—— ОРИГИНАЛЬНЫЕ СТАТЬИ —

УДК 621.384.82: 546.57

© А. В. Новиков, Р. А. Бубляев, Н. В. Краснов, Ю. П. Козьмин, Т. Е. Кураева, О. А. Миргородская

ИЗУЧЕНИЕ КОНКУРЕНТНОГО ВЗАИМОДЕЙСТВИЯ ИОНОВ СЕРЕБРА С ЦИСТЕИНСОДЕРЖАЩИМИ ПЕПТИДАМИ И СЕРОСОДЕРЖАЩИМИ АМИНОКИСЛОТАМИ С ПОМОЩЬЮ ESI-MS

Проведено исследование особенностей взаимодействия ионов серебра с серосодержащими аминокислотами и цистеинсодержащими пептидами. С помощью времяпролетного масс-спектрометра с электрораспылением и ортогональным вводом ионов (ESI-o-TOF) доказано, что наибольшим сродством к ионам серебра обладают цистеин (Cys) и гомоцистеин (Hcy), причем как по отношению к метионину, так и по отношению к остаткам цистеина в пептидах. Впервые обнаружен эффект преимущественного образования ионов, содержащих два атома серебра на одну сульфгидрильную группу цистеинсодержащего пептида, если этому не мешает ближайшее микроокружение.

введение

В настоящее время во всем мире интенсивно изучается влияние ионов серебра на здоровье человека и окружающую среду [1]. Ряд исследований посвящен изучению бактерицидных свойств этих ионов [2–6]. Отмечено также токсическое действие ионов серебра, обусловленное способностью накапливаться в организме человека, что приводит к возникновению такого заболевания, как аргироз, или аргирия [1].

Специфичность взаимодействия ионов серебра с компонентами биологических систем до сих пор мало изучена, что во многом обусловлено рядом методических сложностей. Настоящая работа призвана заполнить пробел в понимании специфичности связывания ионов серебра с серосодержащими группами, входящими с состав пептидов и белков. В качестве метода исследований использована масс-спектрометрия с ионизацией электрораспылением (ESI-MS), которая в настоящее время широко используется для изучения взаимодействия ионов металлов с различными биологически значимыми пептидами и белками [7, 8]. Этот тип ионизации является наиболее "мягким", поскольку не разрушает комплексы (т. е. фрагментация комплексов может произойти лишь при специальных условиях), и, кроме того, позволяет анализировать вещества непосредственно в растворах. К тому же характерное распределение изотопного состава распространенного в природе серебра (51.35 % Ag¹⁰⁷ и 48.65 % Ag¹⁰⁹) позволяет однозначно выявлять ионы, образующиеся с его участием.

В качестве лигандов для изучения взаимодействия с ионами серебра нами выбраны серосодержащие аминокислоты — цистеин (Cys), гомоцистеин (Hcy) и метионин (Met), а в качестве модельных пептидов — цистеинсодержащие синтетические пептиды. Выбор пептидов в качестве таких объектов представляется весьма удачным, т. к. они являются фрагментами белковых молекул, а также удобны с методической точки зрения.

Трудности при изучения взаимодействия ионов серебра с лигандами во многом обусловлены тем, что при регистрации комплексообразования проблематично оценить количественные соотношения свободных и связанных ионов металлов в растворе. С помощью ESI-MS оказалось возможным изучить распределение ионов серебра между лигандами как при достаточной концентрации ионов металла, так и в условиях конкурентной борьбы за "обладание" металлом при недостаточной его концентрации.

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТОВ И ИХ ОБСУЖДЕНИЕ

Серебро из раствора AgNO₃ в водноацетонитрильной смеси (1:1 по объему) в присутствии 1 %-й уксусной кислоты регистрировалось в виде однозарядных кластерных ионов с одной (m/z = 147.93 и 149.93) или двумя (m/z = 187.95и 189.95) молекулами ацетонитрила (рис. 1).

Это свидетельствует о "склонности" ионов серебра к образованию комплексных соединений, в данном случае с ацетонитрилом, концентрация которого в данном случае на 5 порядков превышает

Рис. 1. Масс-спектр раствора AgNO₃ в CH₃CN

Табл. 1. Результаты масс-спектрометрической регистрации ионов серебра и гомоцистеина в сульфгидрильной форме (Hcy) и в виде дисульфида (Hcy₂) при различных соотношениях их концентраций

N⁰	Концентрация реагентов (мкмоль)		Отношение интенсивно- стей в масс- спектре	Интенсивности комплексных соединений			
	Нсу	AgNO ₃	Hcy/Hcy ₂	Ag^+	$Ag(CH_3CN)^+$	$Ag(CH_3CN)_2^+$	
1	0	30	0	823	11681	14485	
2	25	0	1.3	0	0	0	
3	25	10	1.1	0	0	0	
4	25	20	0.2	0	0	0	
5	25	30	0	0	1535	3214	

концентрацию ионов серебра. Интенсивности (площади соответствующих пиков с учетом его изотопного распределения) масс-спектров всех комплексных соединений с ионами серебра представлены в табл. 1.

Масс-спектрометрическое исследование взаимодействия серосодержащих аминокислот с серебром

Выбранные аминокислоты — Cys, Hcy и Met легко регистрируются в ESI-MS в виде протонированных ионов.

Для гомоцистеина отмечено спонтанное обра-

зование его дисульфида (Hcy₂) (см. рис. 2, а). При внесении в раствор гомоцистеина AgNO₃ в концентрациях, меньших чем аминокислоты, в массспектре наблюдается уменьшение интенсивности Hcy по сравнению с Hcy₂ (см. рис. 2, б). Отметим, что в спектре отсутствуют любые ионы, содержащие серебро. При внесении избытка AgNO₃ по сравнению с гомоцистеином в спектре регистрируется только Hcy₂ и кластеры серебра с ацетонитрилом. Интенсивности всех регистрируемых ионов представлены в табл. 1.

Аналогичным образом ведет себя и Cys. Как в случае гомоцистеина, так и в случае цистеина при концентрациях AgNO₃, меньших концентраций

при соотношении их концентра-

аминокислот, регистрируются только их сульфгидрильные формы, а при избытке $AgNO_3$ регистрируются только комплексы серебра с ацетонитрилом. При эквивалентном соотношении реагентов в спектре не видно ни ионов серебра, ни соответствующих ионов аминокислот. Можно полагать, что осуществляется ковалентная модификация сульфгидрильных форм этих аминокислот серебром с образованием нерастворимых продуктов.

Совершенно по-иному ведет себя Меt. В эквимолярных концентрациях помимо протонированной формы Меt в спектре появляются комплексы ионов серебра как с одной молекулой Меt, так и с двумя (рис. 3, а). Увеличение концентрации Met в 10 раз приводит к увеличению выхода ионов с Ag^+ , при этом значительно возрастает интенсивность ионов димера Met по сравнению с его мономерной формой (рис. 3, б).

Масс-спектрометрическое исследование взаимодействия пептидов P₁ и P₂ с серебром, в том числе для P₁ в присутствии Cys или Met

Для изучения взаимодействия пептидов с ионами серебра были использованы синтетические пептиды в виде амидов, аминокислотная последовательность которых и соответственно аминокислотный состав представлены в табл. 2.

Табл. 2. Характеристика пептидов, использованных для изучения взаимодействия с AgNO₃

N⁰	Пептид	Аминокислотная последовательность	М**(Да)
1	P_1	Ac-DAEFRHDSGYEVHHQKGGGC	2267.97
2	P_2	YCAAAACRL	938.44
3	P_2^*	YCAAAACRL	936.44

Примечание.^{*}_{**} — дисульфидная форма (SS) P₂, — моноизотопная масса.

Рис. 4. ESI-масс-спектр 8 мкмоль P_1 без (а) и в присутствии 30 мкмоль AgNO₃ (б)

Nº		Состав сме	Нормированные интен- сивности ионов			
	P ₁	AgNO ₃	Met	Cys	P ₁	P ₁ -2Ag
1	8	0	0	0	1	0
2	8	8	0	0	0.84	0.16
3	8	30	0	0	0.34	0.66
4	8	30	0	10	0.72	0.28
5	8	30	0	20	0.81	0.19
6	8	30	0	30	1	0
7	8	30	220	0	0.51	0.49
8	8	30	550	0	0.55	0.45

Табл. 3. Состав и интенсивности регистрируемых ионов P_1 в присутствии AgNO₃, и в том числе Cys или Met

Пептид с массой 2267.97 (P₁) представлен широким набором аминокислот, в том числе теми, которые могли бы (помимо Cys) выступать в качестве сайтов для комплексообразования. Эксперимент показал, что этот пептид регистрируется в виде 2–5-зарядных ионов в зависимости от условий ионизации. Однако наиболее интенсивными во всех случаях являются 4- и 3-зарядные ионы, как это показано на рис. 4, а.

В присутствии ионов серебра в эквивалентных концентрациях и выше (использованные концентрации реагентов указаны в табл. 3 под № 2, 3) в масс-спектре этого пептида появляются дополнительно 3- и 4-зарядные ионы с серебром, причем эти ионы преимущественно содержат два атома Ag, как это следует из рис. 4, б. Учитывая этот факт, а также способность Cys к ковалентному связыванию, можно полагать, что оба атома Ag связаны именно с Cys: один — ковалентно по сульфгидрильной группе в виде SAg, другой — в виде иона Ag⁺.

Для выявления других потенциальных сайтов связывания ионов серебра данный пептид был обработан трипсином таким образом, чтобы была отделена часть, содержащая Суѕ. К полученному гидролизату был добавлен AgNO₃. Как следует из масс-спектра, представленного на рис. 5, регистрируются ионы, соответствующие следующим триптическим фрагментам P₁: однозарядного иона T_{1-5} с m/z = 679.3 и T_{1-16} в виде двухзарядного и трехзарядного ионов с m/z = 998.9 и m/z = 666.3 соответственно. Ионов с Ag⁺ не наблюдается, что свидетельствует, что при выбранных концентрациях компонентов комплексообразования не происходит. Вместе с тем в спектре отсутствует соответствующий ион пептида GGGCNH₂, который, по-видимому, теряет растворимость аналогично Cys и Нсу после взаимодействия с AgNO₃.

Для оценки конкурентного взаимодействия

Рис. 5. Масс-спектр триптического гидролизата 8 мкмоль P₁ в присутствии 30 мкмоль AgNO₃

остатка Cys в P₁ с серосодержащими аминокислотами приготовлены смеси P₁ с Cys и P₁ с Met при концентрациях реагентов, указанных в табл. 3 под N_{2} 4–8.

Исходное соотношение концентраций P_1 и AgNO₃ было выбрано тем же, что и в предыдущем эксперименте (табл. 3, № 3). Из полученных данных (табл. 3, № 4–6) следует, что введение Суз приводит к уменьшению интенсивности иона комплекса пептида с двумя атомами серебра (P_1 -2Ag)^{+3; +4}. При достижении эквимолярного соотношения концентраций Суз и AgNO₃ ионы (P_1 -2Ag)^{+3; +4} полностью исчезают.

В той же таблице (табл. 3, № 6, 7) приведены результаты масс-спектрометрического анализа поведения другого конкурентного лиганда — Меt. В этом случае даже при гораздо более высоких концентрациях Меt (см. № 8), нежели в присутствии Cys (см. № 4–6), интенсивность ионов (P₁-2Ag)^{+3; +4} лишь несколько снижалась относительно интенсивности ионов P₁.

Несмотря на то что спектральные интенсивности не могут отражать абсолютные концентрации, тем не менее зависимость относительных концентраций разных типов ионов от состава среды способна выявить тенденцию. Однозначным во всех случаях является присутствие или отсутствие какого-либо иона. Так, полное исчезновение ионов (P_1 -2Ag)^{+3;+4} в присутствии аминокислоты Суз указывает на то, что сродство серебра к свободному Суѕ выше, чем к Суѕ, присутствующему в P_1 .

На тех же основаниях является убедительным заключение о том, что Met является заведомо более слабым конкурентом для P_1 , чем Cys.

Использование другого модельного пептида — P₂ для изучения взаимодействия с AgNO₃ пред-

ставлялось целесообразным из нескольких соображений. Во-первых, в этом пептиде присутствуют два остатка Суѕ. Во-вторых, этот пептид максимально способен образовывать двухзарядные ионы, что удобно для их интерпретации. В-третьих, этот пептид благодаря способности к спонтанному образованию дисульфидных связей в растворе присутствует в двух формах (см. табл. 2, № 2), что позволяет сопоставить сродство к серебру сульфгидрильных групп и дисульфидных связей.

Для масс-спектрометрического изучения взаимодействия пептида P_2 с серебром были выбраны два раствора в которых к 22 мкмоль пептида было добавлено в первом варианте — 50 мкмоль AgNO₃, во втором — 150 мкмоль AgNO₃, массспектры которых представлены на рис. 6.

Рис. 6. ESI-масс-спектры смесей 22 мкмоль P_2 с AgNO₃ в концентрациях 50 мкмоль (а) и 150 мкмоль (б)

Табл. 4. Состав и интенсивности регистрируемых ионов в растворах, содержащих 22 мкмоль пептида в двух формах (P₂ и ^{*}P₂) в присутствии AgNO₃

No	AgNO ₃ (мкмоль)	Типы ионов и их интенсивности					
110		$^{*}P_{2}$	$(P_2-1Ag)^{+2}$	$(P_2-2Ag)^{+2}$	$(P_2-3Ag)^{+2}$	$(2P_2-4Ag)^{+3}$	
1	50	6250	2829	3750	3987	2385	
2	150	7270	0	2533	4341	0	

Предварительные эксперименты показали, что пептид, содержащий два Суѕ, присутствует в растворе в виде двух форм — сульфгидрильной (P_2) и дисульфидной (P_2) с соотношениями интенсивностей ~ 2:1 соответственно (данные не показаны).

Из масс-спектра, представленного на рис. 6, а, видно, что при добавлении AgNO₃ в концентрации 50 мкмоль к раствору пептида с содержанием 30 мкмоль SH-групп следует:

 полностью исчезает сульфгидрильная форма пептида (P₂);

• P₂ регистрируется исключительно в виде ионов, содержащих атомы серебра; типы регистрируемых ионов и их интенсивности представлены в табл. 4 под № 1;

• дисульфидная форма пептида (^{*}P₂) регистрируется в виде одно- и двухзарядных ионов без атомов серебра.

Увеличение концентрации ионов серебра в ~ 3 раза (см. рис. 6, б) изменяет и состав регистрируемых ионов P_2 , содержащих атомы серебра, и их интенсивности (см. табл. 4, N_2 2).

Удивительной особенностью пептида P_2 явилось отсутствие у него способности образовывать ионы с 4 атомами серебра, несмотря на наличие у него двух сульфгидрильных групп, даже при избытке (150 мкмоль) в растворе AgNO₃. По аналогии с поведением пептида P_1 , казалось бы, можно было ожидать присоединения по паре атомов серебра на каждый из двух остатков цистеина, в то время как в действительности образовывались ионы лишь с тремя атомами серебра. Кроме того, при меньшей концентрации AgNO₃ (50 мкмоль) зарегистрированы ионы с одним атомом серебра (P_2 -1Ag)⁺².

Такое поведение пептида P_2 легко объясняется наличием остатка аргинина (Arg) в непосредственной близости от одного из остатков цистеина. Это соседство не влияет на образование ковалентной связи цистеина с первым атомом серебра, но мешает образованию заряженного комплекса со следующим ионом Ag⁺. Присоединению Ag⁺ здесь мешает уже имеющийся в этих условиях положительный заряд на протонированной гуанидиновой группе соседнего аргинина. Таким образом, присоединение иона Ag⁺ оказывается здесь возможным лишь к удаленному от аргинина остатку Суs, уже связанному ковалентной связью с атомом серебра.

Таким образом, модельный пептид P_2 дополнил наши представления о взаимодействии серебра с цистеинсодержащими пептидами, указывая на особое влияние микроокружения вблизи остатков Cys.

выводы

ESI-масс-спектрометрия показала себя превосходным методом для исследования особенностей конкурентного взаимодействия ионов серебра с аминокислотами и пептидами.

Проведенное нами исследование взаимодействия серосодержащих аминокислот с ионами серебра показало, что наибольшим сродством к ионам серебра обладают Суѕ и Нсу. Причем, это преобладание наблюдалось как по отношению к метионину, так и по отношению к остаткам цистеина в пептидах.

Впервые обнаружен эффект преимущественного образования ионов, содержащих два атома серебра на одну сульфгидрильную группу цистеинсодержащего пептида, если этому не мешает ближайшее микроокружение.

МАТЕРИАЛЫ И МЕТОДЫ

В работе использована уксусная кислота и ацетонитрил производства фирмы Merck; аминокислоты: L-метионин, L-цистеин и D-, L-гомоцистеин (Sigma).

Синтез пептидов осуществляли на твердофазном синтезаторе (Intavis AG, Германия) аналогично схеме, описанной в работе [9]. Оба пептида были синтезированы в виде амидов. По завершении синтеза смолу промывали три раза дихлорметаном (Merck, Германия) и высушивали в токе азота в течение 15 мин. Последующее отщепление пептида от смолы и снятие защитных боковых групп выполняли при 21 °C в смеси TFA (Fluka, Германия), триизопропилсилана и воды MilliQ (Millipore, США) в объемном соотношении 95 : 2.5 : 2.5. По истечении двух часов пептиды осаждали холодным (0 °C) трет-бутилметиловым эфиром (Fluka). Пептидный преципитат перерастворяли в 1%-й водной уксусной кислоте и лиофилизовали.

Масс-спектрометрические измерения проводились на времяпролетном масс-спектрометре с электрораспылением и ортогональным вводом ионов МХ5303 (ESI-o-TOF), разработанном в Лаборатории биомедицинской масс-спектрометрии ИАнП РАН. Все спектры получены в режиме съемки положительных ионов. Объем анализируемой пробы составлял 10–50 мкл, скорость подачи раствора образца 1–5 мкл/мин.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Howe P.D., Dobson S., Wood M.* Silver and Silver Compounds: Environment Aspects // Concise International Chemical Assessment Document 44. World Health Organisation. Geneva, 2002.
- Gupta A., Maynes M., Silver S. Effects of Halides on Plasmid-Mediated Silver Resistance in Escherichia coli Silver // Applied and Environmental Microbiology. 1998. V. 64, N 12. P. 5042– 5045.
- Collins Y.E., Stotzky G. Factors Affecting the Toxicity of Heavy Metals to Microbes // Metal ions and bacteria / Eds. Beveridge T.J., Doyle R.J. N.Y.: John Wiley and Sons, Inc., 1989. P. 31–90.
- 4. *Russell A.D., Hugo W.B.* Antimicrobial Activity and Action of Silver // Progress in medicinal chemistry. 1994. V. 31. P. 351–370.

- Lansdown A. Silver in Health Care: Antimicrobial Effects and Safety in Use // Biofunctional Textiles and the Skin. Curr. Probl. Dermatol. Basel, Karger, 2006. V. 33. P. 17–34.
- Berthet B., Amiard J.C., Amiard-Triquet C., Martoja M., Jeantet A.Y. Bioaccumulation, Toxicity and Physico-Chemical Speciation of Silver in Bivalve Molluscs: Ecotoxicological and Health Consequences // Sci. Total Environ. 1992. V. 125. P. 97–122.
- 7. Vrkis A.K., Taverner T., James P.F., O'Hair R.A.J. Gas Phase Ion Chemistry of Charged Silver(I) Adenine Ions via Multistage Mass Spectrometry Experiments and DFT Calculations // Dalton Transactions. 2004. P. 197–208.
- Li H., Sui K.W.M., Guevremont R., Le Blanc J.C.Y. Complexes of Silver(1) with Peptides and Proteins as Produced in Electrospray Mass Spectrometry // JASMS. 1997. P. 781–792.
- 9. Kaselmann K.F., Budnik B.A., Kjeldsen F., et al. Electronic Excitation Gives Informative Fragmentation of Polypeptide Cations and Anions // Eur. J. Mass. Spectrom. 2002. V. 8. P. 117–121.

Институт аналитического приборостроения РАН, Санкт-Петербург (Новиков А.В., Бубляев Р.А., Краснов Н.В., Миргородская О.А.)

Институт биоорганической химии им. М.М. Шемякина и Ю.А. Овчинникова РАН, Москва (Козъмин Ю.П.)

Государственное учреждение Научноисследовательский институт биомедицинской химии РАМН, Москва (Кураева Т.Е.)

Материал поступил в редакцию 15.05.2007.

ESI-MS STUDIES OF SILVER ION COMPETITIVE INTERACTION WITH CYSTEINE-CONTAINING PEPTIDES AND SULFUR-CONTAINING AMINO ACIDS

A. V. Novikov, R. A. Bublyaev, N. V. Krasnov, Ju. P. Kozmin¹, T. E. Kuraeva², O. A. Mirgorodskaya

Institute for Analytical Instrumentation RAS, Saint-Petersburg ¹M.M. Shemyakin and Ju.A. Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow ²Research Institute of Biomedical Chemistry RAMS, Moscow

Investigation of silver ion interaction with sulfur-containing amino acids and cysteine-containing peptides has been performed. Using an electrospray ionisation orthogonal ion introduction time-of-flight (ESI-O-TOF) mass spectrometer, it has been shown that Cys and Hcy exhibit the largest affinity for silver ions with respect to both methionine and cysteine residues in peptides. The effect of predominant formation of ions containing two silver atoms per a sulfhydryl group of cysteine-containing peptides, provided the nearest microenvironment does not hinder this, was revealed for the first time.