logo
blue band <-
  JOURNAL "NP" ISSUES

"Nauchnoe Priborostroenie", 2019, Vol. 29, no. 2. ISSN 2312-2951, DOI: 10.18358/np-29-2-17798b

"NP" 2019 year Vol. 29 no. 2.,   ABSTRACTS

ABSTRACTS, REFERENCES

O. A. Keltsiyeva1,4, Yu. D. Kolpakova3, M. N. Krasnov5, M. Z. Muradymov1,
N. G. Sukhodolov1,2, N. V. Krasnov1, E. P. Podolskaya1,4

MODIFICATION OF MALDI TARGETS BY NANOPARTICLES
DURING IRON OXIDE(III) SUSPENSION ELECTROSPREYING
UNDER NORMAL CONDITIONS

"Nauchnoe priborostroenie", 2019, vol. 29, no. 2, pp. 5—11.
doi: 10.18358/np-29-2-i511
 

A method for modifying a target for the MALDI-MS analysis is proposed, allowing selective isolation of analytes from biological samples directly on the target surface, as an alternative to classical methods. To modify the target, a suspension of the metal-affinity sorbent based on iron (III) oxide in a 50% aqueous methanol solution was electrosprayed in drip-free mode with dynamic dividing the fluid flow at atmospheric pressure under normal conditions. The MALDI target acted as a counter electrode. A sorbent layer was deposited on the MALDI target in the form of a spot, the particles of which are subsequently resistant to solvents. A metal-affinity enrichment of a phosphorylated peptide with the amino acid sequence SSNGHV(pY)EKLSSI from a sample of human tryptic hydrolyzate was performed on a modified MALDI target. MALDI-mass spectrum was recorded from the s orbent spot. This technique was created as an alternative to the laborious sample preparation of bioassays and allows to limit the minimum volume of the sample and solvents.
 

Keywords: metal affinity chromatography, MALDI-mass spectrometry, iron(III) oxide, phosphoproteomics, surface
modification, electrospray

Fig. 1. View of spot of the nanodispersed sorbent based on iron oxide. Spot is on the substrate during the electro-spraying of the suspension with dynamic flow division in drip-free mode. Spot diameter ~ 5 mm

Fig. 2. The scheme of the experimental facility for applying the sorbent to the substrate with the use of the method of electrospraying in a drip-free mode. 1 – charged particle desorption device; 2 – metal capillary; 3 – syringe; 4 – power supply unit; 5 – high-voltage contact; 6 – capillary-insulator; 7 – air diaphragm pump; 8 – input mechanical gauge sensor; 9 – automotive fuel filter TS07T; 10 – output mechanical gauge sensor; 11 – mechanical flowmeter; 12 – manual mechanical valve; 13 – automotive fuel filter TS03T; 14 – counter electrode; 15 – MALDI target; 16 – microscope; 17 – digital video camera; 18 – computer; 19 – LED node; 20 – LED power supply source

Fig. 3. Photo of the meniscus shape in the mode of drip-free electric spraying

Fig. 4. The target, the surface of which is modified by the sorbent on the basis of iron oxide in case of drip-free electrospray

Fig. 5. Microphotography of the steel plate surface modified by an iron oxide sorbent

Fig. 6. MALDI mass spectra. a – tryptic hydrolyzate of human globin; á – tryptic hydrolyzate of human globin with the introduced phosphorylated peptide; â – tryptic hydrolyzate of human globin with the introduced phosphorylated peptide after metal affinity chromatography on the MALDI target

Author affiliations:

1Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia
2Saint-Petersburg State University, Russia
3Saint-Petersburg Polytechnic University of Peter the Great, Russia
4Institute of Toxicology, FMBA, Saint-Petersburg, Russia
5Device Consulting Ltd, Saint-Petersburg, Russia

 
Contacts: Krasnov Nikolay Vasil'evich, krasnov@alpha-ms.com
Article received by editing board on 26.04.2019
Full text (In Russ.) >>

REFERENCES

  1. Keltsieva O.A, Gladilovich V.D., Podolskaya E.P. [Immobilized metal ion affinity chromatography (IMAC). Principle and applications] Nauchnoe Priborostroenie [Scientific Instrumentation], 2013, vol. 23, no. 1, pp. 74—85. URL: http://iairas.ru/en/mag/2013/abst1.php#abst9 (In Russ.).
  2. Aleksandrov M.L., Baram G.I., Gall L.N., Grachev M.A., Knorre V.D., Krasnov N.V., Kusner Yu.S., Mirgorodskaya O.A., Nikolaev V.I., Shkurov V.A. [Application of a novel mass-spectrometric method to sequencing of peptides]. Bioorganicheskaya himiya [ Bioorganic chemistry ], 1985, vol. 11, no. 5, pp. 707—708. URL: http://www.rjbc.ru/arc/11/5/0705-0708.pdf (In Russ.).
  3. Fenn J.B., Mann M., Meng C.K., Wong S.F., Whitehouse C.M. Electrospray ionization for mass-spectrometry of large biomolecules. Science, 1989, vol. 246, pp. 64—71.
  4. Karas M.I., Bachmann D., Bahr U., Hillenkamp F. Matrix-assisted ultraviolet laser desorption of non-volatile compounds. Int. J. Mass Spectrom. Ion Processes, 1987, vol. 78, pp. 53—68.
  5. Blacken G.R., Volný M., Vaisar T., Sadílek M., Tureček F. In situ enrichment of phosphopeptides on MALDI plates functionalized by reactive landing of zirconium(IV)—n-propoxide ions. Anal. Chem., 2007, vol. 79, is. 14, pp. 5449—5456. DOI10.1021/ac070790w
  6. Chen C.J., Lai C.C., Tseng M.C., Liu Y.C., Liu Y.H., Chio L.W., Tsai F.J. A novel titanium dioxide-polydimethylsiloxane plate for phosphopeptide enrichment and mass spectrometry analysis. Anal. Chim. Acta, 2014, vol. 812, pp. 105—113. DOI: 10.1016/j.aca.2014.01.010
  7. Krásný L., Pompach P., Strohalm M. In situ enrichment of phosphopeptides on MALDI plates modified by ambient ion landing. J. Mass Spectrom., 2012, vol. 47, is. 1, pp. 1294—1302. DOI: 10.1002/jms.3081
  8. Bi H., Qiao L., Busnel J.-M., Devaud V., Liu B., Girault H.H. TiO2 printed aluminum foil: single-use film for a laser desorption/ionization target plate. Anal. Chem., 2009, vol. 81, is. 3, pp. 1177—1183. DOI: 10.1021/ac8024448
  9. Gladilovich V.D., Fedorova A.V., Podolskaya E.P. [Fe2O3-based metal-oxide sorbent. synthesis, study of surface and sorption properties]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2013, vol. 23, no. 4, pp. 63—65. URL: http://iairas.ru/en/mag/2013/abst4.php#abst8 (In Russ.).
  10. Arseniev A.N., Krasnov N.V., Muradymov M.Z. Investigation of electrospray stability with dynamic liquid flow splitter. Anal. Chem., 2014, vol. 69, is. 14, pp. 30—32. DOI: 10.1134/ S1061934814140020
  11. Lajner V.I. (ed.) Spravochnoe rukovodstvo po gal'vanotekhnike [Galvanoplasty reference guide]. Moscow, Metallurgiya Publ., 1969. 418 p. (In Russ.).
 

A. G. Varekhov

ELECTRIC FIELD EFFECTS ON CELL SUSPENSIONS
ACCORDING TO POTENTIOMETRIC MEASUREMENTS

"Nauchnoe Priborostroenie", 2019, vol. 29, no. 2, pp. 12—21.
doi: 10.18358/np-29-2-i1221
 

The impact of electric field on cells suspended in aqueous media is widely used in studying the cell periphery of membrane structures, as well as for inactivation of cell components of aqueous media. Studies on electroporation of cell membranes are highly actual. The article presents the results of measurements, showing that direct potentiometry using lipophilic indicator ions (tetraphenylphosphonium) can be used as a sensitive tool to study the energy state of cells. It is shown that the effect of microsecond electrical pulses of high intensity on aerobic cells B.subtilis changes potential profile of the cell periphery, i.e. primarily transmembrane and surface potentials of cells. From the physical point of view, the impact analysis is based on the mechanism of cell polarization as an induced drift of free ion charge, which corresponds to extremely large values – dielectric permittivity and absorbed energy. The values of the field intensity and exposure time ensuring inactivation of cells were determined.
 

Keywords: high-voltage pulse, bacterial cells, polarization, tetraphenylphosphonium, potentiometry

Fig. 1. Electrode potential as a function of the tetraphenylphosphonium TÔÔ +(Cout) concentration in the incubation medium. TÔÔ +(Cin) concentration in the internal solution 10—2 M of the electrode

Fig. 2. Changes in electrode potential depending on the pH of the incubation medium

Fig. 3. The amplitude of the electrical pulse in the cell with a buffer solution TrisH2SO4 pH 7.0, distilled water and a saline. For distilled water the U values must be multiplied by 40

Fig. 4. Changes in the electrode potential in the course of calibration operations: adding TÔÔ+, introducing cells, energizing additive (succinate) and uncoupler (dinitrophenol)

Fig. 5. Changes in the electrode potential, showing the kinetics of binding indicator cations by cells treated in an electric field of moderate intensity, and the effect on cells by the uncoupler / dinitrophenol

Fig. 6. Changes in the electrode potential, showing the effect of the high tension field (8.3 kV • cm-1)

Fig. 7. Changes in the electrode potential when binding indicator cations by intact cells (1); cells treated in the field of moderate tension 200÷700 V • cm-1 (2) and high tension 8.3 kV • cm-1 (3)

Table. Calibration of the measuring electrode

Author affiliations:

St. Petersburg State University of Aerospace Instrumentation, Russia

 
Contacts: Varekhov Alexey Grigorievitch, varekhov@mail.ru
Article received by editing board on 09.11.2018
Full text (In Russ.) >>

REFERENCES

  1. Vanegas-Acosta J.C. Electric fields and biological cells: numerical insight into possible interaction mechanisms. Techn. Univ. Eindhoven, 2015. 336 p. URL: https://pure.tue.nl/ws/files/10243383/20151217_CO_Vanegas.pdf
  2. Weaver J.C., Smith K.C., Esser A.T., Son R.S., Gowrishankar T.R. A brief overview of electroporation pulse strength-duration space: a region where additional intracellular effects are expected. Bioelectrochemistry, 2012, vol. 87, pp. 236—243. DOI:  10.1016/j.bioelechem.2012.02.007
  3. Hofmann F., Ohnimus H., Scheller C., Strupp W., Zimmermann U., Jassoy C. Electric field pulses can induce apoptosis. J. Membrane Biol., 1999, vol. 169, is. 2, pp. 103—109. DOI: 10.1007/s002329900
  4. Weiss L. The cell periphery. Int. Rev. Cytol., 1970, vol. 26, pp. 63—105. DOI: 0.1016/S0074-7696(08)61634-4
  5. Schwan H.P. Electrical properties of tissue and cell suspensions. Biol. and Med. Phys., 1957, vol. 5, pp. 147—209. DOI: 10.1016/B978-1-4832-3111-2.50008-0
  6. Fricke H., Curtis H.J. The dielectric constant and resistance of colloidal solutions . Physical review journals archive, 1935, vol. 47, is. 12, pp. 974—975.
  7. Kazaryan M.A., Lomov I.V., Shamanin I.V. Elektrofizika strukturirovannyh rastvorov solej v zhidkih polyarnyh diehlektrikah [Electrophysics of the structured solutions of salts in liquid polar dielectrics]. Moscow, Fizmatlit Publ., 2011. 192 p. (In Russ.).
  8. Mecik M.S. [Properties of water membranes between mica plates]. Poverhnostnye sily v tonkih plenkah i dispersnyh sistemah. Sbornik dokladov IV konferencii po poverhnostnym silam [Surface forces in thin membranes and disperse systems. Proc. of the IV conference on the superficial forces], Moscow, Nauka Publ., 1972, pp. 189—193. (In Russ.).
  9. Ermakov Yu.A. [Bioelectrochemistry of two-layer lipide membranes]. Rossiyskiy khimicheskiy zhurnal [Russian chemical journal], 2005, vol. 49, no. 5, pp. 114—120. (In Russ.).
  10. Varekhov A.G. [Potentiometric measurements of transmembrane potential of cells with use of the penetrating ions]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2015, vol. 25, no. 1, pp. 27—35. (In Russ.). DOI: 10.18358/np-25-1-i2735
  11. Kupershtokh A.L., Medvedev D.A. [Electrostriction mechanisms of inception of electrical breakdown in liquid dielectrics under the action of strong electric fields]. Nauchnyy vestnik NGTU SO RAN [Scientific Bulletin of NSTU], 2014, vol. 54, no. 1, pp. 103—113. (In Russ.).
  12. Tamm I.E. Osnovy teorii ehlektrichestva [Fundamentals of the electricity theory]. Moscow, Fizmatlit Publ., 2003. 616 p. (In Russ.).
  13. Hoult G., ed. Kratkiy opredelitel' bakteriy Bergi [Short determinant of bacteria of Bergi]. Moscow, Mir Publ., 1980. 495 p. (In Russ.).
  14. Stacy R.W., Williams D.T., Worden R.E., McMorris R.O. Essentials of biological and medical physics. New York, NY: McGraw-Hill Publishing Co,1955. 586 p. (Rus. ed.: Steysi R., Uil'yams D., Uorden R., MakMorris R. Osnovy biologicheskoy i medicinskoy fiziki. Moscow, Inostr. lit. Publ., 1959. 608 p.).
  15. Grinyus L.L., Daugelavichyus R.Yu., Al'kimavichyus G.A. [Research of a membrane potential of cells Bacillus subtilis and Escherichia Coli using method of penetrating ions]. Biohimiya [Biochemistry], 1980, vol. 45, no. 9, pp. 1609—1618. (In Russ.).
  16. Atcarkina N.V. Osobennosti funkcionirovaniya dyhatel'noy cepi Bacillus subtilis [Particularities of functioning of a respiratory chain Bacillus subtilis. Autoref. diss. … Cand. Biol. Sci.]. Moscow, Lomonosov Moscow State University, 2010. 200 p. (In Russ.).
 

A. S. Al'dekeeva, D. A. Belov, Yu. V. Belov, A. L. Shirokorad

DEVELOPMENT OF AN EXPERIMENTAL VERSION OF QUANTITATIVE PCR ANALYSIS SOFTWARE

"Nauchnoe Priborostroenie", 2019, vol. 29, no. 2, pp. 22—29.
doi: 10.18358/np-29-2-i2229
 

This article presents the results of using the experimental version of the quantitative analysis software ANK_Cycles for the nucleic acid analyzers ANK-32, ANC-48 and ANK-96. Software was developed on the basis of a new method for automatic detection of the threshold cycle Ct. This method is based on approximation of the dependence of the Real Time Polymerase Chain Reaction (RT-PCR) signal by a polynomial of the 3rd degree. The experimental check of calibration error in quantitative PCR-analysis is carried out, and the results were compared with similar results obtained by the use of the known measurement technology (ANK_Shell software), which involves performing a number of manual operations. Measurements and comparisons were made in the fluorescence channels ROX and R6G with the use of samples of natural soybeans and genetically modified ones from the collection of reagents "Soybean GTS 40-3-2 quantity" produced by JSC "SINTOL" (Moscow).
 

Keywords: DNA, nucleic acid analyzer, RT-PCR signals, threshold cycle

Fig. 1. Graphs of genetically modified soybeans fluorescence. Fluorescence relative units are marked along the vertical axis

Fig. 2. Interface window for selecting parameters for viewing and processing polymerase chain reaction (PCR) signals

Fig. 3. Interface window with graphs of PCR signals. The horizontal axis is cycles, the vertical axis is relative fluorescence units

Fig. 4. Active interface window with 1st and 2nd derivative graphs of PCR. Vertical axis is relative fluorescence units

Fig. 5. Graph of dependence of Ct,cp (units of threshold cycles) on lg M and trend line y = 2.982 x + 37.643 (R2 = 0.9977)

Table 1. Values of r.m.s. deviations and cycle thresholds along the ROX fluorescence channel

Table 2. Values of r.m.s. deviations and cycle thresholds along the R6G fluorescence channel

Table 3. Values of r.m.s. deviations and cycle thresholds along the ROX fluorescence channel (values obtained with the use of ANK_Cycles software)

Table 4. Values of r.m.s. deviations and cycle thresholds along the R6G fluorescence channel (values obtained with the use of ANK_Cycles software)

Author affiliations:

Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia

 
Contacts: Belov Dmitriy Anatol'evich, onoff_10@mail.ru
Article received by editing board on 26.04.2019
Full text (In Russ.) >>

REFERENCES

  1. Belov Yu.V., Petrov A.I., Lavrov V.V., Kurochkin V.E. [Optimisation of RT-PCR nucleic acid quantitative analysis]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2011, vol. 21, no. 1, pp. 44—49. (In Russ.). URL: http://iairas.ru/en/mag/2011/abst1.php#abst4
  2. Belov Yu.V., Petrov A.I., Lavrov V.V., Kurochkin V.E. [Influence of detector noise on errors of quantitative analysis of nucleic acids using real-time PCR]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2011, vol. 21, no. 2, pp. 27—33. (In Russ.). URL: http://iairas.ru/en/mag/2011/abst2.php#abst4
  3. Belov Yu.V., Petrov A.I., Lavrov V.V., Kurochkin V.E. [Optimization of sigmoid function parameters in real-time PCR signals modeling]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2011, vol. 21, no. 3, pp. 130—134. (In Russ.). URL: http://iairas.ru/en/mag/2011/abst3.php#abst15
  4. Belov Yu.V., Petrov A.I., Kurochkin V.E. [Error analysis of real time PCR signals modeled by sigmoid function]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2011, vol. 21, no. 4, pp. 28—34. (In Russ.). URL: http://iairas.ru/en/mag/2011/abst4.php#abst3
  5. Belov D.A., Belov Yu.V., Kurochkin V.E. [New method of DNA melting signal treatment]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2018, vol. 28, no. 1, pp. 3—10. DOI: 10.18358/np-28-1-i310 (In Russ.).
  6. Mudrov A.E. Chislennye metody dlya PEVM na yazykah Bejsik, Fortran i Paskal' [Numerical methods for PC in Basic, Fortran and Pascal]. Tomsk, PASCO Publ., 1991. 272 p. (In Russ.).
  7. Lizunova N.A., Shkroba S.P. Matricy i sistemy linejnyh uravnenij [Matrices and systems of linear equations]. Moscow, Fizmatlit Publ., 2007. 171 p. (In Russ.).
 

A. V. Protasov1, A. S. Taraskin1, Ya. A. Zabrodskaya1, R. A. Bublyaev2,
L. N. Novikova3, O. A. Mirgorodskaya1

QUANTITATIVE DETERMINATION OF THE SERIES OF BLOOD
SERUM MARKERS WITHOUT ITS PRELIMINARY FRACTIONATION USING THE SPECIAL FEATURES OF TRIPSINE INTERACTION WITH ALPHA-2-MACROGLOBULIN USING MALDI-MS

"Nauchnoe Priborostroenie", 2019, vol. 29, no. 2, pp. 30—43.
doi: 10.18358/np-29-2-i3043
 

Concentration of alpha-2-macroglobulin (α2-MG) in serum may vary considerably in a number of diseases, and thus quantification of this protein is used in diagnostics. Routine immunological or enzymatic methods for determination of α2-MG concentration in serum are rather complicated. The methods require specific antibodies or the measurements of specific substrates hydrolysis rates. These tests do not distinguish the α2-MG free form from its bound form. We propose a new mass-spectrometric approach to identify and quantify some blood serum biomarkers. The method is based on structural-functional characteristic properties of α2-MG interaction with trypsin, characterized by the cleavage of VGFYESDVMGR peptide. Technique of isotope exchange (18O) was developed for the preparation of internal standard, including direct isotope exchange in blood serum. The quantitative potential of the proposed technique turns mass-spectrometry (MALDI) into a suitable and efficient tool for diagnostics of inflammatory processes. The potential of the proposed approach proposed was demonstrated on the examples of highly sensitivity determination of human α2-MG active form concentration in blood serum of patients with lung diseases. The high potential of the proposed method allows it to be propagated on proteins, the last form complexes with trypsin, but unlike human α2-MG do not cleave free peptides. These include alpha-1-antitrypsin (α1-AT), mouse α2-MG and a number of other serum proteins. Application of the method is shown in testing the "Triazid" antiviral drug in mice model.
 

Keywords: alpha-2-macroglobulin, quantitative mass-spectrometry, biomarkers, serum amyloid A,
alpha-1-antitrypsin

Fig. 1. MALDI-MS of trypsin-treated blood serum after 3 min incubation

Fig. 2. The fragmentation spectrum of a quasimolecular ion with m/z = 1259.6. Correspondences with the amino acid sequence of the peptide VGFYESDVMGR noted

Fig. 3. Fragments of the MALDI-mass spectra of the intrinsic peptide VGFYESDVMGR (a) standard (á) and their mixtures (â)

Fig. 4. Fragment of the MALDI mass spectrum of α2-MG peptide (a), the standard for this peptide obtained after α2-MG trypsinolysis in blood serum and subsequent isotope exchange (á), peptide mixtures in two tryptic hydrolysates of human serum and standard (â – blood serum of a healthy donor, ã – blood serum of a patient with idiopathic fibrosing alveolitis)

Fig. 5. Concentration of VGFYESDVMGR peptide in the blood serum of a healthy donor depending on the concentration of the added trypsin

Fig. 6. The results of mass spectrometric analysis of the patient's blood serum in in the course of the treatment of toxic exogenous alveolitis from the acute phase (MOA1) within three sessions of plasmapheresis and taking glucocorticosteroids (MOA2 — MOA4) before discharge (MOA5)

Fig. 7. A fragment of the MALDI-mass spectrum of serum MOA1 (a) and MOA4 (b), both treated with trypsin, after 2 h of incubation

Fig. 8. The results of mass spectrometric analysis of blood serum of five patients with idiopathic fibrosing alveolitis

Table 1. The distribution of isotopes after the exchange in the standard peptide

Table 2. The distribution of isotopes the exchange in standard peptide obtained from human serum

Table 3. Determining the level of α1-AT in the blood serum of a patient with a diagnosis of "exogenous toxic alveolitis"

Table 4. The content of α2-MG in the blood serum of mice M1—M4

Author affiliations:

1Smorodintsev Research Institute of Influenza Ministry of Health of the Russian Federation,
Saint-Petersburg, Russia

2Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia
3Department of Pneumology, academician Pavlov First Saint-Petersburg Medical University,
Saint-Petersburg, Russia

 
Contacts: Mirgorodskaya Olga Aleksandrovna, oa.mir@ mail.ru
Article received by editing board on 18.12.2018
Full text (In Russ.) >>

REFERENCES

  1. Sottrup-Jensen L. Alpha-macroglobulins: structure, shape, and mechanism of proteinase complex formation. Journal of Biological Chemistry, 1989, vol. 264, no. 20, pp. 11539—11542.
  2. Borth W. Alpha 2-macroglobulin, a multifunctional binding protein with targeting characteristics. FASEB Journal, 1992, vol. 6, no. 15, pp. 3345—3353. DOI: 10.1096/fasebj.6.15.1281457
  3. Barrett A.J., Starkey P.M. α2-Macroglobulin with proteinases. Characteristics and specificityof the reaction, and
    a hypothesis concerning its molecular mechanism. Biochemical Journal, 1973, vol. 133, pp. 709—724. DOI: 10.1042/bj1330709
  4. Veremeenko K.N., Goloborodko O.P., Kizim A.I. Proteoliz v norme i pri patologii [The proteolysis is normal also at pathology]. Kiev, Zdorov'e Publ., 1988. 200 p. (In Russ.).
  5. Toropygin I.Yu., Mirgorodskaya O.A., Moshkovskii S.A., Serebryakova M.V., Archakov A.I. Controlled trypsinolysis of human cancer and non cancer sera for direct matrix assisted laser desorption/ionization time of flight mass spectrometry. International Journal of Mass Spectrometry, 2012, vol. 325—327, pp. 121—129. DOI: 10.1016/j.ijms.2012.08.011
  6. Rehman A.A., Ahsan H., Khan F.H. α-2-Macroglobulin: a physiological guardian. Journal of Cellular Physiology, 2013, vol. 228, no. 8, pp. 1665—1675. DOI: 10.1002/jcp.24266
  7. Veremeenko K.N., Kizim A.I., Dosenko V.E. [α2-Macroglobulin: structure, physiological role and clinical value]. Laborotornaya diagnostika [Laboratory diagnostics], 2000, no. 2, pp. 3—9. (In Russ.).
  8. Barrett A.J., Lorand L., ed. α2-Macroglobulin. Methods in Enzymotogy, New York, Academic, 1981, vol. 80, pp. 737—754.
  9. Swenson R.P., Howard J.B. Structural characterization of human alpha2-macroglobulin subunits. Journal of Biological Chemistry, 1979, vol. 254, no. 11, pp. 4452—4456.
  10. Ho A.S., Cheng C.C., Lee S.C., Liu M.L., Lee J.Y., Wang W.M., Wang C.C. Novel biomarkers predict liver fibrosis in hepatitis C patients: alpha 2 macroglobulin, vitamin D binding protein and apolipoprotein AI. Journal of Biomedical Science, 2010, 17:58. DOI: 10.1186/1423-0127-17-58
  11. Sampsonas F., Karkoulias K., Kaparianos A., Spiropoulos K. Genetics of chronic obstructive pulmonary disease, beyond a1-antitrypsin deficiency. Current Medical Chemistry, 2006, vol. 13, no. 24, pp. 2857—2873. DOI: 10.2174/092986706778521922
  12. Koz'min Yu.P., Manoylov A.V., Serebryakova M.V., Mirgorodskaya O.A. [Direct introduction of O18 isotopes to peptides and proteins for the quantitative analysis by a mass spectrometry method]. Bioorganicheskaya Khimiya [The Russian Journal of Bioorganic Chemistry], 2011, vol. 37, no. 6, pp. 793—806. (In Russ.).
  13. van Leuven F., Torrekens S., Overbergh L., Lorent K., de Strooper B., van den Berghe H. The primary sequence and the subunit structure of mouse alpha-2-macroglobulin, deduced from protein sequencing of the isolated subunits and from molecular cloning of the cDNA. European Journal of Biochemistry, 1992, vol. 210, no. 1, pp. 319—327. DOI: 10.1111/j.1432-1033.1992.tb17424.x
  14. Purmal A.P. Empiricheskaya kinetika (formal'naya fenomenolo-gichsekaya kinetika). Uchebnoe posobie [Empirical kinetics (formal fenomenolo-gichseky kinetics). Education book]. Moscow, MFTI Publ., 2000. 80 p. (In Russ.).
 

A. B. Podlaskin1, A. V. Erofeev1, T. D. Ershov2

PORTABLE MASS SPECTROMETER WITH MEMBRANE SAMPLE
INPUT FOR ANALYSIS OF PERCUTANEOUS CO2 EMISSION

"Nauchnoe Priborostroenie", 2019, vol. 29, no. 2, pp. 44—50.
doi: 10.18358/np-29-2-i4450
 

A portable mass spectrometer with a membrane method of sample input developed earlier showed stable reproducibility and speed of analysis. To reduce the analysis time, the impact on the blood flow in the work and for ease of use an upgraded membrane interface has been developed. The reduction of the analysis time was achieved by the use of a new membrane interface design, thinner membrane and modified PTFE tube. A mass spectrometer with a membrane interface was calibrated. The results of the development and testing of a non-invasive mass spectrometric method for measuring the transcutaneous CO2 release of healthy people at 3 points of the body are presented. The concentration of CO2 released through the skin was measured during moderate and severe physical exertion. The reproducibility of the results of the method application is shown.
 

Keywords: portable mass spectrometer, membrane interface

Fig. 1. The appearance of the membrane interface (MI)

Fig. 2. MÈ – membrane interface, MC – mass spectrometer, ÁÝ – electronics module, TMH – turbomolecular pump, ÔBH – forvacuum membrane pump

Fig. 3. Real-time measurement of vinyl acetate concentrations

Fig. 4. The dependence (as a graph) of the intensity of ionic currents of the micro impurity in the range of 4.1 —49.4 mg / m3

Fig. 5. The measurement of the time constant for CO2

Fig. 6. Stabilization of the ion current during measuring CO2 since the device was turned on

Fig. 7. Checking the reproducibility of results by the example of measuring CO2

Fig. 8. Calibration line for CO2

Fig. 9. Real time measurement of CO2 excretion from the skin

Table 1. CO2 release rate for people of different ages per 1 cm2 of skin area

Table 2. CO2 release rate at different loads per 1 m2 of skin area

Author affiliations:

1The Ioffe Institute, Saint-Petersburg, Russia
2JSC Scientific instruments, Saint-Petersburg, Russia

 
Contacts: Ershov Timofey Dmitrievitch, orienteer@yandex.ru
Article received by editing board on 5.12.2018
Full text (In Russ.) >>

REFERENCES

  1. Moore D.S. Instrumentation for trace detection of high explosives. Sci. Instrum., 2004, vol. 75, is. 8, pp. 2499—2512. DOI: 10.1063/1.1771493
  2. Nilles J.M., Connell T.R., Durst H.D. Quantitation of chemical warfare agents using the direct analysis in real time (DART) technique. Anal. Chem., 2009, vol. 81, is. 16, pp. 6744—6749. DOI: 10.1021/ac900682f
  3. Lebedev A.T. Mass-spektrometriya dlya analiza ob"ektov okruzhayuschey sredy [Mass spectrometry for the analysis of objects of the environment]. Moscow, Tehnosfera Publ., 2013. 632 p. (In Russ.).
  4. Cooks R.G., Manicke N.E., Dill A.L., Ifa D.R., Eberlin L.S., Costa A.B., Wang H., Huang G., Ouyang Z. New ionization methods and miniature mass spectrometers for biomedicine: DESI imaging for cancer diagnostics and paper spray ionization for therapeutic drug monitoring. Faraday Discuss, 2011, vol. 149, pp. 247—267. DOI: 10.1039/C005327A
  5. Ouyang Z., Cooks R.G. Miniature mass spectrometers. Annu. Rev. Anal. Chem., 2009, vol. 2, pp. 187—214. DOI: 10.1146/annurev-anchem-060908-155229
  6. Snyder D.T., Pulliam C.J., Ouyang Z., Cooks R.G. Miniature and fieldable mass spectrometers: Recent advances. Anal. Chem., 2016, vol. 88, is. 1, pp. 2—29. DOI: 10.1021/acs.analchem.5b03070
  7. Johnson R., Cooks R., Allen T., Cisper M., Hemberger P. Membrane introduction mass spectrometry: Trends and applications. Mass Spectrom. Rev., 2000, vol. 19, is. 1, pp. 1—37.
    Doi: 10.1002/(SICI)1098-2787(2000)19:1<1::AID-MAS1>3.0.CO;2-Y
  8. Janfelt C., Frandsen H., Lauritsen F.R. Characterization of a mini membrane inlet mass spectrometer for on-site detection of contaminants in both aqueous and liquid orga­nic samples. Rapid Commun. Mass Spectrom., 2006, vol. 20, is. 9, pp. 1441—1446. DOI: 10.1002/rcm.2466
  9. Levshankov A.I. Ekspress-diagnostika narusheniy gazoobmena i kontrol' ego v processe intensivnoy terapii. Avtoref. dis. … d. m. n. [Express diagnostics of violations of gas exchange and its control in the course of intensive therapy. Autoref. d.m.n. diss.]. Leningrad, 1982. 569 p. (In Russ.).
  10. Elizarov A.Yu., Elokhin V.A., Nikolaev V.A., Ershov T.D., Faizov I.I., Levshankov A.I., Schegolev A.V. [Non-invasive mass spectrometric method of measurement skin secretion CO2]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2017, vol. 27, no. 4, pp. 102–106. DOI: 10.18358/np-27-4-i102106 (In Russ.).
 

A. I. Gernovoy

NON-CONTACT MEASUREMENT OF LOCAL CONCENTRATION
AND THE LOCAL TEMPERATURE OF MAGNETIC NANOPARTICLES
INSIDE OF A LIVING ORGANISM
(SHORT MESSAGE)

"Nauchnoe Priborostroenie", 2019, vol. 29, no. 2, pp. 51—53.
doi: 10.18358/np-29-2-i5153
 

This paper proposes a method of measuring the local concentration N and the local temperature T of the magnetic nanoparticles inside a living organism by means of magnetic resonance imaging, operating with two inductions of magnetic field B1 ˃ 3kT and B2 < kT: N = M1/P, T = P·B/ (k·ln (M1/M2)) (k – Boltzmann constant, P – the magnetic moment of the nanoparticles, M2, M1 – the magnetizations measured in the inductions B2 and B1). The method is aimed to control the movement of nanoparticles through the body's vessels and their delivery to the target tissue, as well as to control the local temperature of the nanoparticles near the target tissue in order to ensure their heating to the optimum temperature. The use of a magnetic resonance tomograph makes it possible, using its gradient coils, to create a inhomogeneous magnetic field that transports nanoparticles to target tissues throughout body vessels.
 

Keywords: local concentration of nanoparticles, local temperature of nanoparticles, X-ray tomograph, magnetic resonance tomograph

Author affiliations:

Saint-Petersburg State Institute of Technology (Technical University), Russia

 
Contacts: Zhernovoy Aleksandr Ivanovich, azhspb@rambler.rueee
Article received by editing board on 25.01.2019
Full text (In Russ.) >>

REFERENCES

  1. Neronov Yu.I., Garajbekh Z. Yadernyj magnitnyj rezonans v tomografii i v spektral'nyh issledovaniyah tkanej golovnogo mozga [Nuclear magnetic resonance in tomography and spectral studies of brain tissues]. Moscow, ITMO University, 2003. 105 p. (In Russ.)..
  2. Zhernovoy A.I. Sposob izmereniya temperatury vnutri veshchestva ili zhivogo organizma. Patent na izobretenie ¹ 2485461. [Patent for a method of measuring the temperature inside a substance or a living organism]. Prioritet 29.12.2011. (In Russ.).
 

A. G. Gilev, V. A. Ulyanov, S. I. Kalinin, M. V. D'yachkov, G. E. Shmelev

THE ELECTROMAGNET FOR A POLARIZED NEUTRON
REFLECTOMETER SAMPLE
OF THE IR-8 REACTOR
OF NRC "KURCHATOV INSTITUTE"

"Nauchnoe Priborostroenie", 2019, vol. 29, no. 2, pp. 54—63.
doi: 10.18358/np-29-2-i5463
 

The electromagnet for a polarized neutron reflectometer (RPN) sample node is developed and manufactured for installation on the N3 neutron guide of the IR-8 reactor in the NRC "Kurchatov Institute". The results of the calculation and the experimental data of measurements of the magnetic parameters of the electromagnet created for the node of the polarized neutron reflectometer sample are presented. A special feature of this electromagnet is the increased requirements for the magnitude (200 mT) and the magnetic induction homogeneity (the maximum deviation of the direction of the induction vector from the vertical is no more than 2%), as well as compactness. The estimated characteristics of the magnet are confirmed by the results of experimental measurements: the calculated values of magnetic field induction and its homogeneity almost coincide with the experimental data.
 

Keywords: electromagnet, magnetic field induction uniformity, reflectometer of polarized neutrons

Fig. 1. The curve of ARMCO alloy magnetization

Fig. 2. General view of the calculated magnetic system

Fig. 3. The calculated distribution of the Y-component of the magnetic field induction in the working area along line 1 in the Fig. 2 (x = 0 mm, y = 0 mm, z = —40 ÷ 40 mm)

Fig. 4. The distribution of the magnetic field by the planes

Fig. 5. Assembly drawing of the electromagnet node of a polarized neutron reflectometer sample

Fig. 6. A scheme for measuring the magnitude of the magnetic field induction, as well as controlling the current of the electromagnet node of a polarized neutron reflectometer sample

Fig. 7. The measured distribution of the Y-component of the magnetic field induction in the working area along line 1 in Fig. 2 (x = 0 mm, y = 0 mm, z = —40 ÷ 40 mm)

Fig. 8. The control circuit of the adjustment device of the sample electromagnet node

Table 1. The main characteristics of the magnet wire

Table 2. The distribution of magnetic field inductions in two planes (-10, + 10 mm along the Y-coordinate) between the poles of a magnet

Annex. (fig. Ï1). Electromagnet node of the polarized neutron reflectometer sample. a) is a 3D model of an electromagnet, á) is a manufactured electromagnet. 1– magnet wire, 2 – coil, 3 – sample holder, 4 – magnetic induction meter HB0105.2A, 5 – BH-2 fan

Annex. (fig. Ï2). Polarized neutron reflectometer sample with an electromagnet node

Author affiliations:

NRC "Kurchatov Institute" — PNPI, Gatchina, Russia

 
Contacts: Gilev Aleksandr Georgievich, alexandrgilev@mail.ru
Article received by editing board on 7.12.2018
Full text (In Russ.) >>

REFERENCES

  1. Karasik V.R. Fizika i tekhnika sil'nyh magnitnyh poley [Physics and equipment of strong magnetic fields]. Moscow, Nauka Publ., 1964. 244 p. (In Russ.).
  2. Balasoiu M., Kirilov A.S., Kutuzov S.A, Smirnov A.A., Kappel W., Cios M., Cios A., Kuklin A.I. Magnetic system for small-angle neutron scattering investigation at YUMO instrument of nanomaterial. Joint Institute for Nuclear Research, Dubna, 2008. E14-2008-193.
  3. Osinskaya Yu.V., Petrov S.S., Pokoev A.V., Runov V.V. [Research by method of low-angle dispersion of neutrons of magnetoplastic effect in beryllium bronze when aging in magnetic fields]. Fizika tverdogo tela [Physics of the solid state], 2010, vol. 52, no. 3, pp. 486—488. DOI: 10.1134/S1063783410030121 (In Russ.).
  4. Glushkova T.I., Dyachkov M.V., Kolhidashvili M.R., Savelyeva T.V., Solovey V.A., Sumbatyan A.A., Syromyatnikov V.G., Ulyanov V.A., Hahalin S.I. Elektronnoe obespechenie reflektometra polyarizovannyh neytronov reaktora IR -8 [Electronic providing the reflectometer of the polarized IR-8 reactor neutrons]. Gatchina, Preprint PIYAF 3021, 2018. 46 p. (In Russ.).
 

A. R. Aliev, I. R. Akhmedov, M. G. Kakagasanov, Z. A. Aliev

A MULTI-PASS CUVETTE FOR MEASURING RAMAN SPECTRA OF LIQUIDS

"Nauchnoe Priborostroenie", 2019, vol. 29, no. 2, pp. 64—71.
doi: 10.18358/np-29-2-i6471
 

A multi-path cuvette for measuring Raman spectra of liquids has been proposed, developed and introduced into the practice of spectroscopic studies. It allows to increase the optical path of the laser beam in a cuvette filled with salt melt and thus increase the performance factor of using the available power of the laser beam. It is established that the use of the proposed multi-pass cuvette allows to increase the signal-to-noise ratio more than twice. The maximum signal-to-noise ratio is maintained during the studies of salt system melts at high temperatures, when the cuvette with the test sample is placed in a heating furnace. A heating cell for measuring Raman spectra allows to measure the vibrational spectra of condensed systems in the range of 290—1000 K. It is shown that the advantage of the proposed multi-pass cell is simplicity and accessibility of fabrication.
 

Keywords: Raman scattering, vibrational spectroscopy, multi-pass cuvette, spectra of liquids

Fig. 1. Heating cell for measuring the Raman spectra of liquids. 1 – quartz cup, 2 – heating element, 3 –thermocouple, 4 – metal case, 5 – source of excitation, 6 – rotary mirror, 7 — illuminating body

Fig. 2. A method for measuring Raman spectra using a multipass cell. 1 – laser; 2 – input window of a multipath cell; 3 – reflecting layer of a multipass cell; 4 – incident beam; 5 – scattered beam; 6 – output window of a multipass cell; 7 – optical system; 8 – monochromator entrance slit

Fig. 3. The course of the rays in a multipath cell. The space inside the cell is bounded by the straight lines (AG and BE). The ABD polyline shows the course of incident laser beam inside the cell. The KCEG polyline shows the course of scattered light inside the cuvette.

Fig. 4. The dependence of the relative intensity J = JR(L)/JR(S) of light scattering on the angle a at different values of the product bS. 1: bS = 0.0001; 2: bS = 0.1; 3: bS = 0.3; 4: bS = 0.5; 5: bS = 0.7; 6: bS = 1.0

Fig. 5. The Raman spectrum of molten lithium perchlorate (LiClO4) at T = 523 K (thick line, shift along the Y-axis up by 0.01) and the result of its decomposition into components (thin lines)

Author affiliations:

Amirkhanov Institute of Physics of Dagestan Scientific Center
of the Russian Academy of Sciences, Makhachkala, Russia

 
Contacts: Aliev Amil Rizvanovitch, amilraliev@mail.ru
Article received by editing board on 5.12.2018
Full text (In Russ.) >>

REFERENCES

  1. Belozertsev A.I., Cheremisina O.V., El Salim S.Z., Manoylov V.V. [Quantitative determination of asymmetric dimethylhydrazine in solutions by raman spectroscopy]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2017, vol. 27, no. 2, pp. 47—56. DOI: 10.18358/np-27-2-i4756 (In Russ.).
  2. Zhernovoy A.I., Ulashkevich U.V., Dyachenko S.B. [The study of the infrared spectrum of a magnetic nanoparticles in a magnetic field structure]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2017, vol. 27, no. 2, pp. 61—65. DOI: 10.18358/np-27-2-i6165 (In Russ.).
  3. Bardin B.V. [Way deconvolution spectrometer information and detection of spectral peaks]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2017, vol. 27, no. 2, pp. 75—82. DOI: 10.18358/np-27-2-i7582 (In Russ.).
  4. Novikov L.V., Kurkina V.V. [The method for estimation of spectral peak parameters]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2017, vol. 27, no. 3, pp. 99—106. DOI: 10.18358/np-27-3-i99106 (In Russ.).
  5. Nebesniy A.F., Ashurov M.H., Nam I.V., Nuritdinov I. [Microcontroller optical spectrometer on MDR-12 base]. Pribory i tekhnika eksperimenta [Devices and technique of an experiment], 2018, no. 3, pp. 156—158. DOI: 10.7868/S0032816218030138 (In Russ.).
  6. Pozhar V.E., Balashov A.A., Bulatov M.F. [Modern spectral optical instruments developed in scientific technological center of unique instrumentation of Russian academy of sciences]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2018, vol. 28, no. 4, pp. 49—57. DOI: 10.18358/np-28-4-i4957 (In Russ.).
  7. Geiko P.P., Petrov D.V., Smirnov S.S. [Implementation of the method of differential optical absorption spectroscopy for measurements of volcanic gas emissions]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2018, vol. 28, no. 4, pp. 103—109. DOI: 10.18358/np-28-4-i103109 (In Russ.).
  8. Balashov A.A., Horohorin A.I. [Analytical infrared furye-spectrometer of AF-01]. Pribory i tekhnika eksperimenta [Devices and technique of an experiment], 2018, no. 6, pp. 125—126. DOI: 10.1134/S0032816218060022 (In Russ.).
  9. Arseniev A.N., Krasnov N.V., Muradymov M.Z., Krasnov M.N. [Spectroscopy of alkali metal and alloying metal from solutions by ion mobility]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2017, vol. 27, no. 1, pp. 57—65. DOI: 10.18358/np-27-1-i5765 (In Russ.).
  10. Akhmedov I.R., Gafurov M.M., Kakagasanov M.G., Sveshnikova D.A., Rabadanova J.I. [Laboratory furnace with quartz reactor]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2018, vol. 28, no. 4, pp. 15—19. DOI: 10.18358/np-28-4-i1519 (In Russ.).
  11. Aliev A.R., Akhmedov I.R., Kakagasanov M.G., Aliev Z.A. [Temperature broadening of lines of full-symmetric fluctuations in ranges of combinational dispersion of binary systems LiNO3–LiClO4, Na2CO3–Na2SO4, KNO3–KNO2]. Opticheskiy zhurnal [Journal of Optical Technology], 2018, vol. 85, no. 1. pp. 12—16. (In Russ.).
  12. Aliev A.R., Akhmedov I.R., Kakagasanov M.G., Aliev Z.A., Amirov A.M. [Molecular relaxation of binary systems LiNO3–LiClO4, NaNO3–NaNO2, K2CO3–K2SO4]. Zhurnal strukturnoy himii [Journal of Structural Chemistry], 2018, vol. 59, no. 1, pp. 85—91. DOI: 10.26902/JSC20180112 (In Russ.).
  13. Aliev A.R., Akhmedov I.R., Kakagasanov M.G., Aliev Z.A., Gafurov M.M., Rabadanov K.Sh., Amirov A.M. [Relaxation of Vibrationally Excited States in Solid Binary Carbonate-Sulfate Systems]. Fizika tverdogo tela [Physics of the solid state], 2018, vol. 60, no. 2, pp. 341—345. DOI: 10.21883/FTT.2018.02.45390.140 (In Russ.).
  14. Aliev A.R., Akhmedov I.R., Kakagasanov M.G., Aliev Z.A., Gafurov M.M., Amirov A.M. [Molecular relaxation in firm binary systems LiNO3–LiClO4 and Li2CO3–Li2SO4]. Izvestiya vysshih uchebnyh zavedeniy. Fizika [News of higher educational institutions. Physics], 2018, vol. 61, no. 2, pp. 80—86. (In Russ.).
  15. Aliev A.R., Akhmedov I.R., Kakagasanov M.G., Aliev Z.A., Gafurov M.M., Rabadanov K.Sh., Amirov A.M. [Processes of a molecular relaxation in binary crystal systems KNO3–KClO4, KNO3–KNO2, K2CO3–K2SO4]. Zhurnal fizicheskoy himii [Magazine of physical chemistry], 2018, vol. 92, no. 3, pp. 403—408. DOI: 10.7868/S0044453718030020 (In Russ.).
  16. Aliev A.R., Akhmedov I.R., Kakagasanov M.G., Aliev Z.A., Gafurov M.M., Rabadanov K.Sh., Amirov A.M. [Oscillatory relaxation in firm binary systems NaNO3–NaClO4, NaNO3–NaNO2, Na2CO3–Na2SO4]. Neorganicheskie materialy [Inorganic materials], 2018, vol. 54, no. 3, pp. 274—280. DOI: 10.7868/S0002337X18030089 (In Russ.).
  17. Aliev A.R., Gafurov M.M., Akhmedov I.R., Kakagasa­nov M.G., Aliev Z.A. [Features of structural phase transitions in ion-molecular crystals of perchlorates]. Fizika tverdogo tela [Physics of the solid state], 2018, vol. 60, no. 6, pp. 1191—1201.
    DOI: 10.21883/FTT.2018.06.45999.29M (In Russ.).
  18. Aliev A.R., Akhmedov I.R., Kakagasanov M.G., Aliev Z.A., Gafurov M.M., Rabadanov K.Sh., Amirov A.M. [Oscillatory relaxation in firm binary systems LiNO3—LiClO4, Na2CO3—Na2SO4, KNO3—KNO2]. Himicheskaya fizika [Chemical physics], 2018, vol. 37, no. 6, pp. 3–8. DOI: 10.7868/S0207401X18060018 (In Russ.).
  19. Aliev A.R., Akhmedov I.R., Kakagasanov M.G., Aliev Z.A., Amirov A.M. [Molecular relaxation in binary systems NaNO3–NaNO2, KNO3–KNO2]. Izvestiya vysshih uchebnyh zavedeniy. Himiya i himicheskaya tekhnologiya [News of higher educational institutions. Chemistry and chemical technology], 2018, vol. 61, no. 7, pp. 23—30. DOI: 10.6060/ivkkt.20186107.5660 (In Russ.).
  20. Rabadanov K.Sh., Gafurov M.M., Aliev A.R., Amirov A.M., Kakagasanov M.G. [Ranges of combinational dispersion of light and molecular and relaxation properties of heterophase glasses and fusions K,Ca/CH3COO, Li,K,Cs/CH3COO]. Zhurnal prikladnoy spektroskopii [Journal of Applied Spectroscopy], 2018, vol. 85, no. 1, pp. 69—75. (In Russ.).
  21. Vedernikova E.V., Gafurov M.M., Ataev M.B. [Assessment of thermodynamic parameters of hydrogen communication in solutions of alcohols by method of infrared spectroscopy]. Izvestiya vysshih uchebnyh zavedeniy. Fizika [News of higher educational institutions. Physics], 2010, vol. 53, no. 8, pp. 69—73. (In Russ.).
  22. Sveshnikova D.A. Ramazanov A.Sh., Gafurov M.M., Kunzhueva K.G., Ataev D.R. [Sorption of ions of rubidium from water solutions the activated coals]. Sorbtsionnye i Khromatograficheskie Protsessy [Sorption and chromatographic processes], 2012, vol. 12, no. 5, pp. 789—797. (In Russ.).
  23. Gafurov M.M., Rabadanov K.Sh., Ataev M.B., Amirov A.M. [IR spectrums of heterophase systems xLiClO4–(1—x) (CH3)2SO + Al2O3]. Zhurnal prikladnoy spektroskopii [Journal of Applied Spectroscopy], 2013, vol. 80, no. 5, pp. 781—784. DOI: 10.1007/s10812-013-9840-2 (In Russ.).
  24. Gafurov M.M., Kirillov S.A., Rabadanov K.Sh., Ataev M.B., Tretyakov D.O. [Dynamics of structural units in a system ionic liquid (EMI-TFSI) — LiN(CF3SO2) 2-etilenkarbo­nat]. Rasplavy [Melts], 2013, no. 3, pp. 67—73. (In Russ.).
  25. Kirillov S.A., Gorobets M.I., Gafurov M.M., Rabadanov K.Sh., Ataev M.B. [Temperature dependence of associative balances of DMSO on ranges of combinational dispersion]. Zhurnal fizicheskoy himii [Magazine of phy­sical chemistry], 2014, vol. 88, no. 1, pp. 140—142. DOI: 10.7868/S0044453714010142 (In Russ.).
  26. Gafurov M.M., Kirillov S.A., Rabadanov K.Sh., Ataev M.B., Tretyakov D.O. [Spectroscopic research of processes of solvation and association in lithium salt solutions in ionic and the aprotonnykh solvents]. Zhurnal strukturnoy himii [Journal of Structural Chemistry], 2014, vol. 55, no. 1, pp. 72—76. DOI: 10.1134/S0022476614010107 (In Russ.).
  27. Gafurov M.M., Kirillov S.A., Gorobec M.I., Rabadanov K.Sh., Ataev M.B., Tretyakov D.O., Aydemirov K.M. [Phase balances and ionic solvation in a system Lithium tetrafluoroborate–a dimethyl sulfoxide]. Zhurnal prikladnoy spektroskopii [Journal of Applied Spectroscopy], 2014, vol. 81, no. 6, pp. 824—830. (In Russ.).
  28. Gafurov M.M., Ataev M.B., Rabadanov K.Sh., Gorobec M.I., Tretyakov D.O., Kirillov S.A., Kubataev Z.Yu. [Solvation of ions of LiBF3 in dimethyl sulfoxide solutions according to spectroscopy of combinational dispersion]. Zhurnal fizicheskoy himii [Magazine of physical chemistry], 2015, vol. 89, no. 4, pp. 653—657. DOI: 10.7868/S004445371504007X (In Russ.).
  29. Gafurov M.M., Rabadanov K.Sh., Shabanov N.S., Tretinnikov O.N., Amirov A.M., Gadzhimagomedov S.H. [Ranges of combinational dispersion and the loudspeaker thiocyanate ion in films polyvinyl alcohol — KSCN]. Zhurnal prikladnoy spektroskopii [Journal of Applied Spectroscopy], 2017, vol. 84, no. 5, pp. 684—690. (In Russ.).
 

S. P. Moiseyeva, G. V. Kotelnikov, A. A. Savosin

CAPILLARY TITRATION NANOCALORIMETER WITH MULTIFUNCTION I / O DEVICES

"Nauchnoe Priborostroenie", 2019, vol. 29, no. 2, pp. 72—77.
doi: 10.18358/np-29-2-i7277
 

The use of multifunctional input/output devices in an experimental sample of a capillary differential titration nanocalorimeter ensured its efficiency by reducing the time spent to find the optimal nanocalorimeter design and to develop documentation on the most technologically complicated and laborious node – the calorimetric unit of the nanocalorimeter. Nanocalorimeter exceeds the worldwide level, providing work with short-lived objects. It’s possible to enter stored on ice additives into calorimetric chambers within 10—20 seconds. Nanocalorimeter is promising for use in studies that increase the productivity and expand the area of plants' cultivation by searching for mechanisms and compounds that reduce the adverse effects of extreme environmental factors.
 

Keywords: capillary calorimetric chamber, thermal bridge, multifunction I/O devices, dosing syringe, screw mechanism

Fig. 1. Functional diagram of the nanocalorimeter

Fig. 2. Block diagram of the automatic control system (ACS) of the thermostatic screen. This system implements a digital PI control ensuring the correction of the frequency characteristics of the ACS elements used in a calorimeter; K1—K6 are the element gain ratios, W1(p)–transfer function of the thermostating screen; Tócò – reference input signal; Toc – follow-up direct feedback signal

Fig. 3. Thermogram of heating of a thermostatic screen at a constant velocity: 1 – reference input signal for temperature control; 2 – follow-up direct feedback signal

Fig. 4. Block diagram of the automatic control system (ACS) as an example of the implementation of digital ACS in a calorimeter

Author affiliations:

Institute for Biological Instrumentation RAS, Pushchino, Moscow Region, Russia

 
Contacts: Moiseeva Sof'ya Petrovna, spmoiseewa@yandex.ru
Article received by editing board on 21.12.2018
Full text (In Russ.) >>

REFERENCES

  1. National Instruments. Znakomtes: LabVIEW [What is : LabVIEW?].
    URL: http://www.ni.com/ru-ru/shop/labview.html (accessed 20.12.2018). (In Russ.).
  2. Nedorezov D.A., Pichkalev A.V., Krasnenko S.S. [Ground tests of internal equipment interface of advanced spacecrafts]. Reshetnevskie chteniya [Reshetnev Readings], 2014, vol. 1, no. 18, pp. 332–333. (In Russ.).
  3. Simonov P.I., Kubankov Yu.A. [Method of decoding ADS-B messages on automated measurement stands built of LabView framework, as part of the aircraft board systems quality control]. Naukoemkie tekhnologii v kosmicheskih issledovaniyah Zemli [Hi-Tech Earth Space Research], 2018, vol. 10, no. 2, pp. 12–21. (In Russ.).
  4. Zagretdinov A.R., Kondrat'ev A.E., Ziganshin Sh.G. [Firmware of shock and acoustic control of composite designs]. Inzhenernyy vestnik Dona [Engineering journal of Don], 2014, vol. 31, no. 4-1, pp. 27. (In Russ.).
  5. Vagin A.I., Sytin A.N., Kuznetsov I.E., Lobov I.V., Kokovin V.A., Dyagilev V.I. [Software and hardware complex for laboratory scientific research]. Izvestiya Instituta inzhenernoy fiziki [News of Institute of engineering physics], 2018, vol. 48, no. 2, pp. 73—76. (In Russ.).
  6. Moiseyeva S.P., Kotelnikov G.V., Grabelnykh O.I., Pobezhimova T.P., Voinikov V.K. [Calorimetric measurements of heat production in plant cell mitochondria]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2018, vol. 28, no. 3, pp. 59—62. DOI: 10.18358/np-28-3-i5962
  7. LabView. User Manual. National Instruments, Austin, Texas, USA, 1998. 514 p.
  8. Isermann R. Digital Control Systems. Springer-Verlag Berlin Heidelberg, 1981. 527 p. (Russ. ed.: Izerman R. Tsifrovye sistemy upravleniya. Moscow, Mir Publ., 1984. 541 p.). DOI: 10.1007/978-3-662-02319-8 (In Russ.).
  9. Briggner L.E., Wadsö I. Test and calibration processes for microcalorimeters, with special reference to heat conduction instruments used with aqueous systems. Journal of Biochemical and Biophysical Methods, 1991, vol. 22, no. 2, pp. 101—118. DOI: 10.1016/0165-022X(91)90023-P
  10. Wiseman T., Williston S., Brandts J.F., Lin L. Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Analytical Biochemistry, 1989, vol. 179, pp. 131—137.
    DOI: 10.1016/0003-2697(89)90213-3
  11. Donnert J., Caruthers M.H., Gill S.J. A calorimetric investigation of the interaction of the lac repressor with inducer. J. Biol. Chem., 1982, vol. 257, no. 24, pp. 14826—14829.
  12. Harrous M.E., Mayorga O.L., Parody-Morreale A. Description of a new Gill titration calorimeter for the study of biochemical reactions. II: operational characterization of the instrument. Meas. Sci. Technol., 1994, vol. 5, pp. 1071—1077. DOI: 10.1088/0957-0233/5/9/007
  13. Spokane R.B., Gill S.J. Titration microcalorimeter using nanomolar quantities of reactants. Rev. Sci. Instrum., 1981, vol. 52, no. 11, pp. 1728—1733. DOI: 10.1063/1.1136521
  14. Origin 6.0 Reviewer’s Guide. URL: https://www.originlab.com/pdfs/revguide.pdf
  15. TA Instruments New Features in NanoAnalyze Software.
    URL:https://s3.amazonaws.com/TAInstruments/Nano/Nano+Analyze/NanoAnalyze_notes.pdf
  16. Karlsson R., Kullberg L. A computer method for simultaneous calculation of equilibrium constants and enthalpy changes from calorimetric data. Chemica Scripta, 1976, vol. 9, pp. 54—57.
 

D. V. Lisin

THE EFFECT OF SELF-FEEDING KEYS IN THE SCHEME
OF ELEMENT-BY-ELEMENT CONTROL OF ONBOARD LITHIUM-ION BATTERY OF SPACECRAFT

"Nauchnoe Priborostroenie", 2019, vol. 29, no. 2, pp. 78—82.
doi: 10.18358/np-29-2-i7882
 

Earlier, the author proposed a method for constructing a system for reliable operation of a lithium-ion rechargeable battery to power a spacecraft. The method provides continuous monitoring of the voltage of each individual battery element both during both the discharge and the charge process. Here is continued the description of its circuit implementation, the important features of which have not been considered previously. It was established that the rating of the shunt resistor from the gate of the first switching transistor of the measuring cascade to ground is of fundamental importance from the point of view of suppressing the appearance of the effect of measuring switches auto-feeding in the measuring and protective circuits of the local power supply and, therefore, from the point of view of elimination of system disturbances in storage mode.
 

Keywords: element-by-element control, lithium-ion accumulator battery, spacecraft, self-feeding keys

Fig. The circuit of the flow of parasitic current, that causes the observed effect of self-feeding (one of the measurement channels is shown; channels 2—8 are identical, except for the ratings R1 and R2). Terminal E8 is the output for connecting standard ADC, terminal M8 is the control input for measuring switches, digital CMOS levels +5 V [1]. The designations of the elements correspond to the designations in Annex (fig. Ï2). VD1, VD2 – internal protective diodes of the CMOS structure of the measuring ADC

Annex (fig. Ï1). Diagram of connecting measuring node to lithium-ion accumulator battery

Annex (fig. Ï2). Circuit design of the node for measuring the voltages of the elements. Channels 2—8 are identical, with the exception of nominal R1 and R2. Terminals E1, ..., E8 – outputs for connecting standard ADC, terminals M1, ..., M8 – control inputs for measuring switches, digital CMOS levels + 5 V [1]

Author affiliations:

Pushkov Institute of terrestrial magnetism, ionosphere and radio wave propagation (IZMIRAN),
Troitsk, Moscow, Russia

 
Contacts: Lisin Dmitrij Valer'evich, lisindv@izmiran.ru
Article received by editing board on 28.01.2019
Full text (In Russ.) >>

REFERENCES

  1. Lisin D.V. [Implementation of the method for measuring electric voltages at the elements of Li-ion batteries when working on spacecraft ]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2018, vol. 28, no. 2, pp. 69—74. DOI: 10.18358/np-28-2-i6974 (In Russ.).
  2. Hromov A.V. [Lithium-ion batteries for low-orbit spacecraft]. Voprosy elektromekhaniki. Trudy VNIIEM [Electromechanical matters. VNIIEM studies], 2016, vol. 152, no. 3, pp. 20—28.
    URL: http://jurnal.vniiem.ru/text/152/20-28.pdf (In Russ.).
 

D. A. Kravchuk

MODELING OF ACOUSTIC SIGNALS DURING
OPTOACOUSTIC CONVERSION FOR AXISYMMETRIC
NON-SPHERICAL FORMS OF ERYTHROCYTES

"Nauchnoe Priborostroenie", 2019, vol. 29, no. 2, pp. 83—89.
doi: 10.18358/np-29-2-i8389
 

In this paper, the modeling of intermediate forms in the transformation of red blood cells using the example of three-dimensional figures for the subsequent study of changes in optoacoustic signals was carried out. The spatial shapes of erythrocytes are modeled using the Chebyshev polynomial. A model for changing the shape of erythrocytes has been developed for modeling an acoustic signal in order to determine the shape of erythrocytes using an optoacoustic effect. Erythrocytes are known to carry oxygen and carbon dioxide (CO2). Oxygen is transferred from the lungs to the tissue, where it is exchanged for CO2. A healthy red cell is biconcave, the cell is flexible and takes the form of a bell when it passes through very small blood vessels. The erythrocyte is co­vered with a membrane consisting of lipids and proteins, without nucleus and contains hemoglobin – a red, iron-rich protein that binds oxygen. Before isolation from the bone marrow into the peripheral blood, the ery
throcytes lose their nuclei, which gives the advantages of reduced weight and transformation into a biconcave disc with increased deformability compared to the more rigid spheroidal.
 

Keywords: optoacoustic signal, erythrocytes, power spectral density, laser

Fig. 1. Geometry of acoustic signal formation during optoacoustic conversion

Fig. 2. Simulated form of healthy red blood cell. a – isometry, á – cross section

Fig. 3. Particles formed with the use of the Chebyshev polynomial with ε = 0.25; n =2 (a), n =3 (á)

Fig. 4. Particles formed with the use of the Chebyshev polynomial with ε = —0.25; n =2 (a), n =3 (á)

Fig. 5. A simulated acoustic signal generated by the discocyte and the pathologically altered red blood cells during optoacoustic conversion. Signals are given in directions θ = 0 (dotted line) and θ = π/2 (solid line) on the axis of symmetry: (a) discocyte; (á) sphere

Author affiliations:

Institute of Nanotechnologies, Electronics and Equipment Engineering,
Southern Federal University, Taganrog, Russia

 
Contacts: Kravchuk Denis Aleksandrovich, kravchukda@sfedu.ru
Article received by editing board on 4.04.2019
Full text (In Russ.) >>

REFERENCES

  1. Starchenko I.B., Kravchuk D.A., Kirichenko I.A. An optoacoustic laser cytometer prototype. Biomed Eng., 2018, vol. 51, is. 5, pp. 308—312. DOI: 10.1007/s10527-018-9737-8
  2. Kravchuk D.A., Starchenko I.B. [Theoretical model for diagnostics of the oxygen saturation of erythrocytes with the help of optoacoustic signals]. Prikladnaya fizika [Applied physics], 2018, no. 4, pp. 89—94. (In Russ.).
  3. Kravchuk D.A. [Mathematical model of detection of intra-erythrocyte pathologies using optoacoustic method]. Biomed. Photonics, 2018, vol. 7, no. 3, pp. 36—42. DOI: 10.24931/2413-9432-2018-7-3-36-42 (In Russ.).
  4. Kravchuk D.A., Starchenko I.B. [The model of the formation of an optoacoustic signal from erythrocytes for a laser cytometer]. Lazernaya medicina [Laser medicine], 2018, vol. 22, no. 1, pp. 57—61. (In Russ.).
  5. Kravchuk D.A., Starchenko I.B. [Mathematical modeling of optoacoustic signal from erythrocytes]. Vestnik novyh medicinskih technologiy [Journal of New Medical Technologies], 2018, vol. 25, no. 1, pp. 96—101. DOI: 10.24411/1609-2163-2018-15947 (In Russ.).
  6. Kravchuk D.A., Starchenko I.B. [Mathematical modeling of the optoacoustic signal from aggregated erythrocytes to assess the level of aggregation]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2018. T. 28, no. 1, pp. 30—36. DOI: 10.18358/np-28-1-i3036 (In Russ.).
  7. Kravchuk D.A., Starchenko I.B. [The model for determining oxygen saturation of biological tissues with the help of an optoacoustic method]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2018, vol. 28, no. 2, pp. 20—24. DOI: 10.18358/np-28-2-i2024 (In Russ.).
  8. Kravchuk D.A., Starchenko I.B. [The model of the formation of an optoacoustic signal from aggregated erythrocytes]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya "Upravlenie, vychislitel'naya tekhnika, informatika. Medicinskoe priborostroenie" [Proceedings of the Southwest State University Control, Computer engineering, Information Science. Medical instruments engineering], 2018, vol. 8, no. 2 (27), pp. 82—90. (In Russ.).
  9. Orda-Zhigulina D.V., Orda-Zhigulina M.V, Starchenko I.B., Kravchuk D.A. [Experimental studies of moving model liquid for optoacoustic flow cytometry]. Modelirovanie, optimizatsiya i informatsionnye tekhnologii [Modeling, Optimization and Information Technology], 2018, vol. 6, no. 3 (22), pp. 21—29. (In Russ.).
  10. Starchenko I.B., Kravchuk D.A., Kirichenko I.A. [Prototype optoacoustic laser cytomeasure]. Meditsinskaya tekhnika [Medical equipment], 2017, no. 5, pp. 4—7. (In Russ.).
  11. Kravchuk D.A., Starchenko I.B. [Mathematical model of the formation an optoacoustic signal for evaluating the level of erythrocyte aggregation]. Vestnik novyh medicinskih technologiy [Journal of New Medical Technologies], 2019, no. 1, pp. 119—123. (In Russ.).
  12. Mohandas N.,  Gallagher P.G. Red cell membrane: past, present, and future. Blood, 2008, vol. 112, pp. 3939—3948. DOI: 10.1182/blood-2008-07-161166
  13. Morse P.M., Ingard K.U. Theoretical Acoustics. Princeton, 1968. 949 p.
  14. Westervelt P.J., Larson R.S. Laser-excited broadside array. J. Acoust. Soc. Am., 1973, vol. 54, is. 1, pp. 121—122. DOI: 10.1121/1.1913551
  15. Diebold G.J. Photoacoustic monopole radiation: Waves from objects with symmetry in one, two and three dimensions. Photoacoustic imaging and spectroscopy. Ed. by L.V. Wong. London. 2009, pp. 3—17. DOI: 10.1201/9781420059922.pt1
  16. Khairy K., Howard J. Spherical harmonics-based parametric deconvolution of 3D surface images using bending energy minimization. Med. Image Anal., 2008, vol. 12, pp. 217—227. DOI: 10.1016/j.media.2007.10.005
  17. Khairy K., Foo J., Howard J. Shapes of red blood cells: comparison of 3D confocal images with the bilayer-couple model. Cell Mol Bioeng., 2008, vol. 1, is. 2-3, pp. 173—181. DOI: 10.1007/s12195-008-0019-5
  18. Mugnai A., Wiscombe W.J. Scattering from nonspherical Chebyshev particles. I: cross sections, single-scattering albedo, asymmetry factor, and backscattered fraction. Appl. Opt., 1986, vol. 25, is. 7, pp. 1235—1244. DOI: 10.1364/AO.25.001235
  19. Zhang H.F., Maslov K., Sivaramakrishnan M., Stoica G., Wang L.V. Imaging of hemoglobin oxygen saturation va
    riations in single vessels in vivo using photoacoustic microscopy. Appl. Phys. Lett., 2007, vol. 90, is. 5, pp. 1—3. DOI: 10.1063/1.2435697
  20. Savery D., Cloutier G. Effect'of red blood cell clustering and aisotropy on ultrasound blood backscatter: A Monte Carlo study. IEEE Trans. Sonics Ultrason, 2005, vol. 52, no. 1, pp. 94—103. DOI: 10.1109/TUFFC.2005.1397353
 

Yu. A. Popov1, I. V. Prozorova1, A. A. Prozorov1, R. R. Sabitova2

IMPROVED PHYSICAL AND MATHEMATICAL MODEL
OF A SEMICONDUCTOR GAMMA RADIATION DETECTOR
BASED ON THE USE OF THE STATISTICAL TESTS METHOD

"Nauchnoe Priborostroenie", 2019, vol. 29, no. 2, pp. 90—102.
doi: 10.18358/np-29-2-i90102
 

Relevance of research. The relevance of the study is due to the fact that neutron activation analysis (NAA) is one of the convenient ways to determine the composition of samples of natural and man-made origin. Among such objects are unique samples of rocks, minerals, condensates, dust, "hot" particles, etc. In this case, the effectiveness of the analysis depends on the applied methods and techniques. NAA is highly sensitive (up to 10-14 g), multi-element, non-destructive, less dependent on the mass and composition of the sample, on the forms of finding the elements.
The main aim: the main purpose of the study was to obtain an HPG model of the detector using Monte Carlo simulation of the interaction of gamma-rays with the detector crystal.
Research objects: the detector response was obtained experimentally and with the help of a neutron-physical model.
Research Methods. The main tool used for instrumental neutron activation analysis is a semiconductor detector based on highly pure germanium crystals under the general label HPGe (HPG). This paper is devoted to modeling one of these detectors using the Monte Carlo method and the MCNP program that implements it.
Results. In the course of research, in particular: a) a large number of experimental measurements were made with a Canberra GC1518 semiconductor detector using a set of standard sources at various distances and angles of rotation, b) variant models were created, c) parametric modeling was performed, d) analysis was performed and conclusion was made on the sensitive crystal volume of the detector.
A model has been developed that repeats the parameters of a real gamma-spectrometer, which makes it possible to calculate the efficiency of recording gamma-rays in a wide range of energies up to 1.5 MeV.
 

Keywords: semiconductor detector, crystal volume, registration efficiency, gamma radiation, Monte Carlo method

Fig. 1. Germanium detector GC1518: a – model built in the MCNP program; b – developer's source data. 1) high density polyethylene; 2) boron contact layer; 3) germanium crystal; 4) lithium contact layer; 5) aluminum holder; 6) holder rings; 7) aluminum cryostat; 8) holes

Fig. 2. Illustration to the total detector efficiency εp,tot: z – source-to-detector sensitive volume distance; da,m – the thickness of the m-th absorbing layer; θ0-3, R, L, l and r – the dimensions of the sensitive volume

Fig. 3. Components of the detector response R(E, Ei)

Fig. 4. Cross section for the interaction of photons with GPG from 10 eV to 100 GeV. σt is the total cross section, σph is the photoelectric cross section, σcoh is the coherent scatter cross section (Thomson + form factor), σc is the incoherent scatter cross section (Compton + form factor), σnp is the cross section of pair production

Fig. 5. Source geometry

Fig.6. Dependence of registration efficiency values on the thickness of the lateral dead layer

Fig.7. Dependences of the efficiency of gamma-quanta registration on the radiation energy at different distances of the source location to the detector cover

Fig.8. Comparison of calculated response with experimental values

Table. Registration efficiency values of gamma-quanta ε(Eγ) (experiment)

Author affiliations:

1Institute of Atomic Energy, National Nuclear Center of Republic of Kazakhstan,
Kurchatov, Republic of Kazakhstan
2Tomsk Polytechnic University, Tomsk, Russia

 
Contacts: Prozorova Irina Valentinovna, prozorova@nnc.kz
Article received by editing board on 27.02.2019
Full text (In Russ.) >>

REFERENCES

  1. Modarresi S.M., Masoudi S.F. On the gamma spectrometry efficiency of reference materials and soil samples. Journal of Environmental Radioactivity, 2018, vol. 183, pp. 54—58. DOI: 10.1016/j.jenvrad.2017.12.012
  2. Persson L., Boson J., Nylen T., Ramebacka'd H. Application of a Monte Carlo method to the uncertainty assessment in in situ gamma-ray spectrometry. Journal of Environmental Radioactivity, 2018, vol. 187, pp. 1—7. DOI: 10.1016/j.jenvrad.2018.02.003
  3. Shrivastava H.B., Rita N.R., Rao V.K., Raghavender B., Sharma P.K. Estimation of uranium concentration in Indian monazite samples HPGe semiconductor detector. Applied Radiation and Isotopes, 2018,
    vol. 141, pp. 21—23. DOI: 10.1016/j.apradiso.2018.08.010
  4. Bibichev B.A., Kruglov V.P., Mayorov V.P., Protasenko Yu.M., Sunchugashev M.A., Fedotov P.I., Shvoev A.F. [Measurement of burning out of fuel in TVS VVER-365 and VVER-440 by a gamma and spectrometer method]. Atomnaya energiya [Atomic energy], 1982, vol. 53, is. 4, pp. 222—224. DOI: 10.1007/BF01122298 (In Russ.).
  5. Koleska M., Viererbl L., Marek M. Development of the MCNPX model for the portable HPGe detector. Radiation Physics and Chemistry, 2014, vol. 104, pp. 351—354. DOI: 10.1016/j.radphyschem.2014.03.035
  6. Khan W., Zhang Q., He C., Saleh M. Monte Carlo simulation of the full energy peak efficiency of an HPGe detector. Applied Radiation and Isotopes, 2018, vol. 131, pp. 67—70. DOI: 10.1016/j.apradiso.2017.11.018
  7. Lepy M.-C., Brondeau L., Menesguen Y., Pierre S., Riffaud J. Consistency of photon emission intensities for efficiency calibration of gamma-ray spectrometers in the energy range from 20 keV to 80 keV. Applied Radiation and Isotopes, 2018, vol. 134, pp. 131—136. DOI: 10.1016/j.apradiso.2017.07.006
  8. Mirion technologies. Koaksial'nye germanievye detektory s reversivnymi elektrodami (REGe) [Coaxial germanic detectors with reverse electrodes (REGe)]. URL: http://www.canberra.ru/html/products/Gamma_High/detector_assemblies/ detectors/C40436%20Russian%20REGe%20Super%20Spec_2.pdf (In Russ.).
  9. Zhukovskiy A.N., Pshenichnyy G.A., Meyer A.V. Vysokochuvstvitel'nyy rentgeno-fluorescentnyy analiz s poluprovodnikovymi detektorami [The highly sensitive X-ray fluorescent analysis with semiconductor detectors]. Moscow, Energoatomizdat Publ., 1991. 160 p. (In Russ.).
  10. Berlizov A.N., Tryshyn V.V. A Monte Carlo approach to true-coincidence summing correction factor calculation for gamma-ray spectrometry applications. J. Radioanal. Nucl. Chem., 2005, vol. 264, no. 1, pp. 169—174. DOI: 10.1007/s10967-005-0690-0
  11. Dearnaley G., Northrop D.C. Semiconductor counters for nuclear radiations. New York, Wiley, 1963. 331 p. (Russ. ed.: Dirnli Dzh., Nortrop D. Poluprovodnikovye schetchiki yadernyh izlucheniy. Moscow, Mir Publ., 1966. 359 p.). (In Russ.).
  12. Portnoy A.Yu., Pavlinsky G.V., Gorbunov M.S., Sidorova Yu.I. [Background properties of si detector, due to electron transport and charge yield]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2011, vol. 21, no. 4, pp. 145—150. URL: http://iairas.ru/en/mag/2011/abst4.php#abst18 (In Russ.).
  13. Hubbell J.H. Compilation of photon cross-sections: some historical remarks and current status. X-ray spectrometry, 1999, vol. 28, pp. 215—223. DOI: 10.1002/(SICI)1097-4539(199907/08)28:4<215::AID-XRS336>3.0.CO;2-5
  14. Şimşek O., Ertuğrul M., Budak G., Karabulut A. Inelastic and elastic scattering differential cross-sections of 59.6 keV photons for Cu and Zn targets. X-ray spectrometry, 2004, vol. 33, pp. 349—353. DOI: 10.1002/xrs.724
  15. Hubbell J.H., Veigele W.J., Briggs E.A., et al. Atomic form factors, incoherent scattering functions and photon scattering cross-sections. J. Phys. Chem. Ref. Data, 1975, vol. 471, no. 4, pp. 471—538. DOI: 10.1063/1.555523
  16. Schaupp D., Schumacher M., Smend F., Rullhusen  P., Hubbell J.H. Small angle realign scattering of photons at high energies: Tabulation of relativistic HFS modified atomic form factors. J. Phys. Chem. Ref. Data, 1983, vol. 12, is. 3, pp. 467—512. DOI: 10.1063/1.555690
  17. Kalibrovki spektrometra: protokol ¹ 13-240-02/88784 ot 06.06.2016 [Calibrations of a spectrometer: protocol no. 13-240-02/88784 of 06.06.2016]. Kazakhstan, Kurchatov, Branch of Institute of atomic energy of the National nuclear center of the Republic, 2016. 3 p. (In Russ.).
  18. Chuong H.D., Thanh T.T., Thang L.T.N., Nguen V.H., Tao  C.T. Estimating thickness of the inner dead-layer of n-type HPGe detector. Applied Radiation and Isotopes, 2016, vol. 116, pp. 174—177.
    DOI: 10.1016/j.apradiso.2016.08.010
  19. Modarresi S.M., Masoudi S.F, Karimi M. A method for considering the spatial variations of dead layer thickness in HPGe detectors to improve the FEPE calculation of bulky samples. Radiation Physics and Chemistry, 2017, vol. 130, pp. 291—296. DOI: 10.1016/j.radphyschem.2016.08.020
  20. Kolevatov Yu.I., Semenov V.P., Trykov L.A. Spektrometriya neytronov i gamma-izlucheniy v radiacionnoy fizike [Spectrometry of neutrons and gamma-radiations in radiation physics]. Moscow, Energoatomizdat Publ., 1991. 296 p. (In Russ.).
  21. Briesmeister J.F. MCNP — a general Monte Carlo N-Particle transport code. Los Alamos, 2000. 790 p. URL: https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-13709-M
 

B. P. Sharfarets

IMPLEMENTATION OF RECEIVING ANTENNA
USING MECHANISM OF ELECTROKINETIC
PHENOMENON "FLOW POTENTIAL"

"Nauchnoe Priborostroenie", 2019, vol. 29, no. 2, pp. 103—108.
doi: 10.18358/np-29-2-i103108
 

The paper continues the series of publications describing physical processes and models for implementation of a new type of emitter based on the use of electrokinetic phenomenon of electroosmosis. The mathematical description of the phenomenon named "flow potential" and procedure of its adjustment are presented. It is shown that the presence of reversibility of two electrokinetic phenomena: electroosmosis and flow potential–allows using the same transducer based on the presence of a developed double electrical layer, in the acoustic oscillations emitter mode and in the receiver mode. This reversibility is expressed by writing the Navier–Stokes equation for the case of a flow potential (receiver), which turned out to be equivalent to the similar equation for the case of electroosmosis (emitter). The analysis of the obtained expressions is performed.
 

Keywords: electrokinetic phenomena, electroosmosis, flowpotential, acoustic emitter, acoustic receiver,
Navier–Stokes equation

Fig. Dependence of the flow potential on the pressure drop

Author affiliations:

Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia

 
Contacts: Sharfarets Boris Pinkusovich, sharb@mail.ru
Article received by editing board on 26.10.2018
Full text (In Russ.) >>

REFERENCES

  1. Sergeev V.A., Sharfarets B.P. [About one new method of electroacoustic transformation. A theory based on electrokinetic phenomena. Part I. The hydrodynamic aspect]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2018, vol. 28, no. 2, pp. 25—35. (In Russ.). DOI: 10.18358/np-28-2-i2535
  2. Sergeev V.A., Sharfarets B.P. [About one new method of electroacoustic transformation. A theory based on electrokinetic phenomena. Part II. The acoustic aspect]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2018, vol. 28, no. 2, pp. 36—44. (In Russ.). DOI: 10.18358/np-28-2-i3644
  3. Prohorov A.M., ed. Fizicheskaya enziklopediya [Physical encyclopedia]. Vol. 5. Moscow, Bolshaya Rossiyskaya enciklopediya Publ., 1998. 760 p. (In Russ.).
  4. Duhin S.S., Deryagin B.V. Elektroforez [Electrophoresis]. Moscow, Nauka Publ., 1986. 332 p. (In Russ.).
  5. Roldugin V.I. Fizikohimiya poverhnosti [Surface physical chemistry]. Dolgoprudny, Intellekt Publ., 2011. 568 p. (In Russ.).
  6. Newman J. Elektrochimicheskie sistemy [Electrochemical Systems]. Moscow, Mir Publ., 1977. 464 p. (In Russ.).
  7. Schukin E.D., Perzov A.V., Amelina E.A. Kolloidnaya chimiya [The colloid chemistry]. Moscow, Vysshaya shkola Publ., 2004. 445 p. (In Russ.).
  8. Bruus H. Theoretical Microfluidics. Oxford University Press, 2008. 346 p.
  9. Landau L.D., Lifshiz E.M. Teoreticheskaya fizika. T. 6. Gidrodinamika [Theoretical physics. Vol. 6. Hydrodyna­mics]. Moscow, Nauka Publ., 1986. 736 p. (In Russ.).
  10. Stretton J.A. Teoriya elektromagnetizma [Theory of electromagnetism]. Moscow, Leningrad, OGIZ Publ., 1948. 539 p. (In Russ.).
  11. Kurochkin V.E., Sergeev V.A., Sharfarets B.P., Gulyaev Yu.V. [Theoretical justification of a new method of electro-acoustic transformation. Linear approach]. Doklady Akademii nauk [Reports of Academy of Sciences], 2018, vol. 483, no. 3, pp. 260—264. (In Russ.).
  12. Sharfarets B.P. [System electrohydrodynamics equations applied to electroosmotic processes]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2019, vol. 29, no. 1, pp. 135—142. Doi: 10.18358/np-29-1-i135142 . (In Russ.).
 

S. I. Shevchenko

ON THE ANALYTICAL SOLUTION OF THE ELECTRONS
MOTION EQUATION IN A CYLINDRICAL MIRROR
WHEN TAKING INTO ACCOUNT ELECTRONS HAVING
AZIMUTHAL VELOCITY COMPONENT

"Nauchnoe Priborostroenie", 2019, vol. 29, no. 2, pp. 109—117.
doi: 10.18358/np-29-2-i109117
 

In this work, the solid angle was calculated by starting within which the electrons fall on the detector of a cylindrical mirror. The study of the solid angle, starting within which the electrons fall on the detector, showed that along the range of change of energy and along the range of change of the radius of emission, the maximum of the solid angle is observed. The radius of the largest deviation of electrons from the inner cylinder is obtained as a series, which provides good accuracy for angles up to 20°. The solution of the equation of motion of electrons in a cylindrical mirror, obtained as a Taylor series, showed good agreement with the results of direct integration of the modified equation of motion.
 

Keywords: energy analyzer, cylindrical mirror, emission ring, output aperture

Fig. 1. Solid angle depending on the width of the output diaphragm for different values of the radius of the cylinder containing the output diaphragm (CCOD)

Fig. 2. Solid angle depending on the electron energy in the vicinity E = Ep for different values of the CCOD radius.

Fig. 3. Solid angle depending on the position of the emission point for different values of the CCOD radius

Table 1. The distance rm calculated by the formulas (5, 6), and the same distance obtained by solving the equation (2) with the use of the bisection method

Table 2. Comparison of the results of solving the motion equation in the reduced to integral form (1) by the direct integration method (see [5]) and the method of expansion into series (7—13).

Author affiliations:

Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia

 
Contacts: Shevchenko Sergei Ivanovich, nyro2@yandex.ru
Article received by editing board on 14.11.2018
Full text (In Russ.) >>

REFERENCES

  1. Zashkvara V.V., Korsunskiy M.I., Lavrov V.P., Redkin V.S. [About influence of the final size of a source on focusing of a bunch of charged particles in an electrostatic spectrometer with the cylindrical field]. Zhurnal tekhnicheskoj fiziki [Journal of technical physics], 1971, vol. 41, no. 1, pp. 187—192. (In Russ.).
  2. Sar-El H.Z. Cylindrical mirror analyzer with surface entrance and exit slots. I. Nonrelativistic part. Review of Scientific Instruments, 1971, vol. 42, no. 11, pp. 43—48. DOI: 10.1063/1.1684948
  3. Aksela S. Instrument function of a cylindrical electron energy analyzer. Review of Scientific Instruments, 1972, vol. 43, no. 9, pp. 122—128. DOI: 10.1063/1.1685923
  4. Dreyper J.E., Li Ch.-I. Response functions of ring‐to‐axis, axis‐to‐axis, and n = 1.5 cylindrical mirror analyzers with finite source and slit and central angle 30—65°. Review of Scientific Instruments, 1977, vol. 48, no. 7, pp. 138—154. DOI: 10.1063/1.1135170
  5. Shevchenko S.I. [About the properties of cylindrical mirrors for the accounting of electrons with the azimuthal component of velocity. The distribution of electrons near the output aperture]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2017, vol. 27, no. 1, pp. 90—101. DOI: 10.18358/np-27-1-i90101 (In Russ.).
  6. Shevchenko S.I. [About the properties of cylindrical mirrors for the accounting of electrons with the azimuthal
    component of velocity. The focusing and focus line]. Nauchnoe Priborostroenie [Scientific Instrumentation], 2017, vol. 27,  no. 3, pp. 81—89. (In Russ.). DOI: 10.18358/np-27-3-i8189
  7. Krylov V.I., Shulgina L.T. Spravochnaya kniga po chislennomu integrirovaniyu [The reference book on numerical integration]. Moscow, Nauka Publ., 1966. 370 p. (In Russ.).
  8. Abramovic M., Stigan I. Spravochnik po special'nym funkciyam [Reference book on special functions]. Moscow, Nauka Publ., 1979. 830 p. (In Russ.).
  9. Kozlov I.G. Sovremennye problemy elektronnoy spektroskopii [Modern problems of electronic spectroscopy]. Moscow, Atomizdat Publ., 1978. 248 p. (In Russ.).
  10. Dubinov A.E., Dubinova I.D., Saykov S.K. W-funkciya Lamberta i ee primenenie v matematicheskih zadachah fiziki. Ucheb. posobie dlya vuzov [Lambert's W-function and its application in mathematical problems of physics. Studies. a grant for higher education institutions]. Sarov, FGUP "RFYAC-VNIIEF", 2006. 160 p. (In Russ.).
  11. Zashkvara V.V., Korsunskiy M.I., Kosmachev O.S. [The focusing properties of an electrostatic mirror with the cylindrical field]. Zhurnal tekhnicheskoj fiziki [Journal of technical physics], 1966, vol. 36, no. 1, pp. 132—137. (In Russ.).
 

Ulitsa Ivana Chernykh, 31-33, lit. A, St. Petersburg, Russia, 198095, P.O.B. 140
tel: (812) 3630719, fax: (812) 3630720, mail: iap@ianin.spb.su

content: Valery D. Belenkov design: Banu S. Kuspanova layout: Anton V. Manoilov