logo
blue band <-
  JOURNAL "NP" ISSUES

"Nauchnoe Priborostroenie", 2021, Vol. 31, no. 3. ISSN 2312-2951, DOI: 10.18358/np-31-3-e105

"NP" 2021 year Vol. 31 no. 3.,   ABSTRACTS

ABSTRACTS, REFERENCES

T. V. Pomozov, N. V. Krasnov

INFLUENCE OF FEATURES OF THE ELECTRIC FIELD IN THE DIAPHRAGM SYSTEM ON THE TRANSPORTATION OF THE FLOW OF CHARGED PARTICLES AT ATMOSPHERIC PRESSURE

"Nauchnoe Priborostroenie", 2021, vol. 31, no. 3, pp. 3—9.
doi: 10.18358/np-31-3-i39
 

The results of numerical simulation of the ion-optical scheme of ion transport at atmospheric pressure are presented. The possibility of efficient transport of ions in the system under consideration with an increase in the local curvature of the equipotential lines of the electrostatic field in the vicinity of the nozzle by shaping (changing the shape) of this electrode is shown. Shaping the nozzle allows to increase the value of Icoïëo by approximately 1.6 times. Taking into account the gas-dynamic effect on the transport of the ion beam through the nozzle makes it possible to obtain the values of the transmission by 70% higher.
 

Keywords: ion mobility spectrometer, ion transport at atmospheric pressure, electrostatic field

Author affiliations:

Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia

 
Contacts: Krasnov Nikolay Vasil'evich, krasnov @alpha-ms.com
Article received by the editorial office on 5.07.2021

Full text (In Russ./ In Eng.) >>

REFERENCES

  1. Tang K., Li F., Shwartsburg A., Stritmatter E.F., Smith R.D. Two-dimensional gas-phase separations coupled to mass spectrometry for analysis of complex mixtures. Anal. Chem., 2005, vol. 77, no. 19, pp. 6381—6388. DOI: 10.1021/ac050871x
  2. Tang K., Shwartsburg A., Lee H.N., Prior D.C., Buschtbach M.A., Li F., Tolmachev A., Anderson G.A., Smith R.D. High-sensitivity ion mobility spectrometry/mass spectrometry using electrodynamic ion funnel interfaces. Anal. Chem., 2005, vol. 77, no. 10, pp. 3330—3339. DOI: 10.1021/ac048315a
  3. Ibrahim Y.M., Baker E.S., Danielson III W.F., Norhem R.V., Prior D.C., Anderson G.A., Belov M.E., Smith R.D. Development of a new ion mobility (quadrupole) time-of-flight mass spectrometer. Int. J. Mass Spektrom., 2015, vol. 377, no. 1, pp. 655—662. DOI: 10.1016/j.ijms.2014.07.034
  4. Cumeras R., Fiqueras E., Davis C.E., Baumbach J.L., Gracia I. Review on ionmobility spectrometry. Part 1: Current instrumentation. Analyst., 2015, vol. 140, no. 5, pp. 1376—1390. DOI: 10.1039/c4an01100g
  5. Kim T., Tolmachev A.V., Harkewicz R., Prior D.C., Anderson G., Udseth H.R., Smith R.D., Bailey T.H., Rakov S., Futrell J.H. Design and implementation of a new electrodynamic ion funnel. Anal. Chem., 2000, vol. 72, no. 10, pp. 2247—2255. DOI: 10.1021/ac991412x   
  6. Shaffer S.A., Prior D.C., Anderson G.A., Udseth H.R., Smith R.D. An ion funnel interface for improved ion focusing and sensitivity using electrospray ionization mass spectrometry. Anal. Chem., 1998, vol. 70, no. 19, pp. 4111—4119. DOI: 10.1021/ac9802170  
  7. Kuzmin D.A., Muradymov M.Z., Krasnov N.V., Pomozov N.V., Arseniev A.N. [Transport of ions in sources with ionization at atmospheric pressure. I. Substantive geometry]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2017, vol. 27, no. 4, pp. 8—16. DOI: 10.18358/np-27-4-i816 (In Russ.).
  8. Kuzmin D.A., Muradymov M.Z., Krasnov N.V., Pomozov N.V., Arseniev A.N., Krasnov M.N. [Transport of ions in sources with ionization at atmospheric pressure. II. Inverse geometry]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2017, vol. 27, no. 4, pp. 17—23. DOI: 10.18358/np-27-4-i1723 (In Russ.).
  9. Arseniev A.N., Kurnin I.V., Krasnov N.V., Muradymov M.Z., Yavor M.I., Pomozov T.V., Krasnov M.N. Optimization of ion transport from atmospheric pressure ion sources. International Journal for Ion Mobility Spectrometry, 2019, vol. 22, no. 1, pp. 31—38, DOI: 10.1007/s12127-018-0242-2
  10. Arseniev A.N., Muradymov M.Z., Krasnov N.V. Investigation of electrospray stability with dynamic liquid flow splitter. J. of Anal. Chem., 2014, vol. 69, no. 14, pp. 30—32. DOI: 10.1134/ S1061934814140020
  11. Mutin E.M., Muradymov M.Z., Krasnov N.V., Krasnov M.N., Kurnin I.V. Spatial distribution of the dropless ESI charged particles at IMS entrance. International Journal for Ion Mobility Spectrometry, 2020, vol. 23, pp. 91—96. DOI: 10.1007/s12127-020-00269-w
  12. Kupriy P.A., Muradymov M.Z., Krasnov N.V., Kurnin I.V., Arseniev A.N. [Effect of gas-dynamic flow on ion transport through the nozzle of an ion source with ionization at atmospheric pressure]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2020, vol. 30, no. 4, pp. 75—83. DOI: 10.18358/np-30-4-i7583 (In Russ.).
 

E. S. Pavlova1, N. M. Blashenkov1, L. N. Gall2, N. R. Gall2

SPECIALIZED INLET SYSTEM FOR 13C UREA BREATH TEST USING ISOTOPE RATIO MASS SPECTROMETER HELICOMASS

"Nauchnoe Priborostroenie", 2021, vol. 31, no. 3, pp. 10—15.
doi: 10.18358/np-31-3-i1015
 

A specialized single channel inlet system has been developed for urea breath tests and scientific studies using Isotope Ratio Mass Spectrometer Helicomass. The system consists of sampling needle, manifold with its purification system, the possibility to introduce sample and standard, high vacuum Mamyrin leak valve to inlet the sample to electron ionization ion source, and the purification procedure including series of sequential pumpings out and blowdowns with compressed nitrogen. The system inlets sample up to 4·10–6 Torr in the mass-spectrometer analytical chamber. The measuring precision was 0.1% for 21 measurements, which meets the test requirements. The measuring time was 15 min per sample including the standard measurement, system purification, the sample measurement, and the second purification. The combination of system and Helicomass mass-spectrometer fits requirements for procedure used to identify infections by Helicobacter pylori.
 

Keywords: sample inlet system, Urea breath test, isotope mass spectrometry, 13C / 12C

Author affiliation:

1Ioffe Physical Technical Institute of the RAS , Saint Petersburg, Russia
2Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia

 
Contacts: Pavlova Ekaterina Sergeevna, sheshenayket@gmail.com
Article received by the editorial office on 3.08.2021

Full text (In Russ./ In Eng.) >>

REFERENCES

  1. Galimov E.M., Grinenko V.A., Ustinov V.I. [About selection of starting system parameters precision mass spectrometer]. Pribory i technika eksperimenta [Instruments and technique of the experiment], 1965, no. 3, pp. 159—163.
  2. Zyakun A.M. Teoreticheskie osnovy izotopnoy mass-spektrometrii v biologii [Theoretical foundations of isotopic mass spectrometry in biology]. Puschino, Foton-vek publ., 2010, 224 p.
  3. Zodikov G.V., Rapoport S.I., Zyakun A.M. et al. [Comprehensive evaluation of the domestic preparation of 13C-carbomide in detecting urease activity of Helicobacter Pylori]. Ros. zhurn. gastroenterol., gepatol., koproktol. [Russian magazine. gastroenterol, hepatol, coproctol.], 2003, vol. 13, no. 5, pp. 163—168.
  4. Blashenkov N.M., Sheshenya E.S., Solov'ev S.M., Gall' L.N., Sachenko V.M., Zaruzkiy I.V., Gall' N.R. [Development of a specialized isotopic mass spectrometer for non-invasive diagnosis of human infection Helicobacter Pylori]. Zhurnal technicheskoy fiziki [Journal of Technical Physics], 2013, vol. 83, no. 6, pp. 60—65.
  5. Blashenkov N.M., Sheshenya E.S., Solov'ev S.M., Sachenko V.M., Gall' L.N., Zaruzkiy I.V., Gall' N.R. [Specialized isotopic mass spectrometer for non-invasive diagnosis of human Helicobacter pylori infection]. Pis'ma v Zhurnal technicheskoy fiziki [Letters to the Journal of Technical Physics], 2013, vol,. 39, no. 9, pp. 56—63.
 

T. A. Chernyak1, Y. M. Borodyansky2, E. A. Petrova3,
E. E. Maiorov4, E. V. Popova4, M. V. Khokhlova5

APPLICATION OF AN AUTOMATED OPTICAL-MECHANICAL
DEVICE FOR TOMOGRAPHIC EXAMINATION OF THE GUM
UNDER THE INFLUENCE OF EXTERNAL AGENTS

"Nauchnoe Priborostroenie", 2021, vol. 31, no. 3, pp. 16—24.
doi: 10.18358/np-31-3-i1624
 

The work highlights the use of the developed automated optical-mechanical device for tomographic studies of the gums treated with special types of toothpastes. The optical parameters of the gum depth were measured under and without the influence of external agents. This task is relevant and important for therapeutic dentistry. The paper reveals the scheme of an automated opto-mechanical device and its operation, as well as the technical characteristics of the device. The objects of the study were determined and data on the distribution of the reflection coefficient from the subsurface layers (depth 0.5 mm) were obtained. A section of the upper gum area with an area of (1×1) cm2 after treatment with gum pastes in 15 minutes at a wavelength of 0.83 microns was analyzed.
 

Keywords: opto-mechanical device, Michelson interferometer, wave length, low-coherence radiation, gum, gum paste, therapeutic dentistry

Author affiliations:

1 Saint Petersburg state university of aerospace instrumentation (GUAP), Russia
2 The Bonch-Bruevich Saint Petersburg State University of Telecommunications, Russia
3 Saint Petersburg university of management technologies and economics, Russia
4 University at the inter-parliamentary Assembly of EurAsEC, Saint Petersburg, Russia
5 Military space Academy named after A.F. Mozhaisky, Saint Petersburg, Russia

 
Contacts: Maiorov Evgeniy Evgen'evich, majorov_ee@mail.ru
Article received by the editorial office on 02.07.2021

Full text (In Russ./ In Eng.) >>

REFERENCES

  1. Gelikonov V.M., Gelikonov G.V., Gladkova N.D., et al. [Coherent optical tomography of microuniodic relatives of biotangles]. Pis'ma v ZHEHTF [JETP letters], 1995, vol. 61, no. 2, pp. 149—153. (In Russ.).
  2. Sasaki O., Okazaki H. Sinusoidal phase modulating interferometry for surface profile measurement. Applied Optics, 1986, vol. 25, no. 18, pp. 3137—3140. DOI: 10.1364/AO.25.003137
  3. Chebbour A., Gorecki C., Tribillon G. Range sinding and velocimetry with directional discrimination using a modulated laser diode Michelson interferometer. Optics Communications, 1994, vol. 111, no. 1-2, pp. 1—5. DOI: 10.1016/0030-4018(94)90129-5
  4. Bol'shakov O.P., Kotov I.R., Khopov V.V., Maiorov E.E. [Coherent optic tomography of biofuels]. Materialy III Vserossiiskoi NT konferentsii "Fundamental'nye issledovaniya v tekhnicheskikh universitetakh" [Proc. of the III All-Russian NT Conference "Basic Research in Technical Universities"], 1999, pp. 151—152. (In Russ.).
  5. Maiorov E.E., Guliev R.B., Shalamai L.I., Chernyak T.A., Dagaev A.V., Khokhlova M.V. [In vitro investigation of dental enamel by shift interferometry]. Meditsinskaya tekhnika [Biomedical Engineering], 2020, no. 4, pp. 39—42. (In Russ.).
  6. Arefiev A.V., Borodyansky Y.M., Guliyev R.B., Dagaev A.V., Maiorov E.E., Khokhlova M.V. [Measurement of the microrelief of non-smooth surfaces by an automa ted interferometer in low-coherent light]. Izvestiya tul'skogo gosudarstvennogo universiteta. Tekhnicheskie nauki [Izvestiya Tula State University], 2020, no. 8, pp. 211—219. (In Russ.).
  7. Kuzmina D.A., Mendosa E.Yu., Maiorov E.E., Narushak N.S., Sakerina A.I., Shalamay L.I. [Experimental studies of optical properties of hard tissues of anterior teeth and modern synthetic filling materials]. Stomatologiya dlya vsekh [Dentistry for All], 2020, no. 4, pp. 58—62. DOI: 10.35556/idr-2020-4(93)58-62 (In Russ.).
  8. Kuzmina D.A., Mendoza E.Yu., Maiorov E.E., Marushak N.S., Shalamay L.I. [Spectroscopy of dental tissues reflection in vitro and nanohybrid restoration materials]. MEDICUS. Mezhdunarodnyi meditsinskii nauchnyi zhurnal [International peer-reviewed scientific medical journal "MEDICUS"], 2020, vol. 35, no. 5, pp. 68—73. (In Russ.).
  9. Maiorov E.E., Gromov O.V., Kurlov V.V., Koskovich V.B., Petrova E.A., Pushkina V.P., Tayurskaya I.S. [Investigation of the surface relief of biological objects by a control method that analyzes divergence]. Izvestiya tul'skogo gosudarstvennogo universiteta. Tekhnicheskie nauki [Izvestiya Tula State University], 2021, no. 2, pp. 383—388. (In Russ.).
  10. Gromov O.V., Mayorov E.E., Chernyak T.A., Udakhina S.V., Pisareva E.A., Konstantinova A.A. [Measurements of the optical properties of human skin in vivo under the influence of modern moisturizers]. Mezhdunarodnyi nauchno-issledovatel'skii zhurnal [International research journal], 2021, vol. 105, no. 3-1, pp. 38—43. (In Russ.). DOI: 10.23670/IRJ.2021.105.3.006
  11. Khokhlova M.V., Arefyev A.V., Maiorov E.E., Guliyev R.B., Dagaev A.V., Gromov O.V. [Experimental study of the metrological characteristics of the developed trigger-type optical probe]. Pribory [Devices], 2021, no. 5. pp. 8—16. (In Russ.).
 

I. I. Ivanov1, A. M. Baranov1, V. A. Talipov2,
S. M. Mironov2, I. V. Kolesnik3, K. S. Napolskii3

DEVELOPMENT OF EFFECTIVE SENSORS
FOR DETECTING PRE-EXPLOSIVE H2 CONCENTRATIONS

"Nauchnoe Priborostroenie", 2021, vol. 31, no. 3, pp. 25—36.
doi: 10.18358/np-31-3-i 2536
 

We studied the response of catalytic sensors to hydrogen with various types of platinum-group catalysts (Pt, Pd, Ir, Rh, Pt+Pd) in the pre-explosive concentration range. Temperature dependences of sensory response are analysed. Dependences of the sensory response on the applied voltage demonstrates hysteresis behavior that can be explained by the partial transition of the oxides of the platinum group metals into the metallic phase at temperatures above 500 °C and the reverse oxidation of metals if temperature is below 400 °C. Catalytic sensors with Ir and Rh catalysts are more preferable for practical use in the detection of hydrogen.
 

Keywords: catalytic sensor, hydrogen detection, platinum-group catalysts, sensor response hysteresis

Author affiliations:

1Moscow Aviation Institute, Moscow; Russia
2Scientific and Technical Center for Measuring Gas Sensing Sensors
named after E.F. Karpov, Lyubertsy; Moscow region, Russia
3Lomonosov Moscow State University, Moscow, Russia

 
Contacts: Ivanov Ivan Ivanovitch, I.Ivan1993@yandex.ru
Article received by the editorial office on 5.05.2021

Full text (In Russ./ In Eng.) >>

REFERENCES

  1. Furat D., Martin A., Shafiullah G.M. Hydrogen production for energy. An overview. International Journal of Hydrogen Energy, 2020, vol. 45, is. 7, pp. 3847—3869.
  2. Titarenko O.N., Simonov I.V. [Combined electricity system based on renewable and hydrogen energy]. Energeticheskie ustanovki i tekhnologii [Power plants and technologies], 2019, vol. 5, no. 4, pp. 90—95. (In Russ.).
  3. Ivanov I., Baranov A., Akbari S., Mironov S., Karpova E. Methodology for estimating potential explosion hazard of hydrocarbon with hydrogen mixtures without identifying gas composition. Sensors and Actuators B, Chemical, 2019, vol. 293, pp. 273—280.
  4. Dobrovol'skij Yu.A., Leonova L.S., Ukshe A.E., Levchenko A.V., Baranov A.M., Vasil'ev A.A. [Portable sensors for hydrogen analysis]. Rossijskij himicheskij zhurnal [Russian chemical journal], 2006, vol. L, no. 6, pp. 120—127. (In Russ.).
  5. Vasiliev A.A., Lipilin A.S., Lagutin A.S., Pisliakov A.V., Zaretskiy N.P., Samotaev N.N., Sokolov A.V. Gas sensors based on MEMS structures made of ceramic ZrO2/Y2O3 material. Proceedings of SPIE, 2011, vol. 8066,
    id 80660N.
  6. Podlepeckij B.I., Nikiforova M.Yu. [Influence of the temperature of MIS-transistor sensitive elements on the characteristics of hydrogen sensors]. Datchiki i sistemy [Sensors and systems], 2015, no. 7, pp. 3—7. (In Russ.).
  7. Imenkov A.N., Grebenshchikova E.A., Shutaev V.A., Ospennikov A.M., Yakovlev Yu.P. [Optoelectronic hydrogen sensor based upon Pd/n-InP structure]. Datchiki i sistemy [Sensors and systems], 2017, no. 5, pp. 15—19. (In Russ.).
  8. Podlepetsky B., Samotaev N., Kovalenko A. Responses’ parameters of hydrogen sensors based on MISFET with Pd (Ag)-Ta2O5-SiO2-Si structure. Sensors and Actuators B, Chemical, 2019, vol. 290, pp. 698—705.
  9. Karpov E.F., Basovskij B.I. Kontrol' provetrivaniya i degazacii v ugol'nyh shahtah: Spravochnoe posobie [Control of ventilation and degassing in coal mines: A reference guide], Moscow, Nedra Publ., 1994. 336 p. (In Russ.).
  10. Iwan D., Ferry A., Ardy N. Christoph L. High-performance nanostructured palladium-based hydrogen sensors – current limitations and strategies for their mitigation. ACS Sensors, 2020, vol. 5, pp. 3306—3327.
  11. Somov A., Karelin A., Baranov A., Mironov S. Estimation of a gas mixture explosion risk by measuring the oxidation heat within a catalytic sensor . IEEE transactions on industrial electronics, 2017, vol. 64, pp. 9691—9698.
  12. Roslyakov I.V., Kolesnik I.V., Evdokimov P.V., Garshev A.V., Skryabina O.V., Mironov S.M., Baranchikov A.E., Karpov E.E., Napolskii K.S. Microhotplate catalytic sensors based on anodic alumina: operando study of methane sensitivity hysteresis. Sensors and Actuators B, Chemical, 2021, vol. 330, id. 129307. DOI: 10.1016/j.snb.2020.129307
  13. Gabasch H., Unterberger W., Hayek K., Klotzer B., Kresse G., Klein C., Schmid M., Varga P. Growth and decay of the Pd (111)-Pd5O4 surface oxide: pressure-dependent kinetics and structural aspects. Surf. Sci, 2006, vol. 600, is. 1, pp. 205—218. DOI: 10.1016/j.susc.2005.09.052
  14. Persson K., Jansson K., Jaras S.G. Characterisation and microstructure of Pd and bimetallic Pd-Pt catalysts during methane oxidation. Journal of Catalysis, 2007, vol. 245, is. 2, pp. 401—414. DOI: 10.1016/j.jcat.2006.10.029
  15. Olenin S.S., Fadeev G.N. Neorganicheskaya himiya [Inorganic chemistry], Moscow, Vysshaya shkola Publ., 1979. 385 p.
  16. Baran S.V., Branitsky G.A., Ivanovskaya M.I. Thermocatalytic sensors with Pd-Pt-Al2O3 catalyst. Sensors and Actuators B, Chemical, 1993, vol. 13, is. 1-3, pp. 244—247. DOI:10.1016/0925-4005(93)85372-H
  17. Spirjakin D., Baranov A., Somov A., Sleptsov V. Investigation of heating profiles and optimization of power consumption of gas sensors for wireless sensor networks. Sensors and Actuators A, Physical, 2016, vol. 27, pp. 247—253. DOI: 10.1016/j.sna.2016.05.049
  18. Brunelli D., Rossi M. Enhancing lifetime of WSN for natural gas leakages detection. Microelectronics Journal, 2014, vol. 45, is. 12, pp. 1665—1670. DOI: 10.1016/j.mejo.2014.08.006
  19. Meribout M. A wireless sensor network-based infrastructure for real-time and online pipeline inspection. IEEE Sensors Journal, 2011, vol. 11, is. 11, pp. 2966—2972. DOI: 10.1109/JSEN.2011.2155054
 

A. A. Gavrishev

ON THE EVALUATION OF THE CREST FACTOR
OF BIONIC SIGNALS USED IN HYDROACOUSTIC COMMUNICATION SYSTEMS

"Nauchnoe Priborostroenie", 2021, vol. 31, no. 3, pp. 37—45.
doi: 10.18358/np-31-3-i3745
 

In this article, the authors evaluated the crest factor of bionic signals used in hydroacoustic communication systems, using the example of the study of signals based on the use of recordings of sounds of various whale species. The calculations and literature analysis show that the sound recordings of the following whale species have an acceptable crest factor value (p ≤ 4): Blue whale, Alaska humpback whale, Atlantic blue whale and Northeast Pacific blue whale. Recordings of the sounds of these types of whales should be used in the appropriate hydroacoustic communication systems. In contrast, recordings of the sounds of such whale species as Atlantic fin whale, Atlantic minke whale, South Pacific blue whale, and Western Pacific blue whale have an increased crest factor value (p > 4) and without adaptation, it is impractical to use them in appropriate hydroacousticcommunication systems. It is established that bionic signals used in hydroacoustic communication systems, based on the example of the study of signals based on the use of recordings of sounds of various species of whales, can have both an acceptable value of the crest factor or an increased one. It is advisable to pay attention of the developers and manufacturers of the corresponding hydroacoustic communication systems to this conclusion during designing, testing and implementation of such systems.
 

Keywords: crest factor, bionic signals, hydroacoustic communication systems

Author affiliations:

North-Caucasus Federal University, Stavropol, Russia

 
Contacts: Gavrishev Aleksey Andreevich , alexxx.2008@inbox.ru
Article received by the editorial office on 7.06.2021

Full text (In Russ./ In Eng.) >>

REFERENCES

  1. Arsent'ev V.G., Krivolapov G.I. [Hydroacoustic search of autonomous uninhabited underwater object]. Vestnik
    SiBGUTI
    [SibGUTI Bulletin], 2020, no. 3, pp. 64—78. (In Russ.).
  2. Filippov B.I., Chernetsky G.A. [Choice of signals for hydroacoustic communication channels]. Vestnik RGRTU [Vestnik of Ryazan state radioengineering university], 2017, no. 59, pp. 42—52. DOI: 10.21667/1995-4565-2017-59-1-42-52 (In Russ.).
  3. Kamenev S.I. [Signals with the improved characteristics on the basis of barker''s sequences for the application in the acoustic systems]. Podvodnye issledovaniya i robototekhnika [Underwater Investigations and Robotics], 2014, vol. 18, no. 2, pp. 63—68. (In Russ.).
  4. Bobrovskiy I.V., Jagotinets V.P. [Method of frequency self-tuning tuning in systems of undewater communication with noise-like signals]. Gidroakustika [Hydroacoustics], 2015, vol. 23, no. 3, pp. 52—63. (In Russ.).
  5. Kebkal K.G. [Numerical modeling of hiding properties of underwater acoustic communication signals with linear sweep of the carrier]. Podvodnye issledovaniya i robototekhnika [Underwater Investigations and Robotics], 2020, vol. 32, no. 2, pp. 4—12. (In Russ.). DOI: 10.37102/24094609.2020.32.2.001
  6. Falco A.I., Shushnov M.S. Noise immunity of reception of signals with code division in hydroacoustic channels. XIV International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering (APEIE). Novosibirsk, 2018. pp. 165—168 DOI: 10.1109/APEIE.2018.8545509
  7. Emelyanov A.V., Simonenko I.V., Petrov O.V. [Creation features of modern hydrospeaker systems of communication, management and navigation]. Voprosy oboronnoi tekhniki. Seriya 16: tekhnicheskie sredstva protivodeistviya terrorizmu [Military Enginery. Scientific and Technical Journal. Counter-terrorism technical devices. Issue 16], 2018, no. 5-6 (119-120), pp. 39—46. (In Russ.).
  8. Rodionov A.Yu., Unru P.P., Kulik S.Yu., Golov A.A. [Application of multi-frequency signals with constant envelope in underwater acoustic communication systems]. Podvodnye issledovaniya i robototekhnika [Underwater Investigations and Robotics], 2019, vol. 29, no. 3, pp. 30—38. DOI: 10.25808/24094609.2019.29.3.004 (In Russ.).
  9. Ivanov M.P., Bibikov N.G., Danilov N.A., Sokolov P.A., Romanov B.V., Krasnickij B.J., Stefanov V.E. [Comparative evaluation of echolocation and communication signals of dolphins]. Vestnik Moskovskogo Universiteta, Fizika [Moscow University Physics Bulletin], 2020, no. 1, Id. 2010903. (In Russ.).
  10. Stepanov B.G. [Bionic acoustic systems and devices]. Izvestiya VUZov Rossii. Radioehlektronika [ Radioelectronics and Communications Systems ], 2016, vol. 2, pp. 98—105. (In Russ.).
  11. Pesterev I.S., Stepanov B.G. [Studies of a broadband hydroacoustic system capable of simulating cetacean signals]. Tekhnicheskie problemy osvoeniya mirovogo okeana [Technological challenges in the development of the oceans], 2017, vol. 7, pp. 449—454. (In Russ.).
  12. Liu S., Qiao G., Yu Y., Zhang L., Chen T. Biologically inspired covert underwater acoustic communication usinghigh frequency dolphin clicks. OCEANS. San Diego, 2013, pp. 1—5. DOI: 10.23919/OCEANS.2013.6741138
  13. Liu S., Wang M., Ma T., Qiao G., Bilal M. Covert underwater communication by camouflaging sea pilingsounds. Appl. Acoust. 2018, no. 142, pp. 29—35. DOI: 10.1016/j.apacoust.2018.06.001
  14. Jia Y., Liu G., Zhang L. Bionic camouflage underwater acoustic communication based on sea lion sounds. Proceedings of the International Conference on Control, Automation and Information Sciences (ICCAIS). Changshu, 2015, pp. 332—336. DOI: 10.1109/ICCAIS.2015.7338688
  15. Bilal M., Liu S., Qiao G.., Wan L. Tao Y. Bionic Morse coding mimicking humpback whale song for covert underwater communication. Appl. Sci, 2020, no. 10, pp. 186. DOI: 10.3390/app10010186
  16. Bilal M., Liu S., Qiao G.., Raza W., Zuberi H.H. Novel concept of bionic Morse coding formimicry covert underwater communication. 17th International Bhurban Conference on Applied Sciences and Technology (IBCAST), 2020, pp. 601—605. DOI: 10.1109/IBCAST47879.2020.9044564
  17. Gavrishev A.A. [Expanding the application of bionic Morse code for covert hydroacoustic communication systems]. Sibirskii pozharno-spasatel'nyi vestnik [Siberian fire and rescue bulletin], 2020, vol. 19, no. 4, pp. 51—57. DOI: 10.34987/vestnik.sibpsa.2020.93.28.008 (In Russ.).
  18. Loginov S.S. Tsifrovye radioehlektronnye ustroistva i sistemy s dinamicheskim khaosom i variatsiei shaga vremennoi setki. Diss. kand. techn. Nauk [Digital avionics and systems with dynamic chaos and time grid pitch variation. cand. techn. sci. diss.]. Kazan: Kazan National Research Technical University named after A. N. Tupolev, 2015. 228 p. (In Russ.).
  19. Kozel V.M., Podvornaya D.A., Kovalev K.A. [Peal factor of signals of 5G mobile service systems]. Doklady BGUIR. [OGUIR reports], 2020, vol. 18, no. 6, pp. 5—10. DOI: 10.35596/1729-7648-2020-18-6-5-10 (In Russ.).
  20. Malev A.S., Solovyev A.M., Shutov V.D. [Optimization of signal's parameters with multiway modulation for the purpose of crest factor minimization]. Teoriya i tekhnika radiosvyazi [Radio communication theory and technology], 2012, no. 2, pp. 50—56. (In Russ.).
  21. PMEL. Acoustic program. URL: https://www.pmel.noaa.gov/acoustics/specs_whales.html (accessed: 15.06.2021).
  22. Gavrishev A.A., Gavrishev A.N. [To the question of calculating the crest factor values of signals generated by common hidden communication systems]. Vestnik NTSBZHD [Bulletin of NCBJD], 2020, vol. 45, no. 3, pp. 149—157. (In Russ.).
  23. Yuan Z., Li Z., Sui T., Li Y., Huang H. A new companding method of the PAR reduction in underwater OFDM communication system. 6th International Conference on Wireless Communications Networking and Mobile Computing (WiCOM). Chengdu, 2010. pp. 1—4. DOI: 10.1109/WICOM.2010.5601206
  24. Wu J., Qiao G., Qi X. The research on improved companding transformation for reducing PAPR in underwater acoustic OFDM communication system. Discrete dynamics in nature and society, vol. 2016, Id. 3167483. DOI: 10.1155/2016/3167483
 

A. L. Bulyanitsa1,2, A. A. Evstrapov1

THE MAIN TRENDS OF PUBLICATION ACTIVITY
ON TOPICS RELATED TO INFECTIOUS DISEASES:
COVID, SARS, EBOLA AND BIRD FLU

"Nauchnoe Priborostroenie", 2021, vol. 31, no. 3, pp. 46—76.
doi: 10.18358/np-31-3-i4676
 

The article contains a scientometric analysis of publications indexed in the international citation database Scopus. Groups of publications containing the keywords COVID / COVID-19, the SARS virus that causes it, as well as publications on pandemics caused by Ebola and bird flu / avian influenza (various options combined by the search query "bird* flu") were considered. It was supposed to identify groups of links between the development of diseases and the dynamics of publication activity on the relevant topic, to analyze the samples of publications formed by sequential (two- and three-stage) search queries. In addition to the dynamics of the number of publications, distributions were analyzed by a) fields of knowledge (branches of science), b) by a set of keywords associated with a specified area, c) by nationality of authors and, in relation to authors from Russia, the significance of the contribution of organizations to the sample of publications.
Due to the current quantitative changes in the number of publications for the period of material selection (mid-March—late June 2021), some quantitative estimates may change slightly. At the same time, the qualitative conclusions are preserved.
For the most part, the findings appear to be expected.
 

Keywords: COVID (or COVID-19), SARS, Ebola, bird flu, pandemic, number of publications, cites, fields of knowledge, Scopus

Author affiliations:

1Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia
2Peter the Great St. Petersburg Polytechnic University, Russia

 
Contacts: Bulyanitsa Anton Leonidovich, antbulyan@yandex.ru
Article received by the editorial office on 20.07.2021

Full text (In Russ./ In Eng.) >>

REFERENCES

  1. Huang C. ,  Wang Y ., Li X. , Ren L. , Zhao J . et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet , 15—21 February, 2020, vol. 395, iss. 10223, pp. 497—506. DOI: 10.1016/S0140-6736(20)30183-5
  2. Wölfel R. , Corman V.M. , Guggemos W. , Seilmaier M. et al. Virological assessment of hospitalized patients with COVID-2019. Nature , 28 May, 2020, vol. 581, iss. 7809, pp. 465—469. DOI: 10.1038/s41586-020-2196-x
  3. To K.K.-W., Tsang O.T.-Y., Leung W.-Sh. et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. The Lancet Infectious Diseases , 2020, vol. 20, iss. 5, pp. 565—574. DOI: 10.1016/s1473-3099(20)30196-1
  4. Gordon D.E., Jang G.M., Bouhaddou M. et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, 2020, vol. 583, pp. 459—468.  DOI: 10.1038/s41586-020-2286-9
  5. Broughton J.P., Deng X., Yu G. et al. CRISPR—Cas12-based detection of SARS-CoV-2. Nat Biotechnol., 2020, vol. 38, pp. 870—874. DOI: 10.1038/s41587-020-0513-4
  6. Lu R.,  Zhao X.,  Li J.,  Niu P. et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet , 22—28 February, 2020, vol. 395, iss. 10224 , pp. 565—574. DOI: 10.1016/S0140-6736(20)30251-8
  7. Kim D., Lee J.-Y., Yang J.-S., Kim J.W., Kim V.N., Chang H. The Architecture of SARS-CoV-2 Transcriptome. Cell, May 14, 2020, vol. 181, iss. 4, pp. 914—921.  DOI: 10.1016/j.cell.2020.04.011
  8. Jones K.E., Patel N.G. , Levy M.A. , Storeygard A. , Balk D. , Gittleman J.L. , Daszak P. Global trends in emerging infectious diseases. Nature , February, 2008, vol. 451, iss. 7181, pp. 990—993. DOI: 10.1038/nature06536
  9. Drosten C. , Göttig S. , Schilling S. , Asper M. , Panning M. , Schmitz H. , Günther S. Rapid detection and quantification of RNA of Ebola and Marburg viruses, Lassa virus, Crimean-Congo hemorrhagic fever virus, Rift Valley fever virus, dengue virus, and yellow fever virus by real-time reverse transcription-PCR. J. Clin. Microbiol., 2002, vol. 40, iss. 7, pp. 2323—2330. DOI: 10.1128/JCM.40.7.2323-2330.2002
  10. Tchesnokov E.P., F eng J.Y. , Porter D.P. , Götte M. Mechanism of inhibition of ebola virus RNA-dependent RNA polymerase by remdesivir. Viruses , 2019, vol. 11, iss. 4, pp. 326. DOI: 10.3390/v11040326
  11. Gire S.K. , Goba A. , Andersen K.G. , Sealfon R.S.G. , Park D.J. , Kanneh L. , Jalloh S. , Momoh M. , Fullah M. , Dudas G. , Wohl S. , Moses L.M. Genomic surveillance elucidates Ebola virus origin and transmission during the 2014 outbreak. Science , 12 September, 2014, vol. 345, iss. 6202, pp. 1369—1372. DOI: 10.1126/science.1259657
  12. Dhama K. , Khan S. , Tiwari R. , Sircar S. , Bhat S. , Malik Y.S. , Singh K.P. , Chaicumpa W. , Bonilla-Aldana D.K. , Rodriguez-Morales A.J . Coronavirus disease 2019—COVID-19. Clin. Microbiol. Rev., October, 2020, vol. 33, iss. 4, pp. 1—48. DOI: 10.20944/preprints202003.0001.v2
  13. Sui J. , Hwang W.C. , Perez S. , Wei G. et al. Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses. Nature Structural and Molecular Biology , March, 2009, vol. 16, iss. 3, pp. 265—273. DOI: 10.1038/nsmb.1566
  14. Chen H. , Deng G. , Li Z. , Tian G. , Li Y. , Jiao P. , Zhang L. , Liu Z. , Webster R.G. , Yu K . The evolution of H5N1 influenza viruses in ducks in southern China. Proceedings of the National Academy of Sciences of the United States of America , 13 July, 2004, vol. 101, iss. 28, pp. 10452— 10457. DOI: 10.1073/pnas.0403212101
  15. Rittichainuwat B.N. , Chakraborty G. Perceived travel risks regarding terrorism and disease: The case of Thailand. Tourism Management , June, 2009, vol. 30, iss. 3, pp. 410—418. DOI: 10.1016/j.tourman.2008.08.001
  16. Whitehead K.A. , Langer R. , Anderson D.G. Knocking down barriers: Advances in siRNA delivery. Nature Reviews Drug Discovery , 2009, vol. 8, pp. 129—138. DOI: 10.1038/nrd2742
 

N. D. Arkhipov1, D. B. Arkhipov2

THE FIRST YEAR OF COVID-19 PANDEMY
AND ANALYTICAL INSTRUMENTATION
(SHORT MESSAGE)

"Nauchnoe Priborostroenie", 2021, vol. 31, no. 3, pp. 77—79.
doi: 10.18358/np-31-3-i7779
 

We report on analytical instruments used by authors of Nature for study of COVID-19. For study of RNA massive parallel sequence is necessary, and for investigation of RNA-polymerase shotgun mass-spectrometry is used.
 

Keywords: analytical instrumentation, RNA sequence, mass spectrometry, COVID-19, chemometrics

Author affiliations:

1University of Information Technologies, Mechanics and Optics, Saint Petersburg, Russia
2Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia

 
Contacts: Arkhipov Nikolay Dmitrievich, nikolos.kage97@mail.ru
Article received by the editorial office on 28.06.2021

Full text (In Russ./ In Eng.) >>

REFERENCES

  1. Sharfarets B.P., Dmitriev S.P. [ Modeling of turbulent fluid motion based on the Boussinesq hypothesis. Overview ]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2018, vol. 28, no. 3, pp. 101—108. DOI: 10.18358/np-28-3-i101108 (In Russ.).
  2. Sharfarets B.P., Kurochkin V.E., Sergeev V.A., Dmitriev S.P., Telyatnik S.G. [About electroacoustic transducer based on the use of electro-kinetic phenomena]. Trudy vserossiyskoy akusticheskoy konferenzii [Works of the All-Russian Acoustic Conference], Saint Petersburg, Politechpress Publ., 2020, pp. 445—450. (In Russ.).
  3. Sharfarets B.P. [ Implementation of receiving antenna using mechanism of electrokinetic phenomenon "flow potential" ]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2019, vol. 29, no. 2, pp. 103—108. DOI: 10.18358/np-29-2-i103108 (In Russ.).
  4. Dmitriev S.P., Kurochkin V.E., Sharfarets B.P. [On the improvement of the mathematical model of the electroacoustic transducer under the condition of a thin double layer in the porous structure of the transducer body]. Nauchnoe Priborostroenie [Scientific Instru­mentation], 2021, vol. 31, no. 2, pp. 44—51. (In Russ.).
  5. Shishov S.V., Andrianov S.A., Dmitriev S.P., Ruchkin D.V. Method of converting electric signals in to acoustics oscillations and an electric gas-kinetic transducer. United States Patent # US 8,085,957,B2 Dec. 27, 2011.
  6. Vikipedia: Mikrofon [Vikipedia: Mikrofon]. URL: https://en.wikipedia.org/wiki/Microphone
 

Ulitsa Ivana Chernykh, 31-33, lit. A, St. Petersburg, Russia, 198095, P.O.B. 140
tel: (812) 3630719, fax: (812) 3630720, mail: iap@ianin.spb.su

content: Valery D. Belenkov design: Banu S. Kuspanova layout: Anton V. Manoilov