logo
blue band <-
  JOURNAL "NP" ISSUES

"Nauchnoe Priborostroenie", 2020, Vol. 30, no. 4. ISSN 2312-2951, DOI: 10.18358/np-30-4-2076

"NP" 2020 year Vol. 30 no. 4.,   ABSTRACTS

ABSTRACTS, REFERENCES

A. G. Borodinov, V. V. Manoilov, I. V. Zarutsky, A. I. Petrov, V. E. Kurochkin

GENERATIONS OF DNA SEQUENCING METHODS (REVIEW)

"Nauchnoe priborostroenie", 2020, vol. 30, no. 4, pp. 3—20.
doi: 10.18358/np-30-4-i320
 

Several decades have passed since the development of the revolutionary DNA sequencing method by Frederick Sanger and his colleagues. After the Human Genome Project, the time interval between sequencing technologies began to shrink, while the volume of scientific knowledge continued to grow exponentially. Following Sanger sequencing, considered as the first generation, new generations of DNA sequencing were consistently introduced into practice. Advances in next generation sequencing (NGS) technologies have contributed significantly to this trend by reducing costs and generating massive sequencing data. To date, there are three generations of sequencing technologies. Second generation sequencing, which is currently the most commonly used NGS technology, consists of library preparation, amplification and sequencing steps, while in third generation sequencing, individual nucleic acids are sequenced directly to avoid bias and have higher throughput. The development of new generations of sequencing has made it possible to overcome the limitations of traditional DNA sequencing methods and has found application in a wide range of projects in molecular biology. On the other hand, with the development of next generation technologies, many technical problems arise that need to be deeply analyzed and solved. Each generation and sequencing platform, due to its methodological approach, has specific advantages and disadvantages that determine suitability for certain applications. Thus, the assessment of these characteristics, limitations and potential applications helps to shape the directions for further research on sequencing technologies.
 

Keywords: nucleic acid sequencing, genome research, generations of DNA sequencing technologies, directions of sequencing technologies research

Fig. 1. Maxam-Gilbert sequencing is based on specific cleavage of a DNA strand to produce labeled DNA fragments of various sizes [3]

Fig. 2. Sanger sequencing schematic diagram [7]

Fig. 3. Automatic DNA sequencing.
a – capillary electrophoresis system; á – laser detection of fluorescent labels; â–- electrophoretogram of DNA sequence [9]

Fig. 4. The diagram represents the functional principle of pyrosequencing

Fig. 5. Massive parallel pyrosequencing with the use of Roche 454 [12]

Fig. 6. SBS sequencing scheme [14]

Fig. 7. The principle of ABI / SOLID operation [20]

Fig. 8. The principle of Ion Torrent sequencing platform operation [21]

Fig. 9. The principle of Single Molecule Real Time (SMRT) Sequencing Technology operation [25]

Fig. 10. The principle of Single Molecule Real Time (SMRT) Sequencing Technology operation [28]

Author affiliations:

Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia

 
Contacts: Borodinov Andrey Gennadyevich, borodinov@gmail.com
Article received by the editorial office on 27.10.2020

Full text (In Russ.) >>

REFERENCES

  1. Maxam A.M., Gilbert W. A new method for sequencing DNA. Proc Natl Acad Sci USA, 1977, vol. 74, no. 2, pp. 560—564.  DOI: 10.1073/pnas.74.2.560
  2. Gaastra W. Chemical cleavage (Maxam and Gilbert) method for DNA sequence determination. Methods Mol Biol., 1985, vol. 2, pp. 333—341. DOI:  10.1385/0-89603-064-4:333
  3. Prinzip sekvenirovaniya DNK po Maksamu-Gilbertu [Maxam-Gilbert DNA sequencing principle]. URL: http://enc.sci-lib.com/article0001457.html
  4. Sanger F., Air G.M., Barrell B.G., Brown N.L., Coulson A.R., Fiddes J.C. et al. Nucleotide sequence of bacteriophage φX174 DNA. Nature, 1977, vol. 265(5596). pp. 687—695. DOI:  10.1038/265687a0
  5. Slatko B.E., Albright L.M., Tabor S., Ju J. DNA sequencing by the dideoxy method. Curr Protoc Mol Biol., 1999, vol. 47, is.1, pp. 7.4A.1—7.4A.39. DOI:  10.1002/0471142727.mb0704as47
  6. Men A.E., Wilson P., Siemering K., Forrest S. Sanger DNA sequencing. Next generation genome sequencing: towards personalized medicine. Janitz M. (ed), 1st edn, Wiley-VCH Verlag GmbH & Co, Weinheim, 2008. URL: https://application.wiley-vch.de/books/sample/3527320903_c01.pdf
  7. Karki G. Sanger’s method of gene sequencing. 2017. URL: https://www.onlinebiologynotes.com/sangers-method-gene-sequencing/
  8. Wallis Y., Morrell N. Automated DNA sequencing. Methods Mol Biol., 2011, vol. 688, pp. 173—185. DOI: 10.1007/978-1-60761-947-5_12
  9. Sanger DNA Sequencing Steps and Method. URL: https://www.sigmaaldrich.com/technical-documents/articles/biology/sanger-sequencing.html
  10. Ravi I., Baunthiyal M., Saxena J. Advances in biotechnology. Springer, New York, 2014. URL: https://www.springer.com/gp/book/9788132215530
  11. Harrington C.T., Lin E.I. et al. Fundamentals of pyrosequencing. Arch Pathol Lab Med., 2013, vol. 137, no. 9, pp. 1296—1303. DOI: 10.5858/arpa.2012-0463-RA
  12. Mardis E.R. Next-generation DNA sequencing methods. Annual Review of Genomics and Human Genetics, 2008, vol. 9, pp. 387—402. DOI: 10.1146/annurev.genom.9.081307.164359
  13. Dewey F.E., Pan S. et al. DNA sequencing: clinical applications of new DNA sequencing technologies. Circulation, 2012, vol. 125, no. 7, pp. 931—944. DOI: 10.1161/CIRCULATIONAHA.110.972828
  14. Voelkerding K.V., Dames S.A., Durtschi J.D. Next-generation sequencing: from basic research to diagnostics. Clin Chem., 2009, vol. 55, no. 4, pp. 641—658. DOI: 10.1373/clinchem.2008.112789
  15. Ansorge W.J. Next-generation DNA sequencing techniques. New Biotechnol., 2009, vol. 25, no. 4, pp. 195—203. DOI: 10.1016/j.nbt.2008.12.009
  16. Guzvic M. The history of DNA sequencing. J Med Biochem., 2013, vol. 32, no. 4, pp. 301—312. DOI: 10.2478/jomb-2014-0004
  17. Buermans H.P.J., den Dunnen J.T. Next generation sequencing technology: advances and applications. Biochim Biophys Acta (BBA), 2014, vol. 1842, no. 10, pp. 1932—1941. DOI: 10.1016/j.bbadis.2014.06.015
  18. Heather J.M., Chain B. The sequence of sequencers: the history of sequencing DNA. Genomics, 2016, vol. 107, no. 1, pp. 1—8. DOI: 10.1016/j.ygeno.2015.11.003
  19. Huang Y., Chen S., Chiang Y., Chen T., Chiu K. Palindromic sequence impedes sequencing-by-ligation mechanism. BMC Systems Biology, 2012, vol. 6. S10. DOI: 10.1186/1752-0509-6-S2-S10
  20. Kchouk M., Gibrat J.-F., Elloumi M. Generations of sequencing technologies: from first to next generation. Biol Med., 2017, vol. 9, no. 3. URL:
  21. Golan D., Medvedev P. Using state machines to model the Ion Torrent sequencing process and to improve read error rates. Bioinformatics, 2013, vol. 29, no. 13, pp. i344—i351. DOI: 10.1093/bioinformatics/btt212
  22. Ambardar S., Gupta R. et al. High throughput sequencing: an overview of sequencing chemistry. Indian J Microbiol., 2016, vol. 56, no. 4, pp. 394—404. DOI: 10.1007/s12088-016-0606-4
  23. Rad'ko S.P., Kurbatov L.K., Ptizyn K.G., Kiselyeva Ya.Yu., Ponomarenko E.A., Lisiza A.V., Archak A.I. [Prospects for using third-generation sequencers for quantitative transcriptome profiling]. Biomedical Chemistry: Research and Methods, 2018, vol. 1, no. 4. e00086. DOI: 10.18097/BMCRM00086
  24. Ari Ş., Arikan M. Next-generation sequencing: advantages, disadvantages, and future. Plant omics: trends and applications, Springer, Berlin, 2016, pp. 109—135. URL: https://www.springer.com/gp/book/9783319317014
  25. Ardui S., Ameur A., Vermeesch1 J.R., Hestand M.S. Single molecule real-time (SMRT) sequencing comes of age: applications and utilities for medical diagnostics. Nucleic Acids Research, 2018, vol. 46, no. 5, pp. 2159—2168. DOI: 10.1093/nar/gky066
  26. Branton D., Deamer D., Marziali A., Bayley H., Benner S., et al. The potential and challenges of nanopore sequencing. Nat Biotechnol., 2008, vol. 26, no. 10, pp. 1146—1153. DOI: 10.1038/nbt.1495
  27. Lu H., Giordano F., Ning Z. Oxford Nanopore MinION sequencing and genome assembly. Genomics Proteomics Bioinformatics, 2016, vol. 14, no. 5, pp. 265—279. DOI: 10.1016/j.gpb.2016.05.004
  28. Deamer D., Akeson M., Branton D. Three decades of nanopore sequencing. Nat Biotechnol., 2016. vol. 34, no. 5, pp. 518—524. DOI: 10.1038/nbt.3423
 

N. A. Esikova, N. N. Germash, A. A. Evstrapov

RAPID FABRICATION OF MICROCHIPS FOR PCR ANALYSIS FROM POLYMER MATERIALS IN THE LABORATORY CONDITIONS

"Nauchnoe Priborostroenie", 2020, vol. 30, no. 4, pp. 21—26.
doi: 10.18358/np-30-4-i2126
 

Polycarbonate and polypropylene microchips were made by thermoforming and sealed by special PCR films. The aim of this work was to study the possibility of promptly manufacturing microchips for performing RT-PCR analysis. Microchips are made of hard plastics, preferably using domestically produced materials.
Therefore, to achieve the goal, the following tasks were set: 1) thermoforming the topology of the chambers in polycarbonate and polypropylene master mold made by laser microforming; 2) sealing the obtained microchips with commercial films for PCR, which are polymer films with a thin adhesive layer (the connection should provide a binding force, holding the pressure arising in the chambers during thermal cycling, and not inhibiting the reaction); 3) study of light transmission and background fluorescence of microchips, since it is supposed to detect PCR-RT by optical methods; 4) study of the properties of the surface of the chambers of microchips (by the recumbent drop method), since they affect the formation of air bubbles during thermal cycling; 5) approbation of microchips when performing PCR-RT in them.
The efficiency of microchips was demonstrated by conducting PCR-RT on a test object. The obtaining microchips made of polycarbonate and polypropylene could withstand storage at negative temperatures (–40 ℃).
 

Keywords: microchip, thermoplastic, polycarbonate, polypropylene, polymerase chain reaction in real time, optical
detection

Fig.1. Image of the microchip topology with the numbering of the reaction chambers.
Dimensions are given in mm

Tab. 1. Estimation of the size of the obtained microchips

Fig. 2. Spectral dependences of the light transmission of microchips: averaged and with an average deviation (n = 6).
1 – ÏK + P-500; 2 – ÏK + Epp; 3 – ÏÏ + P-500

Tab. 2. Intensity of background fluorescence of microchips (in rel. units)

Author affiliations:

Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia

 
Contacts: Esikova Nadezhda Aleksandrovna, elpis-san@yandex.ru
Article received by the editorial office on 26.10.2020

Full text (In Russ.) >>

REFERENCES

  1. Yin Z., Zou H., Sun L. Polycarbonate nanofluidic chip fabrication technique by hot embossing and thermal bonding. J. Nanosci. Nanotechnol,. 2018, vol. 18, no. 4, pp. 2530—2535. DOI: 10.1166/jnn.2018.14341
  2. Tsao C.-W., De Voe D.L. Bonding of thermoplastic polymer microfluidics. Microfluid Nanofluid., 2009, vol. 6, pp. 1—16. DOI: 10.1007/s10404-008-0361-x
  3. Kratz S.R.A., Eilenberger C., Schuller P., Bachmann B., Spitz S., Ertl P., Rothbauer M. Characterization of four functional biocompatible pressure-sensitive adhesives for rapid prototyping of cell-based lab-on-a-chip and organ-on-a-chip systems. Sci. Rep., 2019, vol. 9, no. 1. 9287. DOI: 10.1038/s41598-019-45633-x
  4. Serra M., Pereiro I., Yamada A., Viovy J.-L., Descroix S., Ferraro D. A simple and low-cost chip bonding solution for high pressure, high temperature and biological applications. Lab Chip, 2017, vol. 17. pp. 629—634. DOI: 10.1039/C6LC01319H
  5. Sackmann J., Burlage K., Gerhardy C., Memering B., Liao S., Schomburg W.K. Review on ultrasonic fabrication of polymer micro devices. Ultrasonics, 2015, vol. 56. pp. 189—200. DOI: 10.1016/j.ultras.2014.08.007
  6. Gencturk E., Mutlu S., Ulgen K.O. Advances in microfluidic devices made from thermoplastics used in cell biology and analyses. Biomicrofluidics, 2017. vol. 11, no. 5. 051502. DOI: 10.1063/1.4998604
 

D. O. Kuleshov1, I. A. Gromov2, E. N. Alekseyuk3, A. V. Solov'eva3, N. R. Gall2, L. N. Gall1

INVESTIGATION OF THE POSSIBILITY OF USING THE LIQUID SURFACE AS AN ELECTRODE FOR COLLECTING PRODUCTS OF CHEMICAL REACTIONS OCCURRING IN THE ELECTROSPRAY TORCH MICRODROPLETS

"Nauchnoe Priborostroenie", 2020, vol. 30, no. 4, pp. 27—31.
doi: 10.18358/np-30-4-i2731
 

The present work is devoted to the study of the possibility of electrospray onto the surface of a liquid in order to accumulate the products of reactions occurring in micro- and nanodroplets of the electrospray torch. The experimental device was made for research purposes. A stable mode of electrospray of a water-ethanol mixture (1:4) onto a liquid electrode (water-ethanol mixture (1:4)), without using sputting gas, was obtained at a spray voltage U of at least 4 kV and a distance between the spray needle and the surface of the liquid R of no more than 15 mm. The spray current increased as the distance between the spray needle and the surface of the liquid electrode decreased and the spray voltage increased. A stable mode of electrospray of the reaction mixture (4 ml of a mixture of acetonitrile and 0.2 % formic acid solution in water (1: 1), 0.5 ml of aniline and 0.5 ml of acetone) onto the surface of the liquid electrode (mixture of 6 ml of acetonitrile and 6 ml of 0.2 % formic acid solution in water or a mixture of 6 ml of acetonitrile and 6 ml of water) with the use of the sputting gas was obtained with the following values of the parameters of the experimental device: the flow rate of the spray solution Qp = 100 μL / min, the spray voltage = 3.2 kV, the distance between the surface of the liquid electrode and the spray needle R = 35 mm. The maximum flow rate of the sputting gas was 2 L/min. Unreacted substances and the chemical reactions products of the components of the sprayed reaction mixture accumulated in the liquid electrode when the given values of the parameters of the device were used. This was confirmed by spectrophotometric measurements.
 

Keywords: electrospray, electrospray torch, microdroplets, chemical reactions, liquid electrode

Fig. Diagram of the experimental setup.
1 – syringe pump, 2 – spray capillary, 3 – inner needle (outer diameter 0.45 mm), 4 – outer needle (outer diameter 0.8 mm), 5 – compressor, 6 – pressure hose, 7 – metal holder, 8 – high-voltage power supply, 9 – ring electrode, 10 – storage of reaction products, 11 – digital multimeter No. 1; 12 – digital multimeter No. 2; 13, 14 – potential of the Earth

Tab. Dependence of the spray current value on the flow rate of the sputting gas.
Qair – flow rate of the sputting gas, l/min; IP —spray current, nA

Author affiliations:

Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia

 
Contacts: Kuleshov Denis Olegovich, hellchemist@yandex.ru
Article received by the editorial office on 4.11.2020

Full text (In Russ.) >>

REFERENCES

  1. Girod M., Moyano E., Campbell D.I., Cooks R.G. Accelerated bimolecular reactions in microdroplets studied by desorption electrospray ionization mass spectrometry. Chemical Science, 2011, vol. 2, no. 3, pp. 501—510. DOI: 10.1039/C0SC00416B
  2. Badu-Tawiah A.K., Campbell D.I., Cooks R.G. Reactions of microsolvated organic compounds at ambient surfaces: droplet velocity, charge state, and solvent effects. Journal of the American Society for Mass Spectrometry, 2012, vol. 23, no. 6, pp. 1077—1084. DOI: 10.1021/jasms.8b04301
  3. Rehman A. Methods of electrospray chemical synthesis and device for use therein. Pat. 8926801 USA. 2015.
  4. Badu-Tawiah A.K., Cyriac J., Cooks R.G. Reactions of organic ions at ambient surfaces in a solvent-free environment. Journal of The American Society for Mass Spectrometry, 2012, vol. 23, no. 5, pp. 842—849. DOI: 10.1021/jasms.8b04274
  5. Marquez C.A., Wang H., Fabbretti F., Metzger J.O. Electron-transfer-catalyzed dimerization of trans-anethole: Detection of the distonic tetramethylene radical cation intermediate by extractive electrospray ionization mass spectrometry. Journal of the American Chemical Society, 2008, vol. 130, no. 51, pp. 17208—17209. DOI: 10.1021/ja806791c
  6. Perry R.H., Splendore M., Chien A., Davis N.K., Zare R.N. Detecting reaction intermediates in liquids on the millisecond time scale using desorption electrospray ionization. Angewandte Chemie International Edition, 2011, vol. 50, no. 1, pp. 250—254.
  7. Müller T., Badu-Tawiah A., Cooks R.G. Accelerated Carbon — Carbon Bond-Forming Reactions in Preparative Electrospray. Angewandte Chemie International Edition, 2012, vol. 51, no. 47, pp. 11832—11835.
  8. Lebedev A.T. Ambient ionization mass spectrometry. Russian Chemical Reviews, 2015, vol. 84, no. 7, 665. DOI: 10.1070/RCR4508
  9. Kuleshov D.O., Mazur D.M., Gromov I.A., Alekseyuk E.N., Gall N.R., Polyakova O.V., Lebedev A.T., Gall L.N. [Study of aniline condensation reaction with acetone under electrospray ionization conditions]. Mass-spektrometriya [Mass-spectrometry], 2019, vol. 16, no. 3, pp. 174—179. (In Russ.)
 

V. E. Kurochkin, B. P. Sharfarets

GIANT DISPERSION OF DIELECTRIC PERMEABILITY OF THE DISPERSE SYSTEM IN AN ALTERNATING ELECTRIC FIELD.
OVERVIEW OF APPROACHES TAKING INTO ACCOUNT PRESENCE OF A DOUBLE LAYER

"Nauchnoe Priborostroenie", 2020, vol. 30, no. 4, pp. 32—45.
doi: 10.18358/np-30-4-i 3245
 

This review analyzes two approaches to describing the polarization of disperse systems when an alternating electric field is applied in the general case. Polarization models of Trukhan and Dukhin–Shilov are considered. As a result of this review, it follows that the most preferable model, which makes it possible to significantly increase the rate of electrophoresis of the dispersed phase, is the Dukhin–Shilov model, in the implementation of which a giant dispersion of the dielectric constant of a heterogeneous dispersed system may appear if the condition of a thin double layer around non-conducting dispersed particles in a conducting dispersive medium.
 

Keywords: the dielectric constant, giant dispersion of the dielectric constant, electrophoresis, thin double layer approximation, heterogeneous environment, Maxwell–Wagner polarization, dispersion system

Author affiliations:

Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia

 
Contacts: Sharfarets Boris Pinkusovich, sharb@mail.ru
Article received by the editorial office on 28.08.2020

Full text (In Eng.) >>

REFERENCES

  1. Sharfarets B.P., Kurochkin V.E. [On the attempt to use the giant dispersion of the dielectric constant of a disperse system to increase the speed of electrophoresis of dispersed particles]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2020, vol. 30, no. 3, pp. 38—44. URL: DOI: 10.18358/np-30-3-i3844 (In Russ.).
  2. Maxwell J.C. A treatise on electricity and magnetism. Vol. 1. Dover Publications, 1954. (Russ. Ed.: Maksvell Dzh.K. Traktat ob elektrichestve i magnetizme. T. 1. Moscow, Nauka, 1989. 416 p.).
  3. Wagner K.W. Electricity of the dielectric behavior on the basis on the Maxwell theory. Arch. Elektrotech., 1914, no. 9, pp. 371—392.
  4. Truhan E.M. [Variance of dielectric constant of heterogeneous systems]. Fizika tverdogo tela [Physics of the Solid State], 1962, vol. 4, no. 12, pp. 3496—3511. (In Russ.).
  5. Truhan E.M. Elektronnyj transport v subkletochnyh strukturah i ih modelyah. Razrabotka radiofizicheskih metodov issledovaniya i kvantovo-elektronnyj analiz. Dis. … dokt. fiz-mat. nauk [Electronic transport in subcellular structures and their models. Development of radiophysical research methods and quantum-electron analysis. Dock. phys. math. sci. diss.]. Moscow, Moscow State University, 1980. 44 p. (In Russ.).
  6. Truhan E.M. Elektrofizicheskie metody issledovaniya. Konduktometriya neodnorodnyh materialov. Uchebnometodicheskoe posobie [Electrophysical research methods. Conductometry of heterogeneous materials. Teaching aid]. Moscow, MFTI. 26 p. (In Russ.).
  7. Duhin S.S., Shilov V.N. Dielektricheskie yavleniya i dvojnoj sloj v dispersnyh sistemah i polielektrolitah [Dielectric phenomena and a double layer in disperse systems and polyelectrolytes]. Kiev, Naukova dumka, 1972. 206 p. (In Russ.).
  8. Frenkel Ya.I. [Electrical oscillations in disperse systems]. Kolloidnyj zhurnal [Colloid Journal], 1948, vol. 10, no. 2, pp. 148. (In Russ.).
 

B. P. Sharfarets

ELECTROPHORESIS IN THE TOTAL (CONSTANT AND ALTERNATING) ELECTRIC FIELD.
II. PECULIARITIES OF THE COMBINED IMPACT OF ALTERNATING AND CONSTANT ELECTRIC FIELDS

"Nauchnoe Priborostroenie", 2020, vol. 30, no. 4, pp. 46—51.
doi: 10.18358/np-30-4-i4651
 

The hydrodynamics of electrophoresis under the simultaneous impact of constant and alternating electric fields is considered. It has been shown that when the constant and alternating external fields are combined, the energy of the constant electric field is transferred into the alternating hydrodynamic field. An example is given of a dispersed medium in which a giant dispersion of the dielectric constant can arise, which in turn can contribute to an increase in the total electrophoresis rate. Analogies of the behavior of the considered dispersed medium with the action of an electroacoustic transducer based on the use of electrokinetic phenomena are given.
 

Keywords: electrophoresis, electric field, dispersed particle, dispersed environment, variable flows, stationary flows, the Navier—Stokes equation

Author affiliations:

Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia

 
Contacts: Sharfarets Boris Pinkusovich, sharb@mail.ru
Article received by the editorial office on 22.09.2020

Full text (In Eng.) >>

REFERENCES

  1. Sharfarets B.P., Kurochkin V.E. [Electrophoresis on the total constant and harmonic electric field. I. Harmonic electric field, a review of the state of the issue]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2020, vol. 30, no. 3, pp. 9—18. DOI: 10.18358/np-30-3-i918 (In Russ.).
  2. Murtsovkin V.A. [Nonlinear currents near polarized particulate matter]. Kolloidnyj zhurnal [Colloid Journal], 1996, vol. 58, no. 3, pp. 358—367. (In Russ.).
  3. Murtsovkin V.A. Elektrogidrodinamicheskie effekty v poverhnostnyh yavleniyah. Dis. dok. fiz.-mat. nauk [Electrohydrodynamic effects in surface phenomena. Cand. of the degree of doc. phys.-math. sci. diss.]. Moscow, Institute of Physical chemistry and Electrochemistry Russian academy of sciences, 1992. 300 p. (In Russ.).
  4. Kurochkin V.E., Sergeev V.A., Sharfarets B.P., Gulyaev Yu.V. [Theoretical justification of the new electroacoustic conversion method. Linear approximation]. Doklady Akademii Nauk [Reports of Academy of Sciences], 2018, vol. 483, no. 3, pp. 265—268. (In Russ.).
  5. Sergeev V.A., Sharfarets B.P. [About one new method of electroacoustic transformation. A theory based on electrokinetic phenomena. Part I. The hydrodynamic aspect]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2018, vol. 28, no. 2, pp. 25—35. DOI: 10.18358/np-28-2-i2535 (In Russ.).
  6. Sergeev V.A., Sharfarets B.P. [About one new method of electroacoustic transformation. A theory based on electrokinetic phenomena. Part II. The acoustic aspect]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2018, vol. 28, no. 2, pp. 36—44. DOI: 10.18358/np-28-2-i3644 (In Russ.).
  7. Sharfarets B.P., Kurochkin V.E., Sergeev V.A., Gulyaev Yu.V. [On electroacoustic transformation method based on electrokinetic phenomena]. Akusticheskij zhurnal [Acoustic journal], 2020, vol. 66, no. 4, pp. 453—462. DOI: 10.1134/S1063771020030057 (In Russ.).
  8. Rudenko O.V., Soluyan S.I. Teoreticheskie osnovy nelinejnoj akustiki [Theoretical foundations of nonlinear acoustics]. Moscow, Nauka Publ., 1975. 288 p. (In Russ.).
  9. Sharfarets B.P., Kurochkin V.E. [On the attempt to use the giant dispersion of the dielectric constant of a disperse system to increase the speed of electrophoresis of dispersed particles]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2020, vol. 30, no. 3, pp. 38—44. DOI: 10.18358/np-30-3-i3844 (In Russ.).
  10. Sharfarets B.P., Kurochkin V.E. [Giant dispersion of dielectric permeability of the disperse system in an alternating electric field. Overview of approaches taking into account presence of a double layer]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2020. Vol. 30, no. 4. (In Russ.).
  11. Duhin S.S., Deryagin B.V. Elektroforez [Electrophoresis]. Moscow, Nauka Publ., 1976. 328 p. (In Russ.).
  12. Levich V.G. Fiziko-himicheskaya gidrodinamika [Physical and chemical hydrodynamics]. Moscow, GIFML Publ., 1959. 700 p. (In Russ.).
  13. Duhin S.S., Shilov V.N. Dielektricheskie yavleniya i dvojnoj sloj v dispersnyh sistemah i polielektrolitah [Dielectric phenomena and double layer in disperse systems and polyelectrolytes]. Kiev, Naukova dumka Pudl., 1972. 207 p. (In Russ.).
  14. Sharfarets B.P. [Application of the system of electrohydrodynamics equations for mathematical modeling of a new method of electro-acoustic transformation]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2018, vol. 28, no. 4, pp. 127—134. DOI: 10.18358/np-28-4-i127134 (In Russ.).
  15. Sharfarets B.P. [System electrohydrodynamics equations applied to electroosmotic processes]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2019, vol. 29, no. 1, pp. 135—142. DOI: 10.18358/np-29-1-i135142 (In Russ.).
  16. Sharfarets B.P., Kurochkin V.E., Sergeev V.A., Dmitriev S.P., Telyatnik S.G. [About electroacoustic transducer based on the use of electrokinetic phenomena]. Trudy vserossiyskoy akusticheskoy konferencii [Proceedings of the All-Russian Acoustic Conference]. Saint-Petersburg, Politekhpress, 2020, pp. 445—450. (In Russ.).
 

M. V. Duykova1, S. E. Shkonda1, S. A. Kazakov2, M. A. Grevtsev2

MANUFACTURING AND RESEARCH OF METAL OXIDE
SEMICONDUCTOR GAS SENSORS FOR AMMONIA

"Nauchnoe Priborostroenie", 2020, vol. 30, no. 4, pp. 52—62.
doi: 10.18358/np-30-4-i5262
 

Ammonia-sensitive materials based on tin dioxide have been developed and synthesized. The degree of structural defects was evaluated, and the acid-base surface centers of synthesized materials were studied using the indicator method. The relationship between the chemisorption properties of synthesized gas-sensitive sensor layers (gas response to the concentration effect of ammonia) and the structure of the sensor material is discovered and analyzed. The novelty of the research is the integrated approach presented in this paper to the creation, development and manufacture of sensors for ammonia by synthesizing a material with pre-set properties using several methods of surface modernization simultaneously.
 

Keywords: gas analyzer, semiconductor sensor, ammonia detection, chemisorption, defective structure, x-ray diffraction analysis

Author affiliations:

1Scientific and Production Association PRIBOR, JSC, Saint Petersburg, RF
2Ioffe Physical Technical Institute of the RAS, Saint Petersburg, RF

 
Contacts: Duikova Margarita Vadimovna, mduykova@bk.ru
Article received by the editorial office on 18.09.2020

Full text (In Eng.) >>

REFERENCES

  1. Dolgopolov N.V., Yablokov M.Yu. ["Electronic nose" – a new direction of the security industry]. Mir i bezopasnost' [World and safety], 2007, no. 3, pp. 54—59. (In Russ.).
  2. Shirasu M., Touhara K. The scent of disease: volatile organic compounds of the human body related to disease and disorder. J Biochem., 2011, vol. 150, no. 3, pp. 257—266. DOI: 10.1093/jb/mvr090
  3. Stepanov E.V. [Methods for highly sensitive gas analysis of biomarker molecules in exhaled air studies]. Trudy instituta obshchej fiziki im. A.M. Prohorova [Proc. of the Institute of General Physics named after A.M. Prokhorov], 2005, vol. 61, pp. 5—47. (In Russ.).
  4. Tiunov L.A., Kustov V.V. Produkty metabolizma pri radiacionnom porazhenii [Metabolic products in radiation damage]. Moscow, Atomizdat, 1980. 104 p. (In Russ.).
  5. Skrupskiy V.A. Endogennye letuchie soedineniya – biologicheskie markery v fiziologii i patologii cheloveka i metody ih opredeleniya. Nauchno-tekhnicheskiy otchet [Endogenous volatile compounds are biological markers in human physiology and pathology and methods for their determination. Scientific and technical report]. Shirshov Institute of Oceanology of Russian Academy of Sciences, 1994. 75 p. (In Russ.).
  6. Hunt R.D. Measurements of partial pressure of ammonia in breath and arterial blood: evidence for secretion of ammonia into expired gas by metabolism of monoamines in the Lung. Ph.D. Dissertation. Gainesville, 1976. 154 p.
  7. Tsuji S., Kawano S., Tsujii M., Takei Y., Tanaka M., Sawaoka H., Nagano K., Fusamoto K., Kamada T. Helicobacter pylori extract stimulates inflammatory nitric oxide production. Cancer Lett., 1996, vol. 108, no. 2, pp. 195—200. DOI: 10.1016/S0304-3835(96)04410-2
  8. Dmitrienko M.A., A.I. Ginak A.I. [Ammonia as gaseous biomarker of helicobacter pylori infection]. Izvestiya SPbGTI (TU) [Bulletin of St PbSIT(TU)], 2016, no. 33 (59), pp. 56—63. URL:
  9. Krivetskiy V.V., Rumyantseva M.N., Gas'kov A.M. [Chemical modification of nanocrystalline tin dioxide for selective gas sensors]. Uspekhi khimii [Russian Chemical Reviews], 2013, vol. 82, no. 10, pp. 917—941. (In Russ.). DOI: 10.1070/RC2013v082n10ABEH004366
  10. Malyshev V.V. Gazochuvstvitel'nost' poluprovodnikovyh oksidov metallov kak rezul'tat himicheskih prevrashchenij i himicheskih reakcij na kataliticheski aktivnyh poverhnostyah. Autoref. Diss. dok. fiz-mat. nauk [Gas sensitivity of metal semiconductor oxides as a result of chemical transformations and chemical reactions on catalytically active surfaces. Autoref. doc. phys. math. sci. diss.]. Moscow, 2008. 48 p. (In Russ.).
  11. Rumyantseva M.N., Kovalenko V.V., Gas'kov A.M., Pan'e T. [Metal oxide-based nanocomposites as materials for gas sensors]. Rossijskij himicheskij zhurnal (ZHRHO im. D.I. Mendeleeva) [Russian Chemical Journal (D.I. Mendeleev RFMO)], 2007, vol. 51, no. 6, pp. 61—70.
  12. Myasnikov I.A., Sukharev V.Ya., Kupriyanov L.Yu., Zavyalov S.A. Poluprovodnikovye sensory v fiziko-himicheskih issledovaniyah [Semiconductor sensors in physicochemical research]. Moscow, Nauka Publ., 1991. 327 p. (In Russ.).
  13. Rumyantseva M.N. Himicheskoe modificirovanie i sensornye svojstva nanokristallicheskogo dioksida olova. Diss. dok. him. nauk [Chemical modification and sensory properties of nanocrystalline tin dioxide. Doc. chem. sci. diss.]. Moscow, 2009. 329 p. (In Russ.).
  14. Rumyantseva M.N., Safonova O.V., Bulova M.N. et. al. [Impurities in nanocrystalline tin dioxide]. Izvestiya RAN. Ser. Him [Russian Chemical Bulletin], 2003, vol. 52, no. 6, pp. 1151—1171. DOI: 10.1023/A:1024916020690 (In Russ.).
  15. Vaynshteyn B.K. Sovremennaya kristallografiya. T. 1 [Modern crystallography, vol. 1]. Moscow, Nauka Publ., 1979. 384 p. (In Russ.).
  16. Gorelik S.S., Rastorguev L.N., Skakov Yu.A. Rentgenograficheskij i elektronograficheskij analiz [Radiographic and Electronographic Analysis]. Moscow, Metallurgiya Publ., 1970. 368 p. (In Russ.).
  17. Sharenkova N.V., Kaminski V.V., Petrov S.N. [Dimensions and visualization of X-ray coherent scattering regions in thin films SmS]. Zhurnal tekhnicheskoj fiziki [The Russian Journal of Applied Physics], 2011, vol. 81, no. 9, pp. 144—146. URL:
  18. Tanabe K. Tverdye kisloty i osnovaniya [Solid acids and bases]. Moscow, Mir Publ., 1973. 183 p. (In Russ.).
  19. Larionov M.I. Issledovanie kislotno-osnovnyh i ad-sorbcionnyh svojstv veshchestv oksidnoy prirody. Diss. kand. him. nauk [Research of acid-basic and adsorption properties of substances of oxide nature. Cand. chem. sci. diss.]. Saint-Petersburg, 2016. 169 p. (In Russ.).
 

N. A. Gryaznov, D. A. Goryachkin, V. I. Kuprenyuk, E. N. Sosnov, V. L. Alekseev

PASSIVE STABILISATION OF MICHELSON INTERFEROMETER

"Nauchnoe Priborostroenie", 2020, vol. 30, no. 4, pp. 63—74.
doi: 10.18358/np-30-4-i6374
 

In some applications of a Michelson interferometer, in particular, when it is used in a laser resonator, the phase difference of radiation beams passing the interferometer optical branches must be stabilized with high accuracy. The proposed paper is devoted to experimental studying the long-term stability of several interferometer designs and choosing the optimal version for applying as a compound resonator mirror with the controllable reflection for generation of ultrashort laser pulses.
 

Keywords: Michelson interferometer (MI), the optical paths difference (OPD), stabilization, random and systematic intensity fluctuations

Author affiliations:

The Russian State Scientific Center for Robotics and Technical Cybernetics (RTC), Saint Petersburg, RF

 
Contacts: Goryachkin Dmitry Alekseevich, d.goryachkin@rtc.ru
Article received by the editorial office on 15.10.2020

Full text (In Eng.) >>

REFERENCES

  1. Griffiths P.R., de Haseth J.A., ed. by J.D. Winefordner. Fourier transform infrared spectrometry. Chemical analysis: A series of monographs on analytical chemistry and its applications. Vol. 171. Wiley-Interscience, 2007. DOI: 10.1002/047010631X
  2. Bespalov V.G., Kozlov S.A., Krylov V.N., Putilin S.E. Femtosekundnaya optika i femtotekhnologii [Femto­second optics and femtotechnology]. St. Petersburg, SPbGUITMO Publ., 2010. 234 p. (In Russ.).
  3. Freschi A.A., Frejlich J. Adjustable phase control in stabilized interferometry. Optics. Letters, 1995, vol. 20, is. 6, pp. 635—637. DOI: 10.1364/OL.20.000635
  4. Minoni U., Sardini E., Gelmini E., Docchio F., Marioli D. A high‐frequency sinusoidal phase‐modulation interferometer using an electro‐optic modulator: Development and evaluation. Rev. Sci. Instrum., 1991, vol. 62, is. 11, pp. 2579—2583. DOI: 10.1063/1.1142233
  5. Gryaznov N.A., Sosnov E.N. [Compact, high-performance picosecond laser for mobile robotic engineering systems]. Ekstremalnaya robototekhnika. Trudy mezhdunarodnoj nauchno-tekhnicheskoj konferencii [Extreme robotics. Proceedings of the International Scientific and Technical Conference]. St. Petersburg, Politekhnika-servis Publ., 2014, pp. 369—371.
  6. Gryaznov N.A., Sosnov E.N., Goryachkin D.A., Nikitina V.M., Rodionov A.Yu. [Active phase synchronization of modes in a resonator with a Michelson interferometer]. Opticheskii zhurnal [Journal of Optical Technology], 2019, vol. 86, no. 4, pp. 3—10. DOI: 10.1364/JOT.86.000197
  7. Gryaznov N.A., Goryachkin D.A., Sosnov E.N., Charlamov V.V. [Adjustment of optical paths difference in Michelson interferometer]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2019. vol. 29, no. 3, pp. 41—46. DOI: 10.18358/np-29-3-i4146
 

P. A. Kupriy1, M. Z. Muradymov2, N. V. Krasnov2, I. V. Kurnin2, A. N. Arseniev2

EFFECT OF GAS-DYNAMIC FLOW ON ION TRANSPORT THROUGH THE NOZZLE
OF AN ION SOURCE WITH IONIZATION AT ATMOSPHERIC PRESSURE

"Nauchnoe Priborostroenie", 2020, vol. 30, no. 4, pp. 75—83.
doi: 10.18358/np-30-4-i7583
 

The effect of the gas flow to the ion transport from the atmosphere to the forevacuum region of the is determined experimentally. Experimental volt-ampere characteristics of the ion flow carried by the gas-dynamic flow behind the nozzle are obtained. It is shown that the fraction of the ion current passing through the nozzle under the influence of the gas flow can be increased several times in relation to the current value due only to the extraction by the electric field.
In this case, depending on the magnitude of the electric field penetrating beyond the skimmer, the current is redistributed between the nozzle and the collector. It was found that, under the experimental conditions, the entire ion flux reaches the movable collector at a distance of up to 15 mm at a field strength of 200 V / cm. The diameter of the ionic component of the flow is 1.5 mm.
The ion motion in a gas is simulated for conditions close to the experimental ones. Developing research findings, it is possible to consider systems for transporting ions further to the analyzer.
 

Keywords: ion source, gas dynamic flow, nozzle, ion transport at high gas pressure

Fig. 1. Graph of losses (in %) of ions during transportation from the source to the analyzer [2]

Fig: 2. Diagram of the experimental setup.
d1—d4 – diaphragms; 5 – fluoroplastic gaskets; 6 – vacuum chamber; 7 – Wilsonian seal; 8 – collector (rod); 9 – emitter (needle); 10 – forvacuum pump; 11 – vacuum pressure sensor; 12 – valve; 13, 14 – highly stable power supplies; 15—20 – electrometers; 21—26 – digital current meters

Fig: 3. Dependence of currents on diaphragms I1, I2, I3, I4, collector Iê and their sum on the collector Uê
voltage at a distance from the needle to the first diaphragm of 5 mm and discharge current 1 μA

Fig. 4. Dependence of the currents on the fourth diaphragm I4 and the collector Iê on the collector Uê voltage at a distance from the needle to the first diaphragm of 5 mm and a discharge current of 1 μA

Fig. 5. Dependences of the currents at the nozzle (fourth diaphragm) I4 and the collector Iê on the collector Uê voltage at a discharge current of 1 μA and the distance from the nozzle to the collector (a) 5 mm, (á) 10 mm, (â) 15 mm

Fig. 6. Dependences of the currents at the nozzle (fourth diaphragm) I4 and the collector Iê on the voltage on the collector Uê at a discharge current of 2 μA and a distance from the nozzle to the collector (a) 5 mm, (á) 10 mm

Fig. 7. Characteristic trajectories of ions in the area of the outlet diaphragm.
a – at atmospheric pressure and a collector potential of —300 V, b – at collector zero potential, taking into account the gas flow rate (air pressure behind the diaphragm is 8 Torr)

Fig. 8. Spatial distribution of the gas flow velocity in the ion transport system at a pressure in the chamber on the right (a) 8 Torr and (b) 2 Torr. Diaphragm hole diameter is 0.5 mm

Fig. 9. Normalized dependences of the collector current value on its potential. Designated: transportation system at atmospheric pressure (Atm), when pumping out the area behind the last diaphragm to a pressure of 8 Torr (dP)

Author affiliations:

1Peter the Great Saint-Petersburg Polytechnic University, Saint Petersburg, Russia
2Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia

 
Contacts: Krasnov Nikolay Vasil'evich, krasnov@alpha-ms.com
Article received by the editorial office on 28.10.2020

Full text (In Russ.) >>

REFERENCES

  1. Gavrik M.A., Kornev D.I., Muradymov M.Z. [ Investigation of characteristics of a gas-dynamic interface bandwidth time-of-flight mass-spectrometer MX 5311 ]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2010, vol. 20, no. 4, pp. 114—119. (In Russ.). URL: https://www.elibrary.ru/contents.asp?id=33636275
  2. Willoughby R., Sheehan E., Fries D. Transmission of ions through laminated conductance pathways from atmospheric pressure. Proceedings of the 52nd ASMS Conference on Mass Spectrometry and Allied Topics, Nashville, Tennessee, 2004. URL:
  3. Jurgoot M., Groth C.P.T., Thomson B.A., et al. Numerical investigation of interface region flows in mass spectrometers ion transport. Journal of Physics D: Applied Physics . 2004, vol. 37, no. 4, pp. 550—559. DOI: 10.1088/0022-3727/37/4/007
  4. Andreeva A.D., Elistratov A.A., Gall' L.N. [An  analytical  approach  to  ion  transport  in  the  interface  region 
    of  the  ERI AD  (Electrospray) ion  source]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2006, vol. 16, no. 2, pp. 73—77. (In Russ.). URL: https://www.elibrary.ru/contents.asp?id=33176366
  5. Muradymov M.Z., Kirillov S.N., Kurnin I.V., Belyaev K.A., Maksimov S.V., Andreeva A.D., Verenchikov A.N. [Ion beam characteristics at the exit of the gas filled quadrupole]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2006, vol. 16, no. 3, pp. 59—66. URL: https://www.elibrary.ru/contents.asp?id=33176933 (In Russ.).
  6. Andreeva A.D., Muradymov M.Z., Kurnin I.V., Gall' L.N. [An electrostatic focusing effect in the gas dynamical interface of the mass spectrometer]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2006, vol. 16, no. 3, pp. 80—87. (In Russ.).
  7. Arseniev A.N., Kurnin I.V., Krasnov N.V., Muradymov M.Z., Pomozov T.V., Yavor M.I., Krasnov M.N. Optimization of ion transport from atmospheric pressure ion sources. International Journal for Ion Mobility Spectrometry, 2019, vol. 22, no. 1, pp. 31—38. DOI: 10.1007/s12127-018-0242-2
  8. Aleksandrov M.L., Gall' L.N., Krasnov N.V., Nikolaev V.I., Shkurov V.A. [Extraction of ions from solutions at atmospheric pressure - a new method of mass spectrometry analysis]. DAN SSSR [Reports of the USSR Academy of Sciences], 1984, vol. 277, no. 2, pp. 379—393. (In Russ.).
  9. Fenn J.B. Mass Spectrometric implications of high-pressure ion sources. Int. J. Mass Spectrom., 2000, vol. 200, pp. 459—478. DOI: 10.1016/S1387-3806(00)00328-6
  10. Manura D., Dahl D.A. SIMION 8.0 User’s Manual, Sci. Instrument Services, Inc. Idaho Nat. Lab, 2006.
  11. Appelhans A.D., Dahl D.A. SIMION ion optics simulations at atmospheric pressure. International Journal of Mass Spectrometry, 2005, ¹ 244, pp. 1—14.
  12. Kurnin I.V., Yavor M.I. [ Model of motion in a viscous media with a statistic diffusion for calculation of ion dynamics in a dense gas and strong electric fields ]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2015, vol. 25, no. 3, pp. 29—34. DOI: 10.18358/np-25-3-i2934 (In Russ.).
  13. Kurnin I.V. [ Model for simulation of ion dynamics in a dense gas and strong electric fields ]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2018, vol. 28,  no. 3 , pp. 118—123. DOI: 10.18358/np-28-3-i118123 (In Russ.).
 

A. G. Kuzmin1, Yu. A. Titov1, N. B. Suvorov2, M. V. Kuropatenko2

MASS-SPECTROMETRIC STUDIES OF THE DYNAMICS OF EXHALED AIR COMPOSITION DURING DYNAMIC POSTURAL EFFECTS

"Nauchnoe Priborostroenie", 2020, vol. 30, no. 4, pp. 84—93.
doi: 10.18358/np-30-4-i8493
 

The paper studies the possibility of using a quadrupole gas mass spectrometer as part of a diagnostic complex based on a rotary (mechanorgical) table to assess the effectiveness of the dynamic postural effects on patients. Analysis of the obtained mass spectrograms indicates that the response of patients is individual and can vary significantly. Taking into account the mass spectrometric parameters of exhaled air allows the patient to be assigned to a specific group. Information on the concentration of oxygen and carbon dioxide in the patient's exhalation, as well as the analysis of the envelope shape of the measured dynamic mass spectrograms can be used for comprehensive diagnostics of the patient's condition in addition to the data of the main sensors in the complex.
 

Keywords: mass spectrometry, exhaled air analysis, postural influences, mechanorgic table

Author affiliations:

1Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia
2Federal State Budgetary Scientific Institution "Institute of experimental medicine",
Saint-Petersburg, Russia

 
Contacts: Kuzmin Aleksey Georgievich, agqz55@rambler.ru
Article received by the editorial office on 09.10.2020

Full text (In Eng.) >>

REFERENCES

  1. Kuropatenko M.V., Sergeev T.V., Tolkachev P.I., Suvorov N.B. [Evaluation of effectiveness of dynamic postural effects synchronized with respiration]. I Vserossijskaya konferenciya s mezhdunarodnym uchastiem "Fizika i ekologiya elektromagnitnyh izluchenij". Nauchnye trudy konferencii [I All-Russian Conference with International Participation "Physics and Ecology of Electromagnetic Radiation." Scientific proceedings of the conference], 2017, pp. 36. (In Russ.).
  2. Kuliabin K.G., Belov A.V., Sergeev T.V., Suvorov N.B. Device for recording the physiological parameters of the patient and its position in three-dimensional space under complex dynamic postural loads. 2018 Ural Symposium on Biomed. Engineering, Radioelectronics and Information Technology (USBEREIT), IEEE Conference of Russian, 2018, pp. 116—119.
  3. Suvorov N.B., Sergeev T.V., Belov A.V. [Hard- and software complex for correction of human state and for adaptive control of postural load]. Fizika i radioelektronika v medicine i ekologii — FREME’2018. Kniga 2 [XII international scientific conference "Physics and radioelectronics in medicine and ecology" with Scientific Youth school named after I.N. Spiridonov PhREME’2018. Book 2], 2018, pp. 208—215. URL:
  4. Tolkachev P.I., Sergeev T.V., Suvorov N.B. [Computerized system of passive-dynamic orientation of the human body]. Klinicheskaya informatika i telemedicina [Journal Clinical Informatics and Telemedicine], 2014, vol. 10, no. 11, pp. 182—183. (In Russ.).
  5. Kuzmin A.G. Kvadrupolnyj mass-spektrometr. Patent RF no. 94763. [Quadrupole mass spectrometer]. Prioritet 15.12.09. (In Russ.).
  6. Kuzmin A.G., Tkachenko E.I., Oreshko L.S., Titov Yu.A., Balabanov A.S. [Mass spectrum method of metrical express diagnostics by exhaled air composition]. Medicinskij akademicheskij zhurnal [Medical Academic Journal], 2016, vol. 16, no. 4, pp. 106—112. URL: https://iemspb.ru/wp-content/uploads/2016/12/MAZH_No_4-2016_full.pdf (In Russ.).
 

L. V. Novikov1, V. V Manoilov1, A. G. Kuzmin1, Yu. A. Titov1, I. V. Zarutsky1, A. O. Nefedov2,
A. V. Nefedova2, A. I. Arseniev3

EXPRESS DIAGNOSTICS OF DISEASES BASED ON A QUADRUPOLE MASS SPECTROMETER ANALYSIS OF EXHALED AIR

"Nauchnoe Priborostroenie", 2020, vol. 30, no. 4, pp. 94—105.
doi: 10.18358/np-30-4-i94105
 

The method is proposed for express diagnostics of diseases according to the data of mass spectrometric analysis of The method is proposed for express diagnostics of diseases according to the data of mass spectrometric analysis of exhaled air. An algorithm for calculating the probability of diseases has been developed and tested. The results of data processing of patients treated in two oncological clinics are presented. The calculation of the probability of disease according to the data of mass spectrometric analysis of exhaled air is based on attributing the mass spectrum of the tested patient to the mass-spectra of the corresponding control group. Each control group is formed by collecting an array of spectra from at least ten patients with the same disease. Diagnostics is performed by transforming the matrix of spectra of the control group and the spectrum of a patient being tested into the space of the principal components. The probability of a disease is determined by the Euclidean distance of the patient's coordinates from the centroid of the control group in the multidimensional space of these principal components.
 

Keywords: express diagnostics of the disease, principal component analysis, multivariate probability density, multivariate data processing

Author affiliations:

1Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia
2St. Petersburg Clinical Scientific and Practical Center for Specialized Types
of Medical Care (Oncological), Russia
3Scientific Research Center of Oncology named after N.N. Petrov Ministry of Health of Russia

 
Contacts: Manoilov Vladimir Vladimirovich, manoilov_vv@mail.ru
Article received by the editorial office on 15.10.2020

Full text (In Eng.) >>

REFERENCES

  1. Cao W., Duan Y. Breath analysis: potential for clinical diagnosis and exposure assessment. Clinical Chemistry, 2006, vol. 52, no. 5, pp. 800—811. DOI: 10.1373/clinchem.2005.063545
  2. Pereira J., Porto-Figueira P., Cavaco C., Taunk K., Rapole S., Dhakne R., Nagarajaram H., Câmara J.S. Breath analysis as a potential and non-invasive frontier in disease diagnosis: an overview. Metabolites, 2014, no. 5, pp. 3—55. DOI: 10.3390/metabo5010003
  3. Kononov A., Korotetsky B., Jahatspanian I., Gubal A. et al. Online breath analysis using metal oxide semiconductor sensors (electronic nose) for diagnosis of lung cancer. Journal of Breath Research, 2020, vol. 14, no. 1. DOI: 10.1088/1752-7163/ab433d
  4. Kischkel S., Miekisch W., Sawacki A., Straker E.M., et al. Breath biomarkers for lung cancer detection and assessment of smoking related effects – confounding variables, influence of normalization and statistical algorithms. Clinica Chimica Acta, 2010, vol. 411, is. 21—22, pp. 1637—1644.
  5. Fuchs P., Loeseken Ch., Schubert J.K., Miekisch W. Breath gas aldehydes as biomarkers of lung cancer. International Journal of Cancer, 2010, vol. 126, no. 11, pp. 2663—2670.
  6. Vaks V.L., Domracheva E.G., Sobakinskaya E.A., Chernyaeva M.B. [Exhaled breath analysis: physical methods, instruments and medical diagnostics]. Uspekhi Fizicheskikh Nauk [Advances in Physical Sciences], 2014, vol. 184, no. 7, pp. 739—758. DOI:
  7. Chen1 Ch.-Ch., Hsieh Ju-Ch., Chao Ch.-H., Yang W.-Sh., et al. Correlation between breath ammonia and blood urea nitrogen levels in chronic kidney disease and dialysis patients. Journal of Breath Research, 2020, vol. 14, no. 3. DOI: 10.1088/1752-7163/ab728b
  8. van Dartel D., Schelhaas H.J., Colon A.J., Kho K.H., de Vos C.C. Breath analysis in detecting epilepsy. Journal of Breath Research, 2020, vol. 14, no. 3. DOI: 10.1088/1752-7163/ab6f14
  9. Harshman S.W., Pitsch R.L., Davidson Ch.N., Scott A.M., et al. Characterization of standardized breath sampling for off-line field use. Journal of Breath Research, 2019, vol. 14, no. 1. DOI: 10.1088/1752-7163/ab55c5
  10. Tiele1 A., Wicaksono A., Daulton E., Ifeachor E., Eyre V., et al. Breath-based non-invasive diagnosis of Alzheimer’s disease: A pilot study. Journal of Breath Research, 2020, vol. 14, no. 2. DOI: 10.1088/1752-7163/ab6016
  11. Manoilov V.V., Kuzmin A.G., Zarutskiy I.V., Titov Yu.A., Samsonova N.S. [ Methods of processing and investigation of the possibilities of classification of mass spectra of exhaled gases ]. Nauchnoe Priborostroenie [Scientific Instrumentation], vol. 29, no. 1, pp. 106—110. DOI: 10.18358/np-29-1-i106110 (In Russ.).
  12. Bolshakov A.A., Karimov R.N. ed. Metody obrabotki mnogomernyh dannyh i vremennyh ryadov [Methods of processing multidimensional data and time series]. Moscow, Goryachaya liniya-Telekom, 2007. 522 p. (In Russ.).
  13. Shiryaev A.N. Veroyatnost. Tom 1 [Probability. Vol. 1]. Moscow, MCNMO Publ., 2007. 552 p. (In Russ.).
  14. Ajvazyan S.A., Buhshtaber V.M., Enyukov I.S., Meshalkin L.D. Prikladnaya statistika. Klassifikaciya i snizhenie razmernosti [Application statistics. Classification and dimensioning]. Moscow, Finansy i statistika, 1989. 607 p. (In Russ.).
  15. Esbensen K.H. Multivariate Data Analysis. Norway, CAMO Software AS, 480 p. (Russ. ed.: Esbensen K. Analiz mnogomernyh dannyh. Translate O.E. Rodionova. Chernogolovka, IPCP OF RAS Publ., 2005, 161 p.). URL: https://www.amazon.com/Multivariate-Data-Analysis-introduction-Analytical/dp/826911040X (In Russ.).
 

A. Yu. Zaitceva1, M. S. Mazing1,2, Yu. Ya. Kislyakov1

MULTISENSOR OPTICAL SYSTEM FOR NON-INVASIVE MONITORING OF THE HUMAN OXYGEN BODY DURING FUNCTIONAL STRESS

"Nauchnoe Priborostroenie", 2020, vol. 30, no. 4, pp. 106—112.
doi: 10.18358/np-30-4-i106112
 

This work was performed using optical spectroscopy methods. The proposed method is based on the differences in the absorption spectra of oxyhemoglobin and reduced hemoglobin, as well as on the analysis of the response of the system using mathematical methods for processing multidimensional data. In the course of the work, a prototype of the diagnostic optical system for non-invasive monitoring of the oxygen supply of human tissues was created, which is based on a multi-channel optical spectrum analyzer. As a result of experimental studies, it was shown that each subject has his own individual, reproducible "image". The results of the study confirm the effectiveness of the proposed method for assessing the functional state of a person and the prospects for its use in practical medicine.
 

Keywords: spectrophotometry, non-invasive diagnostic method, oxygen tissue supply, functional state, optical system

Fig. 1. External view of the analyzer of optical spectra with off (a) and on (á) LEDs

Fig: 2. Oxygenation curve with marked time points of measurements during the experiment.The time of measurement was noted as t2 – holding the breath, t3 – resuming breathing, t4 – 60 s after the delay (restart), t5 – 240 s after the delay (restart) [5]

Tab. 1. Obtained averaged measurements of the device with standard deviation at rest, recorded for 15 s in five subjects

Tab. 2. Obtained averaged measurements of the device with SD during the recovery period, in 240 s after the functional stress in five subjects

Fig. 3. Visual representation of subjects in the form of hexagons. The axes of the diagram show the numerical readings of each of the six sensors in relative units

Fig. 4. Visual representation of the average normalized image of the subjects of the first group. The axes of the diagram show the standardized numerical readings of each of the six sensors

Fig. 5. Visual representation of the average normalized image of the subjects of the second group. The axes of the diagram show the standardized numerical readings of each of the six sensors

Fig. 6. Visual representation of the averaged normalized image of the subjects of the third group. The axes of the diagram show the standardized numerical readings of each of the six sensors

Author affiliations:

1Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia
2Peter the Great Saint Petersburg Polytechnic University, Saint Petersburg, Russia

 
Contacts: Zaitceva Anna Yur'evna, anna@da-24.ru
Article received by the editorial office on 30.10.2020

Full text (In Russ.) >>

REFERENCES

  1. Kislyakov Yu.Ya. ,  Avdyushenko S.A. ,  Kislyakova L.P. , Zaitceva A.Yu. Analytical multisensory trainable system for diagnosing vocational aptitude of military medical specialists by ion content in the expired breath condensate. Journal of Computational and Theoretical Nanoscience, 2019, vol. 16, no. 11, pp. 4502—4507. DOI: 10.1166/jctn.2019.8343
  2. Kislyakov Yu.Ya. ,  Avdyushenko S.A. ,  Kislyakova L.P. [Non-invasive analysis of oxygen supply of human tissues at physical exertion according to polyselective optical sensors]. Fundamental'nye aspekty psichicheskogo zdorov'ya [Fundamental aspects of mental health], 2018, no. 3, pp. 91—95. (In Russ.).
  3. Grevtseva A.S., Smirnov K.J., Davydov V.V., Rud' V.Yu. Development of methods for results reliability raise during the diagnosis of a person's condition by pulse oximeter. Journal of Physics: Conference Series, IOP Publishing, 2018, vol. 1135, no. 1,  012056. DOI: 10.1088/1742-6596/1135/1/012056
  4. Zaitceva A.Yu., Kislyakova L.P., Kislyakov Yu.Ya., Avduchenko S.A. Development of a multi-sensor analytical trainable system for non-invasive evaluation of adaptedness status of hazardous occupation specialists. Journal of Physics : CS, 2019, vol. 1400, no. 3, 033022. DOI: 10.1088/1742-6596/1400/3/033022
  5. Rogatkin D.A. [Physical basics of optical oximetry]. Medizinskaya fizika [Medical physics], 2012, vol. 2, pp. 97—114. (In Russ.).
  6. Pushkareva A.E. Metody matematicheskogo modelirovaniya v optike biotkani. Uchebnoe posobie [Methods of mathematical modeling in bio-tissue optics. Tutorial]. SPb., SPbGU ITMO Publ., 2008, 103 p. (In Russ.).
 

A Yu Zaitceva1, Yu. Ya. Kislyakov1, M. S. Mazing1,2, V. V. Davydov2, 3

APPLICATION OF NON-INVASIVE OPTICAL TRAINABLE DIAGNOSTIC SYSTEM AND MATHEMATICAL METHODS OF PROCESSING MULTIDIMENSIONAL DATA TO ASSESS THE OXYGEN STATUS OF HUMAN TISSUES (SHORT DESCRIPTION)

"Nauchnoe Priborostroenie", 2020, vol. 30, no. 4, pp. 113—118.
doi: 10.18358/np-30-4-i113118
 

A non-invasive method for analyzing oxygen supply for human tissues using methods of mathematical processing of multidimensional data, which has an important diagnostic value, is proposed. As a result of experimental studies with the participation of 10 subjects using a non-invasive optical trainable diagnostic system, attempts were made to collect information in conventional units by means of multichannel optical analyzer of the visible spectral range. The obtained results of mathematical processing of experimental data show that the proposed technique is effective and can be used in practical medical and biological
 

Keywords: optical system, multisensor systems, functional state assessment, non-invasive diagnostic method

Fig. 1. Functional block diagram of a non-invasive optical trainable diagnostic system

Fig. 2. Average normalized images of the oxygen status of tissues of two groups of subjects (a, á)

Fig. 3. The result of clustering the oxygen images of 10 subjects in the space of two principal components by the method of k-means. The images were formed by the method of principal components according to 6 features, which are the numerical readings of each of the six sensors after functional load, normalized in regard to the values obtained at rest. The first principal component is along the x-axis is and the second principal component is along the y-axis

Author affiliations:

1Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia
2Peter the Great Saint Petersburg Polytechnic University, Russia
3Department of Ecology, Russian Research Institute for Phytopathology, Moscow Region, Odintsovo

 
Contacts: Zaitceva Anna Yur'evna, anna@da-24.ru
Article received by the editorial office on 16.10.2020

Full text (In Russ.) >>

REFERENCES

  1. Grevtseva A.S., Davydov V.V., Rud' V.Yu. Development of methods for results reliability raise during the diagnosis of a person's condition by pulse oximeter. Journal Physics: Conference Series, 2018, vol. 1135, no. 1. 012056. DOI: 10.1088/1742-6596/1135/1/012056
  2. Kislyakov Yu.Ya., Avdyushenko S.A., Kislyakova L.P., Zaitceva A.Yu. Analytical multisensory trainable system for diagnosing vocational aptitude of military medical specialists by ion content in the expired breath condensate. Journal of Computational and Theoretical Nanoscience, 2019, vol. 16, no. 11, pp. 4502—4507. DOI: 10.1166/jctn.2019.8343
  3. Kislyakova, L.P., Kislyakov Yu.Ya., Zaiceva A.Yu., Gulyaev V.I. [Multisensory system "Elecronic tonque" for control of body state according to the electrochemical indicators of biological fluids]. V mire nauchnyh otkrytij [Siberian Journal of Life Sciences and Agriculture], 2014, no. 2, pp. 406—412. DOI: 10.12731/wsd-2014-2-406-412 (In Russ.).
  4. Golpe R., Jiménez A., Carpizo R., Cifrian J.M. Utility of home oximetry as a screening test for patients with moderate to severe symptoms of obstructive sleep apnea. Sleep, 1999, vol. 22, no. 7, pp. 932—937.
  5. Yu H., Liu B. Successful use of pharyngeal pulse oximetry with the oropharyngeal airway in severely shocked patients. Anaesthesia, 2007, vol. 62, no. 7, pp. 734—736. DOI: 10.1111/j.1365-2044.2007.05072.x
  6. Grevtseva A.S. , Davydov V.V., Greshnevikov K.V. , Rud’ V.Yu. , Glinushkin A.P. Method of assessment the degree of reliability of the pulse wave image in the rapid diagnosis of the human condition . Journal of Physics: Conference Series , 2019, vol. 1368, no. 2. 022072. DOI: 10.1088/1742-6596/1368/2/022072
  7. Davydov R.V. , Mazing M.S. , Yushkova V.V. , Stirmanov A.V. , Rud’ V.Yu. A new method for monitoring the health condition based on nondestructive signals of laser radiation absorption and scattering . Journal of Physics: Conference Series , 2019, vol. 1410, no. 1. 012067. DOI: 10.1088/1742-6596/1410/1/012067
  8. Neronov Y.I. ,  Kosenkov D.D. Development of an NMR relaxometer for determining magnetization dynamics of water protons in living tissues and its use for evaluating age-related changes . Technical Physics , 2019, vol. 64, no. 7, pp. 1055—1059. DOI: 10.1134/S106378421907017X
  9. Abdurahmanov A.R. [Nuclear magnetic resonance. MRI]. Fizika i medicina: sozdavaya budushchee. Sb. Samara: NIC LJournal [Physics and medicine: creating the future. Samara: NIC LJournal], 2018, pp. 115—118. (In Russ.).
  10. Kelleher J.F. Pulse oximetry. Journal of clinical monitoring, 1989, vol. 5, no. 1, pp. 37—62. DOI: 10.1007/BF01618369
  11. Lemdyasov Yu.L., Latypov A.F., Nafikova R.M., Sayapova L.R. [Pulsoximetry as a method for non-invasive measurement of blood saturation]. Biotekhnicheskie, medicinskie i ekologicheskie sistemy i kompleksy. Biomedsistemy-2016. Sb. Ryazan [Biotechnical, medical and environmental systems and complexes. Biomedical systems-2016. Ryazan], 2016, pp. 104—107. (In Russ.).
  12. Simonyan M.A., Posnenkova O.M., Kiselev A.R. [Capabilities of photoplethysmography as a method for screening of cardiovascular system pathology]. Kardio-IT [Cardio-IT], 2020, vol. 7, is. 1. (In Russ.). DOI: 10.15275/cardioit.2020.0102
  13. Tuchin V.V. [Light scattering study of tissues]. Physics-Uspekhi [Advances in Physical Sciences], 1997, vol. 167, no. 5, pp. 517—539. (In Russ.). DOI:  10.3367/UFNr.0167.199705c.0517
  14. Perminov A.S., Yuran S.I. [Designing Optoelectronic Sensors with Elimination of Artefacts Influence]. Vestnik IzhGTU im. M.T. Kalashnikova [Bulletin of IzhGTU named M.T. Kalashnikov], 2010, no. 3, pp. 102—105. (In Russ.). URL:
  15. Davydov R.V., Antonov V.I., Yushkova V.V., Grebenikova N.M., Dudkin V.I. A new algorithm for processing the absorption and scattering signals of laser radiation on a blood vessel and human tissues. Journal of Physics: Conference Series, 2019, vol. 1236, no. 1. 012079. DOI: 10.1088/1742-6596/1236/1/012079
 

CONTENTS OF VOLUME 30

"Nauchnoe Priborostroenie", 2020, vol. 30, no. 4, pp. 119–126.
doi: 10.18358/np-30-4-i119126
 
 NUMBER 1 (80 p.)
 PHYSICS OF INSTRUMENT MAKING (pp. 3–38)
 SYSTEM ANALYSIS OF MEASURING DEVICES AND METHODS (pp. 39–67)
 MATHEMATICAL METHODS AND MODELLING IN INSTRUMENT MAKING (pp. 68–79)
 FROM EDITION (pp. 80–80)
 
 NUMBER 2 (76 p.)
 INSTRUMENT MAKING OF PHYSICAL AND CHEMICAL BIOLOGY (pp. 3–32)
 PHYSICS OF INSTRUMENT MAKING (pp. 33–50)
 MATHEMATICAL METHODS AND MODELLING IN INSTRUMENT MAKING (pp. 51–60)
 INFORMATICS, COMPUTER TECHNICS AND CONTROL (pp. 61–75)
 
 NUMBER 3 (76 p.)
 PHYSICS OF INSTRUMENT MAKING (pp. 3–18)
 INSTRUMENT MAKING OF PHYSICAL AND CHEMICAL BIOLOGY (pp. 19–48)
 INFORMATICS, COMPUTER TECHNICS AND CONTROL (pp. 49–76)
 
 NUMBER 4 (128 p.)
 INSTRUMENT MAKING OF PHYSICAL AND CHEMICAL BIOLOGY (pp. 3–38)
 PHYSICS OF INSTRUMENT MAKING (pp. 39–88)
 INSTRUMENT MAKING FOR BIOLOGY AND MEDICINE (pp. 89–118)
 
 Contents of Volume 30     (pp. 119–126)
 Authors Index of Volume 30 (pp. 127–128)

Full text (In Eng.) >>
 

AUTHORS INDEX OF VOLUME 30

"Nauchnoe Priborostroenie", 2020, vol. 30, no. 4, pp. 127—128
doi: 10.18358/np-30-4-i127128

Abiev R. Sh. — ¹ 1
Aleksandrova M. L. — ¹ 2
Alekseev V. L. — ¹ 4
Alekseyuk E.N. — ¹ 4
Antonov R.Yu. — ¹ 3
Anufriev A. V. — ¹ 1
Archipov D. B. — ¹ 3
Archipov N.D. — ¹ 3
Arsen'ev A. I. — ¹ 4
Arsen'ev A. N. — ¹ 4
Batozyrenova E. G. — ¹ 1
Belov D. A. — ¹ 2
Belov Yu. V. — ¹ 2
Belyaeva O. A. — ¹ 1
Berdnikov A. S. — ¹ 2
Borodinov A.G. — ¹ 4
Bublyaev R. — ¹ 1
Bulyaniza A. L. — ¹ 3
Buryak A.K. — ¹ 3
Chabarov V.B. — ¹ 3
Chernyakov I.S. — ¹ 3
Chudyakov A. V. — ¹ 1
Esikova N. A. — ¹ 4
Evstrapov A. A. — ¹ 3, 4
Fofanov Ya. A. — ¹ 1
Gaft S.S. — ¹ 2
Gall I.R. — ¹ 2
Gall L. N. — ¹ 2, 4
Gall' N. R. — ¹ 1, 2, 4
Gavrilov D. A. — ¹ 2
Germash N. N. — ¹ 4
Gladchuk A. S. — ¹ 1
Gladchuk A. S. — ¹ 1, 4

Gorbacheva T.T. — ¹ 2
Gorbacheva T.T. — ¹ 4
Goryachkin D. A. — ¹ 4
Goryachkin D. A. — ¹ 4
Grevzev M. A. — ¹ 4
Grevzev M. A. — ¹ 4
Kazakov S. A. — ¹ 4
Kel'zieva O. A. — ¹ 2
Kislyakov Yu. Ya. — ¹ 4
Krasheninnikov V. N. — ¹ 1
Krasnov N. V. — ¹ 4
Kuleshov D. O. — ¹ 1, 4
Kuprenyuk V. I. — ¹ 4
Kupriy P. A. — ¹ 4
Kurnin I. V. — ¹ 1, 4
Kurochkin V. E. — ¹ 1,2,3,4
Kuropatenko M. V. — ¹ 4
Kuz'min A. G. — ¹ 4
Kuz'min Yu. I. — ¹ 1
Lisin D. V. — ¹ 2
Maksimov S. I. — ¹ 2
Manoylov V. V. — ¹ 4
Mayorov D.V. — ¹ 2
Mazing M. S. — ¹ 4
Mirgorodskaya O. A. — ¹ 1
Muradymov M. Z. — ¹ 4
Nazarov D.I. — ¹ 3
Nefedov A. O. — ¹ 4
Nefedova A. V. — ¹ 4
Novikov D.V. — ¹ 1
Novikov L. V. — ¹ 4
Petrov A. I. — ¹ 4
Pleshakov I. V. — ¹ 1

Podol'skaya E. P. — ¹ 1, 2
Popov Yu. A. — ¹ 2
Prokof'eva Yu. P. — ¹ 1
Protasov A. V. — ¹ 1
Prozorov A. A. — ¹ 2
Prozorova I. V. — ¹ 2
Reynyuk V.L. — ¹ 2
Schelkunov N.N. — ¹ 2
Scherbakov A. P. — ¹ 1
Sharfarez B. P. — ¹ 1,2,3,4
Sharipov S.U. — ¹ 2
Shkonda S. E. — ¹ 4
Shreyner E. V. — ¹ 2
Shugaeva T. Zh. — ¹ 2
Sil'kis E. G. — ¹ 1
Sokolov B.V. — ¹ 3
Solov'eva A. V. — ¹ 4
Sosnov E. N. — ¹ 4
Spivak-Lavrov I. F. — ¹ 2
Stankevich A. S. — ¹ 1
Suchodolov N. G. — ¹ 2
Suvorov N. B. — ¹ 4
Svetlov S. D. — ¹ 1
Titov Yu. A. — ¹ 4
Velyaev Yu.O. — ¹ 2
Zacharov V.V. — ¹ 3
Zaruzkiy I. V. — ¹ 4
Zayzeva A. Yu. — ¹ 4
Zhernovoy A. I. — ¹ 1
Zhukov A. N. — ¹ 1
Zubik A.N. — ¹ 2

Full text (In Eng.) >>

Ulitsa Ivana Chernykh, 31-33, lit. A, St. Petersburg, Russia, 198095, P.O.B. 140
tel: (812) 3630719, fax: (812) 3630720, mail: iap@ianin.spb.su

content: Valery D. Belenkov design: Banu S. Kuspanova layout: Anton V. Manoilov