———— ОРИГИНАЛЬНЫЕ СТАТЬИ —

УДК 681.327.8

© В. В. Наумов, А. В. Белозеров, О. А. Гребенщиков

СИСТЕМА АВТОМАТИЧЕСКОГО ПОИСКА И СЛЕЖЕНИЯ ЗА ГЛОБАЛЬНЫМ МАКСИМУМОМ ПИКА МАСС-СПЕКТРА

Описаны алгоритм и устройство цифрового экстремального регулятора, обеспечивающего игнорирование локальных экстремумов, автоматический поиск и слежение за глобальным максимумом пика масс-спектра с точностью не хуже 0.0012 % при быстродействии 50 кГц, повышенных скоростях развертки масс до 200 а.е.м./с и устойчивости регулирования.

введение

Серийные динамические масс-спектрометры являются высокоинформативными приборами, применяющимися для исследований состава газов (МХ-7304А) или профиля концентрации компонентов в приповерхностном слое полупроводниковых материалов (МС-7201М), выходные сигналы которых — масс-спектрометрические пики несут в себе информацию о физико-химических свойствах и количестве анализируемого вещества, а временное положение пиков на оси развертки характеризуется массовым числом или атомной единицей массы (а.е.м.) [1].

Развертка масс-спектра при использовании персонального компьютера (ПК) осуществляется с помощью многоразрядных (12-16 бит) цифроаналоговых преобразователей (ЦАП) с малой дискретностью выходного напряжения, подаваемого на вход генератора высокой частоты (ГВЧ) массспектрометра. Скорость развертки массовых чисел может изменяться дискретно в пределах 0.1-200 а.е.м./с, причем с увеличением скорости длительность пиков уменьшается. В реальных условиях при цифровой регистрации интенсивности масс-спектра с помощью аналого-цифрового преобразователя (АЦП) и воздействии импульсных помех и наводок выходной сигнал может счет появления локальных искажаться за экстремумов, что значительно затрудняет определение глобальных максимумов, так как локальный экстремум может быть принят за глобальный [2]. Поэтому точные и достоверные измерения глобальных максимумов интенсивности выходных сигналов, которым соответствуют определенные массовые числа, является актуальной задачей.

АЛГОРИТМЫ, ПРОГРАММНАЯ РЕАЛИЗАЦИЯ

Выходной сигнал масс-спектрометра описывается выражением [2]:

$$y(t) = S(t) + h(t) + d(t),$$

где t — независимая переменная, или параметр развертки; S(t) — полезный квазидетерминированный сигнал, известный с точностью до параметров; h(t) — помеха; d(t) — дрейф, или базисный сигнал.

Полезный сигнал можно представить в виде

$$S(t) = \sum_{m=1}^{M} A_m S_m(t) \, ,$$

где A_m — амплитуда *m*-го компонента сигнала S(t); M — число компонентов в сигнале; $S_m(t)$ — сигнал единичной амплитуды. Положение *m*-го компонента на оси развертки определяется параметром t_m , множество значений которого располагается на оси развертки t, которая совпадает с осью массовых чисел.

На рис. 1 представлены эпюры напряжений и форма сигнала, снимаемого с выхода усилителя постоянного тока (УПТ) масс-спектрометра МХ-7304А (Сумское ПО "Электрон") при воздействии импульсных помех и наличии локальных экстремумов. Для удобства рассмотрения длительность локальных экстремумов завышена, в реальном сигнале в зависимости от скорости развертки их длительность на 2–4 порядка меньше длительности масс-спектрометрического пика.

Для развертки масс-спектра использовался 16 разрядный ЦАП типа AD569SD фирмы "Analog Devices". После напуска газовой смеси через устройство ввода проб в МХ-7304А регистрировался пик кислорода О₂ — 32-я а.е.м.

Рис. 1. Форма выходного сигнала масс-спектрометра и эпюры напряжений при наличии локальных экстремумов

Оценка интенсивностей спектральных линий и определение глобальных максимумов пиков проводились с использованием быстродействующего 16 разрядного АЦП типа AD1385KD той же фирмы и компьютера типа IBM PC в соответствии с корреляционным алгоритмом [2]:

$$S = \sum_{i=1}^{K} (J_i - J_{\Phi}) f(t_i - t_0) \ge h_0$$

Здесь J_i — текущее амплитудное значение выходного сигнала масс-спектрометра на *i*-м шаге; J_{ϕ} — интенсивность фона; $f(t_i - t_0)$ — функция, описывающая идеальную нормированную форму пика; h_0 — уровень порога обнаружения; $h_0 > > (J_{\phi}+2CKO)K / 2$; СКО — среднеквадратическое отклонение интенсивности фона; K — ширина окна функции свертки, равная $T/\Delta T$; T — длительность пика на уровне 0.606 от максимальной амплитуды; $T > 20 \Delta T$; ΔT — период дискретизации сигнала по условию $\Delta T < t_y / 10$, где t_y — длительность фронта пика.

Выходное аналоговое напряжение ЦАП в диапазоне 0–10 В, поступающее на вход ГВЧ,

обеспечивало развертку масс-спектра в диапазоне 1-200 а.е.м.

После очередного шага ЦАП развертки интенсивность масс-спектрометрического пика в каждой точке А, В, С, D,... (рис. 1) регистрировалась АЦП, и полученные значения кодов интенсивности заносились в буферную область оперативного запоминающего устройства (ОЗУ) ПК.

Поиск глобального максимума осуществлялся по результатам анализа функции скользящей свертки масс-спектрометрического пика с окном $K=T/\Delta T$, а вычисление свертки на каждом шаге производилось по выражению:

$$S_j = \sum_{i=j-k+1}^{J} f(t_i - t_0) J_i$$
,

где *j* — номер отсчета; *t*₀ — номер шага ЦАП, соответствующий центру пика.

В результате измерений определялось приращение функции свертки ΔS_j и по изменению его знака — локальные максимумы. На каждом участке спектра, где обнаруживался первый локальный максимум функции свертки, превышающий порог h_0 , производились накопление и анализ приращений ΔS_j , а также подсчет количества шагов η поиска глобального максимума на интервале [1, K/2] при условии, что сумма приращений ΔS_j положительна.

Если сумма ΔS_j отрицательна на всем интервале [1, K/2], то поиск глобального максимума прекращался. Моменты времени t_j , соответствующие фиксации обнаруженных глобальных максимумов функции свертки, сдвинуты относительно положения максимальных амплитуд пиков выходного сигнала масс-спектрометра на величину $K/2 + \Delta$, т.е. на половину ширины окна. Эмпирически установлено, что $\Delta < K/4$.

Экспериментальная проверка алгоритма на автоматизированных комплексах [3, 4] показала, что алгоритм позволяет достоверно идентифицировать пики, однако при скоростях развертки более 60 а.е.м./с наблюдались пропуски в обнаружении локальных экстремумов. Кроме того, алгоритм не позволяет осуществлять автоматическое слежение за глобальным максимумом пика. Применение же более быстродействующих ПК, АЦП и ЦАП приводит к увеличению затрат и стоимости массспектрометрической системы.

С целью повышения надежности обнаружения и обработки локальных экстремумов, а также ускорения поиска и автоматического слежения за глобальным максимумом пика при использовании тех же технических средств и ПК авторами разработан цифровой экстремальный регулятор (ЦЭР) [5, 6].

АППАРАТНАЯ РЕАЛИЗАЦИЯ

На рис. 2 представлена структурная схема массспектрометрической системы с использованием компьютера типа IBM PC, серийного массспектрометра МХ-7304А и ЦЭР. Полная функциональная схема и описание работы ЦЭР приведены в [5]. При этом ЦЭР обеспечивает определение глобальных максимумов пиков как при наличии импульсных помех, так и при их отсутствии.

В исходном состоянии после напуска газовой смеси в масс-спектрометре MC устанавливается максимальная скорость развертки 200 а.е.м./с, а в ЦЭР — частота перестраиваемого генератора тактовых импульсов ГТИ, равная 10 МГц, т.е. период дискретизации сигнала $\Delta T = 0.1$ мкс. Тригтеры слежения за знаком приращения TC и реверсирования развертки TP устанавливаются в единичное состояние, регистр глобального максимума РГМ и счетчик длительности помехи СП обнуляются. В счетчик допустимых приращений СДП заносится двоичный код 2, необходимый для определения зоны автоколебательного слежения (ЗАС) при от-

Рис. 2. Структурная схема масс-спектрометрической системы. МС — масс-спектрометр, RC — фильтр, КОМ — компаратор, И₁, И₂ —вентили (&), СП — счетчик длительности помехи, СДП — счетчик допустимых приращений, СЦС — схема цифрового сравнения, ЦАП — цифро-аналоговый преобразователь, АЦП — аналого-цифровой преобразователь, РГМ — регистр глобального максимума, ТС — триггер слежения за знаком приращения, ТР — триггер реверсирования развертки, РСР — реверсивный счетчик развертки, МП — мультипликатор, ПК — компьютер, ГТИ — генератор тактовых импульсов

сутствии помех и для более надежного исключения локальных экстремумов при наличии импульсных помех.

Число допустимых приращений может варьироваться, причем чем больше это число, тем меньше точность слежения. В реверсивный счетчик развертки РСР с ПК заносится двоичный код начальной точки развертки для а.е.м, выбранной для слежения (О₂ соответствует 32-я а.е.м.).

Начало работы установки определяется подачей с ПК высокого уровня сигнала ПУСК на первый вход элемента И2, который разрешает прохождение тактовых импульсов с ГТИ. Тактовые импульсы с выхода элемента И2 поступают на запуск АЦП, на второй вход элемента И₁ и на вход сложения РСР. В результате код с выхода РСР, поступающий на информационные входы ЦАП, линейно увеличивается. Аналоговое напряжение с выхода ЦАП (на рис. 1 — U_{вых.}7) подается на вход ГВЧ масс-спектрометра МС, обеспечивая развертку пика (32-й а.е.м в нашем примере). С выхода МС аналоговый сигнал возрастающей амплитуды (U_{вых}1) поступает на RC-фильтр и на аналоговый вход АЦП для оцифровки. Фильтр предназначен для разделения импульсных помех и основного сигнала, в результате на вход компаратора КОМ поступает сигнал локального экстремума (U_{вых}.2). С выхода КОМ (U_{вых}.3) нормированный по амплитуде и длительности сигнал импульсной помехи подается на первый вход элемента И₁, разрешая прохождение тактовых импульсов (U_{вых.}4) на СП, который подсчитывает число измерительных точек, приходящихся на локальный экстремум. Код длительности помехи с выхода СП поступает на информационные входы счетчика допустимых приращений СДП. Он необходим для учета и игнорирования локальных экстремумов [5].

Анализ локальных максимумов производится следующим образом. Цифровой код интенсивности пика с АЦП поступает на первый вход схемы цифрового сравнения СЦС, на второй вход которой подается код с выхода РГМ для сравнения текущего и предыдущего значений, измеренных в точках A, B, C, D, E,... (рис. 1). Код с АЦП также поступает через мультиплексор МП, который стробируется высоким уровнем с единичного выхода ТС, в ОЗУ ПК для накопления текущих дискретных значений J_i и графического отображения пика на мониторе или принтере. На выходе СЦС вырабатываются уровни положительных или отрицательных приращений амплитуды выходного сигнала МС. Отрицательные приращения подаются на вход вычитания СДП для анализа экстремумов — локальный или глобальный, а положительные приращения, стробируемые высоким уровнем с единичного выхода ТС, — на вход разрешения записи кода в РГМ. Так, для локального экстре-

мума 1 (рис. 1) значение кода, измеренное в точке В, больше значения в точке А, поэтому с выхода СЦС уровнем положительного приращения значение кода в точке В заносится в РГМ. При измерении в точках C, D, E значения $U_{\rm C} < U_{\rm B}$, $U_{\rm D} < \hat{U}_{\rm C}$, $U_{\rm E} < U_{\rm D}$, и на выходе СЦС вырабатываются сигналы отрицательных приращений, поступающие на вход вычитания СДП. Код в РГМ не изменяется и в нем сохраняется значение, измеренное в точке В. Поскольку на первый локальный экстремум приходится 5 измерительных точек (U_{вых.}4, рис. 1), в СДП код равен двоичному числу (5+2), а число отрицательных приращений 3, т.е. меньше числа допустимых приращений, то строб с выхода СДП не вырабатывается и первый локальный экстремум игнорируется. При следующем измерении в точке F значение $U_{\rm F} > U_{\rm E}$, и на выходе СЦС появится уровень положительного приращения, который разрешает занесение кода в точке F в РГМ, очищает содержимое СП, СДП и перезаписывает значение кода 2 в СДП, который необходим для определения ширины ЗАС.

При появлении второго локального экстремума 2, на который приходится 4 измерительные точки, описанные выше процессы повторяются. Второй локальный экстремум также игнорируется, так как число отрицательных приращений 2 меньше числа допустимых приращений (4+2).

После измерений в точках G, H, I на выходе СЦС вырабатываются уровни положительных приращений, в РГМ заносится код глобального максимума в точке I.

Далее после измерений в точках J, K на третьем отрицательном приращении, число которых 3 больше числа допустимых приращенй 2, на выходе СДП вырабатывается сигнал строба, который сбрасывает ТС и ТР. Высоким уровнем с инверсного выхода ТС, стробирующим МП и РГМ, код глобального максимума в точке I заносится через МП в ПК, а код в точке К после задержки переписывается в РГМ и используется при обратной развертке пика масс-спектра.

Высокий уровень с инверсного выхода ТР разрешает прохождение тактовых импульсов на вход вычитания РСР, выходной код которого уменьшается. Аналоговое напряжение ЦАП также уменьшается (U_{вых.}7), и развертка пика происходит в обратном направлении из точки К в точку G. При уменьшении напряжения развертки амплитуда пика увеличивается, значения кодов, измеренные в точках K, J, I, — $U_J > U_K$, $U_I > U_J$. На выходе СЦС вырабатываются положительные приращения, которые разрешают занесение кода в точках J, I в РГМ. После измерений в точках Н, G на выходе СЦС вырабатываются отрицательные приращения. На третьем измерении число отрицательных приращений с выхода СЦС (3) оказывается больше числа допустимых приращений (2), и на выходе СДП появляется сигнал строба, который устанавливает ТС и ТР в единичное состояние. Высокий уровень с единичного выхода ТС разрешает запись кода глобального максимума в точке I через МП в ПК и перепись кода в точке G в РГМ. Сигнал с единичного выхода ТР разрешает прохождение тактовых импульсов на вход сложения РСР. Код РСР возрастает, что приводит к увеличению выходного напряжения ЦАП, и развертка пика происходит в прямом направлении из точки G в точку К. Далее процесс слежения за глобальным максимумом осуществляется в автоматическом режиме, а ЗАС определяется точками G и K. При этом, как показано в [5], система с ЦЭР устойчива к изменению амплитуды и дрейфа пика во времени за счет периодической перезаписи значений глобального максимума в ходе развертки в прямом и обратном направлениях, а также при появлении локальных экстремумов на вершине пика. Для поиска и слежения за новой а.е.м. достаточно с ПК занести код начала выбранной а.е.м. в РСР.

обеспечения масс-спектро-Для работы метрической системы необходим ПК типа IBM PC 486 DX 2/4 и старше, sVGA-видеоадаптер с ОЗУ от 3 Мбайт, два параллельных порта "Centronics", операционная система WINDOWS 95 / 98, свободное место на жестком диске от 10 Мбайт, струйный принтер HP Deskjet 540 или аналогичный. ЦЭР реализован на микросхемах серии 1533. АЦП типа AD1385KD: 16 бит, время преобразования 0.1 мкс, диапазон входного напряжения +10 В. ЦАП типа AD569SD: 16 бит, время установления 2 мкс, диапазон выходного напряжения +10 В. Оба устройства производства фирмы "Analog Devices" (США).

Программное обеспечение написано на языке ТурбоПаскаль, версия 7.0.

выводы

Аппаратурная реализация масс-спектрометрической системы с применением ЦЭР позволяет проводить длительные исследования и технологические процессы в помещениях химических цехов и лабораторий при анализе одной или нескольких компонент с периодическим переключением развертки спектра масс. Масс-спектрометрическая система была апробирована при длительном анализе выбросов в атмосферу на содержание азота N₂ (28-я а.е.м.).

Быстродействие ЦЭР составляет 50 кГц при точности слежения за глобальным максимумом пика не хуже 0,0012 % [6], что позволяет осуществлять автоматический поиск и слежение при скоростях развертки до 200 а.е.м./с, когда длительность пиков может составлять менее 1 мс.

СПИСОК ЛИТЕРАТУРЫ

- 1. Слободенюк Г.И. Квадрупольные массспектрометры, М.: Атомиздат, 1974. 272 с.
- 2. Ланин Е.В., Масленников А.И. Автоматизация масс-спектрометрического эксперимента. Уфа: Башк. филиал АН СССР, 1986. 131 с.
- 3. Анишкевич Н.Н., Белозеров А.В., Наумов В.В. и др. // Управляющие системы и машины. 1990. № 1. С. 88–92.
- Анишкевич Н.Н., Белозеров А.В., Наумов В.В. // ПТЭ. 1988. № 5. С. 235.
- 5. Наумов В.В., Белозеров А.В., Гребенщиков О.А. и др. Система экстремального регулирования квадрупольного масс-спектрометра. А.с. СССР № 1795419 (1992) // Б. И. 1993. № 6. С. 211.
- 6. Белозеров А.В., Гребенициков О.А. Наумов В.В. // ПТЭ. 1993. № 5. С. 238.

Институт электроники НАН Беларуси, Минск

Материал поступил в редакцию 13.12.2000.

A SYSTEM FOR AUTOMATIC GLOBAL MAXIMUM SEARCH AND TRACKING OF MASS SPECTRAL PEAKS

V. V. Naumov, A. V. Belozerov, O. A. Grebenshchikov

The Institute of Electronics, National Academy of Science of Belarus, Minsk

The paper describes an algorithm and hardware of a digital extremum regulator which provides ignoring local extrema, automatic search and tracking of the global maximum of a mass spectral peak with an accuracy to within 0.0012 %, increased mass scanning speed up to 200 a.m.u./s, and good stability of regulation at a rate of 50 kHz.