logo
blue band <-
  JOURNAL "NP" ISSUES

"Nauchnoe Priborostroenie", 2021, Vol. 31, no. 4. ISSN 2312-2951, DOI: 10.18358/np-31-4-e106

"NP" 2021 year Vol. 31 no. 4.,   ABSTRACTS

ABSTRACTS, REFERENCES

A. M. Baranov, T. V. Osipova

RECENT TRENDS IN THE DEVELOPMENT OF SENSORS FOR PRE-EXPLOSIVE CONCENTRATIONS
OF FLAMMABLE GASES AND VAPORS OF FLAMMABLE LIQUIDS (REVIEW)

"Nauchnoe Priborostroenie", 2021, vol. 31, no. 4, pp. 3—29.
doi: 10.18358/np-31-4-i329
 

This paper presents a review of current trends in the development of manufacturing technologies of sensors of pre-explosive concentrations of flammable gases and vapors of flammable liquids. Various types of gas sensors are discussed, including catalytic, semiconductor, and optical sensor types, and the principles of their operation.
The advantages and disadvantages of each type of gas sensor are highlighted. New and traditional technologies for manufacturing sensitive elements that improve sensor parameters such as processability, miniaturization and reduce energy consumption are discussed. In conclusion, this article suggests future trends and prospects for development and research to improve the sensitivity and selectivity of sensors.
 

Keywords: pre-explosive concentrations, sensor, catalytic sensor, semiconductor sensor, optical sensor

Author affiliations:

Moscow Aviation Institute (National Research University), Russia

 
Contacts: Osipova Tat'yana Vladislavovna, t.osipova.95@mail.ru
Article received by the editorial office on 02.09.2021

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Spravochnaya tablitsa vzryvoopasnykh i toksichnykh veshchestv [Reference table of explosive and toxic substances]. URL: http://www.tdgears.ru/table11.htm (accessed: 02.2021). (In Russ.).
  2. CityTechnology: gazovye sensory [CityTechnology: gas sensors].
    URL: https://www.platan.ru/docs/library/CityTechnology_gas%20sensors.pdf (accessed: 02.2021). (In Russ.).
  3. Dobrovol'skii Yu.A., Leonova L.S., Ukshe A.E., Levchenko A.V., Baranov A.M., Vasil'Ev A.A. [Portable sensors for hydrogen analysis]. Rossijskij himicheskij zhurnal [Russian Journal of General Chemistry], 2006, vol. 50, no. 6, pp. 120—127. (In Russ.). URL: https://cyberleninka.ru/article/n/portativnye-sensory-dlya-analiza-vodoroda
  4. Hübert T., Boon-Brett L., Black G., Banach U. Hydrogen sensors — A review. Sensors and Actuators B. Chemical, 2011, vol. 157, no. 2, pp. 329—352. DOI: 10.1016/j.snb.2011.04.070
  5. Spirjakin D., Baranov A., Karelin A., Somov A. Wireless multi-sensor gas platform for environmental monitoring. Environmental, Energy and Structural Monitoring Systems (EESMS), 2015, IEEE Workshop on 10 July 2015, pp. 232—237. DOI: 10.1109/EESMS.2015.7175883
  6. Baranov A.M., Ivanov M.A., Savkin A.V., Spiryakin D.N., Khromushin I.V. [An autonomous wireless sensor node for monitoring of combustible gas leakages]. Datchiki & Systemi [Sensors & Systems], 2010, no. 11, pp. 34—38. (In Russ.).
  7. Devi K.I., Meivel S., Kumar K.R., et al. A survey report of air polluting data through cloud IoT sensors. Materials Today , Elsevier, 2021. DOI: 10.1016/j.matpr.2020.12.621
  8. Baranov A., Spirjakin D., Akbari S., Somov A. Optimization of power consumption for gas sensor nodes: A survey. Sensors and Actuators A. Physical, 2015, vol. 233, pp. 279—289. DOI: 10.1016/j.sna.2015.07.016
  9. Hong T., Culp J., Kim K., Devkota J., Sun C., et al. State-of-the-art of methane sensing materials: A review and perspectives. Trends in Analytical Chemistry (TrAC), 2020, vol. 125, art. 115820.
  10. 1016/j.trac.2020.115820
  11. Demin I.E., Kozlov A.G. [Selectivity of thin film gas sensor based on 50% In2O3 — 50% Ga2O3 during dynamic operation]. Dinamika sistem, mekhanizmov i mashin [Dynamics of Systems, Mechanisms and Machines], 2017, vol. 5, no. 2, pp. 233—238. DOI: 10.25206/2310-9793-2017-5-2-233-238 (In Russ.).
  12. Bagheri M., Khodadadi A.A., Mahjoub A.R., Mortazavi Y. Strong effects of gallia on structure and selective responses of Ga2O3 — In2O3 nanocomposite sensors to either ethanol, CO or CH4. Sensors and Actuators B. Chemical, 2015, vol. 220, pp. 590—599. DOI: 10.1016/j.snb.2015.06.007
  13. Du L., Li H., Li S., Liu L., Li Y., Xu S., et al. A gas sensor based on Ga-doped SnO2 porous microflowers for detecting formaldehyde at low temperature. Chemical Physics Letters, 2018, vol. 713, pp. 235—241. DOI: 10.1016/j.cplett.2018.10.052
  14. Goyat D., Agashe C., Marather B. Effect of dopant incorporation on structural and electrical properties of sprayed SnO2: Sb films. J. Appl. Phys., 1993, vol. 73, no. 11, pp. 7520—7523. DOI: 10.1063/1.354000
  15. Samotaev N.N., Vasiliev A.A., Sokolov A.V., Pisliakov A.V. The mechanism of the formation of selective response of semiconductor gas sensor in mixture of CH4/H2/CO with air. Sensors and Actuators B. Chemical, 2007, vol. 127, no. 1, pp. 242—247.
  16. Ma H., Du Y., Wei M., Ding E., Lin L. Silicon microheater based low-power full-range methane sensing device. Sensors and Actuators A. Physical, 2019, vol. 295, pp. 70—74.
  17. Roy S., Sarkar C.K., Bhattacharyya P. A highly sensitive methane sensor with nickel alloy microheater on micromachined Si substrate. Solid-State Electronics, 2012, vol. 76, pp. 84—90. DOI: 10.1016/j.sse.2012.05.040
  18. Fritsch M., Mosch S., Vinnichenko M., Trofimenko N., Kusnezoff M., Fuchs F.-M., Wissmeier L., Samotaev N., Oblov K. Printed miniaturized platinum heater on ultra-thin ceramic membrane for MOX gas sensors. Proceedings of the YETI 2020, St. Petersburg, Russia, 2020, pp. 97—103. DOI: 10.1007/978-3-030-58868-7_11
  19. Vasiliev A.A., Pisliakov A.V., Sokolov A.V., Samotaev N.N., Soloviev S.A., Oblov K., Guarnieri V., Lorenzelli L., Brunelli J., Maglione A., Lipilin A.S., Mozalev A., Legin A.V. Non-silicon MEMS platforms for gas sensors. Sensors and Actuators B. Chemical, 2016, vol. 224, pp. 700—713. DOI: 10.1016/j.snb.2015.10.066
  20. Jaegle M., Wollenstein J., Meisinger T., Bottner H., Muller G., Becker T., et al. Micromachined thin film SnO2 gas sensors in temperature-pulsed operation mode. Sensors and Actuators B. Chemical, 1999, vol. 57, pp. 130—134. DOI: 10.1016/S0925-4005(99)00074-X
  21. Roslyakov I.V., Napolskii K.S., Stolyarov V.S., Ivashev A.V., Surtaev V.N. A thin-film platform for chemical gas sensors. Russian Microelectronics, 2018, vol. 47, no. 4, pp. 226‑233. DOI: 10.1134/S1063739718040078
  22. Vasiliev A.A., Pavelko R.G., Samotaev N.N. Alumina MEMS platform for impulse semiconductor and IR optic gas sensors. Sensors and Actuators B. Chemical, 2008, vol. 132, is. 1, pp. 216—223. DOI: 10.1016/j.snb.2008.01.043
  23. Huang H., Nakamura M., Su P., Fasching R., Saito Y., Prinz F.B. High-performance ultrathin solid oxide fuel cells for low-temperature operation. Journal of The Electrochemical Society, 2007, vol. 154, no. 1, pp. B20. DOI: 10.1149/1.2372592
  24. Samotaev N., Oblov K., Etrekova M., Ivanova A., Veselov D., Gorshkova A. Thin platinum films topology formation on ceramic membranes. Materials Science Forum, MSF, 2020, vol. 977, pp. 272—276. DOI: 10.4028/www.scientific.net/MSF.977
  25. Vincenzi D., Butturi M.A, Stefancich M., Vasiliev A.A, Pisliakov A.V. Low-power thick-film gas sensor obtained by a combination of screen printing and micromachining techniques. Thin Solid Films, 2001, vol. 391, no. 2, pp. 288—292. DOI: 10.1016/S0040-6090(01)00997-X
  26. Vasiliev A.A., Sokolov A.V., Legin A.V., Kokhtina Yu.V., Nisan A.V. Additive technologies for ceramic MEMS sensors. Procedia Engineering, 2015, vol. 120, pp. 1087‑1090. DOI: 10.1016/j.proeng.2015.08.775
  27. Oblov K., Ivanova A., Soloviev S., Samotaev N., Lipilin A., Vasiliev A., Sokolov A. Fabrication of microhotplates based on laser micromachining of zirconium oxide. Physics Procedia, 2015, vol. 72, pp. 485—489. DOI: 10.1016/j.phpro.2015.09.057
  28. Oblov K., Ivanova A., Soloviev S., Samotaev N., Vasilieve A., Sokolov A. Technology for fast fabrication of glass microhotplates based on the laser processing. Physics Procedia, 2015, vol. 72, pp. 465—469. DOI: 10.1016/j.phpro.2015.09.094
  29. Park S., Kim S., Sun G.-J., Lee C. Synthesis, structure and ethanol sensing properties of Ga2O3-core/WO3-shell nanostructures. Thin Solid Films, 2015, vol. 591, part B , pp. 341—345. DOI: 10.1016/j.tsf.2015.04.045
  30. Shaposhnik A., Zviagin A., Sizask E., Vasiliev A., Shaposhnik D. Acetone and ethanol selective detection by a single MOX-sensor. Procedia Engineering, 2014, vol. 87, pp. 1051—1054. DOI: 10.1016/j.proeng.2014.11.343
  31. Reutskaya O.G., Taratyn I.A., Pleskachevsky Y.M. [Multisensor microsystem for measuring the concentration of gases CO, H2, C3H8, CO2]. Pribory i metody izmerenii [Devices and methods of measurements], 2016, vol. 7, no. 3, pp. 271—278. DOI: 10.21122/2220-9506-2016-7-3-271-278 (In Russ.).
  32. Duykova M.V., Shkonda S.E., Kazakov S.A., Grevtsev M.A. [Manufacturing and research of metal oxide semiconductor gas sensors for ammonia]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2020, vol. 30, no. 4, pp. 52—62. DOI: 10.18358/np-30-4-i5262 (In Russ.).
  33. Reutskaya O.G., Pleskachevsky Y.M. [Measurement of CO and NO2 gas concentration's by multisensor microsystem in the mode of pulse heating]. Pribory i metody izmerenii [Devices and methods of measurements], 2017, vol. 8, no. 2, pp. 160—167. (In Russ.). DOI: 10.21122/2220-9506-2017-8-2-160-167
  34. Nakata S., Takahara N. Characteristic nonlinear responses of a semiconductor gas sensor to hydrocarbons and alcohols under the combination of cyclic temperature and continuous flow. Sensors and Actuators B. Chemical, 2020, vol. 307, art. 127635. DOI: 10.1016/j.snb.2019.127635
  35. Cavicchi R.E., Suehle J.S., Kreider K.G., Gaitan M. Fast temperature programmed sensing for micro-hotplate gas sensors. IEEE Electron Device Letters, 1995, vol. 16, no. 6, pp. 286—288. DOI: 10.1109/55.790737
  36. Tan Q., Pei X., Zhu S., Sun D., Liu J, Xue C., Liang T., Zhang W., Xiong J. Development of an optical gas leak sensor for detecting ethylene, dimethyl ether and methane. Sensors, 2013, vol. 13, no. 4, pp. 4157—4169. DOI: 10.3390/s130404157
  37. Pavlov S.A., Pavlov A.S., Maksimova E.Yu., Pavlov A.V., Alekseenko A.V. [Quantum points: new perspectives of creating optical chemical sensors]. Uspekhi v khimii i khimicheskoi tekhnologii [Advances in Chemistry and Chemical Technology], 2018, vol. XXXII, no. 6, pp. 126—128. (In Russ.).
  38. Aleksandrov S.E., Gavrilov G.A., Kapralov A.A., Matveev B.A., Sotnikova G.Yu., Remennyi M.A. [Simulation of characteristics of optical gas sensors based on diode optopairs operating in the mid-IR spectral range]. Zhurnal tekhnicheskoi fiziki [Technical Physics], 2009, vol. 79, no. 6, pp. 112—118. (In Russ.).
  39. Tekhnicheskaya illyustratsiya sistemy detektsii vzryvoopasnykh gazov [Technical illustration of explosive gas detection system]. URL: https://visual-science.com/ru/projects/explosive-gas/technical-illustration (accessed: 02.2021). (In Russ.).
  40. Makeenkov A.A., Baranov A.M. [Development, synthesis and manufacture of multilayer thin film filters for infrared sensors of combustible gases and vapors of combustible liquids]. Vakuumnaya tekhnika i tekhnologiya [Vacuum technics and technology], 2019, vol. 29, no. 4, pp. 40—43. (In Russ.).
  41. Stoyanov N.D., Salikhov K.M., Kalinina K.V., Zhurtanov B.E., Kizhaev S.S. Middle infrared LEDs: key element for new generation chemical sensors. SPIE 8257 Optical Components and Materials IX, 2012, pp. 331—336. DOI: 10.1117/12.923451
  42. Yang H., Bu X., Cao Y., Song Y. A methane telemetry sensor based on near-infrared laser absorption spectroscopy. Infrared Physics & Technology, 2021, vol. 114, art. 103670. DOI: 10.1016/j.infrared.2021.103670
  43. Ch'ien L.-B., Wang Y., Shi A.-C., Li F. Wavelet filtering algorithm for improved detection of a methane gas sensor based on non-dispersive infrared technology. Infrared Physics & Technology, 2019, vol. 99, pp. 284—291. DOI: 10.1016/j.infrared.2019.04.025
  44. Makeenkov A.A. [Optical-absorptive infrared sensor for surveillance of explosive concentration of flammable hydrocarbon gases and vapor]. Datchiki & Systemi [Sensors & Systems], 2014, no. 7, pp. 33—38. (In Russ.).
  45. Shemshad J., Aminossadati S.M., Kizil M.S. A review of developments in near infrared methane detection based on tunable diode laser. Sensors and Actuators B. Chemical, 2012, vol. 171-172, pp. 77—92. DOI: 10.1016/j.snb.2012.06.018
  46. Kamura S., Noda K. Practical and sensitive measurement of methane gas concentration using a 1.6 mkm vertical-cavity-surface-emitting — laser diode. Sensors and Materials, 2010, vol. 22, no. 7, pp. 365—375. DOI: 10.18494/SAM.2010.678
  47. LED MicrosensorNT. URL: http://ru.lmsnt.com/ (accessed 02.2021).
  48. Tekhnologii MIPEX [MIPEX Technologies]. URL: http://optosense.ru/ru/technology.html (accessed 02.2021). (In Russ.).
  49. Dorozinsky G., Lobanov M., Maslov V. [Detection of methanol vapor by surface plasmon resonance method]. Vostochno-evropeiskii zhurnal peredovykh tekhnologii [Eastern-european journal of enterprise technologies], 2015, vol. 4, no. 5, pp. 4—7. DOI: 10.15587/1729-4061.2015.47079 (In Russ.).
  50. Gridina N., Dorozinsky G., Khristosenko R., Maslov V., Samoylov A., Ushenin Yu., Shirshov Yu. Surface plasmon resonance biosensor. Sensors & Transducers Journal, 2013, vol. 149, no. 2, pp. 60—68.
  51. Dang J., Kong L., Yu H., Wang Y., Sun Y. An open-path sensor for simultaneous atmospheric pressure detection of CO and CH4 around 2.33 μm. Optics and Lasers in Engineering, 2019, vol. 123, pp. 1—7. DOI: 10.1016/j.optlaseng.2019.06.024
  52. Fanchenko S.S., Baranov A.M., Savkin A.V., Sleptsov V.V. LED-based NDIR natural gas analyzer. IOP Conference Series: Materials Science and Engineering, 2016, vol. 108, ID: 012036. DOI: 10.1088/1757-899X/108/1/012036
  53. Baranov A.M., Fanchenko S.S., Savkin A.V., Sleptsov V.V. [Optical methane monitoring in the air at a wavelength of 2,3 ΅M]. Datchiki & Systemi [Sensors & Systems], 2016, no. 7, pp. 47—52. (In Russ.).
  54. Jin L., Hao Y., Hongtao D., Fanli M. Structure design and application of hollow core microstructured optical fiber gas sensor: A review. Optics & Laser Technology, 2021, vol. 135, art. 106658. DOI: 10.1016/j.optlastec.2020.106658
  55. Lu W., Jing G., Bian X., Yu H., Cui T. Micro catalytic methane sensors based on 3D quartz structures with cone-shaped cavities etched by high-resolution abrasive sand blasting. Sensors and Actuators A. Physical, 2016, vol. 242, pp. 9—17. DOI: 10.1016/j.sna.2016.02.017
  56. Liu F., Zhang Y., Yu Y., Xu J., Sun J., Lu G. Enhanced sensing performance of catalytic combustion methane sensor by using Pd nanorod/γ-Al2O3. Sensors and Actuators B. Chemical, 2011, vol. 160, is. 1, pp. 1091—1097. DOI: 10.1016/j.snb.2011.09.032
  57. Brauns E., Morsbach E., Kunz S., Bäumer M., Lang W. A fast and sensitive catalytic gas sensors for hydrogen detection based on stabilized nanoparticles as catalytic layer. Sensors and Actuators B. Chemical, 2014, vol. 193, pp. 895—903. DOI: 10.1016/j.snb.2013.11.048
  58. Brauns E., Seemann T., Zoellmer V., Lang W. A miniaturized catalytic gas sensor for hydrogen detection containing a high porous catalytic layer formed by dry lift-off. Procedia Engineering, 2012, vol. 47, pp. 1149—1152. DOI: 10.1016/j.proeng.2012.09.355
  59. Bondar O.G., Brezhneva E.O., Pozdnyakov V.V. [Implementation of the isothermal mode catalytic gas sensors]. Datchiki & Systemi [Sensors & Systems], 2016, no. 2, pp. 43—47. (In Russ.).
  60. Lashkov A.V., Dobrokhotov V.V., Sysoev V.V. [Thermocatalytic multisensory chip]. Izvestiya YUFU. Tekhnicheskie nauki [Izvestiya SFEDU. Engineering sciences], 2014, no. 9 (158), pp. 195—201. (In Russ.).
  61. Roslyakov I.V., Kolesnik I.V., Evdokimov P.V., Garshev A.V., Skryabina O.V., Mironov S.M., Baranchikov A.E., Karpov E.E., Napolskii K.S. Microhotplate catalytic sensors based on anodic alumina: operando study of methane sensitivity hysteresis. Sensors and Actuators B. Chemical, 2021, vol. 330, ID: 129307. DOI: 10.1016/j.snb.2020.129307
  62. Ma H., Ding E., Wang W. Power reduction with enhanced sensitivity for pellistor methane sensor by improved thermal insulation packaging. Sensors and Actuators B. Chemical. 2013, vol. 187, pp. 221—226. DOI: 10.1016/j.snb.2012.10.121
  63. Samotaev N., Pisliakov A., Biro F. Al2O3 nanostructured gas sensitive material for silicon based low power thermocatalytic sensor. Materials Today: Proceedings, 2020, vol. 30, p. 3, pp. 443—447.
  64. Grinchuk A.P., Taratyn I.A., Khatko V.V. [Gas sensor development for combustible gas monitoring]. Pribory i metody izmerenii [Devices and methods of measurements], 2010, no. 1 (1), pp. 51—55. (In Russ.).
  65. Chen J., Arandiyan H., Gao X., Li J. Recent Advances in Catalysts for Methane Combustion. Catalysis Surveys from Asia, 2015, vol. 19, pp. 140—171. DOI: 10.1007/s10563-015-9191-5
  66. Choudhary T.V., Banerjee S., Choudhary V.R. Catalysts for combustion of methane and lower alkanes. Applied Catalysis A: General, 2002, vol. 234, is.1-2, pp. 1—23. DOI: 10.1016/S0926-860X(02)00231-4
  67. Somov A., Baranov A., Spirjakin D., Passerone R. Circuit design and power consumption analysis of wireless gas sensor nodes: one-sensor versus two-sensor approach. IEEE Sensors Journal. 2014, vol. 14 (6), pp. 2056—2063. DOI: 10.1109/JSEN.2014.2309001
  68. Karpov E.E., Karpov E.F., Suchkov A., Mironov S., Baranov A., Sleptsov V. Energy efficient planar catalytic sensor for methane measurement. Sensors and Actuators A. Physical, 2013, vol. 194, pp. 176—180. DOI: 10.1016/j.sna.2013.01.057
  69. Baranov A.M., Sleptsov V.V., Karelin A.P., Karpov E.E., Karpov E.F., Mironov S.M. Sposob izmereniya kontsentratsii goryuchikh gazov i parov v vozdukhe termokataliticheskim sensorom diffuzionnogo tipa. Patent RF
    no. 2 623 828 C2. 2017
    . [Method of measuring the concentration of combustible gases and vapors in air by a diffusion-type thermocatalytic sensor]. (In Russ.).
  70. Romanenko V.I., Golin'ko V.I., Frundin V.E. [Study of the thermocatalytic method of oxygen measurement]. Gornyi informatsionno-analiticheskii byulleten' [Mining informational and analytical bulletin], 2003, no. 3, pp. 213—215.
    URL: https://cyberleninka.ru/article/n/issledovanie-termokataliticheskogo-metoda-izmereniya-kisloroda (In Russ.).
  71. Spirjakin D., Baranov A.M., Somov A., Sleptsov V. Investigation of heating profiles and optimization of power consumption of gas sensors for wireless sensor networks. Sensors and Actuators A. Physical, 2016, vol. 247, pp. 247—253. DOI: 10.1016/j.sna.2016.05.049
  72. Korotcenkov G., Cho B.K. Engineering approaches for the improvement of conductometric gas sensor parameters Part 1. Improvement of sensor sensitivity and selectivity (short survey). Sensons and Actuators B. Chemical, 2013, vol. 188, pp. 709—728. DOI: 10.1016/j.snb.2013.07.101
  73. Hodgkinson J., Tatam R.P. Optical gas sensing: a review. Measurement Science and Technology, 2013, vol. 24, no. 1, pp. 1—59. DOI: 10.1088/0957-0233/24/1/012004
  74. Lashkov A.V., Dobrokhotov V.V., Sysoev V.V. The gas-analytical multisensor chip based on monolithic catalyst elements. 2015 International Siberian Conference on Control and Communications (SIBCON 2015). PROCEEDINGS, 2015, ID. 7147121. DOI: 10.1109/SIBCON.2015.7147121
  75. Somov A., Karelin A., Baranov A., Mironov S. Estimation of a gas mixture explosion risk by measuring the oxidation heat within a catalytic sensor. IEEE Transactions on Industrial Electronics, 2017, vol. 64 (12), pp. 9691—9698. DOI: 10.1109/TIE.2017.2716882
  76. Kazakov A.P., Belov A.N., Kharitonov E.A. Rezul'taty issledovanii termokataliticheskikh datchikov goryuchikh gazov na ustoichivost' k vozdeistviyu serovodoroda [Results of studies of thermocatalytic sensors of combustible gases for resistance to hydrogen sulfide]. URL: http://www.galus.ru/art_gas9.pdf (accessed 02.2021). (In Russ.).
  77. Somov A, Karpov E.F., Karpova E., Suchkov A., Mironov S., Karelin A., Baranov A., Spirjakin D. Compact low power wireless gas sensor node with thermo compensation for ubiquitous deployment. IEEE Transactions on Industrial Informatics, 2015, vol. 11, no. 6, pp. 1660—1670. DOI: 10.1109/TII.2015.2423155
  78. INKRAM. Promyshlennye gazoanalizatory [Industrial Gas Analyzers]. URL: https://www.inkram.ru/ (accessed 02.2021). (In Russ.).
  79. Baranov A.M., Akbari S., Spirjakin D., Bragar A., Karelin A. Feasibility of RF energy harvesting for wireless gas sensor nodes. Sensors and Actuators A. Physical, 2018, vol. 275, pp. 37—43. DOI: 10.1016/j.sna.2018.03.026
  80. Akbari S. Energy harvesting for wireless sensor networks review. 2014 Federated Conference on Computer Science and Information Systems (FedCSIS 20 14), 2014, pp. 987—992. DOI: 10.15439/2014F85
 

I. Ivanov1, A. M. Baranov1, V. A. Talipov2, S. M. Mironov2,
I. V. Ivanushkin3, E. A. Butenkov3, A. B. Shumakov3

WIRELESS METHANE DETECTOR WITH TEMPERATURE
MODULATED HEATING PROFILE

"Nauchnoe Priborostroenie", 2021, vol. 31, no. 4, pp. 30—40.
doi: 10.18358/np-31-4-i3040
 

The results of development of an autonomous methane detector in a dynamic measurement mode are presented. Industrial catalytic sensor was used as a sensitive element. To prevent burnout of the catalytic sensor microheater which often occurs during pulsed heating, the special form of heating pulse has been developed. The proposed dynamic mode of the sensor heating provides the measurements with low power consumption and the required level of safety in the measurement range of pre-explosive methane concentrations from 0.1 to 2 vol.%. Based on the analysis of the obtained results, the estimation of autonomous operating time of the detector is given.
 

Keywords: methane detector, catalytic sensor, microheater reliability, dynamic measurement mode, battery life

Author affiliation:

1Moscow Aviation Institute, Moscow, Russia
2Scientific and Technical Center of Measuring Gas Sensing Sensors
named after E.F. Karpova, Lyubertsy, Russia

3Research and Production Enterprise "Company "AEROTEST", Tomilino, Russia

 
Contacts: Ivanov Ivan Ivanovich, I.Ivan1993@yandex.ru
Article received by the editorial office on 3.08.2021

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Samotaev N.N., Ivanova A.V., Oblov K.Yu., Solov'ev S.A., Kamenev S.A., Sankov N.S. [Multi-touch system with wireless communication channel for monitoring the gas composition of the medium]. Datchiki & Systemi [Sensors & Systems], 2015, no. 1 (188), pp. 38—41. (In Russ.).
  2. Karpov E.F., Basovskii B.I. Kontrol' provetrivaniya i degazatsii v ugol'nykh shakhtakh: Spravochnoe posobie [Reference book of the Control of Ventilation and Degassing in Coal Mines]. Moscow, Nedra Publ., 1994. 336 p. (In Russ.).
  3. Gopel W., Jones T.A., Kleitz M., Lundstrom I., Seiyama T., Hesse J., Zemel J.N. Sensors: a Comprehensive Survey Chemical and Biochemical Sensors: vol. 2, part I. Weinheim: Wiley-VCH, 1991. 734 p. DOI: 10.1002/9783527620135
  4. Spirjakin D., Baranov A.M., Somov A., Sleptsov V. Investigation of heating profiles and optimization of power consumption of gas sensors for wireless sensor networks. Sensors and Actuators A. Physical, 2016, vol. 247, pp. 247—253. DOI: 10.1016/j.sna.2016.05.049
  5. Korotcenkov G., Cho B.K. Engineering approaches for the improvement of conductometric gas sensor parameters. Part 1. Improvement of sensor sensitivity and selectivity (short survey). Sensors and Actuators B. Chemical, 2013, vol. 188, pp. 709—728. DOI: 10.1016/j.snb.2013.07.101
  6. Bondar O.G., Brezhneva E.O., Trekhlebov A.S., Polyakov N.V. [Features of dynamic operation of thermocatalytic sensors]. Infokommunikatsii i kosmicheskie tekhnologii: sostoyanie, problemy i puti resheniya. Cbornik nauchnykh statei po materialam IV Vserossiiskoi nauchno-prakticheskoi konferentsii, v 2 chastyakh [Information communications and space technologies: status, problems and solutions. Collection of scientific articles on the materials of the IV All-Russian Scientific and Practical Conference, in 2 parts], 2020, pp. 162—173. (In Russ.).
  7. Baranov A., Spirjakin D., Akbari S., Somov A. Optimization of power consumption for gas sensor nodes: A survey. Sensors and Actuators A. Physical, 2015, vol. 233, pp. 279—289. DOI: 10.1016/j.sna.2015.07.016
  8. Lashkov A.V., Anashkin An. Al., Anashkin Al. An. [On possibility to employ catalytic combustion-type sensors to design gas-analytical multisensor arrays]. Datchiki & Systemi [Sensors & Systems], 2013, no. 5 (168), pp. 38—42. (In Russ.).
  9. Melnikov Yu.P., Malyshev A.Yu., Tishin A.M., Kopeliovich D.B. Ehlektromagnitnyi klapan i avtomatizirovannaya sistema na osnove ehtogo klapana. Patent ES no. 13720. [Patent for the device solenoid valve and automated system based on this valve]. Prioritet 30.06.2010. (In Russ.).
  10. Karpov. Science and Technology Company. DTK 3 sensor goryuchikh gazov [DTK 3 flammable gas sensor]. URL: http://karpov-sensor.com/wp-content/uploads/2019/04/DTK3-RV.pdf (accessed 10.09.2021). (In Russ.).
  11. Divin A.G., Ponomarev S.V. Metody i sredstva izmerenii, ispytanii i kontrolya. Chast' 4. Metody i sredstva izmereniya sostava i svoistv veshchestv [Methods and means of measurement, testing and control. Part 4. Methods and means of measuring the composition and properties of substances]. Tambov, FGBOU VPO "TGTU", 2014. 104 p. (In Russ.).
  12. GOST R 52350.29.1-2010. Nazional'nyy standart RF. Vzryvoopasnye sredy. Chast' 29-1. Gazoanalizatory. Obschie technicheskie trebovaniya i metody ispytaniy gazoanalizatorov goryuchich gazov [GOST R 52350.29.1-2010. National standard of the Russian Federation. Explosive environments. Part 29-1. Gas analyzers. General specifications and test methods for combustible gas analyzers], 01.01.2010. . (In Russ.).
  13. Spirjakin D., Baranov A.M., Karelin A., Somov A. Wireless multi-sensor gas platform for environmental monitoring. 2015 IEEE Workshop on Environmental, Energy, and Structural Monitoring Systems (EESMS). Proceedings, 2015, pp. 232—237. DOI: 10.1109/EESMS.2015.7175883.
  14. Mariselvam V., Dharshini M.S. IoT based level detection of gas for booking management using integrated sensor. Materials Today: Proceedings, 2021, vol. 37, pp. 789—792. DOI: 10.1016/j.matpr.2020.05.825
  15. Dong B., Shi Q., Yang Y., Wen F., Zhang Z., Lee C. Technology evolution from self-powered sensors to AIoT enabled smart homes. Nano Energy, 2021, vol. 79, art. 105414.
    DOI: 10.1016/j.nanoen.2020.105414
 

I. V. Kurnin

ESTIMATION OF SPACE CHARGE INFLUENCE
ON RESOLUTION OF ION-MOBILITY SPECTROMETER

"Nauchnoe Priborostroenie", 2021, vol. 31, no. 4, pp. 41—54.
doi: 10.18358/np-31-4-i4154
 

The paper presents an analytical model describing the dynamics of ion cloud, taking into account the action of space charge during a motion in ion mobility spectrometer – starting from the reaction region, where the shutter forms an ion pulse, and the further drift of the formed ion pulse towards the collector. The presented model lets to estimate the degree of influence of the space charge on possible ion losses and the resolution of ion mobility spectrometer. The effect of the space charge becomes noticeable, starting with the ion density of 106 cm–3. Comparison of the results obtained using the analytical model with the results of numerical solution of the initial equations shows that they practically coincide.
 

Keywords: ion mobility, space charge, resolution of an ion mobility spectrometer

Author affiliations:

Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia

 
Contacts: Kurnin Igor' Vasil'evich, igor.kurnin@gmail.com
Article received by the editorial office on 08.10.2021

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Eiceman G.A., Karpas Z., Hill H.H.Jr. Ion mobility spectrometry. 3rd edn., CRC Press, Boca Raton, 2013, 428 p.
  2. Spangler G.E. Space charge effects in ion mobility spectrometry. Anal. Chem., 1992, vol. 64, no. 11, ID 1312. DOI: 10.1021/ac00035a020
  3. Levin M., Krisilov A., Zon B., Eiceman G. The effect of space charge in ion mobility spectrometry. International journal for ion mobility spectrometry, 2014, vol. 17, no. 2, pp. 73—77. DOI: 10.1007/s12127-014-0151-y
  4. Tolmachev A.V., Clowers B.H., Belov M.E., Smith R.D. Coulombic effects in ion mobility spectrometry. Anal. Chem., 2009, vol. 81, no. 12, pp. 4778—4787. DOI: 10.1021/ac900329x
  5. Kirk A.T., Kobelt T., Spehlbrink H., Zimmermann S. A simple analytical model for predicting the detectable ion current in ion mobility spectrometry using corona discharge ionization sources. J. Am. Soc. Mass Spectrom., 2018, vol. 29, no. 7, pp. 1425—1430. DOI: 10.1007/s13361-018-1970-6
  6. Mariano A.V., Su W., Guharay S.K. Effect of space charge on resolving power and ion loss in ion mobility spectrometry. Anal. Chem., 2009, vol. 81, no. 9, pp. 3385—3391. DOI: 10.1021/ac802652f
  7. Manura D., Dahl D.A. SIMION 8.0 User’s Manual. Sci. Instrument Services, Inc. Idaho Nat. Lab, 2006.
  8. Chayrer E., Vanner G. Reshenie obyknovennych differenzial'nych uravneniy. Zhestkie i differenzial'no-algebraicheskie zadachi [Solution of ordinary differential equations. Rigid and differential-algebraic problems]. Moscow, Mir Publ., 1999, 685 p. (In Russ.).
  9. Kurnin I.V., Samokish V.A., Krasnov N.V. [ Simulation of the operational mode of ion mobility spectrometer with Bradbury — Nielsen ion gate ]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2010, vol. 20, no. 3, pp. 14—21.
    URL: http://iairas.ru/mag/2010/abst3.php#abst3 (In Russ.).
  10. Kurnin I.V., Krasnov N.V., Semenov S.Y., Smirnov V.N. Bradbury-Nielsen gate electrode potential switching modes optimizing the ion packet time width in an ion mobility spectrometer. International Journal for Ion Mobility Spectrometry, 2014, vol. 17, no. 2, pp. 79—85. DOI: 10.1007/s12127-014-0152-x
 

I. V. Kurnin1, N. V. Krasnov1, A. N. Arseniev1, A. G. Cherepanov2,
M. N. Krasnov3, E. P. Podolskaya1

CHARACTERISTICS OF A GRIDLESS TWO-DIAPHRAGM
ION GATE AT ATMOSPHERIC PRESSURE

"Nauchnoe Priborostroenie", 2021, vol. 31, no. 4, pp. 55—70.
doi: 10.18358/np-31-4-i 5570
 

As an ion gate for the formation of a short ion pulse in an ion mobility spectrometer, a gridless design with two coaxial diaphragms is proposed. It has been experimentally shown that, depending on the geometric and electrical parameters of this shutter, there is an optimal duration of the electric pulse opening the gate, which provide the maximum amplitude of the ion pulse.
 

Keywords: ion source, ion gate, ion transport at atmospheric pressure, ion mobility spectrometer

Author affiliations:

1Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia
2St. Petersburg Polytechnic University of Peter the Great, Russia
3Device Consulting Ltd, Saint Petersburg, Russia

 
Contacts: Kurnin Igor' Vasil'evich, igor.kurnin@gmail.com
Article received by the editorial office on 22.10.2021

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Bradbury N.E., Nielsen R.A. Absolute values of the electron mobility in hydrogen. Phys. Rev., 1936, vol. 49, no. 5, pp. 388. DOI: 10.1103/PhysRev.49.388
  2. Tyndall A.M. The mobility of positive ions in gases. Cambridge, Cambridge University Press, ser. Cambridge Physical Tracts, UK, 1938.
  3. Zühlke M., Zenichowski K., Riebe D., Beitz T., Löhmannsröben H.-G. An alternative field switching ion gate for ESI-ion mobility spectrometry. International Journal for Ion Mobility Spectrometry , 2017, vol. 20, no. 3-4, pp. 67—73. DOI: 10.1007/s12127-017-0222-y
  4. Chen C., Chen H., Li H. Pushing the resolving power of Tyndall-Powell ion mobility spectrometry over 100 with no sensitivity loss for multiple ion species. Anal Chem., 2017, vol. 89, no. 24, pp. 13398—13404. DOI: 10.1021/acs.analchem.7b03629
  5. Kurnin I.V., Samokish V.A., Krasnov N.V. [Simulation of the operational mode of ion mobility spectrometer with Bradbury — Nielsen ion gate]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2010, vol. 20, no. 3, pp. 14—21. URL: http://iairas.ru/en/mag/2010/abst3.php#abst3 (In Russ.).
  6. Tang K., Shvartsburg A.A., Lee Hak-No, Prior D.C., Buschbach M.A., Li F., Tolmachev A.V., Anderson G. A., Smith R.D. High-sensitivity ion mobility spectrometry/mass spectrometry using electrodynamic ion funnel interfaces. Anal. Chem., 2005, vol. 77, no. 10, pp. 3330—3339. DOI: 10.1021/ac048315a
  7. Reinecke T., Clowers B.H. Implementation of a flexible, open-source platform for ion mobility spectrometry. HardwareX, 2018, vol. 4, article e00030. DOI: 10.1016/j.ohx.2018.e00030
  8. Arseniev A.N., Kurnin I.V., Krasnov N.V., Muradymov M.Z., Yavor M.I., Pomozov T.V., Krasnov M.N. Optimization of ion transport from atmospheric pressure ion sources. International Journal for Ion Mobility Spectrometry , 2019, vol. 22, no. 1, pp. 31—38. DOI: 10.1007/s12127-018-0242-2
  9. Kurnin I.V., Krasnov N.V., Semenov S.Y., Smirnov V.N. Bradbury — Nielsen gate electrode potential switching modes optimizing the ion packet time width in an ion mobility spectrometer. International Journal for Ion Mobility Spectrometry, 2014, vol. 17, pp. 79—85. DOI: 10.1007/s12127-014-0152-x
  10. Arseniev A.N., Alekseev D.N., Belchenko G.V., Gavrik M.A., Krasnov N.V., Koryakin P.S., Krasnov I.A., Kurnin I.V., Myaldzin Sh.U., Muradymov M.Z., Monakov A.G., Pavlov V.G., Zvereva A.V., Nikitina S.N., Podolskaya E.P., Prisyach S.S., Semenov S.Yu., Krasnov M.N., Samokish A.V. [Spectroscopy of peptides, proteins and oligonukleotides from solutions by ion mobility]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2015, vol. 25, no. 1, pp. 17—26. DOI: 10.18358/np-25-1-i1726 (In Russ.).
  11. Dahl D.A. SIMION 3D V. 7.0 User’s manual. Idaho National Eng. Envir. Lab, 2000. 480 p.
  12. Kurnin I.V., Yavor M.I. [Model of motion in a viscous media with a statistic diffusion for calculation of ion dynamics in a dense gas and strong electric fields]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2015, vol. 25, no. 3, pp. 29—34. DOI: 10.18358/np-25-3-i2934 (In Russ.).
  13. Kurnin I.V. [Model for simulation of ion dynamics in a dense gas and strong electric fields]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2018, vol. 28, no. 3, pp. 118—123. DOI: 10.18358/np-28-3-i118123 (In Russ.).
  14. Kurnin I.V., Samokish V.A., Krasnov N.V. [Optimal operational mode of Bradbury–Nielsen ion gate in an ion mobility spectrometer]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2011, vol. 21, no. 2, pp. 34—39. (In Russ.). URL: http://iairas.ru/en/mag/2011/abst2.php#abst5
  15. Krasnov N.V., Pauls Y.I., Samokish A.V., Samokish V.A., Khasin Yu.I. [The resolving power of ion mobility spectrometer with double consecutive ion separation at corona discharge ionization]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2007, vol. 17, no. 1, pp. 40—48. (In Russ.).
    URL: http://iairas.ru/en/mag/2007/abst1.php#abst6
 

A. G. Kuzmin1, Yu. A. Titov1, G. V. Mitina2, A. A. Choglokova2

MASS SPECTROMETRIC STUDIES OF THE COMPOSITION
OF VOLATILE ORGANIC COMPOUNDS RELEASED
BY VARIOUS FUNGAL SPECIES OF GENUS LECANICILLIUM

"Nauchnoe Priborostroenie", 2021, vol. 31, no. 4, pp. 71—78.
doi: 10.18358/np-31-4-i7178
 

For the first time, the quantitative and qualitative composition of volatile organic compounds (VOCs), released by strains of various species of entomopathogenic fungi (EF) of the genus Lecanicillium, was studied using a quadrupole mass spectrometer. Lecanicillium fungi are used as an alternative to chemical pesticides for plant protection. The main detected components of the gas phase over the EF mycelium on the 10th day of growing on the agar Czapek's medium were carbon dioxide (5—20%), oxygen (0.1—15%), acetone (0.2—12 ppm), pentane (up to 0.5 ppm), acetic acid (up to 0.15 ppm). Acetone and pentane were found in the VOCs of all studied strains, acetic acid – in 5 strains belonging to different species, in other strains it appeared after a longer period of time, or was absent completely. Among the VOCs of some strains, substances such as hexyl acetate, sulfur dioxide were found in small quantities. These substances may be responsible for the pathogenic and repellent properties of the studied fungi with respect to phytophages.
 

Keywords: mass spectrometry, volatile organic compounds analysis, entomopathogenic fungi

Author affiliations:

1Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia
2All-Russian Institute of Plant Protection, Pushkin, Saint Petersburg, Russia

 
Contacts: Kuzmin Aleksey Georgievich, agqz55@rambler.ru
Article received by the editorial office on 15.09.2021

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Bojke A., Tkaczuk C., Stepnowski P., Golebiowski M. Comparison of volatile compounds released by entomopathogenic fungi. Microbiological Research, 2018, vol. 214, pp. 129—136. DOI: 10.1016/j.micres.2018.06.011
  2. Mitina G.V., Stepanycheva E.A., Choglokova A.A. [Effect of different species of entomopathogenic fungi of the genus Lecanicillium on behavioral responses and survival of the greenhouse white wing Trialeurodesvaporariorum]. Vestnik zaschity rasteniy [Plant Protection Bulletin], 2020, vol. 103, is. 4, pp. 265—268. DOI: 10.31993/2308-6459-2020-103-4-13466 (In Russ.).
  3. Kuzmin A.G., Tkachenko E.I., Oreshko L.S., Titov Yu.A., Balabanov A.S. [Mass spectrometric express diagnostics method by exhaled air composition]. Medizinskiy akademicheskiy zhurnal [Medical Academic Journal], 2016, vol. 16, no. 4, pp. 106—107. (In Russ.).
  4. Manoilov V.V., Kuzmin A.G., Titov U.A. Extraction of information attributes from the mass spectrometric signals of air. Journal of Analytical Chemistry, 2016, vol. 71, no. 14, pp. 1301—1308. DOI: 10.1134/S1061934816140094
  5. Shevchenko A.N., Kuzmin A.G., Titov Yu.A. [Mass spectrometric measurement of composition of gas mixtures in cells of quantum rotation sensor]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2018, vol. 28, no. 2, pp. 62—68. DOI: 10.18358/np-28-2-i6268 (In Russ.).
  6. Novikov L.V., Manoylov V.V., Kuzmin A.G., Titov Yu.A., Zaruzkiy I.V., Nefedov A.O., Nefedova A.V., Arseniev A.I. [ Express diagnostics of diseases by exhaled air based on a quadrupole mass spectrometer ]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2020, vol. 30, no. 4, pp. 94—105. DOI: 10.18358/np-30-4-i94105 (In Russ.).
  7. Kuzmin A.G., Titov Yu.A., Suvorov N.B., Kuropatenko M.V. [ Mass-spectrometric studies of the dynamics of exhaled air composition during dynamic postural effects ]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2020, vol. 30, no. 4, pp. 84—94. DOI: 10.18358/np-30-4-i8493 (In Russ.).
  8. Savelieva E.I., Gavrilova O.P., Gagkaeva T.Yu. [Investigation of composition of volatile organic compounds released by microscopic fungus fusariumculmorum by gas chromatomass spectrometry in combination with solid-phase]. Ekologicheskaya chimiya [Environmental chemistry], 2014, vol. 23, no. 2, pp. 110—118. (In Russ.).
 

E. E. Maiorov1, S. V. Kolesnichenko2, G. A. Tsygankova3,
A. C. Mashek3, A. A. Konstantinova4, E. A. Pisareva5

EXAMINATION OF DISINFECTANTS USING AN AUTOMATED
SPECTROMETER OPERATING IN THE VISIBLE RANGE
OF THE SPECTRUM

"Nauchnoe Priborostroenie", 2021, vol. 31, no. 4, pp. 79—87.
doi: 10.18358/np-31-4-i7987
 

The paper highlights a modern spectral device for measuring the optical parameters of solid-state materials in liquid-phase. The development of these devices is promising for optical instrumentation and science in general, since these devices are informative, highly accurate and provide reliable information. In the paper the appearance, block diagram and lighting system of the spectrometer are presented. The spectral dependences of the transmission on the wavelength in the visible range of the spectrum for disinfectants Like, Grand, Aqualite (1% solutions) are obtained. For the analysis of the studied substances, specialized cuvettes with a working length from 0.1 to 0.5 mm and leucosapfir optical pads were used. The cuvettes were 0.05 mm thick. The spectrometer provided measurement of the transmission of disinfectants in the wavelength range of 380—760 nm with an error not worse than ΔT ≤ 2%.
 

Keywords: disinfectant, spectral device, wavelength, transmission coefficient, two-lens condenser, optical filter, cuvette

Author affiliations:

1Saint-Petersburg state university of aerospace instrumentation (GUAP), Saint Petersburg, Russia
2Admiral Makarov State University of Maritime and Inland Shipping, Saint-Petersburg, Russia
3The naval polytechnic institute, Pushkin, Russia
4Military Academy of telecommunications named. S.M. Budyonny, Saint-Petersburg, Russia
5 Mikhailovskaya military artillery academy, Saint-Petersburg, Russia

 
Contacts: Maiorov Evgeniy Evgen'evich, majorov_ee@mail.ru
Article received by the editorial office on 01.09.2021

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Born M., Vol'f Eh. Osnovy optiki [Fundamentals of optics]. Moscow, Nauka Publ., 1970. 855 p. (In Russ.).
  2. Maiorov Ε.Ε. [Investigation of optical properties of liquid-phase media based on glycols]. Nauchnoe obozrenie [Science review], 2013, no. 4, pp. 166–176. (In Russ.).
  3. Landsberg G.S. Optika [Optics]. Moscow, Nauka Publ., 1976. 926 p. (In Russ.).
  4. Maiorov E.E., Prokopenko V.T., Ushveridze L.A. [Study of ultraviolet spectrophotometer (? = 200...400 nm) and its components]. Pribory [Instruments], 2014, vol. 164, no. 2, pp. 10–15. (In Russ.).
  5. Maiorov E.E., Mashek A.Ch., Tsygankova G.A., Khaidarov G.G., Khaidarov A.G., Zaitsev U.E., Abrahamyan V.K. [Development of a laboratory spectrophotometer for the visible spectrum for the control of liquid-phase environments]. Pribory i sistemy. Upravlenie, kontrol', diagnostika [Instruments and Systems: Monitoring, Control, and Diagnostics], 2016, no. 8, pp. 42–46. (In Russ.).
  6. Maiorov E.E., Mashek A.Ch., Tsygankova G.A., Khokhlova M.V., Kurlov A.V., Chernyak T.A., Fadeev A.O. [Computer simulation of the optical spectrum of dimethylsulfoxide (CH3)2SO and dimethylsulfone (CH3)2SO2 or refractometric means of control]. Pribory i sistemy. Upravlenie, kontrol', diagnostika [Instruments and Systems: Monitoring, Control, and Diagnostics], 2016, no. 12, pp. 35–41. (In Russ.).
  7. Maiorov E.E., Mashek A.Ch., Tsygankova G.A., Pisareva E.A. [Ultraviolet Wavelength Spectrophotometer Study for Analysis of Disperse Media Transmission Spectra]. Izvestiya TulGU [Izvestiya Tula State University], 2018, no. 4, pp. 357–365. (In Russ.).
  8. Maiorov E.E., Turovskaya M.S., Litvinenko A.N., Chernyak T.A., Kurlov V.V., Dagaev A.V., Ponomarev S.E., Katunin B.D. [Research spectrometer for the ultraviolet region of the spectrum and its feasibility study]. Pribory i sistemy. Upravlenie, kontrol', diagnostika [Instruments and Systems: Monitoring, Control, and Diagnostics], 2018, no. 7, pp. 38–43. (In Russ.).
  9. Maiorov E.E., Shalamai L.I., Kuz'mina D.A., Mendosa E.Yu., Narushak N.S., Sakerina A.I. [Spectral analysis of dental restoration material and dental tissue of patients of different age groups in vitro]. Izvestiya TulGU [Izvestiya Tula State University], 2020, no. 8, pp. 105–114. (In Russ.).
  10. Kuzmina D.A., Mendosa E.Yu., Maiorov E.E., Narushak N.S., Sakerina A.I., Shalamay L.I. [Experimental studies of optical properties of hard tissues of anterior teeth and modern synthetic filling materials]. Stomatologiya dlya vsekh [Dentistry for All], 2020, no. 4, pp. 58–62. DOI: 10.35556/idr-2020-4(93)58-62. (In Russ.).
  11. Kuzmina D.A., Mendosa E.Yu., Maiorov E.E., Narushak N.S., Sakerina A.I., Shalamay L.I. [Spectroscopy of dental tissues reflection in vitro and nanohybrid restoration materials]. MEDICUS. Mezhdunarodnyi meditsinskii nauchnyi zhurnal [International peer-reviewed scientific medical journal "MEDICUS"], 2020, vol. 35, no. 5, pp. 68–73. (In Russ.).
  12. Kuzmina D.A., Maiorov E.E., Shalamay L.I., Mendosa E.Yu., Narushak N.S. [Using the reflection spectroscopy method to recognize the authenticity of dental restoration materials]. Izvestiya vysshikh uchebnykh zavedenii. Priborostroenie [Journal of Instrument Engineering], 2021, vol. 64, no. 1, pp. 63–70. DOI: 10.17586/0021-3454-2021-64-1-63-70 (In Russ.).
  13. Maiorov E.E., Chernyak T.A., Tsygankova G.A., Mashek A.C., Konstantinova A.A., Pisareva E.A. [Spectral studies of textile optical bleach and organic dye]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2021, vol. 31, no. 1, pp. 73–83. DOI: 10.18358/np-31-1-e010 (In Russ.).
  14. Arefiev A.V., Guliyev R.B., Maiorov E.E., Kotskovich V.B., Pushkina V.P., Khokhlova M.V. [Spectrophotometry of basic disinfectants in the ultraviolet wavelength range]. Izvestiya vysshikh uchebnykh zavedenii. Priborostroenie [Journal of Instrument Engineering], 2021, vol. 64, no. 4, pp. 294–299. DOI 10.17586/0021-3454-2021-64-4-294-299 (In Russ.).
  15. Kuzmina D.A., Shalamay L.I., Mendosa E.Yu., Maiorov E.E., Narushak N.S. [Application of fluorescence spectroscopy for in vitro analysis of filling materials and hard tooth tissues]. Izvestiya vysshikh uchebnykh zavedenii. Priborostroenie [Journal of Instrument Engineering], 2021, vol. 64, no. 7, pp. 576–582. DOI: 10.17586/0021-3454-2021-64-7-576-582 (In Russ.).
 

Y. Y. Mikhalchevsky1, G. A. Kostin1, E. E. Maiorov1,
A. V. Arefiev2, M. V. Khokhlova3, S. V. Udachina4

STUDY OF DE-ICING LIQUID
WITH AN OPTOELECTRONIC REFRACTOMETER

"Nauchnoe Priborostroenie", 2021, vol. 31, no. 4, pp. 88–101.
doi: 10.18358/np-31-4-i88101
 

This work highlights the development of optoelectronic refractometer to study anti-icing liquids. Determining the composition authenticity and the flow rate of these liquids has always been a relevant task for the airport maintenance units, engaged in the processing of the aircraft body. The paper presents the objects of research: aqueous solutions of ethylene glycol and propylene glycol, which make up 95% of the composition of liquids of TYPE I, TYPE II, TYPE IV. The structural diagram and appearance of an optoelectronic refractometer are given. The results of measurements of the temperature dependences of the refractive index n(t) for solutions of ethylene glycol and propylene glycol in the temperature range from 12 °C to 100 °C and for concentrations from 0% to 100% are obtained. The spectra of ultraviolet optical transmission in ethylene glycol and propylene glycol of high purity in the wavelength range λ 210–320 nm with an error not worse than T = 0.5% are studied. The technical characteristics of an optoelectronic refractometer are given.
 

Keywords: anti-icing liquid, spectrum, optical transmission, ethylene glycol, propylene glycol, preflight preparation

Author affiliations:

1Saint Petersburg State University for Civil Aviation, Russia
2University at the EurAsEC inter-parliamentary Assembly, Saint Petersburg, Russia
3Military space Academy named after A.F. Mozhaisky, Saint Petersburg, Russia
4Saint Petersburg state university of aerospace instrumentation (GUAP), Russia

 
Contacts: Maiorov Evgeniy Evgen'evich, majorov_ee@mail.ru
Article received by the editorial office on 22.09.2021

Full text (In Russ./In Eng.) >>

REFERENCES

  1. GOST 23907-79 Zhidkosti protivoobledenitel'nye dlya letatel'nych apparatov. Obschie technicheskie trebovaniya [GOST 23907-79 Anti-icing liquids for aircraft. General technical requirements]. (In Russ.).
  2. NC NEWCHEMESTRY. RU. Zhidkosti dlya antiobledinitel'noi obrabotki samoletov [Liquids for aircraft anti-icing treatment]. (In Russ.). URL: http://www.newchemistry.ru/letter.php?n_id=7509
  3. Tsierkezos N.G., Molinou I.E. Thermodynamic Properties of Water+ Ethylene Glycol at 283.15, 293.15, 303.15, and 313.15 K. J. Chem. Eng. Data, 1998, vol. 43, pp. 989—993. DOI: 10.1021/je9800914
  4. Maiorov E.E. [Study of the optical properties of glycol-based liquid-phase environments]. Nauchnoe obozrenie [Scientific Review], 2013, no. 4, pp. 166—176. (In Russ.).
  5. Zhou Y., Li S., Zhai Q., Jiang Y., Hu M. Compositions, Densities, and Refractive Indices for the Ternary Systems Ethylene Glycol + NaCl + H2O, Ethylene Glycol + KCl + H2O, Ethylene Glycol + RbCl + H2O, and Ethylene Glycol + CsCl + H2O at 298.15 K. J Chem Eng Data, 2010, vol. 55, pp. 1289—1294. DOI: 10.1021/je900630n
  6. Belov N.P., Lapshov S.N., Maiorov E.E., Sherstobitova A.S., Yaskov A.D., et al. [Industrial refractometers and their application for the control of chemical production]. Pribory [Devices], 2012, no. 4 (142), pp. 1—8. (In Russ.).
  7. Belov N.P., Lapshov S.N., Maiorov E.E., Sherstobitova A.S., Yaskov A.D. [Optical properties of black liquor and refractometric methods for monitoring the solid residue concentration in sulfate cellulose production]. Zurnal prikladnoj spektroskopii [Journal of Applied Spectroscopy], 2012, vol. 79, no. 3, pp. 514—516. DOI: 10.1007/s10812-012-9630-2 (In Russ.).
  8. Belov N.P., Lapshov S.N., Sherstobitova A.S., Yaskov A.D., Maìorov E.E. [Optical properties of green liquors and the use of commercial refractometry to monitor their composition in the production of sulfate cellulose]. Opticheskii zhurnal [Journal of Optical Technology], 2014, vol. 81, no. 1, pp. 53—58. DOI: 10.1364/JOT.81.000039 (In Russ.).
  9. Maiorov E.E., Mashek A.Ch., Tsygankova G.A., Khaidarov A.G., Abrahamyan V.K., Zaitsev Y.E. [Development of optoelectronic refractometric device for monitoring the composition of aqueoussolutions of glycols]. Pribory i sistemy. Upravlenie, kontrol', diagnostika [Instruments and Systems: Monitoring, Control, and Diagnostics], 2016, no. 3, pp. 33—41. (In Russ.).
  10. Maiorov E.E., Chernyak T.A., Mashek A.Ch., Tsygankova G.A., Khokhlova M.V., Kurlov A.V., Kirik D.I., Kapralov D.D., Zharkova T.V. [The possibility of using the automated refractometry methods and meansfor measuring the composition of the green liquor in the production of sulphate pulp]. Pribory i sistemy. Upravlenie, kontrol', diagnostika [Instruments and Systems: Monitoring, Control, and Diagnostics], 2017, no. 1, pp. 42—49. (In Russ.).
  11. Prokopenko V.T., Maiorov E.E., Fedorov A.L., Tsygankova G.A., Zharkova T.V., Dagaev A.V. [Production testing of refractometric device for control over liquid-phase media]. Izvestiya vysshikh uchebnykh zavedenii. Priborostroenie [Journal of instrument engineering], 2017, vol. 60, no. 7, pp. 672—678. DOI: 10.17586/0021-3454-2017-60-7-672-678 (In Russ.).
  12. Maiorov E.E., Turovskaya M.S., Khokhlova M.V., Shalamay L.I., Konstantinova A.A., Dagaev A.V., Guliyev R.B., Tayurskaya I.S. [The application of refractometry using a goniometer to measure the composition of the liquor in the production of kraft pulp]. Izvestiya tul'skogo gosudarstvennogo universiteta. Tekhnicheskie nauki [Proceedings of the TSU], 2020, no. 2, pp. 129—139. (In Russ.).
  13. Kurlov V.V., Gromov O.V., Tayurskaya I.S., Maiorov E.E., Arefiev A.V., Guliyev R.B. [Application of the developed refractometric sensor in food production]. Pribory i sistemy. Upravlenie, kontrol', diagnostika [Instruments and Systems: Monitoring, Control, and Diagnostics], 2021, no. 2, pp. 1—12. DOI: 10.25791/pribor.2.2021.1237 (In Russ.).
  14. Gromov V.O., Maiorov E.E., Tayurskaya I.S., Mashek A.Ch., Tsygankova G.A., Udakhina S.V. [Experimental study of the developed automated refractometer for the control of chemically aggressive media]. Nauchnoe obozrenie. Tekhnicheskie nauki [Scientific review. Technical sciences], 2021, no. 3, pp. 21—26. DOI: 10.17513/srts.1352 (In Russ.).
  15. Maiorov E.E., Chernyak T.A., Tsygankova G.A., Mashek A.C., Konstantinova A.A., Pisareva E.A. [Spectral studies of textile optical bleach and organic dye]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2021, vol. 31, no. 1, pp. 73—83. DOI: 10.18358/np-31-1-i7383 (In Russ.).
 

E. G. Silkis1,2, A. S. Stankevich1, V. N. Krasheninnikov1,
Yu. A. Repeev1, D. V. Novikov2

MEASUREMENT OF PARAMETERS OF BROADBAND
EMISSION USING MINI-SPECTROMETERS

"Nauchnoe Priborostroenie", 2021, vol. 31, no. 4, pp. 102—109.
doi: 10.18358/np-31-4-i102109
 

On the basis of mini-spectrometers, a reference lamp of the SIRSH type with a known color temperature, and line spectrum sources, an inexpensive hardware complex has been created for measuring the emission parameters of heterodiodes and interference filters. Examples of recording the emission of heterodiodes (full width at half maximum  is 17—30 nm) with a maximum of emission in the region of 659 and 764 nm and measurement of an interference filter (FWHM of the bandwidth is 12 nm) with a maximum transmission of 727 nm are given. The emission parameters of the SIRSH standard lamp are introduced into the program for measuring and processing data, due to which it is possible to significantly refine the value of the wavelength of the maximum emission and transmission.
 

Keywords: linear CCD recording system, mini-spectrometer, spectral line wavelength, laser heterodiode

Author affiliations:

1Institute of Spectroscopy, Russian Academy of Sciences, Moscow, Troitsk
2MORS LTD, Moscow, Troitsk

 
Contacts: Silkis Emmanuil Gershovitch, esilkis@mail.ru
Article received by the editorial office on 10.08.2021

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Sil'kis E.G., Stankevich A.S., Krasheninnikov V.N. [System registration spectra, mini spectrometers and emission spectrometers]. Vuzovsko-akademicheskiy sb. nauchn. trudov "Problemy spektroskopii i spektrometrii" [Problems of spectroscopy and spectrometry], Ekaterinburg, UrFU, 2014, is. 33, pp. 43—67. (In Russ.).
  2. OOO "MORS" Razrabotka i proizvodstvo spektral'nogo oborudovaniya [LLC "MORS" Development and production of spectral equipment]. URL: http:// www.ooo-mors.ru (In Russ.).
  3. Silkis1 E.G., Stankevich1 A.S., Krasheninnikov V.N., Novikov D.V. [Laser diode wavelength meter in the range of 330—1080 nm]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2020, vol. 30, no. 1. pp. 27—38. URL: http://www.iairas.ru/mag/2020/full1/Art4.pdf (In Russ.).
  4. OOO "Nauchno Technicheskiy Zentr Volokonno-Opticheskich Ustroystv" [LLC "Scientific and Technical Center of Fiber Optic Devices"]. URL: http://www.optofiber.ru (In Russ.).
  5. Lampy MELZ. Elektricheskie svetoizmeritel'nye shirokodiapazonnye lampy [Lamps "MELZ" Electric light-measuring wide-range lamps]. (In Russ.).
    URL: http://www.viclight.ru/category/elektricheskie-svetoizmeritelnye-shirokodiapazonnye-lampy/index.php
  6. Gerashchenko O.A., Gordov A.N., Eremina A.K., Lakh V.I., Lutsik Ya.T., Putsylo V.I., Stadnyk B.I., Yaryshev N.A. Temperaturnye izmereniya. Spravochnik [Temperature measurements. Directory]. Kiev, Naukova Dumka Publ., 1989. 465 p. (In Russ.).
  7. OOO "Fotooptik". Izgotovlenie fil'trov dlya opticheskoy industrii [LLC "Photooptic". Manufacture of filters for the optical industry]. URL: http:// www.photooptic-filters.com (In Russ.).
 

S. V. Vantsov, V. A. Sokolov, O. V. Khomutskaya

ANALYSIS OF PRECISION PROBLEMS
OF PRECISION INDUSTRIAL ROBOTS

"Nauchnoe Priborostroenie", 2021, vol. 31, no. 4, pp. 110—119.
doi: 10.18358/np-31-4-i110119
 

The article highlights the issues of compliance of the mechanics of manipulators of precision industrial robots (PIRs) with the highest accuracy standards specified in the normative technical documentation and practically achieved in the fields of machine-building, instrument-making and electronic industries. In the spotlight there are the possibilities of systems of multi - connected control of complex spatial mechanisms with excessive degrees of freedom (including manipulators of PIRs), the possibilities of systems of multi-circuit control of PIR drives with precision sensors of linear and angular displacements, velocities, accelerations, acceleration gradients (in the future), the issues of matching these parameters with the parameters of the computational part of control systems – the bit depth of digital sensors (more than 20 digits) with an resolution of less than an arc second.
PIR manipulators are used in systems of multi-connected and multi-circuit regulation and control with elements of artificial intelligence, such as automatic adjustment systems (AASs), automatic control systems (ACSs) and artificial intelligence systems (AISs).
These problems are considered in a wide range, including the transition to the fields of nanotechnologies, specifically: for linear (nanometers) and angular (hundredths of arc seconds) measurements, as well as the measurements of velocities, accelerations, and acceleration gradients (in the future – for systems with a human operator in the loop, i.e. human-machine systems (HMSs)).
 

Keywords: industrial robot, manipulator, accuracy qualifications, ACS, AAS, AIS, precision mechanical value sensors, precision sensors, human operator, human-machine system

Author affiliations:

Moscow Aviation Institute (National Research University), Moscow, Russian Federation

 
Contacts: Chomutskaya Ol'ga Vladislavovna , khomutskayaov@gmail.com
Article received by the editorial office on 09.09.2021

Full text (In Russ./In Eng.) >>

REFERENCES

  1. Burdakov S.F., D'yachenko V.A., Timofeev A.N. Proektirovanie manipulyatorov promyshlennych robotov i robotizirovannych kompleksov: Ucheb. posobie dlya stud. Vuzov [Designing manipulators of industrial robots and robotic complexes: Textbook for students. universities]. Moscow, Higher School Publ., 1986. 264 p. (In Russ.).
  2. Bulgakov A.G., Vorob'ev V.A. Promyshlennye roboty. Kinematika, dinamika, kontrol' i upravlenie [A. Industrial robots. Kinematics, dynamics, control and management]. Moscow, SOLON-PRESS Publ., 2011. 488 p. (In Russ.).
  3. Syrovatchenko P.V. Spravochnik technologa-priborostroitelya. T. 1 [Handbook of an instrument-making technologist. Vol. 1]. Moscow, Mashinostroenie Publ., 1980. 607 p. (In Russ.).
  4. Skorochodov E.A., eds. Spravochnik technologa-priborostroitelya. T. 2 [Handbook of an instrument-making technologist. Vol. 2]. Moscow, Mashinostroenie Publ., 1980. 463 p. (In Russ.).
  5. Solodovnikov V.V., eds. Technicheskaya kibernetika: Seriya inzhenernych monografiy. Teoriya avtomaticheskogo regulirovaniya. Kniga 1. Matematicheskoe opisanie, analiz ustoychivosti i kachestva sistem avtomaticheskogo regulirovaniya [Technical cybernetics: A series of engineering monographs. The theory of automatic regulation. Book 1. Mathematical description, analysis of stability and quality of automatic control systems]. Moscow, Mashinostroenie Publ., 1967. 770 p. (In Russ.).
  6. Lomov B.F. Spravochnik po inzhenernoy psichologii [Handbook of engineering psychology]. Moscow, Mashinostroenie Publ., 1982. 368 p. (In Russ.).
  7. [Simulator of space flight conditions T-27]. Astronavtika i raketodinamika [Astronautics and rocket dynamics], 1966, is. 44. (In Russ.).
  8. Ozenka vozmozhnosti zaschity operazionnogo bloka oftal'mologicheskogo zentra, razmeschennogo na teplochode "PETR PERVYY", ot sudovoy kachki i vibrazionnych vozdeystviy [Assessment of the possibility of protecting the operating unit of the ophthalmological center located on the ship "PETER the GREAT" from ship pitching and vibration effects]. NIIAC Publ., 1990. (In Russ.).
  9. K voprosu o tochnosti uglovych enkoderov. Techniche-skoe izdanie otdela preobrazovateley lineynych i uglovych peremescheniy [On the issue of the accuracy of angular encoders-Technical publication of the Department of linear and angular displacement converters ] URL: http://www.servotechnica.ru/files/doc/documents/file-933.pdf (In Russ.).
  10. Primery primeneniya datchikov lineynych peremescheniy [Examples of linear motion sensors]. (In Russ.). URL: https://www.s-t-group.com/catalogs/stock/mitutoyo/%D0%9A%D0%B0%D1%82%
    D0%B0%D0%BB%D0%BE%D0%B3_Mitutoyo_2017_2019_%D0%A0%D1%83%D1%81_10.pdf
 

CONTENTS OF VOLUME 31


 NUMBER 1
 INSTRUMENT MAKING OF PHYSICAL AND CHEMICAL BIOLOGY (pp. 3–58)
 EQUIPMENT AND SYSTEMS (pp. 59–72)
 SYSTEM ANALYSIS OF MEASURING DEVICES AND METHODS (pp. 73–95)
 INFORMATICS, COMPUTER TECHNICS AND CONTROL (pp. 96–106)
 MATHEMATICAL METHODS AND MODELLING IN INSTRUMENT MAKING (pp. 107–123)
 PERSONNEL (pp. 124–124)
 
 NUMBER 2
 EQUIPMENT AND SYSTEMS (pp. 3–43)
 MATHEMATICAL METHODS AND MODELLING IN INSTRUMENT MAKING (pp. 44–51)
 SYSTEM ANALYSIS OF MEASURING DEVICES AND METHODS (pp. 52–104)
 
 NUMBER 3
 DEVELOPMENT OF MEASURING DEVICES AND SYSTEMS (pp. 3–36)
 SYSTEM ANALYSIS OF MEASURING DEVICES AND METHODS (pp. 37–79)
 
 NUMBER 4
 PHYSICS AND CHEMISTRY OF INSTRUMENT MAKING (pp. 3–70)
 INSTRUMENT MAKING FOR BIOLOGY AND MEDICINE (pp. 71–87)
 SYSTEM ANALYSIS OF MEASURING DEVICES AND METHODS (pp. 88–119)
 
 Contents of volume 31 (pp. 120–125)
 The authors index of volume 31 (pp. 126–128)

Full text (In Russ./In Eng.) >>

 

THE AUTHORS INDEX OF VOLUME 31

Total authors of the volume — 96

Full text (In Russ. / In Eng.) >>

Ulitsa Ivana Chernykh, 31-33, lit. A, St. Petersburg, Russia, 198095, P.O.B. 140
tel: (812) 3630719, fax: (812) 3630720, mail: iap@ianin.spb.su

content: Valery D. Belenkov design: Banu S. Kuspanova layout: Anton V. Manoilov