sqrt{\delta^{2} - \frac{\Delta^{2}}{4}}.$$
 (8)

Подставив в (8) экспериментальные значения δ и Δ , приведенные на рис. 3, получили зависимость δ_H от C, отраженную на рис. 4. Она может быть представлена эмпирической формулой

$$\delta_H = aK_{\Lambda}Ce^{-bC}, \qquad (9)$$

где a и b — коэффициенты, не зависящие от C.

Для проверки адекватности формулы (9) эксперименту ее удобно разделить на Δ и представить в виде

$$\frac{\delta_H}{\Delta} = a e^{-bC} \,. \tag{10}$$

Прологарифмировав (10), получаем $\ln |\delta_H/\Delta| =$ = $\ln a - bC$.

На рис. 5 построена зависимость $\ln |\delta_H/\Delta|$ от C/C_0 , полученная из экспериментальных результатов, приведенных на рис. 4. Она близка к линейной, что говорит в пользу адекватности выражения (10). Из нее — значения коэффициентов a = 1.8, b = 113.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Теоретический расчет сдвига и неоднородной ширины линии ЯМР в дисперсии сферических частиц в цилиндрическом датчике с осью, ориентированный нормально напряженности магнитного поля, приведен в [9]. Из него следует, что теоретические величины сдвига и ширины определяются формулами (1), (4) с коэффициентами

Рис. 5. Экспериментальная зависимость $\ln \left| \frac{\delta_H}{\Delta} \right|$ от *C*

 $K_{\Delta} = 10^5 \,\text{A/M}$, $K_H = 4.2 \cdot 10^5 \,\text{A/M}$. При этом коэффициент K_H и отношение $|\delta_H/\Delta| = 8.4$ не зависят от *C*.

Отличие в два раза полученного в настоящей работе экспериментального значения K_{Δ} от теоретического можно объяснить тем, что в работе [4] не учитывалась агрегация частиц, которая в результате замыкания части создаваемого частицами магнитного потока внутри агрегатов должна приводить к уменьшению Δ .

Меньшие теоретических экспериментальные значения K_H и $|\delta_H/\Delta|$, а также их зависимость от С можно объяснить влиянием статистических процессов усреднения локальных полей частиц и образованием конгломератов. В частности, уменьшение $|\delta_H/\Delta|$ с ростом *C* на рис. 3 можно объяснить, исходя из того, что сдвиг Δ пропорционален средней намагниченности J_{cp} , создаваемой наночастицами в объеме образца, а ширина линии δ_{H} пропорциональна среднему квадратичному локальных отклонений намагниченности ΔJ в разных точках образца. Напряженность магнитного поля спектрометра С-200 обеспечивает намагничивание дисперсии до насыщения. При этом $J_{cp} = \mu n_{cp}$, $\Delta J = \mu \cdot \Delta n$, где μ — магнитный момент частицы, n_{cp} — средняя концентрация частиц, Δ*n* — средняя квадратичная флуктуация локальной концентрации частиц. В результате $\frac{\delta_{H}}{\Delta} = \frac{\Delta n}{n_{cp}}$. Как известно, величина относительной

флуктуации концентрации частиц $\Delta n/n_{cp}$ с ростом n_{cp} уменьшается пропорционально $1/\sqrt{n_{cp}}$. Следовательно, по этой причине с увеличением *C* отношение $|\delta_H/\Delta|$ должно уменьшаться пропорционально $1/\sqrt{C}$. Появление конгломератов уменьшает n_{cp} , приводя к росту $|\delta_H/\Delta|$.

Уменьшение δ_H с ростом *C* на рис. 4 можно объяснить тепловым движением молекул. Известно, что если действующие на движущуюся молекулу локальные поля частиц меняются со временем корреляции т, то неоднородная ширина линии ЯМР δ_{H} пропорциональна τ [1]. Время τ связано с масштабом неоднородности l и коэффициентами самодиффузии D формулой Эйнштейна $\tau = l^2/(2D)$. За масштаб неоднородности можно принять длину свободного пробега молекулы между столкновениями с частицами $\lambda = 1/(\sigma n)$ (σ сечение столкновения, *п* — концентрация частиц). Подставив n = C/V (V — объем частицы), получаем $\tau = V^2 / (2DC^2 \sigma^2)$. В результате ширина δ_H пропорциональна 1/C². Появление конгломератов вследствие уменьшения n должно увеличивать λ , приводя к росту δ_{H} .

ЗАКЛЮЧЕНИЕ

Наблюдаемые экспериментально экспоненциальные зависимости δ_H и δ_H/Δ от *C* в формулах (9), (10), по-видимому, получаются в результате статистического наложения описанных выше эффектов усреднения локальных полей частиц. Зависимость Δ и δ_H от агрегации частиц можно использовать для изучения структуры магнитных дисперсий, играющей большую роль при их практическом применении.

СПИСОК ЛИТЕРАТУРЫ

- 1. Манк В.В., Лебовка Н.И. Спектроскопия ядерного магнитного резонанса воды в гетерогенных системах. Киев: Наукова думка, 1988. 203 с.
- 2. Жерновой А.И., Николаева М.Н. // Изв. вуз. Физика. 2004. № 10. С. 108.
- 3. Жерновой А.И., Николаева М.Н. // Изв. вуз. Физика. 2005. № 5. С. 92–94.
- 4. Головин Ю.И. Введение в нанотехнику. М.: Машиностроение, 2007. 496 с.
- 5. *Жерновой А.И., Шаршина Л.М.* // Биофизика. 2003. Т. 48, № 1. С. 68–72.
- 6. Жерновой А.И., Наумов В.Н., Рудаков Ю.Р. // Научное приборостроение. 2008. Т. 18, № 2. С. 33–38.
- Yi-Qiao Song // Phys. Rev. Letters. 2000. V. 85, N 18. P. 3878–3881.
- 8. Вашман А.А., Пронин И.С. Ядерная магнитная релаксационная спектроскопия. М.: Энергоатомиздат, 1986. 231 с.
- 9. Лукьянов А.Е., Булыгин А.Н., Николаев Б.П., Петров Р.Н. // Коллоидный журнал. 1992. Т. 44, № 1. С. 35–40.

Санкт-Петербургский государственный технологический институт (технический университет)

Материал поступил в редакцию 23.06.2008.

INVESTIGATION OF HETEROGENEOUS BROADENING NMR LINE IN DISPERSION OF PARAMAGNETIC NANOGLOBULES

A. I. Zhernovoi, V. N. Naumov, Yu. R. Rudakov

The Saint-Petersburg State Institute of Technology (Technical University)

NMR shift and width dependence on the concentration of C hard phase in water dispersion of magnetite nanoparticles was studied. Dependence from C heterogeneous width line in homogeneous field was determined.