logo
blue band <-
  JOURNAL "NP" ISSUES

"Nauchnoe Priborostroenie", 2023, Vol. 33, no. 2.

ISSN 2312-2951

"NP" 2023 year Vol. 33 no. 2.,   ABSTRACTS

ABSTRACTS, REFERENCES

Yu. A. Titov, A. G. Kuzmin, N. A. Esikova

INVESTIGATION OF MASS-SPECTROMETRIC SYSTEMS USING SILICONE MEMBRANES AND
CAPILLARY FOR DIRECT INLET OF GAS SAMPLES

"Nauchnoe priborostroenie", 2023, vol. 33, no. 2, pp. 3—11.
 

The paper presents the results of a study of the gas permeability of thin silicone membranes used as part of a direct sample inlet system into an MS7-200 quadrupole mass spectrometer. Materials of 4 sorts were studied: Sylgard-184, PlatSet-30, Lasil-T4 and Lasil-C. The thickness of the fabricated membranes varied from 45 to 75 μm. PlatSet-30, 50 µm was determined to be the most permeable membrane. The mass spectra obtained using a membrane sample inlet system and a direct capillary sample inlet system were also compared. The following gases were used as the test ones: atmospheric air, sulfur dioxide in nitrogen, and pentane in air. The advantages of membrane inlet compared to capillary are shown, namely, an increase in sensitivity for individual components at low sample concentrations. The main disadvantage of silicone membranes is their rather high probability of damage when installed in a membrane inlet system.
 

Keywords: mass spectrometry, silicone membranes, membrane inlet, polydimethylsiloxane

Author affiliations:

Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia

 
Contacts: Titov Yuriy Alekseevich, toplm@mail.ru
Article received by the editorial office on 23.03.2023

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Elochin V.A., Ershov T.D., Elizarov A.Yu. [Use of membrane separator interface for mass spectrometry analysis of anaesthetic products in biological fluids]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2014, vol. 24, no. 2, pp. 118—122. (In Russ.). URL: http://iairas.ru/mag/2014/abst2.php#abst15
  2. Gorbazkiy V.V., Elochin V.A., Nikolaev V.I., Ershov T.D., Elizarov A.Yu. [Study of gases dissolved in seawater using a mass spectrometer with a membrane separator interface]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2016, vol. 26, no. 1, pp. 68—76. DOI: 10.18358/np-26-1-i6876 (In Russ.).
  3. Kogan V.T. Mass-spektrometriya. Osnovy, prilozheniya [Mass spectrometry. Basics, Applications]. SPb., Izd-vo Politechnicheskogo universiteta, 2008. 107 p. (In Russ.).
  4. Kuzmin A.G. Kvadrupol'nyy mass-spektrometr [Quadrupole mass spectrometer]. Patent ¹ 94763 RF, 27.05.2010. (In Russ.).
 

I. I. Ivanov, A. M. Baranov

STUDY OF THE INFLUENCE OF FLAMELESS CATALYTIC COMBUSTION OF HYDROGEN ON PLATINUM GROUP CATALYSTS ON PARAMETERS OF THERMAL CATALYTIC SENSORS

"Nauchnoe Priborostroenie", 2023, vol. 33, no. 2, pp. 12—23.
 

An investigation was conducted on the response of hydrogen catalytic sensors with platinum group catalysts (Pt+3Pd, Pt, Pd, Ir, and Rh) at room temperature. It was shown that the reaction of flameless catalytic combustion of hydrogen on Pt and Pt+3Pd catalysts occurs at a temperature of 20 ºC, which is manifested in the spontaneous heating of the sensitive element of the catalytic sensor and an increase in the resistance of the microheater. For the first time, the temperature of the microheater was measured, and it was shown that the temperature increased by 99 ºC and 84 ºC in the gas mixture containing 0.96% vol. of hydrogen for Pt and Pt+3Pd catalysts, respectively. A method for measuring the hydrogen concentration with a catalytic sensor without applying a heating voltage has been proposed.
 

Keywords: thermal catalytic hydrogen sensor, platinum group catalysts, low-temperature catalytic combustion, reaction self-initiation temperature

Author affiliation:

Moscow Aviation Institute (National Research University), Moscow, Russia

 
Contacts: Ivanov Ivan Ivanovich, i.ivan1993@yandex.ru
Article received by the editorial office on 28.03.2023

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Noussan M., Raimondi P.P., Scita R., Hafner M. The role of green and blue hydrogen in the energy transition –
    a technological and geopolitical perspective. Sustainability. 2021, vol. 13, iss. 1, id 298. DOI: 10.3390/su13010298
  2. Mitrova T., Gayda I., Grushevenko E. et al. Decarbonization of oil and gas industry: International experience and Russian priorities. Energy Center of Moscow State University SKOLKOVO [Electronic resource]. URL: //energy.skolkovo.ru/downloads/documents/SEneC/Research/SKOLKOVO_EneC_Decarbonization_of_oil_and _gas_EN_22032021.pdf (accessed: 09.03.2023).
  3. Darmadi I., Anggoro F., Nugroho A., Langhammer C. High-performance nanostructured palladium-based hydrogen sensors – current limitations and strategies for their mitigation. ACS Sens, 2020, vol. 5, iss. 11, pp. 3306—3327. DOI: 10.1021/acssensors.0c02019
  4. Li Zh., Yao Zh., Haidry A.A., Plecenik T., Xie L., Sun L. Fatima Q. Resistive-type hydrogen gas sensor based on TiO2. International Journal of Hydrogen Energy, 2018, vol. 43, iss. 45, pp. 21114—21132.
    DOI: 10.1016/j.ijhydene.2018.09.051
  5. Zhang T., Zhou Y., Liu P., Hu J. A novel strategy to identify gases by a single catalytic combustible sensor working in its linear range. Sensors & Actuators: B. Chemical, 2020, vol. 321, Id 128514. DOI: 10.1016/j.snb.2020.128514
  6. EN 1127-1:2019 Explosive atmospheres - Explosion prevention and protection - Part 1: Basic concepts and methodology. URL:
    https://standards.iteh.ai/catalog/standards/cen/0e501f7 b-b51c-44a2-bd24-6f5af92f8b86/en-1127-1-2019
  7. Aliyu F., Sheltami T. Development of an energy-harvesting toxic and combustible gas sensor for oil and gas industries. Sensors and Actuators B. Chemical, 2016, vol. 231, pp. 265—275. DOI: 10.1016/j.snb.2016.03.037
  8. Baranov A.M., Akbari S., Spirjakin D., Bragar A., Kare-lin A. Feasibility of RF energy harvesting for wireless gas sensor nodes. Sensors and Actuators A. Physical, 2018, vol. 275, pp. 37—43. DOI: 10.1016/j.sna.2018.03.026
  9. Trochimczyk A.H., Chang J., Zhou Q., et al. Catalytic hydrogen sensing using microheated platinum nanoparticle-loaded graphene aerogel. Sensors and Actuators B. Chemical, 2015, vol. 206, pp. 399—406. DOI: 10.1016/j.snb.2014.09.057
  10. GAZSENSOR: STK-1-H2 Informanalitika sensor vodoroda H2 [STK-1-H2 Information analyst hydrogen sensor H2]. (Electronic resource) URL:
    https://gassensor.ru/catalog/vodorod/stk-1-n2 (accessed: 09.03.2023). (In Russ.).
  11. SG sensorgas.ru: Sensory i bloki datchikov dlya priborov gazovogo analiza. TGS6812-D00 sensor (datchik) vodoroda, metana i szhizhennogo uglevodorodnogo gaza termokhimicheskii [Sensors and sensor blocks for gas analysis devices. Thermochemical TGS6812-D00 sensor of hydrogen, methane and liquefied hydrocarbon gas]. (Electronic resource) https://www.sensorgas.ru/tgs6812-d00-sensor-vodoroda-metana-szhizhennogo-uglevodorodnogo-gaza.html (accessed: 09.03.2023). (In Russ.).
  12. Talipov V.A., Baranov A.M., Ivanov I.I., Yangyang Ju. [Study of the activity of thermocatalytic hydrogen sensors at negative ambient temperatures]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2023, vol. 33, no. 1, pp. 30—42. URL: http://www.iairas.ru/mag/2023/full1/Art3.pdf
  13. Ivanov I.I., Baranov A.M., Lyamin A.N., Mironov S.M. [Investigation of the sensitivity and selectivity of a thermocatalytic sensor of hydrogen]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2022, vol. 32, no. 2, pp. 42—54. DOI: 10.18358/np-32-2-i4254 (In Russ.).
  14. Haruta M., Sano H. Catalytic combustion of hydrogen I — its role in hydrogen utilization system and screening of catalyst materials. Int. J. Hydrogen Energy, 1981, vol. 6, pp. 601—608. DOI: 10.1016/0360-3199(81)90025-2
  15. Kalinin A.P., Rubtsov N.M., Vinogradov A.N., Egorov V.V., Matveeva N.A., Rodionov A.I., Sazonov A.Yu., Troshin K.Ya., Tsvetkov G.I., Chernysh V.I. [Ignition of hydrogen-hydrogen-carbon mixtures (C1-C6) - air above the surface of palladium at pressures of 1-2 atm]. Khimicheskaya fizika [Chemical physics], 2020, vol. 39, no. 5, pp. 23—32. URL: https://sciencejournals.ru/cgi/ getPDF.pl?jid=khimfiz&year=2020&vol=39&iss=5&file=KhimFiz2005005Kalinin.pdf (In Russ.).
  16. Karpov-Sensor. Proizvodstvo termokataliticheskikh sensorov goryuchikh gazov [Production of thermocatalytic sensors of combustible gases]. [Electronic resource]. URL: http://karpov-sensor.com/ (accessed: 09.03.2023). (In Russ.).
  17. Ivanov I.I., Baranov A.M., Talipov V.A., Mironov S.M., Akbari S., Kolesnik I.V., Orlova E.D., Napolskii K.S. Investigation of catalytic hydrogen sensors with platinum group catalysts. Sensors and Actuators B. Chemical, 2021, vol. 346, id 130515. DOI: 10.1016/j.snb.2021.130515
  18. Ivanov I.I., Baranov A.M., Talipov V.A., Mironov S.M., Kolesnik I.V., Napolskii K.S. [development of effective sensors for detecting pre-explosive H2 concentrations]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2021, vol. 31, no. 3, pp. 25—36. DOI: 10.18358/np-31-3-i2536 (In Russ.).
  19. Shebeko Yu.N., Trunev A.V., Shepelin V.A., Navtsenya V.Yu., Zaitsev A.A. [Investigation of flameless combustion of hydrogen on the surface of a hydrophobized catalyst]. Fizika goreniya i vzryva [Combustion and explosion physics], 1995, vol. 31, no. 5, pp. 37—38.
    URL: https://www.sibran.ru/upload/iblock/016/0162841ed056772ba6daafac130536a3.pdf (In Russ.).
 

T. V. Osipova, A. M. Baranov, I. I. Ivanov

THE PRINCIPAL COMPONENT ANALYSIS AS A METHOD FOR DETERMINING THE HYDROGEN CONCENTRATION IN MULTICOMPONENT MIXTURES

"Nauchnoe Priborostroenie", 2023, vol. 33, no. 2, pp. 24—34.
 

In this study, the possibility of determining the concentration of hydrogen in a multicomponent gas mixture using the principal component method is investigated. Based on the results obtained, it was found that, regardless of the number of sensors, the obtained values of the main components form linear dependences of concentration, that are proportional to each other. At the same time, a different concentration of hydrogen, pure or in
a multicomponent mixture, is uniquely determined. The research methodology is defined, and the results are presented, showing that the principal component method allows both to visually distinguish the responses of sensors at different concentrations, and to obtain the concentration value using additional mathematical operations.
 

Keywords: thermocatalytic sensor, principal component analysis, determining concentration, hydrogen, data processing

Author affiliations:

Moscow Aviation Institute (National Research University), Moscow, Russia

 
Contacts: Osipova Tat'yana Vladislavovna, t.osipova.95@mail.ru
Article received by the editorial office on 14.02.2023

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Baranov A.M., Osipova T.V. [Recent trends in the development of sensors for pre-explosive concentrations of flammable gases and vapors of flammable liquids (review)]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2021, vol. 31, no. 4, pp. 3—29. DOI: 10.18358/np-31-4-i329 (In Russ.).
  2. Ma Y., Kaczynski J., Ranacher C., Roshanghias A., Zauner M., Abasahl B. Nano-porous aluminum oxide membrane as filtration interface for optical gas sensor packaging. Microelectronic Engineering, 2018, vol. 198, pp. 29—34. DOI: 10.1016/j.mee.2018.06.013
  3. Somov A., Karelin A., Baranov A., Mironov S. Estimation of a gas mixture explosion risk by measuring the oxidation heat within a catalytic sensor. IEEE Transactions on Industrial Electronics, 2017, vol. 64, no. 12, pp. 9691—9698. DOI: 10.1109/TIE.2017.2716882
  4. Spirjakin D.N., Baranov A.M. [Identification of combustible gases by catalytic sensors]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2022, vol. 32, no. 1, pp. 21—34. DOI: 10.18358/np-32-1-i2134 (In Russ.).
  5. Novikov S.P., Plugotarenko N.K. [Algorithms for processing the response data of sensitive elements of gas sensors in chemically aggressive environments]. Vestnik MGTU im. N.Eh. Baumana. Seriya "Priborostroenie" [Herald of the Bauman Moscow State Technical University. Series Instrument Engineering], 2020, no. 4 (133). DOI: 10.18698/0236-3933-2020-4-153-164 (In Russ.).
  6. Kalinowski P., Wozniak L., Strzelczyk A., Jasinski P., Jasinski G. Efficiency of linear and non-linear classifiers for gas identification from electrocatalytic gas sensor. Metrology and Measurement Systems, 2013, vol. 20, no. 3, pp. 501—512. DOI: 10.2478/mms-2013-0043
  7. Sysoev V.V., Zyuryukin Yu.A. [Electronic Nose Multi-Sensor Gas Recognition Systems: Literature Summary]. Vestnik SGTU [SGTU Bulletin], 2007, vol. 2, no. 1 (24), pp. 111—119. (In Russ.). URL: https://www.elibrary.ru/item.asp?id=12793666
  8. Osipova T.V., Baranov A.M., Ivanov I.I. [Principal component analysis as an alternative algorithm for processing data of thermocatalytic sensor]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2022, vol. 32, no. 1, pp. 77—92. DOI: 10.18358/np-32-1-i7792 (In Russ.).
  9. Kravchenko E.I., Petrov V.V., Varezhnikov A.S. [The development of gas recognition technique using multysensor system for air monitoring]. Inzhenernyi vestnik Dona [Engineering journal of Don], 2012, vol. 23, no. 4-2. URL: http://www.ivdon.ru/ru/magazine/archive/n4p2y2012/1345 (In Russ.).
  10. Popadko N.V., Rozhnyatovsky G.I., Daudi D.I. [Hydrogen energy and the global energy transition]. Innovatsii i investitsii [Innovation and investment], 2021, no. 4, pp. 59—64. URL: https://elibrary.ru/item.asp?id=45723109 (In Russ.).
  11. Skolkovo Moscow School of Management. Dekarbonizatsiya neftegazovoi otrasli: mezhdunarodnyi opyt i prioritety Rossii. Tsentr ehnergetiki MSHU SKOLKOVO [Decarbonization of the oil and gas industry: international experience and priorities of Russia. Energy Center MSH SKOLKOVO], 2021. Available at: https://energy.skolkovo.ru/downloads/documents/SEneC/Research/SKOLKOVO_EneC_Decarbonization_of_oil _and_gas_RU_22032021.pdf (accessed 09.02.2023). (In Russ.).
  12. Karpov-sensors. Proizvodstvo termokataliticheskikh sensorov goryuchikh gazov [Production of thermocatalytic sensors of combustible gases]. Available at: http://karpov-sensor.com/ (accessed 09.02.2023). (In Russ.).
  13. Ivanov I., Baranov A., Mironov S., Akbari S. Selective low-temperature hydrogen catalytic sensor. IEEE Sensors Letters, 2022, vol. 6, no. 5, pp. 1—4. DOI: 10.1109/LSENS.2022.3168230
  14. Ivanov I.I., Baranov A.M., Talipov V.A., Mironov S.M., Kolesnik I.V., Napolskii K.S. [Development of effective sensors for detecting pre-explosive H2 concentrations]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2021, vol. 31, no. 3, pp. 25—36. DOI: 10.18358/np-31-3-i2536 (In Russ.).
  15. Scikit-learn. Scikit-learn: machine learningin in Python. Available at: https://scikit-learn.org (accessed 09.02.2023).
 

V. V. Manoilov, A. G. Borodinov, A. I. Petrov, I. V. Zarutsky, V. E. Kurochkin

MACHINE LEARNING ALGORITHM FOR THE CONSTRUCTION OF A NUCLEOTIDE SEQUENCE
IN THE NANOFOR SPS SEQUENCER USING THE PRINCIPAL COMPONENT ANALYSIS

"Nauchnoe Priborostroenie", 2023, vol. 33, no. 2, pp. 35—48.
 

The development of information technologies and mathematical methods for data processing plays an essential role in establishing various features in the analyzed nucleic acids and trends in their modifications. An important stage in the technology of massively parallel sequencing of nucleic acids is the process of constructing a nucleotide sequence based on the measured intensities of fluorescence signals. The paper considers an algorithm for generating a training sample, that is used to construct a sequence of letter codes of DNA nucleotides via the intensities of fluorescence signals obtained directly from the results of image processing. These signals were not corrected for the physical and chemical characteristics of the sequencing process. The algorithm uses principal component analysis and a k-means classifier. With the help of such a classifier, the data after transformation using the method of principal components is separated into four independent classes according to the number of letter codes of DNA nucleotides. With the help of the training sample, the class to which the vector containing the fluorescence signal data belongs, and hence its letter code, are determined. The algorithm's performance on a test sample revealed great outcome reliability.
 

Keywords: nucleic acid sequencing, mathematical processing and classification of multivariate data, principal component analysis, machine learning

Author affiliations:

Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia

 
Contacts: Manoilov Vladimir Vladimirovich, manoilov_vv@mail.ru
Article received by the editorial office on 16.03.2023

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Manoilov V.V., Borodinov A.G., Zarutsky I.V., Petrov A.I., Kurochkin V.E. [Algorithms of Processing Fluorescence Signals for Mass Parallel Sequencing of Nucleic Acids]. Trudy SPIIRAN [Informatics and Automation (SPIIRAS Proceedings)], 2019, vol. 18, no. 4, pp. 1010—1036. DOI: 10.15622/sp.2019.18.4.1010-1036 (In Russ.).
  2. Manoilov V.V., Borodinov A.G., Saraev A.S., Petrov A.I., Zarutskii I.V., Kurochkin V.E. Algorithms for image processing in a Nanofor SPS DNA sequencer. Technical Physics, 2022, vol. 67, no. 4, pp. 304—311.
    DOI: 10.1134/S1063784222050061
  3. Ghannam R.B., Techtmann S.M. Machine learning applications in microbial ecology, human microbiome studies, and environmental monitoring. Computational and Structural Biotechnology Journal, 2021, vol. 19, pp. 1092—1107. DOI: 10.1016/j.csbj.2021.01.028
  4. Kircher M., Stenzel U., Kelso J. Improved base calling for the Illumina Genome analyzer using machine learning strategies. Genome Biol., 2009, vol. 10, id. R83. DOI: 10.1186/gb-2009-10-8-r83
  5. Tegfalk E. Application of machine learning techniques to perform base-calling in next-generation DNA sequencing. Thesis in degree project engineering physics KTH Royal Institute of Technology, Stockholm, Sweden. KTH Royal Institute of Technology School of Engineering Sciences, 2020. 53 p. URL: https://www.diva-portal.org/smash/get/diva2:1465444/FULLTEXT01.pdf
  6. Borodinov A., Manoilov V., Zarutsky I., Petrov A., Kurochkin V., Saraev A. Machine learning in base-calling for next-generation sequencing methods. Informatics and Automation  ('Trudy SPIIRAN'), 2022, vol. 21, no. 3, pp. 572—603. DOI: 10.15622/ia.21.3.5
  7. Pomerantsev A. Metod glavnykh komponent. (Setevoi resurs) Rossiiskoe khemometricheskoe obshchestvo. Uchebniki [Method of main components. (network resource) Russian Chemometric Society. Textbooks]. URL: https://rcs.chemometrics.ru/ru/books (In Russ.).
  8. Jolliffe I.T. Principal Component Analysis. 2nd edition. Springer, 2002. 518 p.
  9. Martinez W.L., Martinez A.R. Exploratory Data Analysis with MATLAB. A CRC Press Company Boca Raton, London, New York, Washington, D.C., 2005. 363 p.
  10. Kaufman L., Rousseeuw, P.J. Finding Groups in Data: An Introduction to Cluster Analysis. Hoboken, New Jersey, John Wiley & Sons Inc, 2009. 342 p.
 

A. L. Bulyanitsa

ESTIMATION OF THE PROBABILITY OF ERRONEOUS INTERPRETATION OF THE RESULTS OF PCR ANALYSIS.
PART 1. FAILURES OF TECHNICAL DEVICES

"Nauchnoe Priborostroenie", 2023, vol. 33, no. 2, pp. 49—61.
 

Based on recognized probabilistic models of the distribution of time periods to the first failure of technical devices, an estimate of the probability of obtaining an erroneous result of genetic analysis during real-time polymerase chain reaction is given. Models of the probability distribution density of the time periods to the first failure from a set of Weibull distributions with different parameters are used. Most of the time estimates are based on the Weibull distribution with parameter 1, which coincides with the most recognized exponential law of the distribution of time periods to failure.
Cases of short uptimes (from 100 to 1200 hrs) of the device are investigated. Using the concept of a "weak link" as the most likely failing unit, or an element in this unit, it is confirmed that in the conditions under consideration, in more than 65% of cases, the failure of the device is caused by the failure of this element. The often used hypothesis of failure of an only element, for example, for constructing a table of fault functions, is insufficiently justified even for short uptimes of the device. The estimates obtained can be a guideline for predicting uptime in conditions when replacing elements (unit) is practically impossible.
In the case of using a probabilistic model – the Weibull distribution with parameters 1.5 and 2, which implies an increase in the probability of failure over long periods, – the estimated values of the probability of failure for continuous operation time periods up to 700 hrs are reduced by about half compared to the exponential law.
 

Keywords: time to the first failure, Weibull distribution, exponential distribution, conditional probability, Bayes formula, "weak link"

Author affiliations:

Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia

 
Contacts: Bulyaniza Anton Leonidovich, antbulyan@yandex.ru
Article received by the editorial office on 05.04.2023

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Druzhinin G.V. Chelovek v modelyakh tekhnologii. Chast' I: Svoistva cheloveka v tekhnologicheskikh sistemakh [The man in the models of technology. Part I: Human Properties in Technological Systems]. Moscow, MIIT Publ., 1996. 124 p. (In Russ.).
  2. Konyakhin I.A., Zvereva E.N. Tipovye raschety po opredeleniyu kharakteristik nadezhnosti optiko-ehlektronnykh priborov [Typical calculations for determination of reliability characteristics of optical-electronic devices]. Saint Petersburg, Universitet ITMO, 2016. 65 p. (In Russ.).
  3. Efimov A.V. Nadezhnost' i diagnostika sistem ehlektrosnabzheniya zheleznykh dorog: Uchebnik dlya vuzov zh/d transporta [Reliability and diagnostics of railway power supply systems: Textbook for universities of railway transport]. A.V. Efimov, A.G. Galkin, eds. Moscow, UMK MPS Rossii, 2000. 510 p. (In Russ.).
  4. Spravochnik. Nadezhnost' "ERI" [Reference book. Reliability of "ERI"]. 2004. 620 p. URL: https://areliability.com/wp-content/uploads/2018/08/Intensivnost-otkazov-elektroradioizdelij.pdf (accessed 07.03.2023) (In Russ.).
  5. Gurvich I.B., Syrkin P.Eh., Chumak V.I. Ehkspluatatsionnaya nadezhnost' avtomobil'nykh dvigatelei [Operational reliability of automotive engines]. Moscow, Transport Publ., 1994. 144 p. (In Russ.).
  6. Ishanin G.G. Istochniki izlucheniya. Uchebnoe posobie [Radiation sources. Tutorial]. G.G. Ishanin, V.V. Kozlov, eds. Saint Petersburg, Universitet ITMO, 2004. 395 p. (In Russ.).
  7. Aksenenko M.D. Priemniki opticheskogo izlucheniya: Spravochnik [Optical radiation receivers: Reference book]. M.D. Aksenenko, M.D. Baranochnikov, eds. Moscow, Radio i Svyaz' Publ., 1987. 296 p. (In Russ.).
  8. Pribory optoehlektronnye. Izluchateli poluprovodnikovye. Optopary [Optoelectronic devices. Semiconductor emitters. Optopars]. Saint Petersburg, RNII "Ehlektronstandart" Publ., 1992. 250 p. (In Russ.).
  9. Ishanin G.G. Priemniki izlucheniya [Radiation receivers]. G.G. Ishanin, Eh.D. Pankov, V.P. Chelibanov, eds. Saint Petersburg, Papirus Publ., 2003. 528 p. (In Russ.).
  10. DOMA35.RU. Pervyi servis-spravochnik po nastroike komp'yuterov i programmnykh produktov [The first service guide for configuring computers and software products]. URL: https://doma35.ru/computers/srednyaya-narabotka-na-otkaz-kompyutera (accessed 07.03.2023) (In Russ.).
  11. Mourad S., Zorian Y. Principles of testing electronic systems. John Wiley&Sons, 2000. 420 p.
  12. Agrawal V.D., Bushnell M.L. Essentials of electronic testing for digital, memory and mixed-signal VLSI circuits. Kluwer academic publishers, 2001. 690 p. DOI: 10.1007/b117406
  13. Skobtsov V.Yu., Skobtsov Yu.A. Logicheskoe modelirovanie i testirovanii tsifrovykh ustroistv [Logical Modeling and Testing of Digital Devices]. Donetsk, IPMM NANU, DonNTU, 2005. 436 p. (In Russ.).
  14. Kang S., Lebeltvici Y. CMOS digital integrated circuits Analysis and design. Boston, McGrow-Hill, 1999.
  15. Barashko A.S., Skobtsov Yu.A., Speranskii D.V. Modelirovanie i testirovanie diskretnykh ustroistv [Simulation and testing of discrete devices]. Kyiv, Naukova dumka, 1992. 288 p. (In Russ.).
  16. Yablonskii S.V. Vvedenie v diskretnuyu matematiku [Introduction to Discrete Mathematics]. Moscow, Nauka Publ., 1979. 272 p. (In Russ.).
  17. Breuer M.A., Friedman A.D., Abramovici M. Digital System Testing and Testable Design. New York, Computer Science Press, 1990. 652 p.
 

A. A. Gavrishev

ON THE USE OF HYPERCHAOTIC SIGNALS FOR DATA
TRANSMISSION IN RADIO COMMUNICATION SYSTEMS

"Nauchnoe Priborostroenie", 2023, vol. 33, no. 2, pp. 62—74.
 

Studies have been conducted on the use of hyperchaotic signals generated using various hyperchaotic signal generators (the hyperchaotic Lorentz system, the hyperchaotic Liu system, the hyperchaotic complex system, and the hyperchaotic memristor system) in order to ensure the secrecy and reliability of data transmission operations in radio communication systems. Their properties were evaluated using BDS-statistics and peak factor indicators. As a result of the conducted studies, it was found that the studied hyperchaotic signals, with the exception of those formed on the basis of a hyperchaotic memristor system, generally have an acceptable value of BDS-statistics, characterized by significantly greater secrecy from an outside observer than classical chaotic signals, and the peak factor. The analysis shows that hyperchaotic signals formed on the basis of the Liu hyperchaotic system are the most suitable of those considered for the purposes of ensuring the secrecy and reliability of data transmission in radio communication systems, since their value of BDS-statistics is closest to white noise and the peak factor has an acceptable value. The conducted research makes it possible to supplement and expand knowledge about hyperchaotic signals for covert and reliable data transmission in radio communication systems. Based on these results and conclusions from well-known works [3—8], the authors consider it expedient to use them for the designated purposes, along with other widely used methods.
 

Keywords: generator, hyperchaotic signals, communication systems, stealth, reliability

Author affiliations:

Institute of cyber intelligence systems, NRNU MEPhI, Moscow, Russia

 
Contacts: Gavrishev Aleksej Andreevich, alexxx.2008@inbox.ru
Article received by the editorial office on 30.01.2023

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Magnitskii N.A. [On the nature of hyperchaos in nonlinear systems of differential equations]. Trudy ISA RAN [Proceedings of the Institute for systems analysis Russian academy of sciences], 2022, vol. 72, no. 2, pp. 47—51. DOI: 10.14357/20790279220205 (In Russ.).
  2. Kuznetsov A.P., Sedova Yu.V. [Autonomous and coupled models for hyperchaos]. Vestnik SGTU [SGTU Bulletin], 2015, vol. 2, no. 2 (79), pp. 26—31. URL: https://www.elibrary.ru/item.asp?id=23497327 (In Russ.).
  3. Wang G., He H. A new hyperchaotic sequence for DS-UWB systems. 11th IEEE Singapore International Conference on Communication Systems. Guangzhou, China, 2008, pp. 54—58. DOI: 10.1109/ICCS.2008.4737142
  4. Ivanyuk P.V., Politansky L.F., Politansky R.L. [Four-variable differential equation-based chaotic signal generator]. Prikladnaya radioehlektronika [Applied Radioelectronics], 2012, vol. 11, no. 3, pp. 347—353. (In Russ.).
  5. Ivanyuk P.V., Politansky L.F., Politansky R.L., Elyashiv O.M. [Chaotic masking of information signals using generator based on the Liu system]. Tekhnologiya i konstruirovanie v elektronnoi apparature [Technology and design in electronic equipment], 2012, no. 3, pp. 11—17. URL: https://www.elibrary.ru/item.asp?id=19104496 (In Russ.).
  6. Li S., Lian H., Zhao Y., Wu Z. Hyperchaotic spread spectrum sequences selection and its application in DS-CDMA system. Radioelectronics and Communications Systems, 2015, no. 9, pp. 404—410.
    DOI: 10.3103/S0735272715090022
  7. Sadoudi S., Fennouh I., Tanougast C. Hyperchaos-based spreading codes generator for DS-CDMA communication systems. Journal of Circuits, Systems and Computers, 2018, vol. 27, no. 13, id. 1850207. DOI: 10.1142/S0218126618502079
  8. Bonny T. Chaotic or hyper-chaotic oscillator? Numerical solution, circuit design, MATLAB HDL-coder implementation, VHDL code, security analysis, and FPGA realization. Circuits, Systems, and Signal Processing, 2021, no. 40(6), pp. 1061—1088. DOI: 10.1007/s00034-020-01521-8
  9. Alibraheemi H.M.M., Al-Gayem Q., Hussein E.A.R. Four dimensional hyperchaotic communication system based on dynamic feedback synchronization technique for image encryption systems. International Journal of Electrical and Computer Engineering (IJECE), 2022, vol. 12, no. 1, pp. 957—965. DOI: 10.11591/ijece.v12i1.pp957-965
  10. Barboza R. Dynamics of a hyperchaotic Lorenz system. International Journal of Bifurcation and Chaos, 2007, vol. 17, no. 12, pp. 4285—4294. DOI: 10.1142/S0218127407019950
  11. Barboza R. Diffusive synchronization of hyperchaotic Lorenz systems. Mathematical Problems in Engineering, 2009, vol. 4, id. 174546. DOI: 10.1155/2009/174546
  12. Gavrishev A.A., Osipov D.L. [Application of the ScicosLab software package for construction and analysis wireless communication systems on the example of chaotic signal generators]. Innovatsii v obrazovanii [Innovation in Education], 2020, no. 3, pp. 122—136. (In Russ.). URL: https://www.elibrary.ru/item.asp?id=42925965
  13. Mahmoud G.M., Ahmed M.E., Sabor N. On autonomous and nonautonomous modified hyperchaotic complex Lu systems. International Journal of Bifurcation and Chaos, 2011, vol. 21, no. 7, pp. 1913—1926. DOI: 10.1142/S0218127411029525
  14. Sahin M.E., Guler H., Hamamci S.E. Design and realization of a hyperchaotic memristive system for communication system on FPGA. Traitement du Signal, 2020, vol. 37, no. 6, pp. 939—953. DOI: 10.18280/ts.370607
  15. Vasyuta K.S., Ozerov S.V., Zots F.F. [Analyzing the bandwidth and stealth of a MIMO radio system on a chaotic carrier]. Sistemi obrobki ³ nformats ³¿ [Information Processing Systems], 2012, no. 9 (107), pp. 21—24. (In Russ.).
  16. Vasyuta K.S. [Classification of processes in information and communication radio engineering systems using BDS statistics]. Problemy telekommunikatsii [The problems of Telecommunications], 2012, no. 4, pp. 63—71. (In Russ.). URL: http://scipeople.ru/publication/114471/
  17. Vasyuta K.S., Ozerov S.V., Korolyuk A.N. [Features of construction of steganographic radio communication systems]. Problemy telekommunikatsii [The problems of Telecommunications], 2012, no. 3, pp. 94—104. (In Russ.). URL: http://scipeople.ru/publication/113082/
  18. Gavrishev A.A. [Modeling and quantitative and qualitative analysis of common secure communication systems]. Prikladnaya informatika [Journal of applied informatics], 2018, vol. 13, no. 5 (77), pp. 84—122. (In Russ.). URL: https://www.elibrary.ru/item.asp?id=36369561
  19. Osipov D.L., Gavrishev A.A. [Analysis of the use of chaotic signals filtered with a bandpass filter for data transfer operation in radio communication systems]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2021, vol. 31, no. 2, pp. 93—104. DOI 10.18358/np-31-2-i93104 (In Russ.).
  20. Loginov S.S. Tsifrovye radioehlektronnye ustroistva i sistemy s dinamicheskim khaosom i variatsiei shaga vremennoi setki. Diss. dokt. techn. nauk [Digital avionics and systems with dynamic chaos and variation in time grid pitch. Doct. techn. sci. diss.]. Kazan, 2015. 228 p. (In Russ.).
  21. Gavrishev A.A., Gavrishev A.N. [To the question of calculating the crest factor values of signals generated by common hidden communication systems]. Vestnik NTSBZHD [Bulletin of the NCBhD], 2020, no. 3 (45), pp. 149—157. URL: https://www.elibrary.ru/item.asp?id=43928669 (In Russ.).
  22. Kozel V.M., Podvornaya D.A., Kovalev K.A. [Peal factor of signals of 5G mobile service systems]. Doklady BGUIR [BSUID reports], 2020, vol. 18, no. 6, pp. 5—10. DOI: 10.35596/1729-7648-2020-18-6-5-10 (In Russ.
 

E. E. Maiorov1, G . A. Kostin2, T. A. Chernyak2

IMPLEMENTATION OF THE SPECKLE PHOTOGRAPHY METHOD FOR THE CONTROL OF
DIFFUSELY REFLECTING SURFACES OF OBJECTS

"Nauchnoe Priborostroenie", 2023, vol. 33, no. 2, pp. 75—83.
 

The paper considers the implementation of the speckle photography method for monitoring diffusely reflective surfaces of objects. Optical control methods make it possible to obtain highly accurate and reliable information about the objects under study, so the work is promising and relevant. The work sets the task and defines the method and objects of research. The appearance and schematic diagram of the experimental setup are given. Dependences of the projections dx and dó on the X coordinate in the specklogram plane are obtained. It was revealed that the deviation of the displacement from the mean value for d = 5 µm does not exceed 0.1 µm, and for d = 300 µm it is 1.5 µm. Photographs of speckle interference fields at a critical displacement are shown. As a result of the experiment, a comparative analysis of the data showed that when the specklograms are symmetrically illuminated by two light beams, the measurement accuracy increases many times over. A significant result has been obtained, which indicates the competitiveness of domestic holographic photographic materials based on silver halide compared to imported photographic materials.
 

Keywords: specklogram, phase measuring device, diffuser, photographic plate, light beam Fourier image, laser, raster

Author affiliations:

1Saint Petersburg State University of Aerospace Instrumentation (GUAP), Saint Petersburg, Russia
2Saint Petersburg State University of Civil Aviation named after Chief Marshal of Aviation A.A. Novikov,
Saint Petersburg, Russia

 
Contacts: Maiorov Evgeniy Evgen'evich, majorov_ee@mail.ru
Article received by the editorial office on 18.02.2023

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Vest Ch. Golograficheskaya interferometriya [Holographic interferometry]. Yu.I. Ostrovskii, ed. transl. from eng. Moscow, Mir Publ., 1982. 504 p. (In Russ.).
  2. Archbold E., Ennos A.E. Displacement measurement from double-exposure laser photographs. Optica Acta, 1972, vol. 19, no. 4, pp. 253—271. DOI: 10.1080/713818559
  3. Rastogi P.K., Jacquot P. Specle metrology techniques: a parametric examination of the observed fringes. Optical Engineering, 1982, vol. 21, no. 3, id 213411. DOI: 10.1117/12.7972924
  4. Franson M. Optika speklov [Speckle optics]. Yu.I. Ostrovskii, ed. transl. from french. Moscow, Mir Publ., 1980. 171 p. (In Russ.).
  5. Mayorov E.E., Prokopenko V.T., Sherstobitova A.S. [Investigating an optoelectronic system for interpreting holographic interferograms]. Opticheskii zhurnal [Journal of Optical Technology], 2013, vol. 80, no. 3, pp. 47—51. URL: http://opticjourn.ru/vipuski/770-opticheskij-zhurnal-tom-80-03-2013.html (In Russ.).
  6. Klimenko N.S. Golografiya sfokusirovannykh izobrazhenii i spekl-interferometriya [Holography of focused images and speckle interferometry]. Moscow, Nauka Publ., 1985. 224 p. (In Russ.).
  7. Tsygankova G.A., Mayorov E.E., Chernyak T.A., Konstantinova A.A., Mashek A.C., Pisareva E.A. [The study of the transverse shear interferometer for the setup of interference fringes in the processing of interferograms]. Pribory [Instruments], 2021, no. 2, pp. 20—25. (In Russ.).
  8. Rastogi P.K., Barillot V., Kaufmann G.H. Comparative phase shifting holographic interferometry. Applied Optics, 1991, vol. 30, no. 7, pp. 722—728. DOI: 10.1364/AO.30.000722
  9. Mayorov E.E., Arefiev A.V., Khokhlova M.V., Dagaev A.V., Guliyev R.B., Tayurskaya I.S. [Experimental determination of the elementary displacement in the developed optoelectronic control system of holographic objects]. Izvestiya TulGU [Proceedings of the TSU], 2022, no. 12, pp. 200—205. (In Russ.). URL: https://elibrary.ru/item.asp?id=50128359
  10. Mayorov E.E., Kolesnichenko S.V., Konstantinova A.A., Mashek A.C., Pisareva E.A., Tsygankova G.A. [Investigation of phase fluctuations of the output signal of the phase measurement system]. Pribory i sistemy. Upravlenie, kontrol', diagnostika [Instruments and Systems: Monitoring, Control, and Diagnostics], 2021, no. 9, pp. 1—6. DOI: 10.25791/pribor.9.2021.1287 (In Russ.).
 

D. V. Lisin

CIRCUITRY OF MICROCONTROLLER PROGRAMMING
NODES FOR USE IN SPACE EXPERIMENTS

"Nauchnoe Priborostroenie", 2023, vol. 33, no. 2, pp. 84—91.
 

The article considers an original circuit design solution that allows implementing the programming mode of modern Russian-made microcontrollers used in space and special-purpose equipment as part of the assembled device. Due to the absence of mechanical switches in the power supply and microcontroller programming circuits and the ability to reprogram the system even as part of a finished standard product, this solution significantly increases the capabilities of the developer of scientific and special-purpose equipment, speeds up the development of new devices, and increases the reliability of systems being put into operation.
 

Keywords: reprogramming, microcontroller, space experiment

Author affiliations:

Pushkov Institute of terrestrial magnetism, ionosphere and radio wave propagation (IZMIRAN),
Troitsk, Moscow, Russia

 
Contacts: Lisin Dmitriy Valer'evich, lisindv@izmiran.ru
Article received by the editorial office on 25.01.2023

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Rekomendazii po programmirovaniyu pamyati programm mikrokontrollerov serii 1886BE. Izd. ZAO "PKK Milandr" [Recommendations for programming the memory of programs of microcontrollers of the 1886BE series. PKK Milandr, Inc.].
    URL: https://support.milandr.ru/upload/iblock/583/5837014a7b26db8f0acbbb6973efcf7a.pdf (In Russ.).
  2. Kuznetsov V.D., Lisin D.V. [Possibilities of using the ground-based control complex and receiving telemetry information from IZMIRAN for the organization of duplicate communication channels with satellites of geophysical monitoring of the Earth]. Sovremennyye problemy distantsionnogo zondirovaniya Zemli iz kosmosa [Modern problems of remote sensing of the Earth from space], 2010, vol. 7, no. 4, pp. 232–234. (In Russ.). URL: https://www.elibrary.ru/item.asp?id=15579465
 

Ulitsa Ivana Chernykh, 31-33, lit. A, St. Petersburg, Russia, 198095, P.O.B. 140
tel: (812) 3630719, fax: (812) 3630720, mail: iap@ianin.spb.su

content: Valery D. Belenkov design: Banu S. Kuspanova layout: Anton V. Manoilov