 ананияа. Ионно-одгичесап спстема, основы расчета п параметры. Печания Е.Ә.,
 1989, c.95-98.

 масс-спегтрометра высогого ралрегенпя пия хппиеского аналаа. Рассмотрена ме-

 пучка. попучены эначения всех геометрпиескв параметров систела п по́тенщиадов эдектродов. Лит. - 3 назв., ид. -1 .

СПММЕТРИपНЫИ ПРИЗМЕНННИ МАСС-СІІЕТРОМЕТР
ВЫСОКОГО РАЗРЕШЕНИИЯ ДЛЯ ХИМИЧЕСКОГО АНАЛИЗА. ИОННО-ОПТИЧЕСКАЯ СИСТЕМА, ОСНОВЫ РАСЧЕТА И ПАРАМЕТРЫ ${ }^{\circ}$

В отличие от секторных приборов характернои особенностьы призменннх ионнооптических оистем является рязделение диспергируших и фокусируших элементов, что позволяет наилучшим способом использовать свойства последних. Для получения дисперсии по массам прқменяотся мөгнитнне призмы с двухмерными полями, обладашщие угловои дисперсиеи, определяемой углом входа пучка и не зявисящей от размеров магнита [1]. Вследствие этого габариты магнитного анализатора определяются только средним радиусом траектарии в матнитном поле, т.е.по существу верхним пределом требуемого диапазона масс при воминальном ускоряопем вапряжении. В качестве коллиматорной фокусируюшеи линз используются малоаберрационнне трансаксиальвые устроиства, работашиие в режиме анаморфота [2]. Призменные системы обладашт следушцими существенвыми достоинствами: а) в средней плоскости абөррации привменных отклоняоцих систем отсутствушт; б) при определенных условиях может быть получево прямолинейное изображение выходной щели и осуществлена вертикальная фоку сировка пучка; в) удельная дисперсия (отношөние дисперсии к длине трвектории) может значительно превншать аналогичньи параметр секторннх приборов; г) теория органически учитывает ревльное распределение полей расселния, не трен буя введения каких-либо допущений; д) линия фокусов перпендикулярна среднеи траектории. Ввсокая дисперскя в сочетании с пространственной фокусировкой пучка и малостьы аберраций создает достаточнье основания для построения светосильных масс-спектромөтров с весқма высоко разрешавмеи способностьш.

В призменных масс-спектрометрах, построенных по симметричной схеме $[2]$, за счет второи әлектростатическои отклоняомей систеиы, расположеннои после магнитной призмв, происходит дополнительное увеличение дисперсии и значительғое расширение возможностей прибора при авализе метастабильных ионов.

```
Расчет иовно-оптическо# системв
macc-cпектрометра
```

Ионно-оптическая схема (ИОС) масс-спектрометра и ход лучеи в вертикяльной плоскости показаны на рисунке. Дентральной ее частьо является магнитная призма М. К призме с обеих сторон примнкашт два симметричных электростатических анализатора (ЭСА), в каждыи из которых входит трансаксиальная линза, образованная электродами 1, 2, 3, 4 и телескопическая скстема, состоящея из электродов $4,5,6$.

Магнитная призма
В основу расчета магнитнои призмн положено распредөление относительной напрнменности магнитного поля $h(x)$, аналогичное измеренному на приборе мхХЗІО со сходнои конфигурацией магнитных экранов. पисленньми методами определялось значение угла падения понного пучка на магнитнуш призму, удовлетворяющее условио телескопичмости магнитной призми, п әффективная шприна полосных наконечников магнита $S_{я ф}$, при которой радиус кривизнн тряекторий ионов ρ в областп однородного поля

Призменнни масс-спектрометр: а - ионно-оптическая схема; б - ход лучей в вертикальной плоскости

был бы равен ~ 300 мм.
В рассматриваемом случае условие телескопичности может быть записано следурщим образом [2]:

$$
\operatorname{ctg} \Theta_{1}=\Theta_{1}\left[1-\left(1+2 \operatorname{tg}^{2} \Theta_{1}\right) \tau\right]
$$

$$
\text { где } \tau=\frac{\int_{-\infty}^{\infty} h(x)(1-h(z)) d z}{\int_{-\infty}^{\infty} h(x) d z} \text {, }
$$

$$
S_{9 \dot{\infty}}=\int_{-\infty}^{\infty} h(x) d x
$$

Радиус кривизны связан с $S_{3 \phi}$ соотношением $\rho=\frac{S_{s \phi}}{2 \sin 0_{1}}$.
В результате расчета бнли получены следующие значения: $\Theta_{1}=50^{\circ} 07^{\prime}, S_{9 \varnothing}=$ $=462,3 \mathrm{Mm}, \rho=301,2 \mathrm{~mm}$.

После изготовления магнитнои призмы были произведены измерения краевого поля и расчеты повторены на основе истинного распределения. При этом получены следующие значения указанньх параметров: $O_{1}=50^{\circ} 03^{\prime}, S_{э \varphi}=461,4 \mathrm{mм}, \rho=301,2 \mathrm{mм}$.

Таким образом, отклонения в распределении магнитного поля от принятого распределения не повлияли существенннм образом на значения угла $\theta_{\text {, и }} S_{\text {эф, }}$ и внесения каких-либо изменений в конструкцию прибора не потребовалось.

Ионно-оптические параметры телескопических систем цилиндрических электростатических линз выбирались таким образом, чтобы масс-анализатор в целом представлял

собой ахроматичную систему, в которой отсутствовало бы искривление изображения.
Условие ахроматичности всей отклоннющей системы имеет вид ty $\Theta_{1}=\left(1-V_{6} / V_{4}\right)$ tg j [2], где V_{6} и V_{4} - потенциалы на электродах, соответственно, 6 и 4, отсчитаннне от потенциала того места, где скорость ионов равна нуло, j - угол преломления ионного пучка в первой телескопической системе, связанной с углом падения i соотношением $\frac{\sin i}{\sin j}=\sqrt{\frac{V_{6}}{V_{4}}}$.

При $\Theta_{1}=50^{\circ} 07^{\prime}$ получпм $i=64^{\circ} 56^{\prime}, \dot{j}=32^{\circ} 04^{\prime \prime} \frac{V_{6}}{V_{4}}=2,91$.
Расчет кардинальных элементов телескопической системы выполнялся в предположении бесконечно јзкого зазора между электродами, что является традиционным при расчете призменньх систем. При этом расчет ионно-оптических параметров электростатической системы цилиндрических линз проводился следущщим образом: по зяданному отношениш потенциалов на крайних электродах ${\underset{V}{6}}^{V_{4}}$ находились такие значения әффективной длины среднего электрода L^{*} и потенциала на нем V_{5}, чтобы система удовлетворяла условию телескопичности и условио отсутствия искривления изображения $H=-1$, где H - увеличение системы в направлении, перпендиқулярном к среднен плоскости. Вслед за этим определялисв значения всех остальных параметров телескопической системы. Факмиеская длина среднего электрода, заложенная в конструкцию прибора, определялась из равенства $L^{=}=L^{*}-r$. Здесь r - реальная величина зазора между электродами в приборе, равная в данном случае 2 мм.

Результатом расчета ионно-оптических пареметров трехәлектродной телескопическои системы явились следушие значения: $L^{*}=54 \mathrm{~mm}(L=52 \mathrm{Mm}) ; V_{5} / V_{4}=1,58$; $Z_{B}=-15 \mathrm{mм} ; H=-1,00 ; f=-25,2 \mathrm{mм} ; Z_{f}=-15,5 \mathrm{mм}$. Здесь Z_{B} - положение эффективнои плоскости преломления, f - фокусное расстояние цилиндрических линз; \boldsymbol{Z}_{f} - положение линейного фокуса.

Величины Z_{B} и Z_{f} отсчитываштся от центра среднего электрода электростатической телескопической системы.

Ввиду того, что наличие зазора является необходимым условием реализации расчетнои схемы масс-анализатора прибора, представляется врайне важным исследовать влияние величины r на значения основннх параметров прибора. Поскольку результаты этого исследования рассмотренн в отдельной статье [3] , приведем лишь некоторые наиболее существенные виводы. Так, например, оказалось, что при $r=$ $=2 \mathrm{mм}$, вертикальное увеличение в масс-анализаторе составляет $\boldsymbol{H}=-0,86$, что приводит к заметным аберрациям второго порядка малости. В режимах высокой и сверхвысокой разрешаших способностей их влияние становится весьма ощутимым (при $h_{\text {гор }}=1 \mathrm{mм}, h_{\text {верт }}=1 \mathrm{mм}$, дополнительное упирение пучка составляет ~ 8 мкм).

Точное выполнение условии телескопичности и равенства $H=-1$ возможно при небольшом изменении параметров существующей системы. В частности, это достигается путем увеличения длины среднего электрода до 54 мм (вместо 52 мм).

Трансаксиальные линзы
В основу расчета трансаксиальнои линзы положено требование сохранения вулевого потенциала на щелях источника и приемника и в области, занятой магнитнвм полем. Это условие, невыполнение которого чрезвнчайно осложняет конструкции прибора, может бнть удовлетворено, если отношение потенциалов на крайних әлектродах линзы V_{4} / V_{1} будет равно обратному отнопении потенциалов на крайних әлектродах телескопической системы V_{6} / V_{4}, т.е. $V_{4} / V_{1}=0,344$.

При расчете ионно-оптических параметров трехөлектродво』 трансакощальной
 $600 \mathrm{ma} \leqslant f_{t} \leqslant 700 \mathrm{~mm}$, где f_{t} - фокусное расстолнпе линзн.

Эказавнви условиям можво удовлетворить, выбрав значенпя радиусов кривляны әлектродов линзы п отношения потенциалов V_{3} / V_{1}. В результате получеви следуmize эвачения:

радпус серединн зазора мехду әлөктродами 4 п 5 - 210 мп;
радно медду электродөми 1 п 2-480 мм;
отвошевие $V_{3} / V_{1}=2,19$;

передвее фокусвое раостояние линзн $f_{t}=616 \mathrm{mм}$.
При этом ливейвая дисперскя стотемн $D_{A}=f t \frac{\cos \gamma}{\cos t} \operatorname{tg} \theta=1470 \mathrm{~mm}$, т.e.
 спектрометров со средвви радпусом траектории в магнитном поле 300 мм. Полученвые расчетиве значения положены в основу коноярукции масс-спектрометра

AnTEPATJPA

1. Кельман В.М., Родникова И.В.//ЕТФ, 1962. Т.32, /е 3.-С.269.
2. Келвман В.М. п др. Электронно-оптическже элемевты призменных спектрометров зарлгенных чеотиц. - Алыв-Ата: Наука, 1979.

