logo
blue band <-
  JOURNAL "NP" ISSUES

"Nauchnoe Priborostroenie", 2022, Vol. 32, no. 2. ISSN 2312-2951, DOI: 10.18358/np-32-2-e108

"NP" 2022 year Vol. 32 no. 2.,   ABSTRACTS

ABSTRACTS, REFERENCES

A. L. Bulyanitsa, N. A. Esikova, A. A. Evstrapov

INTERPRETATION OF THE RESULTS OF QUANTITATIVE GENETIC ANALYSIS BASED ON THE APPROXIMATION OF THE KINETIC CURVE OF THE POLYMERASE CHAIN REACTION IN REAL TIME

"Nauchnoe priborostroenie", 2022, vol. 32, no. 2, pp. 3—19.
doi: 10.18358/np-32-2-i319
 

A quantitative polymerase chain reaction in real time (real time PCR) has been implemented on polymer microfluidic devices made of polycarbonate and polypropylene. The threshold cycle is determined based on the inflection point of the first-order logistic growth function, which reliably approximates the PCR curve in the absence of interfering factors, for example, the presence of bubbles in the reaction chamber. Use of statistical criteria (generalized Student's criterion, one-way analysis of variance) revealed the insignificance of the influence of the polymer type on the estimation of the position of the threshold cycle in terms of the previously selected algorithm for its search. When using an alternative algorithm for finding the threshold cycle based on the plotting of a tangent to the kinetic curve, in some cases there is a significant influence of the polymer type on the estimation of the position of the threshold cycle and, as a consequence, on the result of quantitative analysis. Proposed and discussed are algorithms for detecting bubbles in the reaction chamber based on the detection of a discrepancy in the measurement sequence associated with both estimates of the approximating dependence's parameters and the characteristics of the time series formed by approximation errors.
 

Keywords: real-time polymerase chain reaction, kinetic curve, first-order logistic growth function, parameter estimation, single-factor analysis, ascending and descending series, approximation error

Author affiliations:

Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia

 
Contacts: Bulyanitsa Anton Leonidovich, antbulyan@yandex.ru
Article received by the editorial office on 29.04.2022

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Esikova N.A., Germash N.N., Evstrapov A.A. [Rapid fabrication of microchips for PCR analysis from polymer materials in the laboratory conditions]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2020, vol. 30, no. 4, pp. 21—26. DOI: 10.18358/np-30-4-i2126 (In Russ.).
  2. Gmurman V.E. Teoriya veroyatnostei i matematicheskaya statistika: uchebnoe posobie dlya inzhenerno-ehkonomicheskikh institutov i fakul'tetov. Izd. 4-e, dop [Probability theory and mathematical statistics: a textbook for engineering and economic institutes and faculties. 4th Suppl. Edit.]. Moscow, Vysshaya shkola Publ., 1972. 367 p. (In Russ.).
  3. Tikhomirov N.P., Tikhomirova T.M., Ushmaev O.S. Metody ehkonometriki i mnogomernogo statisticheskogo analiza: uchebnik [Econometrics and multivariate statistical analysis methods: textbook]. Moscow, Ehkonomika Publ., 2011. 637 p. (In Russ.). 
  4. Plokhotnikov K.Eh., Kolkov S.V. Statistika: uchebnoe posobie [Statistics: educational assistance]. Moscow, Flinta Publ., 2006. 286 p. (In Russ.).
  5. Bulyanitsa A.L. [Methods for logistic growth curve parameters estimation. Part. 1. Optimization of estimation conditions at the presence of additive random error]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2009, vol. 19, no. 3, pp. 3—11. URL: http://iairas.ru/mag/2009/abst3.php#abst1 (In Russ.).
  6. Belov D.A., Belov Yu.V., Kurochkin V.E. [New method of DNA melting signal treatment] . Nauchnoe Priborostroenie [Scientific Instrumentation], 2018, vol. 28, no. 1, pp. 3—10. DOI: 10.18358/np-28-1-i310 (In Russ.).
  7. Kendall M.Dzh., St'yuart A. Mnogomernyi statisticheskii analiz i vremennye ryady [Multivariate statistical analysis and time series]. Moscow, Nauka Publ., 1976. 736 p. (In Russ.).
  8. Onlain kal'kulyator. Kriterii "voskhodyashchikh" i "niskhodyashchikh" serii [Online calculator. "Ascending" and "descending" batches criterion]. URL: https://math.semestr.ru/trend/series.php (accessed: 19.04.2022) (In Russ.).
  9. Wallis W.A., Moore G.H. A significance test for time series analysis. J. Amer. Statist. Ass., 1941, vol. 36, is. 215, pp. 401—409. DOI: 10.1080/01621459.1941.10500577
  10. Bol'shev L.N., Smirnov N.V. Tablitsy matematicheskoi statistiki [Tables of mathematical statistics]. Moscow: Nauka Publ., 1983. 416 p. (In Russ.).
 

P. O. Lugovaya, T. V. Mirina

CONSTRUCTION OF AN OPTICAL COAGULOMETER SYSTEM
AND WAYS TO REDUCE INTERFERENCE

"Nauchnoe Priborostroenie", 2022, vol. 32, no. 2, pp. 20—32.
doi: 10.18358/np-32-2-i2032
 

The latest standards of laboratory diagnostics of hemostasis involve the study of micro—samples – tens of microliters, however, the analysis of such small volumes is a difficult task. It is necessary to minimize the interference associated with not only the device electronics, but also the optical node. The article suggests some ways to reduce interference in the design of the optical system of coagulometers. The reasons for the appearance of these interferences from the point of view of physics and optics are presented. The method of determining the optimal wavelength for hemostasis tests is described, recommendations are given on the choice of emission sources and photodetectors. The design of a thermostatically controlled plate and measuring channels is proposed. An experiment has been conducted that clearly shows the effectiveness of the proposed methods for reducing interference.The influence of various factors and design features on the useful output signal is described.
 

Keywords: optical coagulometer, optical system of the hemostasis analyzer, wavelength selection for coagulography, noise reduction

Author affiliation:

Ufa state aviation technical University, Russia

 
Contacts: Lugovaya, Polina Olegovna, polina_l@astra.ru
Article received by the editorial office on 25.04.2022

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Bokarev I.N., Doronina A.M., Kozlova T.V., et al. Laboratornye metody issledovaniya sistemy svertyvaniya krovi: metodicheskie rekomendatsii, posobie [Laboratory methods for testing the blood clotting system: guidelines, manual]. Moscow: Ministerstvo zdravookhraneniya i sotsial'nogo razvitiya RF, Rossiiskaya assotsiatsiya trombozov i gemorragii i patologii sosudov im. A.A. Shmidta—B.A. Kudryashova, 2011. 15 p. (In Russ.).
  2. Bruttsova N.A. [Advantages of automatic methods of hemostasia plasmic research in ischemic heart disease]. Tromboz, gemostaz i reologia [Thrombosis, hemostasis and rheology], 2008, no. 4(36), pp. 43—46. URL: https://elibrary.ru/item.asp?id=13062753 (In Russ.).
  3. McCraw A., Hillarp A., Echenagucia M. Considerations in the laboratory assessment of haemostasis. Haemophilia, 2010, vol. 16, is. 5, pp. 74—78. DOI: 10.1111/j.1365-2516.2010.02302.x
  4. Vse o koagulometrakh [All about coagulometers]. URL: http://www.coagulometers.ru/index.htm (accessed: 19.04.2022). (In Russ.).
  5. Dolgov V.V., Svirin P.V. Laboratornaya diagnostika narushenii gemostaza [Laboratory diagnosis of hemostasis disorders]. Tver: OOO "Izdatel'stvo "Triada" Publ., 2005. 227 p. (In Russ.).
  6. Dolgov V.V., Ovanesov E.N., Shchetnikovich K.A. Fotometriya v laboratornoi praktike [Photometry in laboratory practice]. Moscow: Vysshaya shkola Publ., 2004. 142 p. (In Russ.).
  7. Meinke M., Müller G., Friebel M., Helfmann J. Optical properties of platelets and blood plasma and their inuence on the optical behavior of whole blood in the visible to near infrared wavelength range. J . of Biomed . Opt ., 2007, vol. 12, no. 1. DOI: 10.1117/1.2435177
  8. Schubert F.E. Light-Emitting Diodes. 2nd ed. Cambridge, Cambridge University Press Segal AS, 2006. 422 p. (Russ. ed.: Shubert F.E. Svetodiody. 2-e izd. Translate A.Eh. Yunovich. Moscow: FIZMATLIT Publ., 2008. 496 p.).
  9. Gusev V.G. Ehlektronika i mikroprotsessornaya tekhnika: uchebnik [Electronics and microprocessor technology: textbook]. Moscow, KNORUS Publ., 2013. 800 p. (In Russ.).
  10. Bronić A., Herak D.C., Margetić S., Milić M. Croatian Society of Medical Biochemistry and Laboratory Medicine: National recommendations for blood collection, processing, performance and reporting of results for coagulation screening assays prothrombin time, activated partial thromboplastin time, thrombin time, fibrinogen and D-dimer. Biochemia Medica, 2019, vol. 29, no. 2, Id: 020503. DOI: 10.11613/BM.2019.020503
  11. Korovskii Sh.Ya. Aviatsionnoe ehlektroradiomaterialovedenie [Aviation electroradiomaterial science]. Moscow, Mashinostroenie Publ., 1972. 355 p. URL: https://search.rsl.ru/ru/record/01007410945 (In Russ.).
  12. Gusev V.G. Poluchenie informatsii o parametrakh i kharakteristikakh organizma i fizicheskie metody vozdeistviya na nego [Obtaining information on the parameters and characteristics of the body and physical methods of exposure to it]. Moscow, Mashinostroenie Publ., 2004. 597 p. (In Russ.).
  13. Linkins L.-A., Lapner S.T. Review of D-dimer testing: Good, Bad, and Ugly. International Journal of Laboratory Hematology, 2017, vol. 39, is. S1, pp. 98—103. DOI: 10.1111/ijlh.12665
  14. Török-Nagy B. Generation and characterization of D-dimer specific monoclonal antibodies for use in latex agglutination test. PLoS One, 2019, vol. 14, no. 2, Id: e0212104. DOI: 10.1371/journal.pone.0212104
  15. G&T PolymerTechnologies. Reaktsiya lateks-agglyutinatsii [Latex agglutination reaction]. URL:
    http://gtpt.ru/primeneniya/lateksnaya-agglyutinatsiya/ (accessed: 15.04.2022). (In Russ.).
 

E. S. Pavlova1, I. A. Gromov2, A. S. Antonov1, L. N. Gall2, N. R. Gall1

MATHEMATICAL SIMULATION OF THE MASS DISCRIMINATION
IN ELECTRON IONIZATION MASS SPECTROMETRY
AND THE POSSIBILITY OF ITS CORRECTION

"Nauchnoe Priborostroenie", 2022, vol. 32, no. 2, pp. 33—41.
doi: 10.18358/np-32-2-i3341
 

Ion mass discrimination in mass spectrometry with electron ionization is a nonremovable effect, reducing the accuracy of isotopic composition measurement, the exact knowledge of which is extremely necessary in many applications. The reason for these discriminations is the necessity to use additional magnetic field in the ion source, focusing a beam of ionizing electrons. The paper concerns the displacement of an electron beam, the ionization region, and the ion position for various masses in the ion beam during its formation in an ion source optical system, studied by mathematical simulation. Introducing voltage correction on the extraction electrode can significantly, by two orders of magnitude, reduce the discrimination.
 

Keywords: electron ionization, mass discrimination, mass spectrometry, mathematical simulation, Simion

Author affiliations:

1Ioffe Physical Technical Institute of the RAS, Saint Petersburg, Russia
2Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia

 
Contacts: Gromov Ivan Alexandrovich, gromov-24-2@yandex.ru
Article received by the editorial office on 14.03.2022

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Barnard G.P. Modern Mass Spectrometry. Institute of Physics, 1953. (Russ. ed.: Barnard Dzh. Sovremennaya mass-spektrometriya. Translate V.N. Vasil'eva, A.V. Dubrovina, V.L. Tal'roze, eds. V.N. Kondrat'ev. Moscow, Inostrannaya literatura Publ., 1957. 420 p.).
  2. Gall L.N. [On selection of ions from mass spectrometer ion source]. Zhurnal Tekhnicheskoi Fiziki [Technical Physics], 1977, vol. 47, no. 10, pp. 2198—2203. (In Russ.).
  3. Gall L.N., Lebedev G.V. [Distortion of the ionization chamber axeptance under the influence of the magnetic field of the ion source]. Zhurnal Tekhnicheskoi Fiziki [Technical Physics], 1978, vol. 48, pp. 608—610. (In Russ.).
  4. Gall L.N., Khasin Yu.I. [On the problem of mass discrimination in the electron impact ionization source]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2006, vol. 16, no. 2, pp. 66—72. URL:
    http://iairas.ru/en/mag/2006/abst2.php#abst7 (In Russ.).
  5. Manura D.J., Dahl D.A. SIMIONTM 8.0 User Manual. Sci. Instrument Services, Inc., Idaho Nat. Lab., 2006.
  6. Gall L.N., Semenov A.A., Kudriavtsev V.N., Lisunov A.V., Lesina I.G., Ivanov B.V., Bukin A.N., Shtan A.S., Kirianov G.E., Antonov A., Gall N.R. [Novel solutions in isotopic mass-spectrometric analysis of hydrogen-helium mixtures. How to get reliable data]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2016, vol. 26, no. 3, pp. 24—34. DOI: 10.18358/np-26-3-i2434 (In Russ.).
 

I. I. Ivanov1, A. M. Baranov1, A. N. Lyamin1, S. M. Mironov2

INVESTIGATION OF THE SENSITIVITY AND SELECTIVITY
OF A THERMOCATALYTIC SENSOR OF HYDROGEN

"Nauchnoe Priborostroenie", 2022, vol. 32, no. 2, pp. 42—54.
doi: 10.18358/np-32-2-i4254
 

The study demonstrates for the first time the high selectivity of catalytic hydrogen sensors to other hydrocarbons (methane, propane, hexane, butane, ethane and ethylene) at an operating temperature less than 70 ºC. Two circuits were used to measure the response of sensors: a Wheatstone bridge circuit and a divider circuit. The hydrogen measurement was conducted at the temperatures ranging from 66 to 130 ºC. It is shown that the sensors have a high sensitivity of 25—35 mV/% and a low power consumption of approximately 8.6 mW. The Wheatstone bridge circuit was observed to have the maximum value of selectivity and sensitivity.
 

Keywords: thermocatalytic hydrogen sensor, low-temperature measurements, selectivity, sensitivity, power consumption

Author affiliations:

1Moscow Aviation Institute, Russia
2Scientific and Technical Center for Measuring Gas Sensing Sensors
named after E.F. Karpov, Lyubertsy, Russia

 
Contacts: Ivanov Ivan Ivanovich, I.Ivan1993@yandex.ru
Article received by the editorial office on 26.03.2022

Full text (In Russ./In Eng.) >>

REFERENCES

  1. IEA G20 Hydrogen report: Assumptions. Report prepared by the IEA for the G20. IEA Publication, Japan, June 2019. URL:
    https://iea.blob.core.windows.net/assets/a02a0c80-77b2-462e-a9d5-1099e0e572ce/IEA-The-Future-of-Hydrogen-Assumptions-Annex.pdf
  2. Hübert T., Boon-Brett L., Black G., Banach U. Hydrogen sensors – a review. Sens Actuators B: Chemical, 2011, vol. 157, pp. 329—352. DOI: 10.1016/j.snb.2011.04.070
  3. Tashi W., Joseph R.S., William J.B., Vinay P., David P. Characterization of a selective, zero power sensor for distributed sensing of hydrogen in energy applications. International Journal of Hydrogen Energy, 2021, vol. 46, is. 61, pp. 31489—31500.
    DOI: 10.1016/j.ijhydene.2021.07.015
  4. Deepak P., Manoranjan K., Saurabh K.P. A new type low-cost, flexible and wearable tertiary nanocomposite sensor for room temperature hydrogen gas sensing. Scientific Reports, 2020, vol. 10, pp. 1—11, art. number 2151. DOI: 10.1038/s41598-020-58965-w
  5. Podlepetsky B., Samotaev N., Kovalenko A. Responses’ parameters of hydrogen sensors based on MISFET with Pd(Ag)-Ta2O5-SiO2-Si structure. Sensors and Actuators B: Chemical, 2019, vol. 290, pp. 698—705. DOI: 10.1016/j.snb.2019.03.083
  6. Ivanov I.I., Baranov A.M., Talipov V.A., Mironov S.M., Kolesnik I.V., Napolskii K.S. [Development of effective sensors for detecting pre-explosive H2 concentrations]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2021, vol. 31, no. 3, pp. 25—36. (In Russ.). DOI: 10.18358/np-31-3-i2536
  7. Shaposhnik A.V., Moskalev P.V., Chegereva K.L., Zviagin A.A., Vasiliev A.A. Selective gas detection of H2 and CO by a single MOX-sensor. Sensors and Actuators B: Chemical, 2021, vol. 334, id. 129376.
    DOI: 10.1016/j.snb.2020.129376
  8. Trochimczyk A.H., Chang J., Zhou Q., Dong J., Pham Th., Worsley M.A., Maboudian R., Zettl A., Mickelson W. Catalytic hydrogen sensing using microheated platinum nanoparticle-loaded graphene aerogel. Sensors and Actuators B: Chemical, 2015, vol. 206, pp. 399—406. DOI: 10.1016/j.snb.2014.09.057
  9. Lee E.-B., Hwang I.-S., Cha J.-H., Lee H.-J., Lee W.-B., Pak J.J., Lee J.-H., Ju B.-K. Micromachined catalytic combustible hydrogen gas sensor. Sensors and Actuators B: Chemical, 2011, vol. 153, pp. 392—397. DOI: 10.1016/j.snb.2010.11.004
  10. Ivanov I.I., Baranov A.M., Talipov V.A., Mironov S.M., Akbari S., Kolesnik I.V., Orlova E.D., Napolskii K.S. Investigation of catalytic hydrogen sensors with platinum group catalysts. Sensors and Actuators B: Chemical, 2021, vol. 346, id. 130515. DOI: 10.1016/j.snb.2021.130515
  11. Diéguez P.M., Urroz J.C., Marcelino-Sádaba S., Pérez-Ezcurdia A., Benito-Amurrio M., Sáinz D., Gandía L.M. Experimental study of the performance and emission characteristics of an adapted commercial four-cylinder spark ignition engine running on hydrogen-methane mixtures. Application Energy, 2014, vol. 113, pp. 1068—1076. DOI: 10.1016/j.apenergy.2013.08.063
  12. IEC 60079-1-2013 Explosive atmospheres. Part 1. Equipment protection by flameproof enclosures "d". URL: https://www.en-standard.eu/iec-ts-60079-32-1-2013-explosive-atmospheres-part-32-1-electrostatic-hazards-guidance/
  13. Karelin A., Baranov A.M., Akbari S., Mironov S., Karpova E. Measurement Algorithm for Determining Unknown Flammable Gas Concentration Based on Temperature Sensitivity of Catalytic Sensor. IEEE Sensors Journal, 2019, vol. 19, is. 11, pp. 4173—4180. DOI: 10.1109/JSEN.2019.2897626
  14. Del Orbe D.V., Yang H., Cho I., Park J., Choi J., Woo Hang S., Park I. Low-power thermocatalytic hydrogen sensor based on electrodeposited cauliflower-like nanostructured Pt black. Sensors and Actuators B: Chemical, 2021, vol. 329, id. 129129. DOI: 10.1016/j.snb.2020.129129
  15. EN 1127-1: 2019 Explosive atmospheres. Explosion prevention and protection. Part 1: Basic concepts and methodology. URL: https://www.en-standard.eu/bs-en-1127-1-2019-explosive-atmospheres-explosion-prevention-and-protection-basic-concepts-and-methodology/
  16. Talipov V.A., Baranov A.M., Ivanov I.I., Mironov S.M. [Low temperature methods for selective determination of hydrogen concentration in gas analytical technology]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2022, vol. 32, no. 1, pp. 35—47. (In Russ.). DOI: 10.18358/np-32-1-i3547
  17. OOO NTTS IGD. Proizvodstvo termokataliticheskikh sensorov goryuchikh gazov [LLC STC IGD. Production of thermocatalytic flammable gas sensors]. URL: http://karpov-sensor.com/ (accessed 14.03.2022). (In Russ.).
  18. Somov A., Baranov A., Spirjakin D., Passerone R. Circuit design and power consumption analysis of wireless gas sensor nodes: one-sensor versus two-sensor approach. IEEE Sensors, 2014, vol. 14, id. 2309001.
    DOI: 10.1109/JSEN.2014.2309001
  19. Darmadi I., Anggoro F., Nugroho A., Langhammer C. High-Performance Nanostructured Palladium-Based Hydrogen Sensors — Current Limitations and Strategies for Their Mitigation. ACS Sens, 2020, vol. 5, pp. 3306—3327. DOI: 10.1021/acssensors.0c02019
  20. Wu R.-J., Tian X.-M., Hua Zh.-Q., Lu N., Wanga P. Low temperature catalytic combustible gas sensor based on Ru supported zeolite catalyst films. Chinese Journal of Analytical Chemistry, 2021, vol. 49, is. 11, pp. 63—68. DOI: 10.1016/j.cjac.2021.07.007
 

I. R. Gall, N. A. Esikova, L. N. Gall

QUALITY CONTROL OF WATER PURIFICATION
FOR TECHNOLOGICAL AND SCIENTIFIC PURPOSES

"Nauchnoe Priborostroenie", 2022, vol. 32, no. 2, pp. 55—64.
doi: 10.18358/np-32-2-i5564
 

The high-resolution low-frequency induction dielcometria method was used to compare the degrees of purity of the tap water (St. Petersburg, Russia) obtained by various methods currently in use: steam distillation, bidistillation, as well as membrane distillation separately and combined with deionization. It has been determined that all the above methods of water purification do purify water with sufficient quality, but only bidistillation and deionization produce water that does not contain ionic impurities in the order of 10–7 M.
 

Keywords: water, purification methods, dielcometria method

Author affiliations:

Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia

 
Contacts: Gall Ivan Rostislavovich, ivan.gall@mail.ru
Article received by the editorial office on 12.04.2022

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Bernal Dzh., Fauler R. [Structure of water and ion solutions]. Uspechi Fiz. Nauk [Advances in the physical sciences], 1934, vol. 14, is. 5, pp. 586—644.
  2. Rodnikova M.N. Ob uprugosti setki vodorodnych svyazey v zhidkostyach i rastvorach. Strukturnaya samoorga-nizaziya v rastvorach i na granize razdela faz [On the elasticity of the network of hydrogen bonds in liquids and solutions. Structural self-excretion in solutions and at the interface]. Ed. A.Yu. Tsivadze, Kollektivnaya monografiya [Collective monograph], Moscow, LKI Publ., 2008. 544 p. (In Russ.).
  3. Bulienkov N.A. [The role of modular design in study of the self-organization of biological systems]. Biofizika [Biophysics], 2005, vol. 50, no. 5, pp. 934—958. (In Russ.).
    URL: https://www.elibrary.ru/item.asp?id=9144242
  4. Zheligovskaya E.A., Bulienkov N.A. [Rod structures of bound water: a possible role in self-organization of biological systems and nondissipative energy transmission]. Biofizika [Biophysics], 2017, vol. 62, no. 5, pp. 837—845.
    URL: https://www.elibrary.ru/item.asp?id=29986718 (In Russ.).
  5. A.M. Kutepov, ed. Voda: struktura, sostoyanie, sol'vataziya. Dostizheniya poslednich let [Water: structure, state, solvation. Achievements of recent years]. Kollektivnaya monografiya [Collective monograph]. Moscow, Nauka Publ., 2003. 404 p. (In Russ.). URL: https://booksee.org/book/758735
  6. Kiselev V.F., Saletskii A.M., Semikhina L.P. [Structural changes in water after exposure to weak variable magnetic fields]. Vestnik MGU. Seriya 3. Fizika. Astronomiya [Moscow University Physics Bulletin], 1990, vol. 31, no. 2, pp. 53—58. (In Russ.). URL: http://vmu.phys.msu.ru/file/1990/2/90-2-053.pdf
  7. Semikhina L.P. Diehlektricheskie i magnitnye svoistva vody v vodnykh rastvorakh i bioob"ektakh v slabykh ehlektromagnitnykh polyakh [Dielectric and magnetic properties of water in aqueous solutions and biological objects in weak electromagnetic fields]. Tyumen, TGU Publ., 2006. 160 p. (In Russ.).
    URL: https://search.rsl.ru/ru/record/01002927668
  8. Gall L.N., Maximov S.I., Skuridina T.S., Gall N.R. [Low frequency inductive dielcometry – informative method for the study of the structuring of water in aqueous solutions]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2016, vol. 26, no. 1, pp. 26—33. DOI: 10.18358/np-26-1-i2633 (In Russ.).
  9. Gall L.N., Berdnikov A.S., Gall I.R., Maximov S.I., Gall N.R. [Dielectric spectroscopy of structural changes in dilute aqueous solutions of sodium compounds]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2020, vol. 30, no. 2, pp. 3—9. DOI: 10.18358/np-30-2-i39 (In Russ.).
 

E. E. Maiorov1, V. B. Kotskovich1, V. P. Pushkina1,
A. V. Arefiev
2, R. B. Guliyev2, A. V. Dagaev3

INVESTIGATION OF OPTICAL FLAT SURFACES
OF BEAM-SPLITTING PLATES BY MEANS OF COHERENT OPTICS

"Nauchnoe Priborostroenie", 2022, vol. 32, no. 2, pp. 65—74.
doi: 10.18358/np-32-2-i6574
 

The article presents an experimental setup for measuring the geometric parameters of optical surfaces of details. The relevance of the work is shown since obtaining high-precision and reliable information about the geometric parameters of surfaces has always been an important task of metrology. The paper highlights the optical layout of the interferometer, as well as the technical and operational characteristics of the experimental setup. The objects and method of research are determined. Interferograms were obtained from the surfaces of beam splitters from various manufacturers. The images of interference fields were analyzed, and the main parameters of wave fronts were revealed. The optical surfaces were controlled by an experimental setup with an accuracy of not worse than 0.05 λ. The reflective coatings of beam splitters were studied, and the dependences of the reflection coefficient on the x and y coordinates were obtained. Comparative analysis revealed the preferable option for modern automated interferometers.
 

Keywords: wavefront deformation, interferogram, reflection coefficient, Fizeau interferometer, span, mean square deviation, measurement accuracy

Author affiliations:

1Saint Petersburg state university of aerospace instrumentation (GUAP), Saint Petersburg, Russia
2University at the EurAsEC inter-parliamentary Assembly, Saint Petersburg, Russia
3Ivangorodskii Humanitarian-Technical Institute (branch of) State educational institution for higher
professional education "Saint Petersburg University of Aerospace Instrumentation", Ivangorod, Russia

 
Contacts: Maiorov Evgeniy Evgen'evich, majorov_ee@mail.ru
Article received by the editorial office on 16.03.2022

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Born M., Wolf E. Principles of Optics. 1st ed. Oxford: Pergamon Press, 1959. 852 p. (Russ. ed.: Born M., Vol'f Eh. Osnovy optiki. Moscow, Nauka Publ., 1970. 855 p.) (In Russ.).
  2. Franson M., Slanskii S. Kogerentnost' v optike [Coherence in optics]. K.S. Shifrin, ed. Moscow, Nauka Publ., 1967. 80 p. (In Russ.).
  3. Landsberg G.S. Optika [Optics]. Moscow, Nauka Publ., 1976. 926 p. (In Russ.).
  4. Malakara D. Opticheskii proizvodstvennyi kontrol' [Optical production control]. A.N. Sosnov, ed. Moscow, Mashinostroenie Publ., 1985. 340 p. (In Russ.).
  5. Kreopalova G.V., Lazareva N.L., Puryaev D.T. Opticheskie izmereniya [Optical measurements]. Moscow, Mashinostroenie Publ., 1987. 264 p. (In Russ.).
  6. Afanas'ev V.A. Opticheskie izmereniya [Optical measurements]. Moscow, Nedra Publ., 1968. 263 p. (In Russ.).
  7. Levin B.M. [Optical methods for determining the nature of the profile of surfaces]. Optiko-mekhanicheskaya promyshlennost' [Optomechanical industry], 1938, no. 10-11, pp. 37—41. (In Russ.).
  8. Zakhar'evskii A.N. Interferometry [Interferometers]. Moscow, Oborongiz Publ., 1952. 296 p. (In Russ.).
  9. Kolomiitsev Yu.V. Interferometry [Interferometers]. Leningrad, Mashinostroenie Publ., 1976. 296 p. (In Russ.).
  10. Prokopenko V.T., Maiorov E.E. Interferometriya diffuzno otrazhayushchikh ob’ektov [Diffuse reflective object interferometry]. Saint-Petersburg, NIU ITMO, 2014. 195 p. (In Russ.).
  11. Maiorov E.E., Prokopenko V.T., Ushveridze L.A. [Dynamic parameters optimization for trigger type optical probe]. Nauchno-tekhnicheskii vestnik informatsionnykh tekhnologii, mekhaniki i optiki [Scientific and Technical Journal of Information Technologies, Mechanics and Optics], 2012, no. 2 (78). pp. 13—16. URL: https://ntv.ifmo.ru/ru/ article/5/optimizaciya_dinamicheskih_parametrov_opticheskogo_schupa_triggernogo_tipa.htm (In Russ.).
  12. Maiorov E.E., Prokopenko V.T., Ushveridze L.A. [Calculation of scanning parameters of the interferometric shape control system of diffusely reflecting objects]. Pribory [Instruments], 2012, no. 7 (145), pp. 23—25. URL: https://www.elibrary.ru/item.asp?id=17910855 (In Russ.).
  13. Maiorov E.E., Mashek A.Ch., Prokopenko V.T., Chistyakova N.Ya. [Study of metrological characteristics of a measuring optical-mechanical head]. Izvestiya vysshikh uchebnykh zavedenii. Priborostroenie [Journal of instrument engineering], 2012, vol. 55, no. 7, pp. 61—67. URL: https://www.elibrary.ru/item.asp?id=17790991 (In Russ.).
  14. Maiorov E.E., Prokopenko V.T., Sherstobitova A.S. [Investigating an optoelectronic system for interpreting holographic interferograms]. Opticheskii zhurnal [Journal of Optical Technology], 2013, vol. 80, no. 3, pp. 47—51. DOI: 10.1364/JOT.80.000162 (In Russ.).
  15. Maiorov E.E., Prokopenko V.T. [Study of the speckle structure influence on the formation of the interference signal and measurement error]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2013, vol. 23, no. 2, pp. 38—46. URL: http://iairas.ru/en/mag/2013/abst2.php#abst5 (In Russ.).
  16. Maiorov E.E., Prokopenko V.T. [Derivation of an analytical expression for the path difference of the rays passed through Jamin interferometer]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2013, vol. 23, no. 3, pp. 76—81. URL: http://iairas.ru/en/mag/2013/abst3.php#abst10 (In Russ.).
  17. Maiorov E.E., Prokopenko V.T., Ushveridze L.A. [Specklograms Coherent Processing System for Examination of Dental Tissue Surfaces]. Meditsinskaya tekhnika [Biomedical Engineering], 2013, no. 6 (282), pp. 25—27. URL: https://www.elibrary.ru/item.asp?id=21034782 (In Russ.).
  18. Maiorov E.E., Mashek A.Ch., Udakhina S.V., Tsygankova G.A., Khaidarov G.G., Chernyak T.A. [Development of computer interference control system for non-smooth surfaces]. Pribory [Instruments], 2015, no. 11 (185), pp. 26—31. (In Russ.). URL: https://www.elibrary.ru/item.asp?id=25340893
  19. Prokopenko V.T., Maiorov E.E., Mashek A.Ch., Udakhina S.V., Tsygankova G.A., Khaidarov A.G., Chernyak T.A. [Optical-electronic instrument for control over geometrical parameters of diffuse reflecting objects]. Izvestiya vysshikh uchebnykh zavedenii. Priborostroenie [Journal of Instrument Engineering], 2016, vol. 59, no. 5, pp. 88—394. DOI: 10.17586/0021-3454-2016-59-5-388-394 (In Russ.).
  20. Maiorov E.E., Dagaev A.V., Ponomarev S.E., Chernyak T.A. [The study of a shearing interferometer in the phase measuring devices and systems of decoding holographic interferograms]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2017, vol. 27, no. 2, pp. 32—40. DOI: 10.18358/np-27-2-i3240 (In Russ.).
  21. Maiorov E.E., Prokopenko V.T., Mashek A.Ch., Tsygankova G.A., Kurlov A.V., Khokhlova M.V., Kirik D.I., Kapralov D.D. [Experimental study of metrological characteristics of automated interferometric system for measuring surface shape of diffusely reflecting objects]. Izmeritel'naya tekhnika [Measurement Techniques], 2017, no. 10, pp. 33—37. URL: https://www.elibrary.ru/item.asp?id=30525791 (In Russ.).
  22. Kurlov V.V., Koskovich V.B., Maiorov E.E., Pushkina V.P., Tayurskaya I.S. [Experimental study of the developed interference system for measuring the surface of objects of complex shape]. Izvestiya tul'skogo gosudarstvennogo universiteta. Tekhnicheskie nauki [News of Tula State University. Technical sciences], 2020, no. 8, pp. 179—189. URL: https://www.elibrary.ru/item.asp?id=44038077 (In Russ.).
  23. Tsygankova G.A., Maiorov E.E., Chernyak T.A., Konstantinova A.A., Mashek A.Ch., Pisareva E.A. [Study of a developed cross-shear interferometer for tuning interference bands in interferogram processing]. Pribory [Instruments], 2021, no. 2, pp. 20—25. URL: https://www.elibrary.ru/item.asp?id=44906824 (In Russ.).
  24. Khokhlova M.V., Dagaev A.V., Maiorov E.E., Arefyev A.V., Guliev R.B., Gromov O.V. [An investigation of the optoelectronic system in the processing of holographic plates]. Mezhdunarodnyi nauchno-issledovatel'skii zhurnal [International Research Journal], 2021, no. 8 (110), pp. 103—108. DOI: 10.23670/IRJ.2021.110.8.015 (In Russ.).
  25. Khokhlova M.V., Dagaev A.V., Maiorov E.E., Arefyev A.V., Guliev R.B., Gromov V.O. [Interference system for measuring the geometric parameters of reflecting surfaces]. Mezhdunarodnyi nauchno-issledovatel'skii zhurnal [International Research Journal], 2021, no. 6 (108), pp. 184—189. DOI: 10.23670/IRJ.2021.108.6.029 (In Russ.).
 

A. V. Arefiev1, R. B. Guliyev1, O. V. Gromov1, A. V. Dagaev2,
V . V . Kurlov
3, E. E. Maiorov3, I. S. Tayurskaya4

REFRACTOMETRIC MEANS OF CONTROL OF AQUEOUS
SOLUTIONS OF TETRACHLOROETHYLENE

"Nauchnoe Priborostroenie", 2022, vol. 32, no. 2, pp. 75—83.
doi: 10.18358/np-32-2-i7583
 

The paper a refractometric device (URL-1) for measuring the concentration dependence of the refractive index in aqueous solutions of tetrachloroethylene is considered. The presented study is relevant and promising, since the identification of optical parameters in these media is important for chemical industries. The article the appearance of a laboratory refractometric installation, as well as technical and operational characteristics of refractometers used in measurements are presented. The results of measurements of the concentration dependence of the refractive index of the studied substances were obtained experimentally, which were compared with reference values from the scientific literature. The data of experimental measurements and reference values are compared with the results obtained on the K-Patents OY PR-03-M refractometer. The error of the experiment did not exceed Dk 0.4%.
 

Keywords: measurement error, interpolation, refractometer, refractive index, concentration, polynomial

Author affiliations:

1University at the EurAsEC inter-parliamentary Assembly, Saint Petersburg, Russia
2Ivangorodskii Humanitarian-Technical Institute (branch of) Saint Petersburg University of Aerospace
Instrumentation, Ivangorod, Russia
3Saint Petersburg state university of aerospace instrumentation (GUAP), Saint Petersburg, Russia
4Saint Petersburg university of management technologies and economics, Saint Petersburg, Russia

 
Contacts: Maiorov Evgeniy Evgen'evich, majorov_ee@mail.ru
Article received by the editorial office on 1.04.2022

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Ioffe B.V. Refraktometricheskie metody analiza v khimii [Refractometric methods of analysis in chemistry]. Leningrad, Khimiya Publ., 1983. 352 p. (In Russ.).
  2. VAISALA: In-line process refractometers. URL: http://www.kpatents.com/dd23_pulp.php (accessed: 22.03.2022).
  3. METTLER TOLEDO: Refracto 30GS. Portativnyi refraktometr s rasshirennym diapazonom izmerenii [Refracto 30GS. Portable refractometer with extended measurement range]. (In Russ.).
    URL: https://www.mt.com/ru/ru/home.html (accessed: 12.03.2022).
  4. Akmarov K.A., Artem'ev V.V., Belov N.P., Lapshov S.N., Maiorov E.E., Patyaev A.Yu., Smirnov A.V., Sherstobitova A.S., Shishova K.A., Yas'kov A.D. [Industrial refractometers and their application for the control of chemical production]. Pribory [Instrumentations], 2012, no. 4 (142), pp. 1—8. (In Russ.). URL: https://www.elibrary.ru/item.asp?id=17718398
  5. Maiorov E.E. [Study of the optical properties of glycol-based liquid-phase environments]. Nauchnoe obozrenie [Scientific review], 2013, no. 4, pp. 166—176. (In Russ.).
  6. Maiorov E.E., Mashek A.C., Prokopenko V.T., Khaydarov G.G. [Refractometric technologies and their application for control of diffusively reflecting objects in manufacturing cycle]. Vestnik Sankt-Peterburgskogo universiteta. Ser. 4: Fizika, khimiya [Vestnik SPbSU. Physics and Chemistry], 2013, Iss. 4, pp. 24—31. (In Russ.).
  7. Belov N.P., Lapshov S.N., Sherstobitova A.S., Yas'kov A.D., Maìorov E.E. [Optical properties of green liquors and the use of commercial refractometry to monitor their composition in the production of sulfate cellulose]. Opticheskii zhurnal [Journal of Optical Technology], 2014, vol. 81, no. 1, pp. 53—58. DOI: 10.1364/JOT.81.000039 (In Russ.).
  8. Belov N.P., Lapshov S.N., Maiorov E.E., Sherstobitova A.S., Yaskov A.D. [Optical properties of black liquor and refractometric methods for monitoring the solid residue concentration in sulfate cellulose production]. Zurnal prikladnoj spektroskopi [Journal of Applied Spectro­scopy], 2012, vol. 79, no. 3, pp. 514—516. DOI: 10.1007/s10812-012-9630-2 (In Russ.).
  9. Maiorov E.E., Mashek A.C., Tsygankova G.A., Khaidarov A.G., Abrahamyan V.K., Zaitsev Yu.E. [Development of optoelectronic refractometric device for monitoring the composition of aqueoussolutions of glycols]. Pribory i sistemy. Upravlenie, kontrol', diagnostika [Instruments and Systems: Monitoring, Control, and Diagnostics], 2016, no. 3, pp. 33—41. (In Russ.).
  10. Maiorov E.E., Mashek A.C., Tsygankova G.A., Khokhlova M.V., Kurlov A.V., Chernyak T.A., Fadeev A.O. [Computer simulation of the optical spectrum of dimethylsulfoxide (CH3)2SO and dimethylsulfone (CH3)2SO2 or refractometric means of control]. Pribory i sistemy. Upravlenie, kontrol', diagnostika [Instruments and Systems: Monitoring, Control, and Diagnostics], 2016, no. 12, pp. 35—41. (In Russ.).
  11. Maiorov E.E., Mashek A.C., Tsygankova G.A., Khokhlova M.V., Kurlov A.V., Chernyak T.A., Kirik D.I., Kapralov D.D., Zharkova T.V. [The possibility of using the automated refractometry methods and means for measuring the composition of the green liquor in the production of sulphate pulp]. Pribory i sistemy. Upravlenie, kontrol', diagnostika [Instruments and Systems: Monitoring, Control, and Diagnostics], 2017, no. 1, pp. 42—49. (In Russ.).
  12. Gromov O.V., Maiorov E.E., Tayurskaya I.S., Mashek A.C., Tsygankova G.A., Udakhina S.V. [Experimental study of the developed automated refractometer for the control of chemically aggressive media]. Nauchnoe obozrenie. Tekhnicheskie nauki [Scientific Review. Technical science], 2021, no. 3, pp. 21—26. DOI: 10.17513/srts.1352 (In Russ.).
  13. Maiorov E.E., Turovskaya M.S., Khokhlova M.V., Shalamay L.I., Konstantinova A.A., Dagaev A.V., Guliyev R.B., Tayurskaya I.S. [The application of refractometry using a goniometer to measure the composition of the liquor in the production of kraft pulp]. Izvestiya tul'skogo gosudarstvennogo universiteta. Tekhnicheskie nauki [Izvestiya Tula State University. Technical sciences], 2020, no. 2, pp. 129—139. (In Russ.).
  14. Kurlov V.V., Gromov O.V., Tayurskaya I.S., Maiorov E.E., Arefiev A.V., Guliyev R.B. [Application of the developed refractometric sensor in food production]. Pribory i sistemy. Upravlenie, kontrol', diagnostika [Instruments and Systems: Monitoring, Control, and Diagnostics], 2021, no. 2, pp. 1—12. DOI: 10.25791/pribor.2.2021.1237 (In Russ.).
  15. Maiorov E.E., Kurlov V.V., Gromov O.V., Guliyev R.B., Dagaev A.V., Tayurskaya I.S. The use of a refractometer for monitoring drinks of the "LIPTON" trademark. Izvestiya tul'skogo gosudarstvennogo universiteta. Tekhnicheskie nauki [Izvestiya Tula State University. Technical sciences], 2021, no. 6, pp. 170—175. DOI: 10.24412/2071-6168-2021-6-170-175 (In Russ.).
  16. Mikhalchevsky Yu.Yu., Kostin G.A., Maiorov E.E., Arefiev A.V., Guliyev R.B., Dagaev A.V. [The use of refractometry to ensure the pre-flight preparation of aircraft]. Pribory i sistemy. Upravlenie, kontrol', diagnostika [Instruments and Systems: Monitoring, Control, and Diagnostics], 2021, no. 10,
    pp. 1—7. DOI: 10.25791/pribor.10.2021.1294 (In Russ.).
  17. Mikhalchevsky Yu.Yu., Kostin G.A., Maiorov E.E., Kurlov V.V., Guliyev R.B., Dagaev A.V. [Optoelectronic control of de-icing liquids for aircraft handling]. Izvestiya tul'skogo gosudarstvennogo universiteta. Tekhnicheskie nauki [Izvestiya Tula State University. Technical sciences], 2021, no. 10, pp. 170—175. DOI: 10.24412/2071-6168-2021-6-170-175 (In Russ.).
  18. Mikhalchevsky Y.Y., Kostin G.A., Maiorov E.E., Arefiev A.V., Khokhlova M.V., Udachina S.V. [Study of de-icing liquid using an optoelectronic refractometer]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2021, vol. 31, no. 4, pp. 88—101. DOI: 10.18358/np-31-4-i88101 (In Russ.).
 

Ulitsa Ivana Chernykh, 31-33, lit. A, St. Petersburg, Russia, 198095, P.O.B. 140
tel: (812) 3630719, fax: (812) 3630720, mail: iap@ianin.spb.su

content: Valery D. Belenkov design: Banu S. Kuspanova layout: Anton V. Manoilov