Материалы научного семинара МИКРОЧИПОВЫЕ ТЕХНОЛОГИИ В АНАЛИТИЧЕСКОЙ ХИМИИ

УДК 543.422.5; 543.432; 537.363

© М. А. Проскурнин, М. А. Нечаев, А. В. Пирогов, О. А. Шпигун

ДЕМОНСТРАЦИЯ ВОЗМОЖНОСТИ ОПРЕДЕЛЕНИЯ НИЗКОМОЛЕКУЛЯРНЫХ ВЕЩЕСТВ (УРАЦИЛА И ХРОМАТ-ИОНОВ) НА ПРИБОРЕ ДЛЯ ЭЛЕКТРОФОРЕЗА НА МИКРОЧИПАХ SHIMADZU MCE-2010

В результате испытаний прибора для электрофореза на микрочипах Microchip Electrophoresis System MCE-2010 фирмы Shimadzu найдены условия получения воспроизводимых пиков урацила и хромата как модельных низкомолекулярных соединений. Показано, что прибор MCE-2010 характеризуется экспрессностью электрофоретического разделения и высокой воспроизводимостью времени выхода и площади пиков. Достигнуто 7–10-кратное повышение экспрессности определения по сравнению с традиционным капиллярным зонным электрофорезом. Пределы обнаружения урацила и хромата составляют 2 и 1 мкг/мл соответственно.

введение

В настоящее время появляются первые коммерческие приборы, в которых в аналитическом цикле для пробоподготовки, разделения и определения используют микрофлюидные чипы. Для многих из них все еще отсутствует методологическое и метрологическое обеспечение, что препятствует их внедрению в широкую практику химического анализа. Прибор для электрофореза на микрочипах Microchip Electrophoresis System MCE-2010 фирмы Shimadzu, появившийся в продаже в 2004 году, реализует высокоскоростной электрофоретический анализ в микроформате [1]. Хотя эта система использует те же принципы, что и капиллярный электрофорез, она обеспечивает высокоскоростное разделение с чрезвычайно малым расходом рабочего буфера и пробы [2]. Кроме того, разделительный канал короче и обеспечивает лучшее рассеивание тепла в сравнении с обычным капиллярным электрофорезом. Однако для данного прибора в настоящее время существуют только методики разделения и определения ДНК и подобных биологических объектов [2-4].

В данной работе исследована возможность электрофоретического определения низкомолекулярных веществ на микрочипах. Отсутствие методик для этих веществ существенно ограничивает применение МСЕ-2010. В качестве модельных соединений выбраны урацил и хромат калия. Урацил часто используют в хроматографии в качестве маркера мертвого времени удерживания. Пик его имеет симметричную форму, что позволяет оценивать размывание. Хромат часто используют в качестве буферного электролита в капиллярном электрофорезе. Кроме того, эти вещества хорошо поглощают УФ-излучение и для них существуют надежные методики определения методом капиллярного электрофореза [5, 6].

АППАРАТУРА, РЕАГЕНТЫ И ТЕХНИКА ЭКСПЕРИМЕНТА

Характеристики прибора

Shimadzu MCE-2010 способен автоматически проводить электрофоретическое разделение и детектирование В микроканалах, изготовленных в микрочипах на кварцевой подложке методом фотолитографии. В качестве источника излучения используется дейтериевая лампа, монохроматором служит дифракционная решетка. Рабочий диапазон длин волн 190-370 нм. Детектором служит фотодиодная матрица, состоящая из 1024 элементов (минимально определяемая оптическая плотность 1×10^{-5}) [1, 2]. В работе использована длина волны 254 нм как наиболее часто использующаяся в капиллярном электрофорезе.

Рис. 1. Схема микрочипа прибора для электрофореза на микрочипах Shimadzu MCE-2010

На рис. 1 представлена схема микрочипа для электрофоретического разделения. Вследствие того что фотодиодная матрица проводит одновременное измерение по всей длине разделительного канала в течение всего процесса разделения, вместо традиционной временной шкалы в электрофореграммах, получаемых на Shimadzu MCE-2010, ось абсцисс имеет размерность длины и ее масштаб неизменен (25 мм — длина разделительного канала, рис. 1).

В работе использован микрочип для общего анализа Shimadzu Type U[50-20] (ширина каналов — 50 мкм, глубина — 20 мкм). Паспортное число теоретических тарелок 100 000 тт/м.

Программное обеспечение МСЕ-2010

Управление прибором (в том числе извлечение и установка чипа) полностью контролируется программным обеспечением компьютера, подключенным к МСЕ-2010. Общий цикл измерений представлен на рис. 2. Он состоит из позиционирования микрочипа относительно фотодетектора вдоль и поперек канала, измерения фонового поглощения пустого микрочипа и проверки работоспособности проточной системы (т. н. блок "перекалибровки детектора") [2]. Далее выполняются системные программы и управление передается программам аналитического цикла: общей программы действий и цикла измерений (рис. 2).

Общая программа действий:

Рис. 2. Принципиальная схема цикла аналитических измерений на приборе для электрофореза на микрочипах Shimadzu MCE-2010

соответствующих файлах цикла измерений и отчета. Последовательность операций анализа одной пробы задается файлами цикла измерений (method file, рис. 2). В них содержится информация о дополнительных (опционных) системных операциях: промывка системы водой, буферным раствором, параметры системы при детектировании (тип чипа, рабочая длина волны, полярность, объем пробы и буферного раствора, напряжение на капиллярах на каждой стадии анализа, продолжительность каждой стадии и т. д.), параметры обработки полученной информации (необходимо ли вычитание фона и т. п.).

Файлы общей программы действий (schedule

file) содержат информацию о числе анализируе-

мых проб и последовательности их измерений и о

Реагенты

В работе использована деионизованная вода с удельным сопротивлением 18 МОм·см (pH 5.8, установка очистки воды Milli-Q, Millipore, Франция). Все использованные реагенты имели квалификацию не ниже ч.д.а. В качестве рабочего буферного электролита использованы трис-боратные буферные растворы (50 мМ тетрабората натрия и 50 мМ трис(гидроксиметил)аминометана). Водные растворы урацила (0.8 мг/мл) и хромата калия (1.0 мг/мл) в соответствующем буферном растворе служили в качестве исходных.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Существующие управляющие файлы (управления потоками и управления напряжениями на портах) оптимизированы в Shimadzu MCE-2010 для разделения и определения ДНК и микрочипов со специальным покрытием [3, 4]. Первые эксперименты показали, что параметры файлов цикла измерений, предлагаемые в руководстве к прибору [1] или имеющиеся в открытой печати для биологических методик [2-4], не пригодны для электрофоретического разделения низкомолекулярных веществ. В результате задачей работы был подбор параметров системы, которые позволили бы получать воспроизводимые пики выбранных модельных соединений. Кратко остановимся на основных моментах.

На чипе имеются перекрещивающиеся каналы: канал № 1 для ввода пробы, в канале № 2 происходит разделение компонентов. На чипе сделаны специальные углубления для ввода и вывода растворов, называемые "портами". При анализе пробы можно выделить три стадии. В стадии 1 на порт 1 прикладывается большое напряжение, а на порт 2 — нулевое. Напряжение на порты 3 и 4 подается равным и так, чтобы через них поток практически не шел. В результате электроосмотический поток движется только по первому каналу

в направлении порта 2 (электрофоретический ввод пробы). В стадии 2 высокое напряжение прикладывается к порту 3, и электроосмотический поток движется по (разделительному) каналу № 2 в направлении порта 4. На стадии 3 напряжение на всех портах устанавливается нулевым и происходит фотометрическое детектирование вдоль всего канала в течение некоторого заданного времени (для улучшения соотношения сигнал-шум).

Основными изменяемыми параметрами были напряжения на капиллярах. В отличие от разделения биомолекул ввод в микрочип пробы объемом свыше 10 мкл приводит к возникновению большого пика или плато, окруженного отрицательными пиками. Причиной этого является, по-видимому, попадание пробы в разделительный канал на стадии ввода пробы и/или затягивание пробы в стадии 2 из канала ввода пробы в течение всего процесса разделения. Для минимизации этих процессов напряжения в стадии 2 на портах 3 и 4 увеличены по сравнению с определением биомолекул [2-4] для дополнительного сжатия зоны пробы (см. таблицу). Аналогично напряжения на портах 1 и 2 уменьшены для увеличения оттока пробы из канала 1. Оптимальный объем пробы для обоих модельных соединений составил 5 мкл.

Следует отметить, что работа прибора становится нестабильной при повышении напряжений на канале выше 1.4 кВ, а при токах порядка 800-1000 мкА прибор автоматически отключается. Таким образом, при электрофоретическом разделении низкомолекулярных веществ приходится исходить из компромисса между высокими напряжениями на портах (узкая зона пробы) и нестабильной работой системы разделения или увеличением размывания пробы.

Оптимальный объем буферного раствора для разделения и определения одной пробы, составил 100 мкл, что полностью соответствует имеющимся данным [2–4]. Однако рекомендация промывания системы между анализами рабочим буферным раствором [2] приводила к снижению воспроизводимости результатов из-за различных значений токов в системе. Существенно лучшие результаты (форма пика и воспроизводимость) получали при двукратной промывке системы водой после каждого анализа (системная программа "water purge" [1], длительность 3 мин, 500 мкл воды). Поэтому в файле общей программы действий добавлена команда системе производить системную промывку "water purge" перед и после каждого анализа. Общее время анализа одной пробы составило, таким образом, 7 мин.

Параметры полученного файла цикла измерений для урацила представлены в таблице, типичная электрофореграмма представлена на рис. 3, а. Экспериментальное значение эффективности разделения составило 40 000 тт/м. По сравнению Условия электрофоретического определения урацила и хромат-ионов на МСЕ-2010 и некоторые метрологические характеристики определения (P = 0.95, n = 3). Объем пробы 5 мкл, объем буферного раствора, расходуемого на одну пробу, — 100 мкл

Параметр системы	Урацил	Хромат-ионы
Время ввода пробы (стадия 1), с	3	7
Время электрофоретического разделения в раздели- тельном канале (стадия 2), с	40	45
граммы (стадия 3), с	20	25
Суммарное время измерений, с	65	85
Приложенное напряжение на канал № 1 на стадии электрофоретического ввода пробы (стадия 1), кВ	0.3	0.45
Приложенное напряжение на канал № 2 на стадии электрофоретического ввода пробы (стадия 1), кВ	0.25	0.35
Напряженность поля на канале 2 на стадии электро- форетического разделения (стадия 2), кВ/см	2.2	-0.4
Приложенное напряжение на порты 1 и 2 на стадии электрофоретического разделения (стадия 2), кВ	0.8	0.6
Среднее расстояние удерживания, мм	12.0 ± 0.1	0.11 ± 0.03
Предел обнаружения, мкг/мл	2	1
Абсолютный предел обнаружения, нг	10	5
Относительное стандартное отклонение воспроизво- димости времени выхода пика, %	2	0.4
Относительное стандартное отклонение воспроизво- димости площади пика (середина диапазона опреде- ляемых содержаний). %	5	0.5

с определением урацила в случае хромата все напряжения в стадии 2 немного уменьшены, что позволило достичь высокой воспроизводимости определения (см. таблицу). Наилучшая форма пиков получалась при низкой (порядка 1-3 кВ) разности потенциалов между портами 3 и 4 на стадии 2. Также к улучшению результатов привело увеличение времени накопления информации (стадия 3) с 20 до 25 с. Параметры файла цикла измерений для хромат-ионов представлены в таблице, типичная электрофореграмма представлена на рис. 3, б. Суммарно время разделения и определения составляет 65-85 с в зависимости от определяемого соединения, т. е. в 7-10 раз быстрее, чем для традиционного капиллярного зонного электрофореза при определении этих соединений [5, 6]. Достигнутые пределы обнаружения — 2 и 1 мкг/мл находятся на уровне пределов обнаружения этих

веществ при помощи капиллярного электрофореза [5, 6].

ЗАКЛЮЧЕНИЕ

В результате проведенных испытаний системы Shimadzu MCE-2010 найдены условия получения воспроизводимых пиков урацила и хромата в качестве модельных соединений. Показано, что прибор характеризуется экспрессностью электрофоретического разделения и высокой воспроизводимостью времени выхода и площади пиков. Достигнуто 7–10-кратное повышение экспрессности определения по сравнению с традиционным КЗЭ. Однако разработка полных методик определения этих веществ методом капиллярного электрофореза на микрочипе требует дальнейших экспериментов.

Рис. 3. Определение урацила (0.8 мг/мл) (а) и хромата (0.78 мг/мл) (б) в буферном растворе (50 мМ тетрабората натрия и 50 мМ трис). Объем пробы — 5 мкл, объем буферного раствора — 100 мкл. Длина волны — 254 нм. Другие параметры разделения представлены в таблице

СПИСОК ЛИТЕРАТУРЫ

- 1. MCE-2010 Instruction Manual. Kyoto: Shimadzu Corporation, 2002. 190 p.
- Arai A., Nishine T., Fujiwake H. Development of Microchip Electrophoresis and Its Applications // Bunseki Kagaku. 2002. V. 58, N 3-4. P. 101–109.
- 3. Xu Z., Nishine T., Arai A., Hirokawa T. Performance of Electrokinetic Supercharging for High-Sensitivity Detection of DNA Fragments in Chip

НАУЧНОЕ ПРИБОРОСТРОЕНИЕ, 2005, том 15, № 2

Gel Electrophoresis // Electrophoresis. 2004. V. 25, N 21-22. P. 3875–3881.

- 4. Shintani T., Torimura M., Sato H., Tao H., Manabe T. Rapid Separation of Microorganisms by Quartz Microchip Capillary Electrophoresis // Anal. Sci. 2005. V. 25, N 1. P. 57–60.
- Salerno C., d'Eufemia P., Celli M., Finocchiaro R., Crifo C., Giardini O. Determination of Urinary Orotic Acid and Uracil by Capillary Zone Electrophoresis // J. Chromatogr. B. Biomed.

Appl. 1999. V. 734, N 1. P. 175–178.

 Thornton M.J., Fritz J.S. Separation of Inorganic Anions in Acidic Solutions by Capillary Electrophoresis // J. Chromatogr. A. 1997. V. 770. P. 301–310. Московский государственный университет им. М.В. Ломоносова, химический факультет

Материал поступил в редакцию 20.04.2005.

DEMONSTRATION OF THE POSSIBILITY OF DETERMINATION OF LOW-MOLECULAR ANALYTES (URACIL AND CHROMATE IONS) ON A SHIMADZU MCE-2010 MICROCHIP ELECTROPHORESIS SYSTEM

M. A. Proskurnin, M. A. Nechaev, A. V. Pirogov, O. A. Shpigun

Chemical Department, Moscow State University

The traceable conditions for the detection of uracil and chromate peaks as test model low-molecular analytes using a Shimadzu MCE-2010 Microchip Electrophoresis System were found. It is shown that the MCE-2010 shows high speed of electrophoretic separation and high reproducibility of the peak emergence times and areas. A 7- to 10-fold improvement in the analysis time compared to conventional capillary-zone electrophoretic separation is achieved. The limits of detection of uracil and chromate are 2 and 1 μ g/ml, respectively.