ОРИГИНАЛЬНЫЕ СТАТЬИ =

УДК 621.383+537.533.3

© В. Д. Белов, Н. В. Мамро, М. И. Явор, Ю. В. Чижов

ЭНЕРГОАНАЛИЗАТОР ДЛЯ ФОТОЭЛЕКТРОННОЙ СПЕКТРОСКОПИИ НА ИСТОЧНИКАХ СИНХРОТРОННОГО ИЗЛУЧЕНИЯ

Разработана схема нового электростатического электронного энергоанализатора, предназначенного для решения задач фотоэлектронной спектроскопии с высокими угловым и энергетическим разрешениями и спектромикроскопии малых объектов на источниках синхротронного излучения. Энергоанализатор построен на комбинации полусферического энергоанализатора с полой цилиндрической иммерсионной линзой и предваряющего их 90-градусного электростатического дефлектора.

введение

Современные источники синхротронного излучения (СИ) обеспечивают большую интенсивность и энергетический диапазон фотонных пучков. Это дает толчок развитию новых методов исследования поверхностей материалов, таких как спектромикроскопия и фотоэлектронная спектроскопия с угловым разрешением. Приборами, используемыми в настоящее время на станциях СИ для измерений указанными методами, являются, как правило, обычные коммерчески доступные электронные спектрометры высокого энергетического разрешения, хотя такие приборы не в полной мере удовлетворяют специфическим требованиям, характер-

Рис. 1. Схематический вид энергоанализатора типа «Scienta», построенного на базе полусферического дефлектора

ным для двух вышеупомянутых методов. В первую очередь к этим требованиям относятся обеспечение высокой эффективности сбора электронов, вылетающих с субмикронных областей поверхности в экспериментах по фотоэлектронной спектромикроскопии, и возможность параллельного детектирования электронов в широком диапазоне пространственных углов в экспериментах с угловым разрешением. В качестве поясняющего примера можно рассмотреть классическую схему электронных спектрометров высокого разрешения, построенную на основе сочетания аксиально симметричной иммерсионной линзы с полусферическим энергоанализатором [1] (см. рис. 1). Такие спектрометры (например Scienta SES200 И SES300 [1]) обладают сверхвысоким энергетическим разрешением порядка 3 мэВ. Они могут использоваться как для энергоугловых исследований, так и для задач спектромикроскопии. Однако в первом случае они обеспечивают параллельное детектирование в весьма узком диапазоне углов, не превышающем 14°, а в последнем случае они позволяют собирать электроны в малом телесном угле, не превышающем 0.1 стерадиана.

Единственным типом энергоанализатора, специально предназначенным для углового анализа в широком диапазоне одновременно детектируемых углов вылета фотоэлектронов, является так называемый полярно-тороидальный анализатор [2, 3] (см. рис. 2). Однако он принципиально не может конкурировать с полусферическими энергоанализаторами по величине достигаемого энергетического разрешения.

В настоящей статье представлена схема энергоанализатора фотоэлектронов, в котором высокое разрешение по энергии сочетается с высоким пропусканием, необходимым для обоих рассматриваемых применений. Схема основана на комбинации (см. рис. 3, а) обычного полусферического

Рис. 2. Схематический вид 90-градусного по-лярно-тороидального энергоанализатора

Рис. 3. Вид предлагаемого энергоанализатора в изометрии — а) и «прозрачный» вид анализатора с шестью семействами траекторий (соответствующими трем различным начальным азимутальным углам и двум различным энергиям электронов), стартующими с протяженной прямоугольной площадки поверхности образца — б)

анализатора с полой цилиндрической иммерсионной линзой на его входе [4] и предваряющим их 90-градусным дефлектором, который позволяет использовать полусферический анализатор в многоканальном режиме захвата пучка анализируемых электронов с различных направлений. В этом режиме электроны не концентрируются в анализаторе вблизи одной центральной траектории, а входят в него в виде полого цилиндрического пучка вдоль параллельных направлений, образующих цилиндр, через круговую симметричную оси анализатора кольцеобразную щель, угловой раствор которой может достигать 180°.

Анализатор может использоваться в двух режимах работы спектрометра — со сбором электронов, вылетающих либо с протяженной площадки облучаемой фотонами поверхности (режим высокого углового разрешения), либо из малой области в большом телесном угле (режим спектромикроскопии). Переключение этих режимов выполняется с помощью одиночной линзы, расположенной перед входом в 90-градусный дефлектор. Диапазон анализируемых энергий фотоэлектронов для такого анализатора может составлять от нескольких эВ до 2000 эВ, что позволяет его использовать для исследования как валентных зон, так и основных уровней.

1. МНОГОКАНАЛЬНЫЙ РЕЖИМ РАБОТЫ ПОЛУСФЕРИЧЕСКОГО АНАЛИЗАТОРА

В многоканальном режиме электроны входят в полусферический анализатор не как узкий пучок вдоль одной главной траектории (классическая схема), а как полый цилиндрический пучок вдоль различных параллельных направлений, проходясквозь узкую кольцеобразную щельших диафрагму с угловым раствором в азимутальном направлении до 180° (рис. 3, б). Такой пучок перед входом в иммерсионную линзу и далее в полусферический анализатор формируется дефлектором, собирающим электроны, эмиттируемые с плоской поверхности образца вдоль всех азимутальных направлений (аналогично 90градусному полярно-тороидальному анализатору, показанному на рис. 2), и направляющим их вдоль образующих цилиндрической поверхности. Каждое начальное азимутальное направление распределения эмиттированных электронов соответствует определенному углу и определенной точке фокуса на входной щели полусферического анализатора и в итоге соответствующей ей конкретной точке кольцеобразного изображения, формируемого на выходе анализатора. Это позволяет использовать позиционно-чувствительный детектор для одновременного анализа энергетического спектра в полном диапазоне начальных углов

ось вращения

Рис. 4. Сечение анализатора меридиональной плоскостью, которая проходит через ось вращатальной симметрии системы. а) — Режим высокого углового разрешения (одиночная линза выключена, электроны собираются с протяженной площадки образца); б) — режим спектромикроскопии (одиночная линза включена, электроны собираются с малого участка поверхности обказанном энергетическом разрешении угловое разрешение составляет величину порядка 0.25° для электронов, собираемых с сти обозначены как A, B, C, D) показано на рис. 5

вылета электронов с поверхности образца. Дополнительной особенностью первой ступени сбора фотоэлектронов (дефлектора) является их предварительная фильтрация по энергиям перед входом в полусферический анализатор, что позволяет существенно повысить отношение сигнал/шум в регистрируемом спектре.

Предлагаемая модификация обычных схем электронных спектрометров требует замены осе-

симметричной иммерсионной линзы на линзу, фокусирующую полые цилиндрические пучки частиц. Линзы для фокусировки полых пучков, используемые в некоторых фотоэлектронных энергоанализаторах [5], как известно, обладают оптическими свойствами, аналогичными свойствам двумерных линз [6], и, таким образом, могут быть легко спроектированы с качеством, типичным для классических осесимметричных линз. Полая иммерсионная линза, кроме торможения электронного пучка перед входом в полусферический анализатор, также повышает энергетическую дисперсию, обеспечиваемую первым дефлектором, благодаря чему дополнительно увеличивается эффективность префильтрации по энергии на входной щели полусферического анализатора.

2. РЕЖИМ ВЫСОКОГО УГЛОВОГО РАЗРЕШЕНИЯ СПЕКТРОМЕТРА

Ввод фотонного излучения в любом режиме работы спектрометра может производиться через кольцеобразную щель в 90-градусном дефлекторе (рис. 3, а) в любом удобном азимутальном направлении, что позволяет изменять угол падения синхротронного излучения на образец от скользящего до нормального. Эмиттируемые электроны сначала проходят через одиночную линзу, расположенную перед 90-градусным дефлектором. В режиме высокого углового разрешения линза выключена. В этом случае электроны, испускаемые образцом в виде параллельного пучка, перпендикулярного оси симметрии вращения анализатора, фокусируются 90-градусным дефлектором в узкую кольцеобразную щель на входе полой иммерсионной линзы (рис. 4, а) и направляются вдоль образующих цилиндрической поверхности, коаксиальной оси вращения. Электроны, траектории которых образуют в меридиональной плоскости углы с этим перпендикулярным направлением больше 0.2-0.3°, не проходят через входную и выходную щели иммерсионной линзы (рис. 5). Таким образом, анализатор принимает первоначально дискообразной формы электронный пучок с узким угловым распределением в меридиональном направлении и с начальными азимутальными углами от нормальных к плоскости образца до скользящих. Электроны с разными азимутальными углами проходят через иммерсионную линзу к входной щели полусферического анализатора в различных меридиональных плоскостях и в результате фокусируются в различных точках, образующих круговую дугу на выходе анализатора. Таким образом, при установке на выходе анализатора позиционно-чувствительного детектора можно одновременно регистрировать энергетический спектр фотоэлектронов с полным набором

Рис. 5. Увеличенное изображение траекторий электронов в режиме высокого углового разрешения на входе в одиночную линзу (А), на входе в в иммерсионную линзу (В), в иммерсионной линзе (С), а также увеличенное изображение траекторий на входе в одиночную линзу в режиме спектромикроскопии (D)

начальных азимутальных углов. Энергетические спектры каждого фиксированного азимутального угла измеряются в радиальном направлении, в то время как угловая зависимость этих спектров измеряется по точкам коаксиальных круговых изображений, соответствующих различным энергиям.

Существует множество вариантов построения 90-градусного дефлектора, обеспечивающих фокусировку электронного пучка из параллельного в точку в меридиональном направлении на входную щель иммерсионной линзы. В варианте, показанном на рис. 3 и 4, внешний электрод дефлектора тороидальный — в меридиональной плоскости представляет собой четверть окружности радиусом, равным одной четверти диаметра тора, а внутренний электрод образован конической поверхностью, угол образующей которой составляет примерно 55° с осью анализатора. Другие возможные варианты представлены в работах [7, 8].

Параллельный пучок монохроматических электронов, стартующий с протяженной прямоугольной области образца, в результате фокусируется на выходе полусферического дефлектора не только в радиальном, но и в азимутальном направлении, как это показано на рис. 3, б. Отмеченное свойство позволяет получить, наряду с высокой чувствительностью, высокое энергетическое и высокое угловое разрешения системы.

Компактная конструкция анализатора упрощает задачу магнитной экранировки и размещение анализатора в рабочей зоне станции СИ.

Результаты численного моделирования, проведенного с помощью компьютерной программы SIMION 3D [9], показывают, что предлагаемый анализатор может обеспечить энергетическое разрешение $\Delta E/E=10^{-4}$, что позволяет получить абсолютную величину разрешения при среднем диаметре траектории пучка в полусферическом анализаторе порядка 75–150 мм на уровне 3–5 мэВ при энергии фотонов 20 эВ. При указанном энергетическом разрешении угловое разрешение составляет величину порядка 0.25° для электронов, собираемых с протяженного участка поверхности образца размером не менее 3×6 мм.

3. РЕЖИМ СПЕКТРОМИКРОСКОПИИ

В режиме спектромикроскопии параметры настройки всех частей анализатора остаются такими же, как и в режиме высокого углового и энергетического разрешений, но одиночная линза на входе в 90-градусный дефлектор теперь включена. Линза производит в меридиональной плоскости преобразование электронного пучка, эмиттированного из малой области поверхности образца, в параллельный пучок на входе в 90-градусный дефлектор (см. рис.4, б). При этом плоский раствор начальных углов вылета электронов в меридиональных направлениях достигает 10°, что соответствует полному телесному углу порядка 0.5 стерадиана при 180-градусном растворе анализатора по азимутальным углам. Относительное энергетическое разрешение анализатора сохраняется на прежнем уровне — порядка $\Delta E/E=10^{-4}$, что соответствует абсолютному энергетическому разрешению порядка 100 мэВ для начальных энергий фотоэлектронов 1 кэВ. Угловой акцептанс предлагаемого варианта анализатора в режиме спектромикроскопии приблизительно в 2.5 раза меньше углового акцептанса анализатора для спектромикроскопических исследований с 45-градусной секцией дефлектора, предложенной ранее в работах [7, 10]; тем не менее этот акцептанс в несколько раз больше акцептанса классических

высокоразрешающих энергоанализаторов на базе полусферического дефлектора.

ЗАКЛЮЧЕНИЕ

Энергоанализатор, рассмотренный в настоящей статье, позволяет сочетать высокое энергетическое разрешение с высокой эффективностью сбора фотоэлектронов, эмиттируемых образцом, благодаря чему обеспечивается существенное увеличение чувствительности анализа. Рост эффективности сбора и чувствительности достигается увеличением размеров области образца, с которой собираются электроны, и диапазоном одновременно детектируемых азимутальных углов в энергоугловом анализе, а также увеличением телесного угла сбора электронов, детектируемых в режиме спектромикроскопии. Следует отметить, что уникальные свойства предлагаемого анализатора основаны на комбинациях и сочетаниях электронно-оптических элементов, большинство которых широко используется в электронных спектрометрах высокого разрешения. Последнее обстоятельство существенно упрощает технологические проблемы, возникающие при производстве новых типов аналитических приборов.

СПИСОК ЛИТЕРАТУРЫ

1. Gelius U., Wannberg B. et al. // J. Electron Spectrosc. 1990. V. 52. P. 747–785.

- 2. *Smeenk R..G., Tromp R..M. et al.* // Nucl. Instrum. Meth.1982. V. 195. P. 581–586.
- 3. *Leckey R..C.J.* // J. Electron Spectr. 1987. V. 43. P. 183–214.
- 4. *Belov V.D. and Yavor M.I.* // Nucl. Instrum. Meth.1999. V. A427. P. 197–202.
- 5. *Engelhardt H.A., Bäck W. and Menzel D. //* Rev. Sci. Instrum. 1981. V. 52. P. 835–843.
- 6. Baranova L.A., Yavor M.I. and Yavor S.Ya. // Sov. Phys.–Tech. Phys.V. 35. P. 782–788.
- 7. Belov V.D. and Yavor M.I. // Proc. Conf. «Current status of synchrotron radiation in the world». Moscow, KSRS (2000) (в печати).
- 8. *Belov V.D. and Yavor M.I.* // J. Electron Spectrosc.1999. V. 104. P. 47–54.
- 9. Dahl D.A. SIMION 3D User's manual. Idaho National Engineering Lab., 1995. 291 p.
- 10. *Belov V.D. and Yavor M.I.* // Rev. Sci. Instrum. 2000. V. 71, N. 4. P. 1651–1655.

Институт аналитического приборостроения РАН, Санкт-Петербург (В. Д. Белов, Н. В. Мамро, М. И. Явор)

Санкт-Петербургский государственный университет (Ю. В. Чижов)

Материал поступил в редакцию 7.06.2000.

ENERGY ANALYZER FOR PHOTOELECTRON SPECTROSCOPY STUDIES AT SYNCHROTRON RADIATION SOURCES

V. D. Belov, N. V. Mamro, M. I. Yavor and Y. V. Chizhov¹

Institute for Analytical Instrumentation, Saint-Petersburg ¹ Saint-Petersburg State University

A new design of the electrostatic energy analyzer for photoelectron spectroscopy studies is proposed, that is especially suited for angle-resolved and spectromicroscopy studies at synchrotron radiation sources. The design is based on the combination of the hemispherical deflector with a hollow cylindrical immersion lens and a preliminary 90-degree deflector.