logo
blue band <-
  JOURNAL "NP" ISSUES

"Nauchnoe Priborostroenie", 2020, Vol. 30, no. 1. ISSN 2312-2951, DOI: 10.18358/np-30-1-134

"NP" 2020 year Vol. 30 no. 1.,   ABSTRACTS

ABSTRACTS, REFERENCES

S. D. Svetlov, R. S. Abiev, Y. P. Prokof'eva, A. V. Anufriev

ON THE DROPLET FORMATION PROCESS
IN AN X-SHAPED MICROFLUIDIC DEVICE

"Nauchnoe priborostroenie", 2020, vol. 30, no. 1, pp. 3—16.
doi: 10.18358/np-30-1-i316
 

The paper describes the results of an experimental study of the generation of microemulsions in a microfluidic device of own production equipped with an X-shaped mixer. The presented pattern diagrams showed a significant effect of the surfactant concentration on the flow regime in the channel and on the size of droplets formed. A universal equation is obtained for calculating critical capillary numbers that determine the transition between flow regimes. A preliminary analysis of force factors affecting the process of formation of droplets in a dispersion phase is carried out. It is revealed that the tangential stresses in the gap between the channel wall and the droplet, the pressure gradient along the droplet, and the interfacial tension forces have one order of magnitude and to a greater extent determine size of formed droplets. On the basis of force analysis, the diameter of droplets formed the under specified conditions was calculated, and calculation maps of flow regimes qualitatively confirming the data of the experimental study were developed.
 

Keywords: microfluidics, microsphere emulsification, droplet formation, microfluidic device

Fig. 1. Modes of droplet formation in a microfluidic device a) jetting mode, ) dripping mode [4]

Fig. 2. Microfluidic chip design. a — photo of brass microfluidic device; — topology of the mixing / dispersing zone; — transverse section of microfluidic device. 1 — base (brass); 2 — cover (glass); 3 — adhesive layer; = 300 μm; Lch = 12 mm; Qc, Qd — consumption of solutions of solid and dispersed phases respectively (ml/h)

Fig. 3. Scheme of the laboratory setup. 1 — microfluidic device; 2, 2' — syringes; 3, 3' — syringe pumps NE-1000; 4 — MC-10 microscope; 5 — high resolution camera Canon 20D with Canon EF-S 60 mm lens; 6 — collection tank

Table. Phase pairs (solid -dispersed)

Fig. 4. A map of flow modes for pairs of solutions no. 2 (Table). Qc, Qd — the consumption of solutions of solid and dispersed phases respectively (ml/h)

Fig. 5. A map of flow modes for pairs of solutions no. 3 (Table). Qc, Qd — the consumption of solutions of solid and dispersed phases respectively (ml/h)

Fig. 6. Comparison of the boundaries of slug and drip flow modes for solid phase compositions (Table) no. 2 (a) and no. 3 (). Qc, Qd – the consumption of solutions of solid and dispersed phases respectively (ml/h)

Fig. 7. Maps of flow regimes in the coordinates of capillary numbers Cac (steady phase) and Cad (dispersed phase) for pairs of solutions no. 2 (Table) (a) and no. 3 (Table) ()

Fig. 8. The boundaries of the flow regimes in the coordinates of the capillary numbers Cac (steady phase) and Cad (dispersed phase) for pairs of solutions no. 2 (Table) (a) and no. 3 (Table) (). The approximating straight line Cac.cr=25.205Cad+0.0012 is pictured with a dotted line

Fig. 9. Scheme of forces acting on a drop. Fσ is the interfacial tension force; Pdin.c, Pdin.d – dynamic pressure of solid and dispersed phases; P1, P2 – pressure in the solid phase before and after the drop, respectively; Frdin.c – radial forces; Fτ – shear forces; FΔp – force due to pressure gradient

Fig. 10. To calculate the shifting efforts on the surface of the drop

Fig. 11. The balance of forces involved in the formation of droplets at the consumption of the solid phase Q= 10 ml/h, the dispersed phase Qd = 1 ml/h, the diameter of a drop is 260 μm for the composition of the solid phase no. 3 (Table).

Fig. 12. A comparison of the boundaries of the flow regimes obtained as a result of experiment (a, b) and according to equations (7)—(14) (c, d), for solutions no. 2 (a, c) and no. 3 (b, d) (Table. )

Application

Fig. 1. Slug mode. Qc = 2 ml/h, Qd = 0.1 ml/h, solution system no. 2 (Table)

Fig. 2. Transition mode. Qc = 5 ml/h, Qd = 0.4 ml/h, solution system no. 3 (Table)

Fig. 3. Drip mode. Qc = 4 ml/h, Qd = 0.1 ml/h, solution system no. 3 (Table)

Fig. 4. Drip mode. Qc = 10 ml/h, Qd = 0.3 ml/h, solution system no. 2 (Table)

Author affiliations:

Saint Petersburg State Institute of Technology, Saint Petersburg, Russia

 
Contacts: Svetlov Stanislav Dmitrievitch, svetlovstanislav@gmail.com
Article received by the editorial office on 13.01.2020
Full text (In Russ.) >>

REFERENCES

  1. Bangs L.B. Uniform latex particles. Seragen Diagnostics Inc., 1984. 65 p.
  2. Dendukuri D., Doyle P.S. The synthesis and assembly of polymeric microparticles using microfluidics. Advanced Materials, 2009, vol. 21, no. 41, pp. 4071—4086. DOI: 10.1002/adma.200803386
  3. Langer R., Peppas N. Chemical and physical structure of polymers as carriers for controlled release of bioactive agents: a review. Journal of macromolecular science. Reviews in macromolecular chemistry and physics, 1983, vol. 23, no. 1, pp. 61—126. DOI: 10.1080/07366578308079439
  4. Cubaud T., Mason T.G. Capillary threads and viscous droplets in square microchannels. Physics of fluids, 2008, vol. 20, no. 5, 053302. DOI: 10.1063/1.2911716
  5. Thorsen T., Roberts R.W., Arnold F.H., Quake S.R. Dynamic pattern formation in a vesicle-generating microfluidic device. Physical review letters, 2001, vol. 86, no. 18, 4163. DOI: 10.1103/PhysRevLett.86.4163
  6. Whitesides G.M. The origins and the future of microfluidics. Nature, 2006, vol. 442, no. 7101, pp. 368—373. DOI: 10.1038/nature05058
  7. Christopher G.F., Anna S.L. Microfluidic methods for generating continuous droplet streams. Journal of Physics D: Applied Physics, 2007, vol. 40, no. 19, R319. DOI: 10.1088/0022-3727/40/19/R01
  8. Teh S.Y., Lin R., Hung L.H., Lee A.P. Droplet microfluidics. Lab on a chip, 2008, vol. 8, no. 2, pp. 198—220. DOI: 10.1039/b715524g
  9. Anna S.L., Mayer H.C. Microscale tipstreaming in a microfluidic flow focusing device. Physics of fluids, 2006, vol. 18, no. 12, 121512. DOI: 10.1063/1.2397023
  10. Utada A.S., Fernandez-Nieves A., Stone H.A., Weitz D.A. Dripping to jetting transitions in coflowing liquid streams. Physical review letters, 2007, vol. 99, no. 9, 094502. DOI: 10.1103/PhysRevLett.99.094502
  11. Guillot P., Colin A., Utada A.S., Ajdari A. Stability of a jet in confined pressure-driven biphasic flows at low Reynolds numbers. Physical review letters, 2007, vol. 99, no. 10, 104502. DOI: 10.1103/PhysRevLett.99.104502
  12. Svetlov S.D., Abiev R.S. Formation mechanisms and lengths of the bubbles and liquid slugs in a coaxial-spherical micro mixer in Taylor flow regime. Chemical engineering journal, 2018, vol. 354, pp. 269—284. DOI: 10.1016/j.cej.2018.07.213
  13. Thulasidas T.C., Abraham M.A., Cerro R.L. Flow patterns in liquid slugs during bubble-train flow inside capillaries. Chemical engineering science, 1997, vol. 52, no. 17, pp. 2947—2962. DOI: 10.1016/S0009-2509(97)00114-0
  14. Burns J.R., Ramshaw C. The intensification of rapid reactions in multiphase systems using slug flow in capillaries. Lab on a chip, 2001, vol. 1, no. 1, pp. 10—15. DOI: 10.1039/b102818a
  15. Dietrich N., Poncin S., Midoux N., Li H.Z. Bubble formation dynamics in various flow-focusing microdevices. Langmuir, 2008, vol. 24, no. 24, pp. 13904—13911.
  16. Xu J.H., Li S.W., Tan J., Wang Y.J., Luo G.S. Preparation of highly monodisperse droplet in a T-junction microfluidic device. AIChE journal, 2006, vol. 52, no. 9, pp. 3005—3010. DOI: 10.1002/aic.10924
  17. Shevchenko N.N., Abiev R.Sh., Svetlov S.D., Anufriev A.V., Prokofieva Yu.P., Baigildin V.A. [Stable emulsions formation by the drop microfluidics method]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2019, vol. 29, no. 3, pp. 20—29. DOI: 10.18358/np-29-3-i2029 (In Russ.).
  18. Frolov Yu.G., Grodskij A.S., Nazarov V.V., Morgunov A.F. Laboratornye raboty i zadachi po kolloidnoj himii [Laboratory and colloidal chemistry tasks]. Moscow, Chemistry Publ., 1986. 216 p. (In Russ.).
  19. Paul E.L., Atiemo-Obeng V.A., Kresta S.M., eds. Handbook of industrial mixing: Science and practice. John Wiley & Sons, 2004. 1448 p.
  20. Zhao Y., Chen G., Yuan Q. Liquid-liquid two-phase flow patterns in a rectangular microchannel. AIChE, 2006, vol. 52, no. 12, pp. 4052—4060. DOI: 10.1002/aic.11029
  21. Fu T., Wu Y., Ma Y., Li H.Z. Droplet formation and breakup dynamics in microfluidic flow-focusing devices: from dripping to jetting. Chemical engineering science, 2012, vol. 84, pp. 207—217. DOI: 10.1016/j.ces.2012.08.039
  22. Bhunia A., Pais S.C., Kamotani Y., Kim I.H. Bubble formation in a coflow configuration in normal and reduced gravity. AIChE, 1998, vol. 44, no. 7, pp. 1499—1509. DOI: 10.1002/aic.690440704
  23. Svetlov S.D., Abiev R.Sh. [Simulation of microfluidic chip for monodisperse emulsions generation]. Izvestiya Sankt-Peterburgskogo gosudarstvennogo tekhnologicheskogo instituta (tekhnicheskogo universiteta) [Bulletin of the Saint Petersburg State Institute of Technology (Technical University)], 2018, vol. 71, pp. 87—93. (In Russ.).
  24. Abiev R.Sh. [Simulation of hydrodynamics of projectile mode of gas-liquid system flow in droplets]. Teoreticheskie osnovy himicheskoy tekhnologii [Theoretical foundations of chemical technology], 2008, vol. 42, no. 2, pp. 115—127. DOI: 10.1134/S0040579508020012 (In Russ.).
  25. Aussillous P., Quéré D. Quick deposition of a fluid on the wall of a tube. Physics of fluids, 2000, vol. 12, no. 10, pp. 2367—2371. DOI: 10.1063/1.1289396
  26. Cubaud T., Tatineni M., Zhong X., Ho C.M. Bubble dispenser in microfluidic devices. Physical Review E, 2005, vol. 72, no. 3, 037302. DOI: 10.1103/PhysRevE.72.037302
  27. Fu T., Ma Y., Funfschilling D., Li H.Z. Bubble formation and breakup mechanism in a microfluidic flow-focusing device. Chemical Engineering Science, 2009, vol. 64, no. 10, pp. 2392—2400. DOI: 10.1016/j.ces.2009.02.022
 

A. N. Zhukov1, V. E. Kurochkin2, B. P. Sharfarets2

ON THE NONLINEARITY OF ELECTROKINETIC PHENOMENA.
OVERVIEW

"Nauchnoe priborostroenie", 2020, vol. 30, no. 1, pp. 17—21.
doi: 10.18358/np-30-1-i1721
 

As a result of a review of work on nonlinear electrokinetic phenomena, the following conclusions are made. The use of electrokinetic effects at significant values of the external electric field can significantly increase the electroosmotic and electrophoretic speeds, which vary with increasing external electric field strength: linearly for linear models of electrokinetics, cubically at moderate field strengths and quadratically at high electric field strengths. Consideration of these circumstances will allow to obtain increased electrophoretic and electroosmotic fluid velocities and significantly increase the corresponding mobility.
 

Keywords: electrokinetic effects, linear models of electrokinetics, mobility, electroosmosis, electrophoresis

Author affiliations:

1Saint Petersburg State University, Russia
2Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia

 
Contacts: Sharfarets Boris Pinkusovich, sharb@mail.ru
Article received by the editorial office on 15.10.2019
Full text (In Russ.) >>

REFERENCES

  1. Sharfarets B.P. [Implementation of receiving antenna using mechanism of electrokinetic phenomenon "Flow potential"]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2019, vol. 29, no 2, pp. 103—108.
  2. Levich V.G. Fiziko-himicheskaya gidrodinamika [Physical and chemical hydrodynamics]. Moscow, AN SSSR Publ., 1952. 538 p. (In Russ.).
  3. Duhin S.S., Deryagin B.V. Elektroforez [Electrophoresis]. Moscow, Nauka Publ., 1976. 332 p. (In Russ.).
  4. Newman J.S. Electrochemical Systems. Prentice-Hall, Englewood Cliffs, N.J., 1973. 432 p. (Russ. ed.: Newman J. Elektrochimicheskie sistemy. Moscow, Mir Publ., 1977. 464 p.).
  5. Bruus H. Theoretical Microfluidics. Oxford University Press, 2008. 346 p. (In Russ.).
  6. Ostroumov G.A. Vzaimodeystvie elektricheskih i gidrodinamicheskih polej: fizicheskie osnovy elektrogidrodinamiki [Interaction of electric and hydrodynamic fields: physical bases of electrohydrodynamics]. Moscow, Nauka Publ., 1979. 320 p. (In Russ.).
  7. Castellanos A., ed. Electrohydrodynamics. Wien, Springer-Verlag, 1998. 362 p.
  8. Melcher J.R., Taylor G.I. Electrohydrodynamics: A Review of the Role of Interfacial Shear Stresses, Chap. Annual Review of Fluid Mechanics, 1, Palo Alto, Calif., Annual Reviews Inc., 1969. (Russ. ed.: Melcher G., Talor G. Elektrogidrodinamika: obzor roli mezhfaznych kasatel'nych napryazheniy. Mekhanika, Sb. perevodov, 1971, no. 5, pp. 66—99).
  9. Bologa M.N., Grosu F.P., Kozhuhar I.A. Elektrokonvekciya i teploobmen [Electroconvection and heat exchange]. Kishinev, Shtiinza, 1977. 320 p. (In Russ.).
  10. Sharfarets B.P. [Application of the system of electrohydrodynamics equations for mathematical modeling of a new method of electro-acoustic transformation]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2018, vol. 28, no 4, pp. 127—134. DOI: 10.18358/np-28-4-i127134 (In Russ.).
  11. Sharfarets B.P. [System electrohydrodynamics equations applied to electroosmotic processes]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2019, vol. 29, no 1, pp. 135—142. DOI: 10.18358/np-29-1-i135142 (In Russ.).
  12. Landau L.D., Lifshiz E.M. Teoreticheskaya fizika. T. 6. Gidrodinamika [Theoretical physics. Vol. 6. Hydrodynamics]. Moscow, Nauka Publ., 1986. 736 p. (In Russ.).
  13. Squires T.M., Bazant M.Z. Induced-charge electro-osmosis. J. Fluid Mech., 2004, vol. 509, pp. 217—252. Doi: 10.1017/S0022112004009309
  14. Squires T.M., Bazant M.Z. Breaking symmetries in induced-charge electro-osmosis and electrophoresis. J. Fluid Mech., 2006, vol. 560, pp. 65—101. DOI: 10.1017/S0022112006000371
  15. Bazant M.Z., Kilic M.S., Storey B.D., Ajdari A. Towards an understanding of induced-charge electrokinetics at large appliedvoltages in concentrated solutions. Advances in Colloid and Interface Science, Elsevier, 2009, vol. 152. P. 48—88. DOI: 10.1016/j.cis.2009.10.001
  16. Barany S. Electrophoresis in strong electric fields. Advances in Colloid and Interface Science, Elsevier, 2009, vol. 147-148, pp. 36—43. DOI: 10.1016/j.cis.2008.10.006
  17. Mishchuk N.A. Concentration polarization of interface and non-linear electrokinetic phenomena. Advances in Colloid and Interface Science, Elsevier, 2010, vol. 160, pp. 16—39. DOI: 10.1016/j.cis.2010.07.001
  18. Hunter R.J. Recent developments in the electroacoustic characterization of colloidal suspensions and emulsions. Review. Colloids and Surfaces A, Physicochemical and Engineering Aspects, 1998, vol. 141, is. 1, pp. 37—66. DOI: 10.1016/S0927-7757(98)00202-7
  19. OBrien R.W. Electro-acoustic effects in a dilute suspension of spherical particles. J. Fluid Mech., 1988, vol. 190, pp. 71—86. DOI: 10.1017/S0022112088001211
  20. Murtcovkin V.A. [Nonlinear flows near polarized particulate matter]. Kolloidny zhurnal [Colloidal journal], 1996, vol. 58, no 3, pp. 358—367. (In Russ.).
 

A. V. Khudyakov1, I. V. Pleshakov2, Ya. A. Fofanov3, Yu. I. Kuzmin2

TRANSVERSE RELAXATION OF NUCLEAR SPIN SYSTEM
IN LITHIUM-ZINC FERRITE AT DIFFERENT EXCITATION POWERS

"Nauchnoe priborostroenie", 2020, vol. 30, no. 1, pp. 22—26.
doi: 10.18358/np-30-1-i2226
 

The paper presents the results of experiments on the study of the transverse relaxation of the magnetic moments of 57Fe nuclei when the echo signals are excited by radio frequency pulses of various powers. As a sample lithium-zinc ferrite was used. The investigation was carried out according to a standard scheme of non-steady nuclear magnetic resonance observation in magnetically ordered materials: without using an external permanent magnetic field and with a reduced pulse power compared to conventional case. Measurements were performed at room temperature. It is established that in a sufficiently wide range of capacities, the time of ransverse relaxation remains approximately constant, changing slightly only with a significant decrease in the level of excitation. It is shown that the behavior of the spin echo signal is related to the specifics of observing nuclear magnetic resonance in domain boundaries.

 The work was performed in accordance with State Assignment No. 075-00780-19-02 (theme No. 0074-2019-0007) of the Ministry of Education and Science of the Russian Federation.
 

Keywords: nuclear magnetic resonance, spin echo, transverse relaxation time, magnetic materials

Fig. 1.The geometry of the experiment [5]. 1, 2 – ferrite rings that make up a sample (are shown in cross section); 3 –  excitation coil. RF pulses, that creat variable field H inside the sample, are shown on its clamps

Fig. 2. Timing diagram of an exciting pulse sequence and echo signal. The pulse amplitudes are shown as the amplitudes of the radio frequency field H inside the coil

Fig. 3. The dependence of the amplitude of the echo signal on the value P of attenuation of radio frequency pulses. The solid line is the calculation according to the formula for Ie, the dotted line is the experiment. The arrows indicate the values of P for which relaxation time measurements were made

Fig. 4. Dependences of the normalized amplitude of the echo signal on the delay time between radio-frequency pulses at different excitation levels. Points are an experiment, solid lines are exponential functions. The inset shows the behavior of the relaxation time depending on the magnitude of the attenuation of the pulses

Author affiliations:

1Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
2Ioffe Institute, St. Petersburg, Russia
3Institute for Analytical Instrumentation of RAS, St. Petersburg, Russia

 
Contacts: Fofanov Yakov Andreevich, yakinvest@yandex.ru
Article received by the editorial office on 30.01.2020
Full text (In Russ.) >>

REFERENCES

  1. Turov E.A., Petrov M.P. Yadernyj magnitnyj rezonans v ferro- i antiferromagnetikah [Nuclear magnetic resonance in ferro- and antiferromagnets]. Moscow, Nauka Publ., 1969. 260 p. (In Russ.).
  2. Kurkin M.I., Turov E.A. YAMR v magnitouporyadochennyh veshchestvah i ego primeneniya [NMR in magnetically ordered substances and its applications]. Moscow, Nauka Publ., 1990. 244 p. (In Russ.).
  3. Petrov M.P. [Electronic and nuclear interactions]. Fizika magnitnyh dielektrikov [Physics of magnetic dielectrics], Leningrad, Nauka Publ., 1974,  177—283 p. (In Russ.).
  4. Nesterov M.M., Pleshakov I.V., Fofanov Ya.A. [Information-physical properties of nonsteady state responses in the systems of pulsed signal processing]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2006, vol. 16, no 2, pp. 3—21. (In Russ.). URL: http://iairas.ru/en/mag/2006/abst2.php#abst1
  5. Pleshakov I.V., Goloshchapov S.I., Kuzmin Yu.I., Paugurt A.P., Fofanov Ya.A., Dudkin V.I., Kloekhta N.S., Yavtushenko A.I. [Analysis of the spin echo behavior in a magnetized ferrite]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2012, vol. 22, no 3, pp. 61—68. (In Russ.). URL:
  6. Kuzmin V.S., Kolesenko V.M., Borbotko E.P. [Dual pulse nuclear echo signal in magnetically ordered media]. Fizika tverdogo tela [Physics of a solid body], 2008, vol. 50, no 11, pp. 2043—2049. DOI: 10.1134/S1063783408110218 (In Russ.).
  7. Pleshakov I.V., Popov P.S., Kuzmin Yu.I., Dudkin V.I. [Study of pinning of domain boundaries of magnetically ordered material by nuclear magnetic resonance method]. Pisma v ZHTF [Applied Physics Letters], 2016, vol. 42, no 2, pp. 9—15. DOI: 10.1134/S1063785016010296 (In Russ.).
  8. Pleshakov I.V., Popov P.S., Kuzmin Yu.I., Dudkin V.I. [Effect of multiplexing when spin echo processor is exposed to magnetic field pulses]. Izvestiya VUZov. Radiofizika [News of Higher Education Institutions. Radiophysics], 2016, vol. 59, no 2, pp. 180—188. DOI: 10.1007/s11141-016-9686-6 (In Russ.).
  9. Pleshakov I.V., Popov P.S., Dudkin V.I., Kuzmin Yu.I. [Pin Echo Processor in Function Electronics Devices - Multi-Pulse Sequence Response Control]. Radiotekhnika i elektronika [Radio technician and electronic engineer], 2017, vol. 62, no 6, pp. 561—565. DOI: 10.1134/S1064226917060171 (In Russ.).
 

E. G. Silkis 1, A. S. Stankevich1, V. N. Krasheninnikov1, D. V. Novikov2

LASER DIODE WAVELENGTH METER
IN THE RANGE OF 330—1080 NM

"Nauchnoe priborostroenie", 2020, vol. 30, no. 1, pp. 27—38
doi: 10.18358/np-30-1-i2738
 

An inexpensive laser diode (LD) wavelength meter has been developed in the region of 330-1080 nm. The meter includes a MC-300 mini-spectrometer and hollow cathode lamps. The spectrometer simultaneously records the radiation of a laser diode and hollow cathode lamps. Using the normal lines of the first and second diffraction orders near the indicated point of the spectral range, the spectral scale is calibrated with the greatest possible accuracy. The accuracy of measuring wavelength of laser diode depends on the number of normal lines near the line of radiation of the LD, it can be 0.001 nm or less. The spectrometer registration system program searches for the studied line in a given spectral range, determines the center of gravity of the contour of this line and its half-width, displays these parameters on the information board.
 

Keywords: hollow cathode lamp, linear CCD recording system, mini-spectrograph, spectral line wavelength, laser diode

Fig. 1. Block diagram of the "Laser diode wavelength meter". 1 – laser diode, 2 – swivel mirror, 3 – a lamp with a hollow cathode of T-2 type, 4 – a focusing lens, 5 – a translucent mirror, 6 – a mini-spectrograph of MC-300 type, 7 – the entrance slit of a mini-spectrograph, 8 – a linear CCD with registration system MOPC-1, 9 – fiber-optic lightguide

Fig. 2. The region of the total emission spectrum of the Fe-Ne lamp with a hollow cathode (HCL) and the GH0781JA2C laser diode in the wavelength range of 777—786 nm. Lower scale with marks 1—9 indicates reference lines

Fig. 3. Measurement of the wavelength of the laser diode GH0781JA2C using a Fe-Ne HCL. a – in the spectral point of 786.7444 nm, – in the spectral point of 783.0826 nm

Fig. 4. Measurement of the wavelength of the laser diode GH0781JA2C using a Cr-He HCL in the spectral point 779.7187 nm

Fig. 5. The measurement of the wavelength of the ADL-66801DL diode in the region of 636—674 nm of the MC-300 spectrometer using the Fe-Ne HCL spectrum. The measurement results are on the display

Fig. 6. The measurement of the laser diode Cobolt Samba wavelength. The measurement results are on the display; a – the spectral region of the 529—540 nm of MC-300 spectrometer, Fe-Ne HCL; – the spectral region of 530—542 nm of MC-300spectrometer, Cu-Ne HCL

Fig. 7. The total emission spectrum of a He-Ne laser (of 66 type) and Fe-Ne HCL in the range of 612—651 nm

Fig. 8. The measurement of the wavelength of a He-Ne laser using a Fe-Ne HCL. a – spectrum of Fe-Ne HCL in the range of 630—636 nm, the display shows the measurement results of the Ne20 line (Ne 632.8164) and the shift of the control line Ne 17 (Ne 633.089 nm); – the total spectrum of the Fe-Ne HCL and the He-Ne laser in the region of 630—636 nm, the measured value of the 66 wavelength is on the display

Application:

Fig. 1. Spectrum Cr-Ne HCL in the region of 770—790 nm

Fig. 2. Spectra of various sources in the region of 770—805 nm. a – spectrum of the Cu-Ne HCL; – spectrum of an Ar-Ne lamp; – spectrum of a hydrogen lamp BC-25

Author affiliations:

1Institute of spectroscopy of RAS, Troitsk, Russia
2MORS ltd, Troitsk, Russia

 
Contacts: Silkis Emmanuil Gershovitch, esilkis@mail.ru
Article received by the editorial office on 24.10.2019
Full text (In Russ.) >>

REFERENCES

  1. Vysokotochnyj shirokodiapazonnyj izmeritel dliny volny [High-precision wide-band wavelength meter]. Solar LS, Inc. URL: https://solarlaser.com/devices/high-resolution-wide-range-wavelength-meter-shr/ . (In Russ.).
  2. Silkis E.G., Stankevich A.S., Krasheninnikov V.N. [Spectrum recording systems, minispectrometers and emission spectrometers]. Problemy spektroskopii i spektrometrii. Vuzovsko-akademicheskij sb. nauchn. trudov [Spectroscopy and spectrometry problems]. Ekaterinburg, UrFU Publ., 2014, is. 33, 43—67 p. (In Russ.).
  3. Zaydel A.N., Ostrovskaya G.V., Ostrovskij Yu.I. Tekhnika i praktika spektroskopii [Spectroscopy Technique and Practice]. Moscow, Nauka Publ., 1976. 392 p. (In Russ.).
  4. Silkis E.G., Stankevich A.S. [Accuracy of wavelength determination in spectrographs using a radiator on a hollow cathode lamp]. 19-ya nauchno-tekhnicheskaya konferenciya "Fotometriya i ee metrologicheskoe obespechenie". Tezisy dokladov [19th Scientific and Technical Conference "Photometry and its Metrological Support." Theses of reports]. 2013. 118—122 pp. (In Russ.).
  5. Silkis E.G., Stankevich A.S., Shonenkov A.V. [Atlas spectrum of gas discharge DVS-25 lamp in the range of 320—1100 nm]. Analitika i kontrol [Analytics and Control], 2017, vol. 21, no. 2, pp. 103—115.
  6. Atomic spectra database lines. National Institute of Standards and Technology (NIST). URL:
  7. Crosswhite H.M. The hydrogen molecule wavelength tables of Gerhard Heinrich Dieke. Wiley Interscience A, Division of John Wiley & Sons, Inc, 1972. 325 p.
  8. Karlov N.V. Lekcii po kvantovoj elektronike [Lectures on quantum electronics]. Moscow, Nauka Publ., 1988. 366 p. (In Russ.).
 

A. S. Gladchuk1,3, E. G. Batotsyrenova1, E. P. Podolskaya1,2

OPTIMIZATION OF THE METHOD FOR ANALYSIS OF FREE
FATTY ACIDS USING THE COMBINATION OF MALDI MASS SPECTROMETRY AND LANGMUIR MONOLAYERS TECHNOLOGY

"Nauchnoe priborostroenie", 2020, vol. 30, no. 1, pp. 39—49.
doi: 10.18358/np-30-1-i3949
 

Optimization of the method for analysis of free fatty acids (FFAs) in biological samples by MALDI-MS with the use of Langmuir technology at the stage of sample application on the target is proposed. Removal of the aqueous-organic drop from the target spot and automatic spectra registration during mass spectrometric analysis are proposed for the previously developed method for FFAs profiling in biological samples, that includes the following stages: application of an aqueous drop, containing barium salt and DHB matrix, to the center of a MALDI target well; double application of a hexane extract from a biological sample, containing FFAs; destruction of a monolayer dried on the target well with 90 % aq. acetonitrile and MALDI-MS analysis. The optimized approach was tested in a toxicological experiment and revealed significant (p < 0.05) changes in the relative concentrations of a number of FFAs in the blood plasma of the control and experimental groups of rats.
 

Keywords: free fatty acids; barium monocarboxylates; Langmuir film technology; MALDI mass spectrometry

Fig. 1. Samples of MALDI mass spectra. a – mass spectrum obtained by laser irradiation of a spot formed upon evaporation of 90 % aqueous acetonitrile deposited on monolayers formed on the target well; – mass spectrum of the extract from bacteria Rhizobium leguminosarum KVI3; – mass spectrum of Strongylocentrotus droebachiensis caviar extract

Fig. 2. Demonstration of the process of removing a droplet of a solution of 90% aqueous acetonitrile outside the target well. a – a drop of a solution of 90% aqueous acetonitrile is deposited on monolayers formed on the target well; – an operator, using the tip of the dispenser, penetrates the droplet and moves it to the border of the target well; – a droplet is brought to the border of the target well; – after the complete evaporation of the droplet, a darkened area appears in its place

Table 1. The values of the intraday convergence of the results obtained for the extract from bacteria Rhizobium leguminosarum KVI3 under two different modes of recording spectra. The intensity of the studied signals had been normalized to the intensity of the peak corresponding to barium monooleate m/z 419.16 (SD – standard deviation, RSD – relative standard deviation)

Fig. 3. Tandem mass spectra. a – m/z 391.123 as a part of the extract from bacteria Rhizobium leguminosarum KVI3, corresponding to the palmitoleic acid ion [M—H+Ba]+; – m/z 443.155 as a part of the extract from Strongylocentrotus droebachiensis caviar, corresponding to the dihomogammalinolenic acid ion [M — H + Ba]+

Table 2. The values of the intraday convergence of the results obtained for the extract from Strongylocentrotus droebachiensis caviar. The intensity of the studied signals had been normalized to the intensity of the peak corresponding to barium monooleate m/z 419.16 (SD – standard deviation, RSD – relative standard deviation)

Fig. 4. Results of statistical data processing (protocol of the Progenesis MALDI 1.2 program) for the control (Control) and experimental (Hg) groups of rats. a – myristic acid, – pentadecanoic acid

Fig. 5. Results of statistical data processing (protocol of the Progenesis MALDI 1.2 program) for the control (Control) and experimental (Hg) groups rats. a – linoleic acid, – arachidonic acid

Author affiliations:

1Institute of Toxicology, Federal Medical-Biological Agency of Russia, Saint Petersburg, Russia
2Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia
3Saint Petersburg State University, Saint Petersburg, Russia

 
Contacts: Gladchuk Aleksei Sergeevich, aleglad24@gmail.com
Article received by the editorial office on 23.01.2020
Full text (In Russ.) >>

REFERENCES

  1. Calder P.C. Functional roles of fatty acids and their effects on human health. Journal of parenteral and enteral nutrition, 2015, vol. 49, pp. 18S—32S. DOI: 10.1177/0148607115595980
  2. De Carvalho C., Caramujo M.J. The various roles of fatty acids. Molecules, 2018, vol. 23, no. 10, E2583. DOI: 10.3390/molecules23102583
  3. Ferreri C., Mais A., Sansone A., Giacometti G., Larocca A.V., Menounou G. et al. Fatty acids in membranes as homeostatic, metabolic and nutritional biomarkers: recent advancements in analytics and diagnostics. Diagnostics, 2017, vol. 7, no. 11, E1. DOI: 10.3390/diagnostics7010001
  4. Itoh Y., Kawamata Y., Harada M., Kobayashi M., Fujii R., Fukusumi S. et al. Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40. Nature, 2003, vol. 422, no. 6928, pp.173—176.
  5. Boden G. Obesity and free fatty acids. Endocrinology and metabolism clinics of North America, 2008, vol. 37, no. 3, pp. 635—646. DOI: 10.1016/j.ecl.2008.06.007
  6. Hirasawa A., Tsumaya K., Awaji T., Katsuma S., Adachi T., Yamada M. et al. Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nature Medicine, 2005, vol. 11, no. 1, pp. 90—94. DOI: 10.1038/nm1168
  7. Novgorodtseva T.P., Karaman Y.K., Zhukova N.V., Lobanova E.G., Antonyuk M. V., Kantur T.A. Composition of fatty acids in plasma and erythrocytes and eicosanoids level in patients with metabolic syndrome. Lipids in health and disease, 2011, vol. 10, E82. DOI: 10.1186/1476-511X-10-82.
  8. Akoto L., Vreuls R.J.J., Irth H., Pel R., Stellaard F. Fatty acid profiling of raw human plasma and whole blood using direct thermal desorption combined with gas chromatography-massspectrometry. Journal of Chro matography A, 2008, vol. 1186, no. 1-2, pp. 365—371. DOI: 10.1016/j.chroma.2007.08.080
  9. Johnson D.W. Contemporary clinical usage of LC/MS: Analysis of biologically important carboxylic acids. Clinical biochemistry, 2005, vol. 38, no. 4, pp. 351—361. DOI: 10.1016/j.clinbiochem.2005.01.007   
  10. Stickland F.G.W. The formation of monomolecular layers by spreading a copper stearate solution. Journal of colloid and interface science, 1972, vol. 40, no. 2, pp. 142—153. DOI: 10.1016/0021-9797(72)90003-3
  11. Rozhkova E.A., Krasnov I.A., Sukhodolov N.G., Ivanov N.S., Yanklovich A.I., Podolskaya E.P., Krasnov N.V. [Surface behavior of nanostructures (Langmuir–Blodgett films), containing Fe(III) ions and their composition determination mass-spectrometry methods]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2008, vol. 18, no. 4, pp. 54—60. (In Russ.). URL: http://iairas.ru/en/mag/2008/abst4.php#abst9
  12. Podolskaya E.P., Serebryakova M.V., Krasnov K.A., Grachev S.A., Gzgzyan A.M., Sukhodolov N.G. Application of Langmuir–Blodgett technology for the analysis of saturated fatty acids using the MALDI-TOF mass spectrometry. Mendeleev communications, 2018, vol. 28, no. 3, pp. 337—339. DOI: 10.1016/j.mencom.2018.05.037
  13. Podolskaya E.P., Gladchuk A.S., Keltsieva O.A., Dubakova P.S., Silyavka E.S., Lukasheva E. et al. Thin film chemical deposition techniques as a tool for fingerprinting of free fatty acids by MALDI-TOF-MS. Analytical Chemistry, 2019, vol. 91, no. 2, pp. 1636−1643. DOI: 10.1021/acs.analchem.8b05296
  14. Schram J.B., Kobelt J.N., Dethier M.N., Galloway A.W.E. Trophic transfer of macroalgal fatty acids in two urchin species: digestion, egestion, and tissue building. Frontiers in ecologyand evolution, 2018, vol. 6, p. 83.
  15. Kelly J.R., Scheibling R.E., Iverson S.J., Gagnon P. Fatty acid profiles in the gonads of the sea urchin Strongylocentrotus droebachiensis on natural algal diets. Marine Ecology Progress Series, 2008, vol. 373, pp. 1—9. DOI: 10.3354/meps07746
  16. Liyana-Pathirana C., Shahidi F., Whittick A., Hooper R. Lipid and lipid soluble components of gonads of green sea urchin (Strongylocentrotus droebachiensis). Journal of food lipids, 2002, vol. 9, no. 2, pp. 105—126. DOI: 10.1111/j.1745-4522.2002.tb00213.x
  17. González-Durán E., Castell J.D., Robinson S.M.C., Blair T.J. Effects of dietary lipids on the fatty acid composition and lipid metabolism of the green sea urchin Strongylocentrotus droebachiensis. Aquaculture, 2008, vol. 276, no. 1-4, pp. 120—129. Doi: 10.1016/j.aquaculture.2008.01.010
  18. Parsons H.M., Ekman D.R., Collette T.W., Viant M.R. Spectral relative standard deviation: a practical benchmark in metabolomics. Analyst, 2009, vol. 134, pp. 478—485. DOI: 10.1039/b808986h
 

I. A. Gromov1, D. O. Kuleshov1, O. A. Belyaeva2, N. R. Gall1,3

SEMI-AUTOMATIC SAMPLE PREPARATION DEVICE FOR ANALYZING BERYLLIUM TRACES IN THE AIR OF A WORKING ROOM USING ERIAD MASS SPECTROMETRY (ELECTROSPRAY)

"Nauchnoe priborostroenie", 2020, vol. 30, no. 1, pp. 50—54.
doi: 10.18358/np-30-1-i5054
 

The article is devoted to the description of the developed device for semi-automatic sample preparation for analyzing traces of beryllium in the air of the working room using ERIAD mass spectrometry (electrospray). The principle of its operation is based on the adsorption of dust containing beryllium by charged droplets of solvent formed during pneumatic atomization in an electric field, and the subsequent collection of a sample from an irrigated filter, its dilution with a protonating solution and analysis in a mass spectrometer. The device allows to conduct rapid analysis with a sample preparation within less than 20 minutes. During the process of sample preparation manual operations are minimized with the exception of the final dilution of the sample for electrospray.
 

Keywords: beryllium, sample preparation, mass spectrometry ERIAD

Fig. The scheme of the sample preparation device for semi-automatic analysis of beryllium traces in the air of the working location using ERIAD (electrospray) mass spectrometry. 1 – pneumatic sprayer; 2 – inlet spigot; 3 – microreactor; 4 – compressor JAS-1208; 5 – a beaker up to 100 ml; 6 – adjustable high-voltage power supply unit Sh-0105 up to 5 kV; 7 – metal mesh with cells 5 × 5 mm; 8 – metal funnel; 9 – charged drops; 10 – a metal tube with a diameter of 2 mm; 11 – peristaltic pump bt50s; 12 – adjustable high-voltage power supply unit Sh-0105 to —30 kV; 13 – 25 ml beaker; 14, 14' – digital multimeters; 15, 15' – electric ground; L1 – the distance between the nozzle of the pneumatic sprayer and the metal mesh; L2 – the distance between the metal mesh and the funnel. Large black arrows show the air flow with dust from the working location; black dotted arrows – air flow from the compressor; gray arrows indicate solvent flow; gray dashed arrows – flow of the collected sample

Author affiliations:

1Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia
2TEKHNAN LLC, Saint Petersburg, Russia
3Ioffe Physical Technical Institute of RAS, Saint Petersburg, Russia

 
Contacts: Gromov Ivan Alexandrovich, gromov-24-2@yandex.ru
Article received by the editorial office on 17.01.2020
Full text (In Russ.) >>

REFERENCES

  1. Silina G.F., Zarembo Yu.I., Bertina L.E. Berilliy, himicheskaya tekhnologiya i metallurgiya [Beryllium, Chemical Technology and Metallurgy]. Moscow, Atomizdat Publ., 1960. 120 p. (In Russ.).
  2. Cherniy A.N., Druzhinin V.N., Ratobylskiy G.V., Shelina N.V., Shutihina I.V., Malov V.A. Rentgenovskaya terapevticheskaya trubka. Patent for useful model RU 188670. [Patent for Useful Model X-ray Therapy Tube]. Prioritet 19.04.2019. (In Russ.).
  3. Lyatun I.I., Ershov P.A., Kozlova E.V., et al. Ustrojstvo dlya podavleniya spekl-struktury rentgenovskih izobrazhenij na osnove vysokodispersnogo berilliya. Patent for useful model RU 189616. [Patent for useful model Device for suppression of speckle structure of X-ray images based on highly dispersed beryllium]. Prioritet 29.05.2019. (In Russ.).
  4. Novoselova A.V., Bacanova L.R. Analiticheskaya himiya berilliya [Analytical chemistry of beryllium]. Moscow, Nauka Publ., 1966. 226 p. (In Russ.).
  5. Dyachenko A.A., Blashenkov N.M., Samsonova N.S., Gall L.N., Semenov A.A., Lizunov A.V., Gall N.R. [Mass-Spectrometric Observation of C+ Ions during Electrospray with In-Source Atomization]. PZHTF [ Technical Physics Letters ], 2019, vol. 45, no 18, pp. 52—54. DOI: 10.21883/PJTF.2019.18.48240.17899
  6. Gall L.N., Bazenov A.N., Shkurov V.A., Babain V.A., Gall N.R. [ERIAD (ESI) mass spectrometry as a new method for isotopic and elemental analysis]. Mass-spektrometriya [Mass spectrometry], 2007, vol. 4, no 1, pp. 11—18. (In Russ.).
  7. Bazenov A.N., Fomina N.S., Gall N.R., Gall L.N., Semenov A.A., Kudryavcev V.N., Lizunov A.V., Lesina I.G. [Analytical capabilities for detection of trace amounts of beryllium by mass spectrometry ERIAD (ESI)]. Atomnaya energiya [Atomic energy], 2015, vol. 118, no 1, pp. 34—37. DOI: 10.1007/s10512-015-9954-0 (In Russ.).
 

A. V. Protasov1, R. A. Bublyaev2, O. A. Mirgorodskaya1

QUANTITATIVE MASS SPECTROMETRY IN DIAGNOSTICS
OF INFLUENZA AND CONTROL OF ACTION OF THE MEDICINAL
PRODUCT TRIAZAVIRINE

"Nauchnoe priborostroenie", 2020, vol. 30, no. 1, pp. 55—61.
doi: 10.18358/np-30-1-i5561
 

To improve the methods for diagnosing and treating influenza, we performed quantitative mass spectrometric studies of the activity of two main carboxypeptidases – angiotensin-converting enzyme and carboxypeptidase N. The comparison of activity levels of these peptidases was carried out for mice both healthy and influenza A/Aichi/2/68 (H3N2) virus infected, as well as for treated with the experimental triazavirin anti-influenza drug. An analysis similar to the fulfilled in this work can be successfully used in a comparative assessment of the effectiveness of other anti-influenza drugs, as well as to understand the direction of their effect on the infected organism.
 

Keywords: angiotensin I, angiotensin converting enzyme, carboxypeptidase N, bradykinin, quantitative mass spectrometry

Fig. 1. MALDI-MS of angiotensin I (m/z = 1296.8) after 40 min of peptidase hydrolysis in mouse lavage at 37C in the presence of the standard (m/z = 1052.7) to angiotensin II (m/z = 1046.6)

Fig. 2. Fragments of the mass spectra for angiotensin II and its standard in biological media. a – in serums, – in bronchial flushes

Fig. 3. The activity of angiotensin-transforming enzyme in mice serums (a) and bronchial flushes (). The activity of angiotensin-converting enzyme in healthy mice was taken as 100%

Fig. 4. MALDI-MS of bradykinin after 15 min of peptidase hydrolysis in blood serum at 37 C

Fig. 5. Fragments of mass spectra for bradykinin and its standard in biological media. a – in serum, – in bronchial flushes

Fig. 6. The activity of peptidases in serum (a) and bronchial flushes (). Peptidases activity in healthy mice was taken as 100%

Author affiliations:

1Smorodintsev Research Institute of Influenza of Ministry of Health of the Russian Federation,
Saint Petersburg, Russia
2Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia

 
Contacts: Bublyaev Rostislav Anatol'evich, bub-slava@yandex.ru
Article received by the editorial office on 12.02.2020
Full text (In Russ.) >>

REFERENCES

  1. Pellacani A., Brunner H.R, Nussberger J. Plasma kinins increase after angiotensin-converting enzyme inhibition in human subjects. Clin Sci., 1994, vol. 87, no. 5, pp. 567—574. DOI: 10.1042/cs0870567
  2. Chandrasoma P., Taylor C.R. Concise Pathology. 3rd ed. Appleton & Lange, 1997. 990 p.
  3. Gureeva T.A., Kugaevskaya E.V., Pozdnev V.F., Prozorovskij V.N., Eliseeva Yu.E., Solov'eva N.I. [The study of substrate specificity of a new peptide substrate of endothelin-converting enzyme]. Biomedicinskaya himiya [Biomedical chemistry], 2007, vol. 53, no. 2, pp. 172—180. DOI: 10.1134/S1990750807030055
  4. Bublyaev R.A., Koz'min Yu.P., Krasnov N.V., Manojlov A.V., Mirgorodskaya O.A., Novikov A.V. Sposob polucheniya izotopno-modifizirovannych peptidov i belkov [A method of producing isotopically modified peptides and proteins]. Patent of RF 2399627. 2008. (In Russ.).
  5. Koz'min Yu.P., Manojlov A.V., Serebryakova M.V., Mirgorodskaya O.A. [Direct introduction of 18O isotopes into peptides and proteins for quantitative analysis by mass spectrometry]. Bioorganicheskaya himiya [Bioorganic chemistry], 2011, vol. 37, no. 6, pp. 793—806. (In Russ.).
 

A. I. Zhernovoy

DETERMINATION OF MAGNETIZATION INTENSITY
OF MAGNETIC LIQUID BY DIFFERENCE
OF FREQUENCIES OF NUCLEAR MAGNETIC
RESONANCE OF PROTONS AT TWO
ORIENTATIONS OF A CYLINDER SENSOR

"Nauchnoe priborostroenie", 2020, vol. 30, no. 1, pp. 62—67.
doi: 10.18358/np-30-1-i6267
 

A method is proposed for determining the magnetization intensity of magnetic fluid using nuclear magnetic resonance, in which to reduce the volume of the sample instead of two cylindrical sensors is used one sensor at two orientations in regard to the external magnetic field. Measurement techniques are described to eliminate errors caused by the inhomogeneity of the external magnetic field, the influence of the constant of an effective field. The use of one cylinder reduces the amount of magnetic fluid sample required to measure magnetization.
 

Keywords: magnetic fluid, magnetization intensity , nuclear magnetic resonance, two orientations of a cylindrical sensor

Fig. 1. Sensor layout. The orientation of the cylindrical sensor in the external magnetic field H0 formed by NS may vary according to the measurement procedure. The layout is shown: the axis of the cylindrical sensor is perpendicular to the tension H0, the axis of the measuring channel is parallel to H0

Fig. 2. Installation setup for measuring frequencies f1 and f2. 1 – tube connected to a water supply; 2 – a cuvette ; 3 – polarizing magnet; 4 – measuring channel; 5 – cylindrical sensor; 6 – magnet; 7 – coil recording the NMR signal; 8 – NMR magnet; 9 – magnetic induction meter 1-1; 10 – an oscilloscope; 11 – RF field coils; 12 – RF field generator; 13 – frequency counter

Author affiliations:

The Saint Petersburg State Institute of Technology (Technical University)

 
Contacts: Zhernovoy Aleksandr Ivanovich, azhspb@rambler.ru
Article received by the editorial office on 04.02.2020
Full text (In Russ.) >>

REFERENCES

  1. Berkovskij B.M., Medvedev V.F., Krakov M.S. Magnitnye zhidkosti [Magnetic fluids]. Moscow, Himiya Publ., 1989. 289 p. (In Russ.).
  2. Blyum E.Ya., Majorov M.M., Cerber A.B. Magnitnye zhidkosti [Magnetic fluids]. Riga, Zinantne, 1989. 386 p.
  3. Arnold R.R. Raschet i proektirovanie magnitnyh sistem s postoyannymi magnitami [Calculation and design of permanent magnet systems]. Moscow, Energiya Publ., 1969. 184 p. (In Russ.).
  4. Zhernovoy A.I., Naumov V.N., Rudakov Yu.R. [Measurement of magnetization and effective field constant of magnetic liquid by NMR method]. Nauchnoe priborostroenie [Scientific instrumentation], 2008, vol. 18, no. 2, pp. 33—38. (In Russ.). URL: http://iairas.ru/en/mag/2008/abst2.php#abst4
  5. Zhernovoy A.I., Dyachenko S.V. [A measurement of a magnetic liquid magnetization by NMR method with one measuring bobbin]. Nauchnoe priborostroenie [Scientific
    instrumentation], 2019, vol. 29, no. 1, pp. 111—115. (In Russ.). DOI: 10.18358/np-29-1-i111115
  6. Zhernovoy A.I., Diachenko S.V. [Observation of the impact of the surface magnetic charges on the magnetic induction inside and outside a sample of the magnetic fluid, placed in an external magnetic field]. Nauchnoe priborostroenie [Scientific instrumentation], 2017, vol. 27, no. 2, pp. 57—60. DOI: 10.18358/np-27-2-i5760 (In Russ.).
  7. Zhernovoy A.I., Naumov V.N., Rudakov Yu.R. [Obtaining a magnetization curve of dispersion of paramagnetic nanoparticles by finding magnetization and magnetizing field with the use of NMR]. Nauchnoe priborostroenie [Scientific instrumentation], 2009, vol. 19, no. 3, pp. 57—61. URL: http://iairas.ru/en/mag/2009/abst3.php#abst8
  8. Zhernovoy A.I., Naumov V.N., Rudakov Yu.R. [Study of changes in the internal magnetite field during the formation of aggregates in the dispersion of magnetite nanoparticles by NMR]. Nauchnoe priborostroenie [Scientific instrumentation], 2009, vol. 19, no. 1, pp. 13—16. URL: http://iairas.ru/en/mag/2009/abst1.php#abst3
 

A. P. Shcherbakov

SIMULATION OF SCATTERING
ON THE SUPERPOSITION OF TWO POTENTIALS

"Nauchnoe priborostroenie", 2020, vol. 30, no. 1, pp. 68—73.
doi: 10.18358/np-30-1-i6873
 

Simple expressions are obtained for cross section of classical scattering by combination of repulsive hard sphere potential of an absolutely elastic sphere and attractive long-range potential of the form V(r) = —γ/rn, (n > 2). These expressions are given in terms of analytical functions of the energy of relative motion in two regions of relative collision energy variation. The developed procedure of scattering simulation is well combined with discretization of equation of charged particle motion in electric field. The proper algorithm is described in the framework of Monte Carlo based simulation. The extension of developed model to the case of anisotropic core repulsive potential is suggested.
 

Keywords: collision cross section, mobility, diffusion, polarization potential, hard sphere potential, electrogasdynamic field

Author affiliations:

Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia

 
Contacts: Scherbakov Anatoliy Petrovich, anpshch@yandex.ru
Article received by the editorial office on 19.12.2019
Full text (In Russ.) >>

REFERENCES

  1. Gabelica V., Marklund E. Fundamentals of ion mobility spectrometry. Current opinion in chemical biology, 2018, vol. 42, pp. 51—59. DOI: 10.1016/j.cbpa.2017.10.022
  2. Dixit S.M., Polasky D.A., Ruotolo B.T. Collision induced unfolding of isolated proteins in the gas phase: past, present, and future. Current opinion in chemical biology, 2018, vol. 42, pp. 93—100.
  3. Marklund E.G., Degiacomi M.T., Robinson C.V., Baldwin A.J., Benesch J.L. Collision cross sections for structural proteomics. Structure, 2015, vol. 23, pp. 791—799. DOI: 10.1016/j.str.2015.02.010
  4. Lei T., McLean J.R., McLean J.A., Russell D.H. A collision cross-section database of singly-charged peptide ion. J. Am. Soc. Mass Spectrom, 2007, vol. 18, pp. 1232—1238. DOI: 10.1016/j.jasms.2007.04.003
  5. Young M.N., Bleiholder C. Molecular structures and momentum transfer cross sections: the influence of the analyte charge distribution. J. Am. Soc. Mass Spectrom, 2017, vol. 28, pp. 619-627. DOI: 10.1007/s13361-017-1605-3
  6. Bleiholder C., Wyttenbach T., Bowers M.T. A novel projection approximation algorithm for the fast and accurate computation of molecular collision cross sections (I). Method. International journal of mass spectrometry, 2011, vol. 308, is. 1, pp. 1—10. DOI: 10.1016/j.ijms.2011.06.014
  7. Bleiholder C., Contreras S., Do T.D., Bowers M.T. A novel projection approximation algorithm for the fast and accurate computation of molecular collision cross sections (II). Model parameterization and definition of empirical shape factors for proteins. International journal of mass spectrometry, 2013, vol. 345—347, pp. 89—96. DOI: 10.1016/j.ijms.2012.08.027
  8. Anderson S.E., Bleiholder C., Brocker E.R., Stang P.J., Bowers M.T. A novel projection approximation algorithm for the fast and accurate computation of molecular collision cross sections (III): Application to supramolecular coordination-driven assemblies with complex shapes. International journal of mass spectrometry, 2012, vol. 330—332, pp. 78—84. DOI: 10.1016/j.ijms.2012.08.024
  9. Bleiholder C., Contreras S., Bowers M.T. A novel projection approximation algorithm for the fast and accurate computation of molecular collision cross sections (IV). Application to polypeptides. International journal of mass spectrometry, 2013, vol. 354—355, pp. 275—280. DOI: 10.1016/j.ijms.2013.06.011
  10. Bleiholder C. A local collision probability approximation for predicting momentum transfer cross sections. The analyst, 2015, vol. 140, is. 20, pp. 6804—6813. DOI: 10.1039/c5an00712g
  11. Mesleh M.F., Hunter J.M., Shvartsburg A.A., Schatz G.C., Jarrold M.F. Structural information from ion mobility measurements: effects of the long-range potential. J. Phys. Chem, 1996, vol. 100, is. 40, pp. 16082—16086. DOI: 10.1021/jp961623v
  12. Alexeev Y., Fedorov D.G., Shvartsburg A.A. Effective ion mobility calculations for macromolecules by scattering on electron clouds. J. Phys. Chem A, 2014, vol. 118, is. 34, pp. 6763—6772. DOI: 10.1021/jp505012c
  13. Bavrina O. O., Shcherbakov A. P. [About some estimations for criterion of onset of molecular ions fragmentation in electrogasdynamic fields]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2013, vol. 23, no. 2, pp. 67—72. (In Russ.) URL: http://iairas.ru/en/mag/2013/full2/Art8.pdf
  14. Scherbakov A. P. [Simulation of ion-molecule collisions in inhomogeneous time-depended electrogasdynamic fields]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2016, vol. 26, no. 4, pp. 64—76. (In Russ.)
  15. Landau L.D., Lifshitc E.M. Mekhanika [Mechanics]. Moscow, Nauka, 1973. 208 p. (In Russ.)
  16. Shcherbakov A. P. [Computer simulation of atom scattering as applied to problems of scientific instrumentation]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2003, vol. 13, no. 1, pp. 14—23. (In Russ.) URL: http://iairas.ru/en/mag/2003/full1/Art2.pdf
  17. McDaniel E.W. Collision phenomena in ionized gases . Wiley, 1964. 783 p. (Russ. ed.: Mak-Daniel' I. Processy stolknovenij v ionizovannyh gazah. Moscow, Mir Publ., 1967. 832 p.)
  18. Landau L.D., Lifshitc E.M. Teoreticheskaya fizika. T. III. Kvantovaya mekhanika [Theoretical physics. T. III. Quantum mechanics]. Moscow, Nauka Publ., 1974. 752 p. (In Russ.)
 

I. V. Kurnin

OPTIMIZATION OF THE OPERATION MODE
OF THE THREE-GRID ION GATE
OF THE ION-MOBILITY SPECTROMETER

"Nauchnoe priborostroenie", 2020, vol. 30, no. 1, pp. 74—79.
doi: 10.18358/np-30-1-i7479
 

The performance of the three-grid gate and its operating modes was being considered in terms of obtaining a short ion pulse with the maximum possible amplitude to increase the resolution of the ion-mobility spectrometer. As a result of the simulation, it was shown that there is an optimal shutter opening duration for the conditions under consideration, which corresponds to a narrow output ion peak of maximum amplitude. A smaller distance between the wires of the grids causes a narrower ion peak at the gate exit. It is shown that there exists an optimal value of the pushing out potential for the conditions under consideration. The width of the ion pulse decreases with a decrease in the potential difference between the second and third grids, while the height of the narrow peak will be maximum if the ion drift time between the grids 2—3 is approximately equal to the duration of the shutter opening.
 

Keywords: ion gate, resolving power, ion-mobility spectrometer

Fig. 1. Three-grid ion gate: geometry and distribution of potentials over the gate grids in closed and open modes. 1, 2, 3 — gate grids

Fig. 2. Dependence of total losses of ions (unmarked lines) and separately on the second (2) and third (3) grids on the magnitude of the ejecting potential (pulse additive on the first grid) dVgr1 +200, 500, 1000 and 1500 V for gates with dL distances between grid filaments of 0.2 and 0.4 mm

Fig. 3. Dependence of ion loss for dL = 0.4 mm on the potential value on the second grid with the gate opening unlimited in time (potential on the first one is 1325 V). Unmarked curve is total loss; (2), (3) – losses on grids 2 and 3

Fig. 4. Timing profiles of ion pulses recorded beyond the plane of the third grid depending on the duration of the gate opening

Fig. 5. Timing profiles of ion pulses recorded behind the plane of the third grid for gates with a distance between the filaments of the grids of 0.2 and 0.4 mm and with a gate opening duration of 30 μs. Pulses of ions with mobility coefficients of 1.5 and 3 cm2/(Vs) are given

Fig. 6. Timing profiles of ion pulses at the gate output for different ejection potentials values

Fig. 7. Timing profiles of ion pulses at the gate output for different values of the potential of the second grid. Vgr1 = 1325 V, dt = 40 μs, dL = 0.4 mm, K0= 3 cm2/(Vs)

Author affiliations:

Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia

 
Contacts: Kurnin Igor' Vasil'evich, igor.kurnin@gmail.com
Article received by the editorial office on 21.01.2020
Full text (In Russ.) >>

REFERENCES

  1. Eiceman G.A., Karpas Z., Hill H.H.Jr. Ion mobility spectrometry. Boca Raton, CRC Press, 2013. 428 p.
  2. Zühlke M., Zenichowski K., Riebe D., Beitz T., Löhmannsröben H.-G. An alternative field switching ion gate for ESI-ion mobility spectrometry. International journal for ion mobility spectrometry , 2017, vol. 20, no. 3-4, pp. 67—73.
  3. Dahl D.A. SIMION 3D V. 7.0 Users manual. Idaho National Eng. Envir. Lab., 2000. 480 p.
  4.    Kurnin I.V., Yavor M.I. [ Model of motion in a viscous media with a statistic diffusion for calculation of ion dynamics in a dense gas and strong electric fields ]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2015, vol. 25, no. 3, pp. 29—34. DOI: 10.18358/np-25-3-i2934 (In Russ.).
  5. Kurnin I.V. [ Model for simulation of ion dynamics in a dense gas and strong electric fields ]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2018, vol. 28,  no. 3 , pp. 118—123. DOI: 10.18358/np-28-3-i118123 (In Russ.).
 

PTITSYN VALERIY EDUARDOVICH (OBITUARY)

"Nauchnoe priborostroenie", 2020, vol. 30, no. 1, pp. 80—80.
doi: 10.18358/np-30-1-i8080
 

Institute for Analytical Instrumentation of RAS, Saint Petersburg, Russia

 
Full text (In Russ.) >>

Address: ulitsa Ivana Chernykh, 31-33, lit. A, St. Petersburg, 198095, Russia
E-mail: iap@ianin.spb.su, kuroch@ianin.spb.su, Phone: +7-812-363-0719, Fax: +7-812-363-0720

content: Valery D. Belenkov design: Banu S. Kuspanova layout: Anton V. Manoilov