logo
blue band <-
  JOURNAL "NP" ISSUES

"Nauchnoe Priborostroenie", 2015, Vol. 25, no. 4 ISSN 2312-2951, DOI: 10.18358/np-25-4-1182

"NP" 2015 year Vol. 25 no. 4,   ABSTRACTS

ABSTRACTS, REFERENCES

O. V. Mosin1, I. Ignatov2, V. I. Shvets3, G. Tyminski4

ELECTRON IMPACT MASS SPECTROMETRY IN ANALYSIS OF INTRODUCTION OF STABLE ISOTOPES OF DEUTERIUM AND CARBON-13 INTO AMINO ACID MOLECULES
FROM BIOLOGICAL OBJECTS

"Nauchnoe Priborostroenie", 2015, vol. 25, no. 4, pp. 3—18.
doi: 10.18358/np-25-4-i318
 

The work demonstrates the possibility of using electron impact mass spectrometry (EI) on a MB-80A ("Hitachi", Japan) with a double electron focusing for analysis of [2H, 13C]amino acid mixtures of L-phenylalanine producing strain of Brevibacterium methylicum and L-leucine-producing strain of Methylobacillus flagellatum, and [2H, 13C]amino acids of the total biomass protein isolated while growing the bacterial cells on media containing as a source of stable isotopes [2H]methanol, [13C] methanol and 2H2O. For mass-spectrometric analysis of the level of incorporation of stable isotopes 2H and 13C into the molecules of [2H, 13C]amino acids the multi-componential mixtures of [2H, 13C]amino acids, derived from cultural media and protein hydrolysates after hydrolysis in 6 M 2HCl (3 % phenol) and 2 M Ba(OH)2 were modified into N-benzyloxycarbonyl-derivatives of [2H, 13C]amino acids as well as into the methyl esters of N-dansyl-derivatives of [2H, 13C]amino acids, which were separated by RP HPLC on a column with octadecylsilane gel Separon SGX C18. The levels of 2H and 13C enrichment of secreted amino acids and amino acid residues of protein were found to be varied depending on the metabolic pathways of biosynthesis and concentration of 2H- and 13C-labelled substrates in growth media from 20.0 atom % to L-leucine/isoleucine up to 97.5 atom % for L-alanine.
 

Keywords: stable isotopes, methylotrophic bacteria, isotope labeled amino acids, RP HCLP, EI mass spectrometry

Author affiliations:

1Moscow State University of Applied Biotechnology, Russia
2The Scientific Research Center of Medical Biophysics, Sofia, Bulgaria
3Moscow State University of Fine Chemical Technology named after M. V. Lomonosov, Russia
4European Scientific Society, European Academy of Natural Sciences , Hannover, Germany

 
Contacts: Mosin Oleg Viktorovich, mosin-oleg@yandex.ru
Article received in edition: 13.08.2015
Full text (In Eng.) >>

REFERENCES

  1. Mosin O.V. Izuchenie metodov biotechnologicheskogo polucheniya belkov, aminokislot i nukleozidov, mechennych stabil'nymi izotopami 2H i 13C s vysokimi stepenyami izotopnogo obogascheniya. Avtoref. dis. kand. chim. nauk. [Studying of methods of biotechnological preparation of proteins, amino acids and nucleosides, labeled with stable isotopes 2H and 13C with high levels of isotopic enrichment. Doct. Diss. Autoref.]. Moscow, M.V. Lomonosov MGATChT Publ., 1996. 25 p. (In Russ.).
  2. LeMaster D.M. Uniform and selective deuteration in two-dimensional NMR studies of proteins. Annu. Rev. Biophys. Chem., 1990, vol. 19, no. 2, pp. 243266. doi: 10.1146/annurev.bb.19.060190.001331.
  3. MacCarthy P. Infrared spectroscopy of deuterated compounds: an undergraduate experiment. J. Chem. Educ., 1986, vol. 62, no. 7, pp. 633638. doi: 10.1021/ed062p633.
  4. Mosin O.V., Skladnev D.A., Egorova T.A., Shvets V.I. [Mass and spectrometer assessment of level of inclusion 2H and 13C in molecules of amino acids of bacterial objects]. Bioorganicheskaya chimiya [Bioorganic chemistry], 1996, vol. 22, no. 10-11, pp. 856869. (In Russ.).
  5. Mosin O.V., Skladnev D.A., Egorova T.A., Shvets V.I. [Methods of receiving amino acids and proteins, marked
    stable isotopes 2H, 13C, 15N, 18O]. Biotechnologiya [Biotechnology], 1996, no. 10. pp. 2440. (In Russ.).
  6. Mosin O.V., Shvets V.I., Skladnev D.A., Ignatov I. [Biosynthesis of transmembrane photo-transforming protein [2H]bacteriorhodopsin, labelled with deuterium on residues of aromatic amino acids [2,3,4,5,6-2H5]Phe, [3,5-2H2]Tyr, [2,4,5,6,7-2h5]Trp]. Nauchnoe Priborostroenie [Science Instrumentation], 2013, vol. 23, no. 2. pp. 1426. (In Russ.).
  7. Matthews H.R., Kathleen S., Matthews K., Stanley J. Selective deuterated amino acid analogues. Synthesis, incorporation into proteins and NMR properties. Biochim. et Biophys. Acta, 1977, vol. 497, pp. 113. doi: 10.1016/0304-4165(77)90134-9.
  8. LeMaster D.M., Cronan J.E. Biosynthetic production of 13C-labeled amino acids with site-specific enrichment. Journal of Biological Chemistry, 1982, vol. 257, no. 3, pp. 12241230.
  9. Mosin O.V., Ignatov I. Microbiological synthesis of 2H-labeled phenylalanine, alanine, valine, and leucine / isoleucine with different degrees of deuterium enrichment by the gram-positive facultative methylotrophic bacterium Brevibacterium methylicum. International Journal of Biomedicine, 2013, vol. 3, no. 2, pp. 132138.
  10. Mosin O.V., Shvets V.I., Skladnev D.A., Ignatov I. [Microbic synthesis a deuterium of marked L-phenylalanine a facultative metilotrofny bacterium of Brevibacterium meyhylicum on Wednesdays with various concentration of heavy water]. Biofarmazevticheskiy zhurnal [Biopharmaceutical journal], 2012, vol. 4, no. 1, pp. 11—22. (In Russ.).
  11. Patel G.B., Sprott G.D., Ekiel I. Production of specifically labeled compounds by Methanobacterium espanolae grown on H2-CO2 plus [13C]acetate. Applied and Environmental Microbiology, 1993, vol. 59, no. 4, pp. 10991103.
  12. Mosin O.V., Shvets V.I., Skladnev D.A., Ignatov I. Microbial synthesis of 2H-labelled L-phenylalanine with different levels of isotopic enrichment by a facultive methylotrophic bacterium Brevibacterium methylicum with RuMP assimilation of carbon. Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry, 2013, vol. 7, no. 3, pp. 249260.
  13. Bligh E.G., Dyer W.J. A rapid method for total lipid extraction and purification. Can. J. Biochem. Physiol, 1959, vol. 37, no. 8, pp. 911918. doi: 10.1139/o59-099.
  14. Skladnev D.A., Mosin O.V., Egorova T.A. et al. [Metilotrofny bacteria – sources izotopno marked 2H- and 13C-amino acids]. Biotechnologiya [Biotechnology], 1996, no. 5, pp. 2534. (In Russ.).
  15. Karnaukhova E.N., Mosin O.V., Reshetova O.S. Biosynthetic production of stable isotope labeled amino acids using methylotroph Methylobacillus flagellatum. Amino Acids, 1993, vol. 5, no. 1, pp. 125.
  16. Mosin O.V., Skladnev D.A., Shvets V.I. Biosynthesis of 2H-labeled phenylalanine by a new methylotrophic mutant Brevibacterium methylicum. Bioscience, biotechnology, and biochemistry, 1998, vol. 62, no. 2, pp. 225229.
  17. Cohen J.S., Putter I. The isolation of deuterated amino acids. Biochim. Biophys. Acta, 1970, vol. 222, pp. 515520. doi: 10.1016/0304-4165(70)90143-1.
  18. Penke B., Ferenczi R., Kovács K. A new acid hydrolysis method for determining tryptophan in peptides and proteins. Analytical Biochemistry, 1974, vol. 60, no. 1, pp. 4550. doi: 10.1016/0003-2697(74)90129-8.
  19. Egorova T.A., Mosin O.V., Eremin S.V., Karnauchova E.N., Zvonkova E.N., Shvets V.I. [Division of amino acids of proteinaceous hydrolyzates natural object by VEZhH method in the form of a karbobenzoksa of derivatives]. Biotechnologiya [Biotechnology], 1993, no. 8, pp. 2125. (In Russ.).
  20. Mosin O.V., Ignatov I. [Biological impact of a deuterium on prokariot and eukariot cages]. Razrabotka i registraziya lekarstvennych sredstv [Development and registration of medicines], 2014, vol. 2, no. 7, pp. 122131. (In Russ.).
 

E. V. Shreyner1,2, O. A. Keltsieva1, V. E. Shustov1, N. G. Sukhodolov1,3, V. V. Shilovskih3,
A. Yu. Shirkin1, M. L. Alexandrova2, Z. A. Jakovskaya4, E. P. Podolskaya1,2,4

DEVELOPMENT OF NEW METAL-CHELATE SORBENT BASED
ON STEARATE NICKEL(II)

"Nauchnoe Priborostroenie", 2015, vol. 25, no. 4, pp. 19—24.
doi: 10.18358/np-25-4-i1924
 

The work is devoted to the preparation and characterization of new metal-chelate sorbent based on stearate nickel(II). The collapsed structure on the basis of nickel stearate have been received by the method of Langmuir–Blodgett. Its surface properties have been studied: data obtained on the structure surfaces using scanning electron microscopy, the zeta potential is determined by the Helmholtz–Smoluchowski theory without introducing amendments. Also the sorption properties of the new sorbent have been investigated: the sorption isotherm of albumin chicken on metal-chelate sorbent based nickel stearate have been shown. Also, it have been presented that these structures have the necessary surface and sorption properties for their use during the sample preparation of toxic substances containing in its composition different active heteroatoms. As such compounds, we selected the widely used pesticides: nitrogen (glyphosate and its major metabolite aminomethylphosphonic acid) and chlorine (main persistent organic pollutant – dieldrin). Also the method of inductively coupled plasma mass spectrometry and gas chromatography with electron capture detector have been used in our study.
 

Keywords: metal-affinity chromatography, metal-chelate sorbent, film of Lengmur–Blodzett, analysis of the pesticides

Author affiliations:

1Institute for Analytical Instrumentation of RAS, Saint- Petersburg, Russ.
2Institute of Toxicology, Saint- Petersburg, Russ.
3Saint-Petersburg State University, Russ.
4Research Center for Ecological Safety, Saint- Petersburg, Russ.

 
Contacts: Shreyner Ekaterina Vladimirovna, shreyner.ekaterina@gmail.com
Article received in edition: 9.10.2015
Full text (In Russ.) >>

REFERENCES

  1. Keltsieva O.A., Gladilovich V.D., Podolskaya E.P. [Immobilized metal ion affinity chromatography (IMAC). Principle and applications]. Nauchnoe Priborostroenie [Science Instrumentation], 2013, vol. 23, no. 1, pp. 74—85. (In Russ.).
  2. Lv G.S., Hua G.C., Fu X.Y. Expression of milk-derived antihypertensive peptide in Escherichia coli. J. Dairy Sci., 2003, vol. 86, pp. 1 927—1 931. doi: /10.3168/jds.S0022-0302(03)73779-5.
  3. Stasyk T., Huber L.A. Zooming in: Fractionation strategies in proteomics. Proteomics, 2004, vol. 4, pp. 3 704—3 716. doi: /10.1002/pmic.200401048.
  4. Cheung R.F., Wong J.H. Tzi B.N. Immobilized metal ion affinity chromatography:a review on its applications. Appl. Microbiol Biotechnol., 2012, vol. 96. pp. 1 411—1 420. doi: 10.1007/s00253-012-4507-0.
  5. Mateo C., Fernández-Lorente G., Cortés E., et al. One-step purification, covalent immobilization, and additional stabilization of poly-His-tagged proteins using novel heterofunctional chelate-epoxy supports. Biotechnology and Bioengineering, 2001, vol. 76, no. 3, pp. 269—276. doi: 10.1002/bit.10019.
  6. Lorena O.-M. L., Benavente F., Medina-Casanellas S., et al. Study of immobilized metal affinity chromatography sorbents for the analysis of peptides by on-line solid-phase extraction capillary electrophoresis-mass spectrometry. Electrophoresis, 2015, vol. 36, no. 6, pp. 962—970. doi: 10.1002/elps.201400374.
  7. Porath J., Carlsson J., Olsson I., Belfrage G. Metalchelate affinity chromatography. A new approach to protein fractionation. Nature, 1975, vol. 258, pp. 598—599.
  8. Koval'chuk M.V., Klechkovskaya V.V., Feygin L.A. [The Lengmyur – Blodzhett molecular designer]. Priroda [The Nature], 2003, vol. 11, pp. 11—19. (In Russ.).
  9. Suchodolov N.G., Gladilovich V.D., Kolonizkiy P.D. et al. [Study of electrokinetic properties of regular multimolecular sorbent based on trivalent metals stearates]. Nauchnoe Priborostroenie [Science Instrumentation], 2013, vol. 23, no. 1. pp. 123—129. (In Russ.).
  10. Keltsieva O.A., Gladilovich V.D., Prusakov A.N. et al. [Regular multimolecular sorbents (RMMS). The obtaining and the study of surface and sorption properties]. Nauchnoe Priborostroenie [Science Instrumentation], 2012, vol. 22, no. 4. pp. 50—55. (In Russ.).
  11. Gladilovich V.D., Shreyner E.V., Dubrovskiy Ya.A. et al. [Study of the specific properties of multimolecular regular sorbent Fe(III)]. Nauchnoe Priborostroenie [Science Instrumentation], 2013, vol. 23, no. 1, pp. 106—114. (In Russ.).
 

A. S. Pugachuk, Yu. A. Borisov, A. V. Chernyshev

EXPERIMENTAL DETERMINATION COEFFICIENTS HYDRAULIC RESISTANCE OF THE WORKERS CELL SYSTEMS OF VACUUM SEPARATION

"Nauchnoe Priborostroenie", 2015, vol. 25, no. 4, pp. 25—30.
doi: 10.18358/np-25-4-i2530
 

Consider the problem modeling workflows in sample preparation installations. For modeling workflows are needed values of hydraulic resistance in porous bodies the cell, which are determined using the experimental study flow of working fluid through the cell with the sorbent in install vacuum separation. Presents a methodology for the experiment, which reduces the impact of sorption on the work processes in installations vacuum separation and allows to determine the initial values of hydraulic resistance in the cell. Determine the initial hydraulic resistance of working cells in installations vacuum separation of DNA. Obtained experimental data can be used to create a mathematical model working processes, allowing to develop a highly efficient equipment for vacuum separation.
 

Keywords: sample preparation, separation, extraction DNA, sorption

Author affiliations:

Bauman Moscow State Technical University, Russia

 
Contacts: Pugachuk Aleksandr Sergeevich, pugachukalexandr@mail.ru
Article received in edition: 23.09.2015
Full text (In Russ.) >>

REFERENCES

  1. Pugachuk A.S., Gubinskaya T.A., Chernyshev A.V. [The pilot study of a current of liquid through working cells of pneumovacuum installation of sample preparation]. Inzhenernyy vestnik. Elektronnyy zhurnal "Nauka i obrazovanie" [Engineering messenger. Electronic magazine "Science and education"], "MGTU im. N.E. Baumana", Publ., no. 12, December 2014. URL: http://engbul.bmstu.ru/doc/749508.html.  ISSN 2307-0595. (In Russ.).
  2. Pugachuk A.S., Chernyshev A.V. [Research of process of a two-phase current of mix in installation of vacuum separation of DNA]. Inzhenernyy zhurnal: Nauka i innovazii. Elektronnyy zhurnal [Engineering magazine: Science and innovations. Electronic magazine], "MGTU im. N.E. Baumana" Publ., 2013, no. 5. URL: http://engjournal.ru/catalog/machin/vacuum/757.html. ISSN 2308-6033. (In Russ.).
  3. Pugachuk A.S., Chernyshev A.V. [Research of nonuniformity of working processes in installations for preparation of tests of DNA]. Medizinskaya technika [Medical equipment], 2015, no. 4, pp. 32–36. (In Russ.).
  4. Pugachuk A.S., Chernyshev A.V. Ustanovka vakuumnoy separazii [Device of vacuum separation]. Patent RF Ή 149159, G01N 33/553, 20.12.2014. Bull. Ή 35.
    URL: http://www1.fips.ru/Archive/PAT/2014FULL/2014.12.20/Index_ru.htm. (In Russ.).
 

N. A. Esikova1, G. E. Rudnitskaja1, A. A. Evstrapov1,2

THE RESEARCH OF PMMA BONDING WITH ELASTOMER
(SYLGARD-184, SILASTIK T-4) FOR MICROFLUIDIC DEVICES

"Nauchnoe Priborostroenie", 2015, vol. 25, no. 4, pp. 31—35.
doi: 10.18358/np-25-i3135
 

Irreversible bonding of PMMA with PDMS Sylgard-184 and silastic T-4 for microfluidic devises may be created by silane chemistry. Silastic T-4 usage gives an opportunity to silanise only PMMA to seal plates. For Sylgard-184 application the treatment of both plates is necessary. Bonding stability was tested by cyclic (45 cycles) temperature changing between 60 and 95 °C. It was experimentally shown that silastic T-4 didn’t have an influence on PCR. So this material may be used in analytical devices invention for molecular diagnosis.
 

Keywords: polymethylmethacrylate, polydimethylsiloxane, silastic T-4, irreversible bonding, silane chemistry, polymerase chain reaction

Author affiliations:

1Institute for Analytical Instrumentation of RAS, Saint- Petersburg, Russia
2ITMO University, Saint-Petersburg, Russia

 
Contacts: Esikova Nadezhda Aleksandrovna, elpis-san@yandex.ru
Article received in edition: 29.07.2015
Full text (In Russ.) >>

REFERENCES

  1. Li P.C.H. Microfluidic Lab-on-a-Chip for Chemical and Biological Analysis and Discovery. CRC Press, 2005. 528 p. doi: 10.1201/9781420027457.
  2. Evstrapov A.A., Lukashenko T.A., Gornyy S.G. et al. [Microfluid chips from polymethyl methacrylate: method of a laser ablyation and thermal binding]. Nauchnoe Priborostroenie [Science Instrumentation], 2005, vol. 15, no. 2, pp. 72—81.
  3. Gu P., Liu K., Chen H. et al. Chemical-assisted bonding of thermoplastics/elastomer for fabricating microfluidic valves. Anal Chem., 2011, vol. 83, no. 1, pp. 446—452. doi: 10.1021/ac101999w.
  4. Kim K., Park S.W., Yang S.S. The optimization of PDMS-PMMA bonding process using silane primer. BioChip J., 2010, vol. 4, no 2, pp. 148—154. doi: 10.1007/s13206-010-4210-0.
  5. Tang L., Lee N.Y. A facile route for irreversible bonding of plastic-PDMS hybrid microdevices at room temperature. Lab. Chip, 2010, vol. 10, no. 10, pp. 1 274—1 280. doi: 10.1039/b924753j.
 

V. E. Kurochkin, B. P. Sharfarets, E. B. Sharfarets

A REVIEW OF MATHEMATICAL MODELS DESCRIBING THE TRANSPORT OF SOLUTES AND SINGLE PARTICLES IN FLUID FLOW

"Nauchnoe Priborostroenie", 2015, vol. 25, no. 4, pp. 36—42.
doi: 10.18358/np-25-4-i3642
 

Discusses some mathematical models describing the transport of dispersed mixture and single particles in fluid flow. In relation to the movement of single particles under certain conditions, when the shift of the trajectory relative to the main fluid flow can be neglected. Noted the relative simplicity and usefulness of the of mass transfer theory of solutes in dilute solutions.
 

Keywords: fluid flow, solvent, solute, dispersed mixture, transport of solute, particle transport

Author affiliations:

Institute for Analytical Instrumentation RAS, Saint-Petersburg, Russian Federation

 
Contacts: Sharfarets Boris Pinkusovich, sharb@mail.ru
Article received in edition: 7.07.2015
Full text (In Russ.) >>

REFERENCES

  1. Rachmatulin Ch.A. [Fundamentals of gas dynamics of the interpenetrating movements of the squeezed environments]. Prikladnaya matematika i mechanika [Applied mathematics and mechanics], 1956, vol. 20, no. 2, pp. 184—195. (In Russ.).
  2. Truesdell C. The Rational Mechanics of Materials (ed. by C. Truesdell), 1965, New York, London, Gordon&Breach Science Publisher.
  3. Truesdell C., Toupin R.A. Handbuch der Physik. Bd III/1, S. 226 (ed. S. Flügge), 1960, Berlin, Heidelberg, Springer.
  4. Nigmatulin R.I. Osnovy mechaniki geterogennych sred [Bases of mechanics of heterogeneous environments], Moscow, Nauka Publ., 1978. 336 p. (In Russ.).
  5. Nigmatulin R.I. Dinamika mnogofaznych sred [Dynamics of multiphase environments], Part I. Moscow, Nauka Publ., 1987. 464 p. (In Russ.).
  6. Nigmatulin R.I. Dinamika mnogofaznych sred [Dynamics of multiphase environments], Part II. Moscow, Nauka Publ., 1987. 360 p. (In Russ.).
  7. Pilyugin N.N., Tirskiy G.A. Dinamika ionizirovannogo izluchayuschego gaza [Dynamics of the ionized radiating gas], Moscow, MGU Pupl., 1989. 311 p. (In Russ.).
  8. Manninen M., Taivassalo V. and Kallio S. On the mixture model for multiphase flow. Technical Research Center of Finland (VTT), 1996. 67 p.
  9. Crowe C., Sommerfeld M. and Tsuji Y. Multiphase flows with droplets and particles. CRC Press, 1998. 471 p.
  10. Shrayber A.A., Gavin L.B., Naumov V.A., Yazenko V.P. Turbulentnye techeniya gazovzvesi [Turbulent flows of a gas-suspension]. Moscow, Nauka Publ., 1987. 239 p. (In Russ.).
  11. Soo S.L. Fluid dynamics of multiphase systems. Waltham, MA, Blaisdell Pub. Co., 1967. 524 p.
  12. Druzhinin O.A. Issledovanie dinamiki vichrevych potokov i voln v dispersnych i stratifizirovannych sredach. Dokt. Diss. [Research of dynamics of vortex streams and waves in the disperse and stratified environments. Dokt. Diss.]. Nizhniy Novgorod, IPF RAN, 2004. 300 p. (In Russ.).
  13. Maxey M.R., Riley J.J. Equation of motion for small rigid sphere in a non-uniform flow. Phys . Fluids., 1983, no. 26, pp. 883—889.
  14. Landau L.D., Lifshiz E.M. Teoreticheskaya fizika. T. 6. Gidrodinamika [Theoretical physics. Vol. 6. Hydrodynamics], Moscow, Nauka Publ., 1988. 736 p. (In Russ.).
  15. Maxey M.R. On the advection of spherical particles in a non-uniform flow. Phil . Trans . R. Soc. of London, A 333, 1990, no. 1631, pp. 289—307. doi: 10.1063/1.864230.
  16. Bruus H. Theoretical Microfluidics. Oxford University Press., 2008. 346 p.
  17. N'yumen Dzh. Elektrochimicheskie sistemy [Electrochemical systems]. Moscow, Mir Publ., 1977. 464 p. (In Russ.).
  18. Sharfarets B.P. [An overview of the theory of transport phenomena and surface phenomena in relation to the solution of some problems of analytical instrumentation]. Nauchnoe priborostroenie [Scientific Instrumentation], 2015, vol. 25, no. 3, pp. 45—64. doi: 10.18358/np-25-3-i4564 .
 

B. P. Sharfarets, V. E. Kurochkin

TO THE QUESTION OF MOBILITY OF PARTICLES AND MOLECULES IN POROUS MEDIA

"Nauchnoe Priborostroenie", 2015, vol. 25, no. 4, pp. 43—55.
doi: 10.18358/np-25-4-i4355
 

Here presented brief review of conservation equations when filtering liquids in porous substance: the conservation of momentum, energy and mass. Are the laws of filtration Darcy, Forchheimer and Brinkman. Given the standard boundary conditions for solving problems of filtration. Expressions for the calculation of the mobility of the particles, molecules and ions at different filtration processes in a general porous medium during filtration, satisfying the Darcy's law, are proposed. We also consider the number of applied questions related to this subject: the current magnitude in the pore medium, stationary temperature field in a circular capillary, containing a porous medium, the formula for determining the hydrodynamic radius of the molecule (radius, Stokes–Einstein) is given. Considered other supporting issues. The results can be extended to other laws of the filtering, differ from Darcy's law The obtained results enable to improve the synthesis of separation schemes, in which porous fillers are used.
 

Keywords: porous media, conservation laws, Darcy's law, Brinkman law, mobility in porous media, hydrodynamic radius of the molecule

Author affiliations:

 
Contacts: Sharfarets Boris Pinkusovich, sharb@mail.ru
Article received in edition: 16.09.2015
Full text (In Russ.) >>

REFERENCES

  1. Bruus H. Theoretical microfluidics. Oxford, University Press, 2008. 346 p.
  2. N'yumen Dzh. Elektrochimicheskie sistemy [Electrochemical systems]. Moscow, Mir Publ., 1977. 464 p. (In Russ.).
  3. Duchin S.S., Deryagin B.V. Elektroforez [Elektroforez]. Moscow, Nauka Publ., 1976. 328 p. (In Russ.).
  4. Leont'ev N.E. Osnovy teorii fil'trazii [Bases of the theory of a filtration]. Moscow, MGU Publ., 2009. 87 p. (In Russ.).
  5. Bear J. Dynamics of fluids in porous media. N-Y, London, Amsterdam, American Elsevier Publ. Comp, 1972. 764 p.
  6. Nield D.A., Bejan A. Convection in porous media. N-Y, Springer, 2013. 778 p.
  7. Kambiz Vafai, Ed. Handbook of porous media. 2-d edition. CRC Press, 2005. 744 p. doi: 10.1201/9780415876384.
  8. Dullien F.A.L. Porous Media Fluid Transport and Pore Structure. London, Academic Press, 1979. 396 p.
  9. Lykov A.V. Yavleniya perenosa v kapillyarno-poristych telach [The transfer phenomena in capillary and porous bodies]. Moscow, ITTL Publ., 1954. 296 p. (In Russ.).
  10. Serrin Dzh. Matematicheskie osnovy klassicheskoy mechaniki zhidkosti [Mathematical bases of classical mechanics of liquid]. Moscow, Izd. Inostrannoy Literatury, 1963. 256 p.
  11. Landau L.D., Lifshiz E.M. Teoreticheskaya fizika. T. 6. Gidrodinamika [Theoretical physics. V. 6. Hydrodynamics]. Moscow, Nauka Publ., 1986. 736 p.
  12. Sharfarets B.P., Kurochkin V.E. [To the question about the definition of a stationary temperature field in the capillary during the passage of electric current and the change in water concentration of impurities in the temperature field]. Nauchnoe Priborostroenie [Science Instrumentation], 2015. vol. 25, no. 2, pp. 53—60. doi: 10.18358/np-25-2-i5360. (In Russ.).
 

V. V. Manoylov1,2, I. V. Zarutsky1, N. S. Fomina3, A. V. Nikolaev4, V. A. Lednyov1, B. M. Voronin1

THE SPECIALIZED MASS-SPECTROMETER FOR ARCHAEOLOGICAL GOLD DATING BY RADIOGENIC HELIUM TRACES

"Nauchnoe Priborostroenie", 2015, vol. 25, no. 4, pp. 56—60.
doi: 10.18358/np-25-4-i5660
 

The determinations of the mass spectrum, the charge and energy spectra of heavy particles and electrons emitted by solids when they are acted upon by particle and laser beams are effective method in studying physicochemical properties of solids. The paper considers the possibility of developing combined high energy resolution electron and mass spectrometers for research into solids. The spectrometers must have a relative high energy resolution. The device consists of a particle (ions and electrons) source converting particle energy spectrum into the mass spectrum, and energy analyzer with two-dimensional electrostatic field and plane of symmetry. The sources of beams exciting the surface of the sample under study are independent and not considered in the paper. The mathematical simulation of the device performance confirms the realizability of the method suggested.
 

Keywords: mass spectrometer, mass spectrum, archaeological gold, electron ionization, geochronology, helium, 4He, α-particle

Author affiliations:

1Institute for Analytical Instrumentation of RAS, Saint- Petersburg, RF
2ITMO University, Saint-Petersburg, RF
3Ioffe Institute, RAS, Saint-Petersburg, RF
4Joint-Stock Company "Scientific Instruments", Saint-Petersburg, RF

 
Contacts: Manoylov Vladimir Vladimirovich, manoilov_vv@mail.ru
Article received in edition: 29.10.2015
Full text (In Russ.) >>

REFERENCES

  1. Sokolova T.V., Paszkowskii I.E. [Examination of artistic products]. M : Forum, 2008, 104 p. (In Russ.).
  2. Kossolapov A.I. [ Some aspects of the examination of the historical metal] Gornyi Journal, 2004, A special issue devoted to the State Hermitage, no 1, pp. 76—79. (In Russ.).
  3. Shukolyukov Yu.A. The clocks for billion years. Atomizdat Publ., 1977. 192 p. (In Russ.).
  4. Shukolyukov Yu.A., Yakubovich O.V. Rytsk E.Yu. [On the possibility of isotope dating of native gold U-Th-He method]. Dokl.AN, 2010, vol. 430, no 2, pp. 243—247. (In Russ.).
  5. Gerling E.K. [The heat diffusion of helium as a criterion for the minerals to determine the age of the helium method]. Dokl .AN, 1939, vol. 24, no 6, pp. 570—573. (In Russ.).
  6. Eugster O., Hofmann B., Krahenbuhl U., et. al. Noble gases in Alpine gold: U-Th-He dating and excesses of radiogenic He and Ar. Meteoritics, 1992, vol. 27, no 3, pp. 219—220.
  7. Eugster O., Niedermann S., Thalmann C. et al. Noble gases, K, U, Th, and Pb in native gold. J. Geophys. Res., 1995, vol. 100, no. B12, pp. 677—689.
  8. Yakubovich O.V., Shukolyukov Y.A., Kotov A.B., et al. [U-Th-He dating of native gold: the first results, problems and perspectives]. Petrologiya [Petrology], 2014, vol. 22, no 5, pp. 460—468. doi: 10.7868/S0869590314050082. (In Russ.).
  9. Kossolapov A.J., Ivanov A.P., Kuznetsov P.B. Authenticating historical gold using the U-He radiogenic clock. Bulletin of Miho museum, 1999, vol. 2, no 4, pp. 1—9.
 

E. E. Mayorov1, A. C. Mashek2, S. V. Udakhina1, G. A. Tsygankova2, G. G. Chaydarov3, T. A. Chernyak1

ALGORITHMS OF PROCESSING OF THE INFORMATION SIGNAL OF THE COMPUTER INTERFERENCE CONTROL SYSTEM OF NON-SMOOTH SURFACES

"Nauchnoe Priborostroenie", 2015, vol. 25, no. 4, pp. 61—66.
doi: 10.18358/np-25-4-i6166
 

The article a computer interference control system of non-smooth surfaces (variations of the relief), and advantages over traditional control systems are presented. Algorithms of processing of the interference signal according to the method of differentiation and the method of squares are conducted. The mathematical expression that gives information about the distance to the measured surface of the object is received. Optoelectronic computer processing of the interference signal, the block diagram of the synchronization and generation of control signals are considered. Description of computer interference and formation of the desired information on the surface topography of the object are considered. Algorithmic processing of the information signal of the system as an effective tool for the control of the surface shape of the object are presented.
 

Keywords: computer system interference, Doppler frequency, synchronization, reference mirror, surface relief

Author affiliations:

1Saint-Petersburg University of Management and Economics , RF
2Naval Polytechnical Institute, Pushkin, RF
3Saint Petersburg State Technological Institute (technical university), RF

 
Contacts: Mayorov Evgeniy Evgen'evich, majorov_ee@mail.ru
Article received in edition: 20.10.2015
Full text (In Russ.) >>

REFERENCES

  1. Mayorov E.E., Prokopenko V.T. Interferometriya diffuzno otrazhayuschich ob'ektov [Interferometry diffuzno the reflecting objects]. Saint-Petersburg, NIU ITMO Publ., 2014. 193 p. (In Russ.).
  2. Mayorov E.E., Prokopenko V.T. [Study of the speckle structure influence on the formation of the interference signal and measurement error]. Nauchnoe Priborostroenie [Science Instrumentation], 2013, vol. 23, no. 2, pp. 38—46. (In Russ.).
  3. Mayorov E.E. [Method of elimination of influence of a decorrelation of spekl-fields on the accuracy of measurements and dynamic range of an interferential signal]. Nauchnoe obozrenie [Scientific review], 2013, no. 9, pp. 329—332. (In Russ.).
  4. Mayorov E.E., Prokopenko V.T., Ushveridze L.A. [Optimization of dynamic parameters of the optical probe of trigger type]. Nauchno-technicheskiy vestnik informazionnych technologiy, mechaniki i optiki [Scientific and technical messenger of information technologies, mechanics and optics], 2012, vol. 78, no. 2, pp. 13—16. (In Russ.).
  5. Mayorov E.E., Mashek A.Ch., Prokopenko V.T., Chistya-kova N.Ya. [Research of metrological characteristics of a measuring optical-mechanical head]. Izv. vuzov. Priborostroenie [News of higher education institutions. Instrument making], 2012, vol. 55, no. 7, pp. 59—65. (In Russ.).
  6. Mayorov E.E., Prokopenko V.T., Ushveridze L.A. [Calculation of parameters of scanning of the interferometrichesky monitoring system of a form diffuzno the reflecting objects]. Pribory [Devices], Moscow, SOO "MNTOP i M" Publ., 2012, vol. 145, no. 7, pp. 23—25. (In Russ.).
  7. Mayorov E.E., Mashek A.Ch., Prokopenko V.T., Chaydarov G.G. [Application of a cross and shift interferometry in a holographic interferometry for control diffuzno the reflecting objects]. Vestnik Sankt-Peterburgskogo universiteta. Ser. 4: Fizika, chimiya [Bulletin of the St. Petersburg university. Ser. 4: Physics, chemistry], 2012, no. 4, pp. 31—35. (In Russ.).
  8. Mayorov E.E., Prokopenko V.T. [Use of two-frequency radiation for realization of the principles of a heterodyne holographic interferometry with one basic bunch]. Izvestiya vysshich uchebnych zavedeniy. Priborostroenie [News of higher educational institutions. Instrument making], 2012, vol. 55, no. 12, pp. 43—45. (In Russ.).
  9. Mayorov E.E., Prokopenko V.T., Sherstobitova A.S. [Research of optical-electronic system of interpretation of holographic interferograms]. Opticheskiy zhurnal [Optical Journal], 2013, vol. 80, no. 3, pp. 47—51. (In Russ.).
 

M. O. Iskandarov1, A. A. Nikitichev1, M. A. Sverdlov2, A. L. Ter-Martirosyan2,3

DIODE-PUMPED SOLID-STATE LASERS NEAR IR RANGE

"Nauchnoe Priborostroenie", 2015, vol. 25, no. 4, pp. 67—70.
doi: 10.18358/np-25-4-i6770
 

A prototype models of diode-pumped solid state laser emitting in near IR spectral range has been developed: 1.06 ΅m on crystal Nd:YAG and 1.57 ΅m on the base of parametric frequency conversion of laser radiation on crystal KTP. Laser output energy of 80 mJ at wavelength 1.06 ΅m and 25 mJ at wavelength 1.57 ΅m, pulse duration of 10 ns and repetition rate up to 25 Hz were obtained. Lasers are unified by the power supply, control and overall dimensions, resistant to external factors.
 

Keywords: Q-switched solid-state laser, diode pumping, parametric interaction

Author affiliations:

1Ltd "Quantum Optics" , Saint-Petersburg, Russia
2JSC "ATC-Semiconductor Devices", Saint-Petersburg, Russia
3ITMO University, Saint-Petersburg, Russia

 
Contacts: Ter-Martirosyan Aleksandr Leonovich, ter@atcsd.ru
Article received in edition: 29.07.2015
Full text (In Russ.) >>

REFERENCES

  1. Stepanov A.I., Nikitichev A.A., Iskandarov M.O. Solid-state diode pumped eye-safe lasers in remote sensing and ecological monitoring systems. Proc. SPIE, 2002, vol. 4900, pp. 1085—1089. doi: 10.1117/12.484506.
  2. Zuev V.E., Krekov G.M. Opticheskie modeli atmosfery [Optical models of the atmosphere]. Leningrad, Gidrometeoizdat Publ., 1986. 256 p. (In Russ.).
  3. Iskandarov M.O., Nikitichev A.A., Sverdlov M.A., Ter-Martirosyan A.L. [Diode pumped solid state eye safe laser]. Nauchnoe Priborostroenie [Science Instrumentation], 2015, vol. 25, no. 3, pp. 124—126. doi: 10.18358/np-25-3-i124126. (In Russ.).
 

CONTENTS OF VOLUME 25

"Nauchnoe Priborostroenie", 2015, vol. 25, no. 4, pp. 71—78.
 

NUMBER 1

INSTRUMENT MAKING FOR BIOPHYSICS AND BIOCHEMISTRY (pp. 3–35)
PHYSICS OF INSTRUMENT MAKING (pp. 36–47)
MATHEMATICAL METHODS AND MODELLING IN INSTRUMENT MAKING (pp. 48–102)
 

NUMBER 2

SYSTEM ANALYSIS OF MEASURING DEVICES AND METHODS (pp. 3–33)
DEVELOPMENT OF MEASURING DEVICES AND SYSTEMS (pp. 34–52)
MATHEMATICAL METHODS AND MODELLING IN INSTRUMENT MAKING (pp. 53–90)
PHYSICS AND CHEMISTRY OF INSTRUMENT MAKING (pp. 91–112)
 

NUMBER 3

PHYSICS OF INSTRUMENT MAKING (pp. 3–64)
INSTRUMENT MAKING OF PHYSICAL AND CHEMICAL BIOLOGY (pp. 65–109)
DEVELOPMENT OF MEASURING DEVICES AND SYSTEMS (pp. 110–123)
SHORT MESSAGE (pp. 124–126)
 

NUMBER 4

PHYSICS AND CHEMISTRY OF INSTRUMENT MAKING (pp. 3–35)
MATHEMATICAL METHODS AND MODELLING IN INSTRUMENT MAKING (pp. 36–55)
DEVELOPMENT OF MEASURING DEVICES AND SYSTEMS (pp. 56–70)
 
Volume 25 table of contents (pp. 71–78)
The author’s index of volume 25 (pp. 79–80)

Full text (In Eng.) >>

 

AUTHOR'S INDEX OF VOLUME 25

"Nauchnoe Priborostroenie", 2015, vol. 25, no. 4, pp. 79–80.

Full text (In Eng.) >>

Averin I. A. — N 3
Aldekeeva A. S. — N 2
Alexandrova M. L. — N 4
Alekseev D. N. — N 1
Arseniev A. N. — N 1
Bakhtiarov A. V. — N 1
Belchenko G. V. — N 1
Belousov K. I. — N 1, 3
Berdnikov A. S. — N 1, 2
Borisov Yu. A. — N 4
Bukatin A. S. — N 1, 3
Bulatov A. V. — N 2
Chaydarov G. G. — N 4
Chernyak T. A. — N 4
Chernyshev A. V. — N 4
Demenkov P. V. — N 3
Demenkov V. G. — N 3
Dvorzov D. V. — N 2
Diachenko S. V. — N 1
Ermakov S. M. — N 2
Esikova N. A. — N 4
Evstrapov A. A. — N 1, 3, 4
Falkova M. T. — N 2
Fomina N. S. — N 1, 4
Gall L. N. — N 1
Gavrik M. A. — N 1
Ignatov I. — N 4
Iskandarov M. O. — N 3, 4
Jakovskaya Z. A. — N 4
Kaminski V. V. — N 3
Kazakov S. A. — N 3
Keltsieva O. A. — N 4
Klimova N. B. — N 1
Knyazkov N. N. — N 2
Kochelaev E. A. — N 2
Kolonitskiy P. D. — N 2
Kolosnitsyn V. S. — N 2
Korneva N. A. — N 2

Koriakin P. S. — N 1, 2
Kotelnikov G. V. — N 2
Krasnov I. A. — N 1, 2
Krasnov M. N. — N 1, 2, 3
Krasnov N. V. — N 1, 2, 3
Krasnova N. K. — N 2
Kretinina A. V. — N 1
Kukhtevich I. V. — N 1, 3
Kurnin I. V. — N 1, 3
Kurochkin V. E. — N 2, 4
Kuzmina E. V. — N 2
Lednyov V. A. — N 4
Lychagin A. A. — N 3
Makarova E. D. — N 2
Maximov S. I. — N 1
Manoylov V. V. — N 4
Mashek A. C. — N 4
Mayorov E. E. — N 4
Mochalov S. E. — N 2
Moiseyeva S. P. — N 2
Monakov A. G. — N 1
Mosin O. V. — N 4
Moskvin A. L. — N 2
Moskvin L. N. — N 2
Mozgushin I. A. — N 2
Muradymov M. Z. — N 1, 2, 3
Myaldzin Sh. U. — N 1
Nikitichev A. A. — N 3, 4
Nikitina S. N. — N 1
Nikolaev A. V. — N 4
Nurgaliev A. R. — N 2
Parfenov V. A. — N 2
Pashkov O. V. — N 3
Pavlov V. G. — N 1
Petrov D. G. — N 2
Podolskaya E. P. — N 1, 2, 4
Pomozov T. V. — N 3
Posmitnaya Y. S. — N 3

Prisyach S. S. — N 1
Pugachuk A. S. — N 4
Rudnitskaja G. E. — N 4
Rukavishnikova A. I. — N 2
Samokish A. V.— N 1
Savelyev S. K. — N 1
Semenov S. Yu. — N 1
Semenov V. G. — N 1
Sharenkova N. V. — N 3
Sharfarets B. P. — N 1, 2, 3, 4
Sharfarets E. B. — N 1, 2, 4
Shevchenko S. I. — N 3
Shilovskih V. V. — N 4
Shirkin A. Yu. — N 4
Shishov A. Y. — N 2
Shreyner E. V. — N 4
Shustov V. E. — N 2, 4
Shvets V. I. — N 4
Soloviev S. M. — N 3
Sukhodolov N. G. — N 4
Sverdlov M. A. — N 3, 4
Ter-Martirosyan A. L. — N 3, 4
Tsygankova G. A. — N 4
Tyminski G. — N 4
Udakhina S. V — N 4
Vakh Ch. S. — N 2
Varekhov A. G. — N 1, 3
Verenchikov A. N. — N 3
Volchek A. O. — N 2
Voronin B. M. — N 4
Yavor M. I. — N 3
Zarutsky I. V. — N 4
Zhernovoy A. I. — N 1
Zhuravlev B. V. — N 3
Zvereva A. V. — N 1

Ulitsa Ivana Chernykh, 31-33, lit. A, St. Petersburg, Russia, 198095, P.O.B. 140
tel: (812) 3630719, fax: (812) 3630720, mail: iap@ianin.spb.su

content: Valery D. Belenkov design: Banu S. Kuspanova layout: Anton V. Manoilov