logo
blue band <-
  JOURNAL "NP" ISSUES

"Nauchnoe Priborostroenie", 2015, Vol. 25, no. 2, ISSN 2312-2951, DOI: 10.18358/np-25-2-894

"NP" 2015 year Vol. 25 ¹2,  ABSTRACTS

ABSTRACTS, REFERENCES

A. V. Bulatov, À. L. Moskvin, L. N. Moskvin, Ch. S. Vakh, Ì. Ò. Falkova, À. Y. Shishov

AUTOMATION AND MINIATURIZATION OF CHEMICAL ANALYSIS ON THE PRINCIPLES OF FLOW METHODS (REVIEW)

"Nauchnoe Priborostroenie", 2015, vol. 25, no. 2, pp. 3—26.
doi: 10.18358/np-25-2-i326
 

The main trends, principles and capabilities of the known flow methods are presented. The significance of flow methods in the development of "green analytical chemistry" as well as implemented method of determination are discussed. Particular attention is paid to the stage of sample preparation which includes separation and preconcentration. The application of flow methods for the automation of environmental, pharmaceutical and radiochemical analysis is presented.
 

CONTENTS

  Introduction
  1. Trends and analytical capabilities of flow methods
  2. Separation and concentration methods implemented on the principles of flow analysis
  3. Application of flow analysis
  Conclusion
  References

 
Keywords: methods, automation, miniaturization, flow analysis, radiochemical analysis, environmental analysis, pharmaseutical analysis

Author Affiliations:

Saint-Petersburg State University, Institute of Chemisrty, Saint-Petersburg, Russia
 

Contacts: Bulatov Andrey Vasil'evich, e-mail: bulatov_andrey@mail.ru

Article received in edition: 30.03.2015

Full text (In Russ.) >>

REFERENÑES

  1. Shpigun L.K. [Flowing and injection analysis]. Zhurnal analit. Chimii [Journal of analytical chemistry], 1990, vol. 45, nu. 6, pp. 1045–1091. (In Russ.).
  2. Zolotov Yu.A., ed. Protochnyy chimicheskiy analiz [Flowing chemical analysis]. Moscow, Nauka Publ., 2014. 428 p. (In Russ.).
  3. Zolotov Yu.A. [Laboratories on a microchip, on the crane, in a capillary. Where still?]. Zhurnal analit. Chimii [Journal of analytical chemistry], 2012, vol. 67, no. 9, pp. 827–827. (In Russ.).
  4. Melchert W.R., Reis B.F., Rocha F.R.P. Green chemistry and the evolution of flow analysis. A review. Anal. Chim. Acta, 2012, vol. 714, pp. 8–19. doi: 10.1016/j.aca.2011.11.044.
  5. Kolev S.D., Mckelvie I.D. Advances in flow injection analysis and related techniques. Hungary: Elsevier, 2008. 808 ð.
  6. Trojanowicz M. Advances in flow analysis. Weinheim: Wiley-VCH, 2008. 672 ð.
  7. Kuznezov V.V. [Flowing and injection analysis]. Ñîðîñîâ. îáðàçîâàò. æóðí [Educational journal of Soros], 1999, nu. 11, pp. 56–60. (In Russ.).
  8. Trojanowicz M. Flow analysis as advanced branch of flow chemistry. Mod. Chem. Appl., 2013, vol. 1, pp. 2–9. doi: 10.4172/2329-6798.1000104
  9. Hansen E.H., Miro M. How flow-injection analysis (FIA) over the past 25 years has changed our way of performing chemical analysis.Trends Anal. Chem., 2007, vol. 26, pp. 18–26. doi: 10.1016/j.trac.2006.07.010.
  10. Idris A.M. Overview of generations and recent versions of flow injection techniques. Crit. Rev. Anal. Chem., 2010, vol. 40, no. 3, pp. 150–158. doi: 10.1080/10408340903103437.
  11. Segundo M.A., Rangel A.O.S.S. A critical view of its evolution and perspectives. J. Flow Injection Anal., 2002, vol. 19, pp. 3–8.
  12. Martelli P.B., Rocha F.R.P., Gorga R.C.P., Reis B.F. A flow system for spectrophotometric multidetermination in water exploiting reagent injection. J. Braz. Chem. Soc., 2002, vol. 13, no. 5, pp. 642–646. doi: 10.1590/S0103-50532002000500016.
  13. Zenki M., Minamisawa K., Yokoyama T. Clean analytical methodology for the determination of lead with Arsenazo III by cyclic flow-injection analysis. Talanta, 2005, vol. 68, pp. 281–286. doi: 10.1016/j.talanta.2005.07.059.
  14. Ruzicka J., Marshall G.D. Sequential injection: A new concept for chemical sensors, process analysis and laboratory assays.Anal. Chim. Acta, 1990, vol. 237, pp. 329–343. doi: 10.1016/S0003-2670(00)83937-9.
  15. Gubeli T., Christian G., Ruzicka J. Fundamentals of sinusoidal flow sequential injection spectrophotometry.Anal. Chem., 1991, vol. 63, pp. 2 407–2 413. doi: 10.1021/ac00021a005.
  16. Christian G.D. Sequential injection analysis for electrochemical measurements and process analysis. Analyst, 1994, vol. 119, pp. 2 309–2 314. doi: 10.1039/an9941902309.
  17. Ruzicka J. Lab on-valve: Microflow analyzer based on sequential and bead injection. Analyst, 2000, vol. 125, pp. 1053–1060. doi: 10.1039/b001125h.
  18. Scampavia L.D., Ruzicka J. Micro-sequential injection: a multipurpose lab-on-valve for anvancement of bioanalytical assays. Anal. Sciences, 2001, vol. 17, pp. 429–430.
  19. Decuir M.S., Boden H.M., Caroll A.D., Ruzicka J. Principles of micro sequential injection analysis in the lab-on-valve format and its introduction into a teaching laboratory. J. of Flow Injection Anal., 2007, vol. 24, pp. 103–108.
  20. Vidigal S., Range A. Sequential injection lab-on-valve system for the determination of the activity of peroxidase in vegetables. J. Agric. Food Chem., 2010, vol. 58, pp. 2 071–2 075. doi: 10.1021/jf9035113.
  21. Amorim C.G., Araujo A.N., Montenegro M., Silva V.L. Sequential injection lab-on-valve procedure for the determination of amantadine using potentiometric methods. Electroanalysis, 2007, vol. 19, pp. 2 227–2 233. doi: 10.1002/elan.200703973.
  22. Chen X., Jiao J., Wang J. Determination of proteins in a mesofluidic lab-on-valve system. J. of Anal. Chem., 2008, vol. 36, pp. 1 601–1 605.
  23. Erxleben H., Ruzicka J. Atomic absorption spectroscopy for mercury, automated by sequential injection and miniaturized in lab-on-valve system. Anal. Chem., 2005, vol. 77, pp. 5 124–5 128. doi: 10.1021/ac058007s.
  24. Marshall G., Wolcott D., Olson D. Zone fluidics in flow analysis: potentialities and applications. Anal. Chim. Acta, 2003, vol. 499, pp. 29–40. doi: 10.1016/j.aca.2003.09.003.
  25. Diniz P.D., Almeida L.F., Harding D.P., Araujo M.C.U. Flow-batch analysis. Trends Anal. Chem., 2012, vol. 35, pp. 39–49. doi: 10.1016/j.trac.2012.02.009.
  26. Mozzhuchin A.B., Moskvin A.L., Moskvin L.H. [The cyclic injection analysis — a new method of the flowing analysis]. Zhurnal analit. Chimii [Journal of analytical chemistry], 2007, vol. 62, nu. 5, pp. 527–531. (In Russ.).
  27. Falkova M.T., Pushina M.O., Bulatov A.V. et al. Stepwise injection spectrophotometric determination of flavonoids in medicinal plants. Anal. Lett., 2014, vol. 47, pp. 970–982. doi: 10.1080/00032719.2013.862806.
  28. Moskvin L.N., Bulatov A.V., Leonova S.A. et al. [Cyclic injection photometric definition of hydrogen sulfide in hydrocarbonic gases]. Zhurnal analit. Chimii [Journal of analytical chemistry], 2007, vol. 62, nu. 7, pp. 705–709. (In Russ.).
  29. Fonseca A., Raimundo I.M., Rohwedder J.J.R. et al. A microfluidic device with integrated fluorimetric detection for flow injection analysis. Anal. Bioanal. Chem., 2010, vol. 396, pp. 715–723. doi: 10.1007/s00216-009-3252-4.
  30. Ohnishi N., Satoh W., Morimoto K., Fukuda J., Suzuki H. Automatic electrochemical sequential processing in a microsystem for urea detection. Sensors and Actuators B, 2010, vol. 144, pp. 146–152. doi: 10.1016/j.snb.2009.10.048.
  31. Pons C., Forteza R., Rangel A.O.S.S., Cerda V. The application ofmulticommutated flow techniques to the determination of iron.Trends Anal. Chem., 2006, vol. 25, pp. 583–588. doi: 10.1016/j.trac.2006.04.002.
  32. Trojanowicz M., Benson R., Worsfold P. Recent developments in water quality monitoring by flow injection analysis.Trends in Anal. Chem., 1991, vol. 10, pp. 11–17. doi: 10.1016/0165-9936(91)85039-T.
  33. Saurina J., Hernandez-Cassou S. Quantitative determinations in conventional flow injection analysis based on different chemometric calibration statregies: a review. Anal. Chim. Acta, 2001, vol. 438, pp. 335–352. doi: 10.1016/S0003-2670(01)00862-5.
  34. Huang C., Jiang Z., Hu B. Mesoporous titanium dioxide as a novel solid-phase extraction material for flow injection micro-column preconcentration on-line coupled with ICP-OES determination of trace metals in environmental samples. Talanta, 2007, vol. 73, pp. 274–281. doi: 10.1016/j.talanta.2007.03.046.
  35. Yin J., Jiang Z., Chang G., Hu B. Simultaneouson-line preconcentration and determination of trace metals in environmental samples by flow injection combined with inductively coupled plasma massspectrometry using a nanometer-sized alumina packed micro-column. Anal. Chim. Acta, 2005, vol. 540, pp. 333–339. doi: 10.1016/j.aca.2005.03.045.
  36. Can N.O., Altiokka G., Aboul-Enein H.Y. Determination of cefuroxime axetil in tablets and biological fluids using liquid chromatography and flow injection analysis. Anal. Chim. Acta, 2006, vol. 576, pp. 246–252. doi: 10.1016/j.aca.2006.06.007.
  37. Brunetto M.R., Delgado Y., Clavijo S., Contreras Y. et al. Analysis of cocaine and benzoylecgonine in urine by using multisyringe flow injection analysis-gas chromatographymass spectrometry system. J. Sep. Sci., 2010, vol. 33, pp. 1 779–1  786. doi: 10.1002/jssc.200900833.
  38. Liu X., Zhang J., Chen X. Separation and determination of three water-soluble compounds in Salvia miltiorrhiza Bunge and two related traditional medicinal preparations by flow injection-capillary electrophoresis. J. Chromatogr. B, 2007, vol. 852, pp. 325–332. doi: 10.1016/j.jchromb.2007.01.034.
  39. Moskvin A.L., Moskvin L.N. [Water and water environments: chemical analysis of "on line", problem and decision]. Uspechi chimii [Achievements of chemistry], 2005, vol. 74, nu. 2, pp. 155–163. (In Russ.).
  40. Mesquita R.B.R., Fernandes S.M.V., Rangel A.O.S.S. A flow system for the spectrophotometric determination of lead indifferent types of waters using ion-exchange for pre-concentration andelimination of interferences. Talanta, 2004, vol. 62, pp. 395–401. doi: 10.1016/j.talanta.2003.08.009.
  41. Miro M., Cerda V., Estela J.M. Multisyringe flow injection analysis: characterization and applications. Trends Anal. Chem., 2002, vol. 21, pp. 199–210. doi: 10.1016/S0165-9936(02)00307-2.
  42. Lapa R.A.S., Lima J.L.F.C., Reis B.F., Santos J.L.M. et al. Multi-pumping in flow analysis: concepts, instrumentation, potentialities. Anal. Chim. Acta, 2002, vol. 466, pp. 125–132. doi: 10.1016/S0003-2670(02)00514-7.
  43. Fajardo Y., Gomez E., Garcias F., Cerda V., Casas M. Development of an MSFIA-MPFS pre-treatment method for radium determination in water samples. Talanta, 2007, vol. 71, pp. 1 172–1 179. doi: 10.1016/j.talanta.2006.06.012.
  44. Truzell R., Karlberg B. Study of efficiency and response of gasdiffusion devices in flow injection systems.Anal. Chem. Acta, 1995, vol. 308, pp. 206–212. doi: 10.1016/0003-2670(94)00332-G.
  45. Frenzel W. Membrane based gas sampling and analysis coupled to continuous flow systems. Fresenius' J. Anal. Chem., 1992, vol. 342, pp. 817–821. doi: 10.1007/BF00322141.
  46. Oliveira S., Lopes T., Rangel A. Development of a gas diffusion multicommuted flow injection system for the determination of sulfur dioxide in wines, comparing malachite green and pararosaniline chemistries. J. Agric. Food Chem., 2009, vol. 57, pp. 3 415–3 422. doi: 10.1021/jf803639n.
  47. Junsomboon J., Jakmunee J. Flow injection conductometric systemwith gas diffusion separation for the determination of kjeldahl nitrogen inmilk and chicken meat. Anal. Chim. Acta, 2008, vol. 627, pp. 232–238. doi: 10.1016/j.aca.2008.08.012.
  48. Dhaouadi A., Monser L., Sadok S., Adhoum N. Validation of a flow-injection-gas diffusion "method for total volatile basic nitrogen determination in seafood products. Food Chem., 2007, vol. 103, pp. 1 049–1 053. doi: 10.1016/j.foodchem.2006.07.066.
  49. Gibb S.W., Wood J.W., Fauzi R., Mantoura C. Automation of flow injection gas diffusion-ion chromatography for the nanomolar determination of methylamines and ammonia in seawater and atmospheric samples. J. Automat. Chem., 1995, vol. 17, pp. 205–212. doi: 10.1155/S1463924695000320.
  50. Liu R., Sun B., Liu D., Sun A. Flow injection gas-diffusion amperometric determination of trace amounts of ammonium ions with a cupric hexacyanoferrate. Talanta, 1996, vol. 43, pp. 1 049–1 054. doi: 10.1016/0039-9140(96)01858-9.
  51. Amini N., Cardwell T.J., Cattrall R.W., Kolev S. Determination of mercury(II) at trace levels by gas-diffusion flow injection analysis with amperometric detection. Anal. Chim. Acta, 2005, vol. 539, pp. 203–207. doi: dx.doi.org/10.1016/j.aca.2005.02.071.
  52. Kolev S.D., Fernandes P., Satinsky D., Solich P. Highly sensitive gas-diffusion sequential injection analysis based on flow manipulation. Talanta, 2009, vol. 79, pp. 1 021–1 025. doi: 10.1016/j.talanta.2009.02.014.
  53. Oms M.T., Cerda A., Ñladera A., Cerda V., Forteza R. Gas diffusion techniques coupled sequential injection analysis for selective determination of ammonia. Anal. Chim. Acta, 1996, vol. 318, pp. 251–260. doi: 10.1016/0003-2670(95)00447-5.
  54. Mesquita R.B., Rangel A.O. Gas diffusion sequential injection system for the spectrophotometric determination of free chlorine with o-dianisidine. Talanta, 2005, vol. 68, pp. 268–273. doi: 10.1016/j.talanta.2005.07.028.
  55. Oms M.T., Cerdà A., Cerdà V. Preconcentration by flow-reversal in conductometric sequential injection analysis of ammonium.Electroanalysis, 1995, vol. 8, pp. 387–390. doi: 10.1002/elan.1140080416.
  56. Silva H., Àlvares-Ribeiro L. Optimization of a flow injection analysis system for tartaric acid determination in wines.Talanta, 2002, vol. 58, pp. 1 311–1 318. doi: 10.1016/S0039-9140(02)00436-8.
  57. Grudpan K., Jakmunee J., Sooksamiti P. Flow injection dialysis for the determination of anions using ion chromatography.Talanta, 1999, vol. 49, pp. 215–223. doi: 10.1016/S0039-9140(99)00046-6.
  58. Staden J. Tandem on-line dialysis with a double and single dialyser in flow injection dialysis. Simultaneous determination of calcium and high chloride in industrial effluents. Fresenius' J. of Anal. Chem., 1995, vol. 351, pp. 181–185. doi: 10.1007/BF00321634.
  59. Araujo A.N., Lima J., Saraiva M., Zagatto E. A new approach to dialysis in sequential injection systems: Spectrophotometry determination of L(+)-lactate in wines. Am. J. of Enology and Viticulture, 1997, vol. 48, pp. 428–432.
  60. Mataix E., Luque de Castro M.D. Determination of total and free sulfur dioxide in wine by pervaporation-flow injection.Analyst, 1998, vol. 123, pp. 1 547–1 549. doi: 10.1039/a802566e.
  61. Rupasinghe T., Cardwell T.J., Cattrall R.W. et al. Determination of arsenic by pervaporation-flow injection hydride generation and permanganate spectrophotometric detection. Anal. Chim. Acta, 2004, vol. 510, pp. 225–230. doi: 10.1016/j.aca.2004.01.006.
  62. Siangproh W., Teshima N., Sakai T., Katoh S. et al. Alternative method for measurement of albumin/creatinine ratio using spectrophotometric sequential injection analysis. Talanta, 2009, vol. 79, pp. 1 111–1 117. doi: 10.1016/j.talanta.2008.12.068.
  63. Perez-Olmos R., Soto J.C., Zarate N. et al. Application of sequential injection analysis (SIA) to food analysis. Food Chem., 2005, vol. 90, pp. 471–490. doi: 10.1016/j.foodchem.2004.04.046.
  64. Mataix E., Luque de Castro M.D. Simultaneous determination of ethanol and glycerol in wines by a flow injection-pervaporation approach with in parallel photometric and fluorimetric detection. Talanta, 2000, vol. 51, pp. 489–496. doi: 10.1016/S0039-9140(99)00297-0.
  65. Gonzalez-Rodriguez J., Perez-Juan P., Luque de Castro M.D. Method for monitoring urea and ammonia in wine and must by flow injection–pervaporation. Anal. Chim. Acta, 2002, vol. 471, pp. 105–111. doi: 10.1016/S0003-2670(02)00872-3.
  66. Mataix E., Luque de Castro M.D. Determination of total and free sulfur dioxide in wine by pervaporation-flow injection.Analyst, 1998, vol. 123, pp. 1 547–1 549. doi: 10.1039/a802566e.
  67. Moskvin L.N., Moskvin A.L., Moszhuchin A.V. et al. Extraction-chromatographic preconcentration with chromatomem brane separarion of extract from aqueous phase for luminescence determination of oil products and phenols in natural water by flow injection analysis. Talanta, 1999, vol. 50, pp. 113–121. doi: 10.1016/S0039-9140(99)00114-9.
  68. Hayakawa K., Yoneda Y., Okamoto Y., Kumamaru T. et al. Rapid determination of oil in water using flow injection analysis and IR detection. Anal. Sci., 1999, vol. 15, pp. 803–805. doi: 10.2116/analsci.15.803.
  69. Burns D.T., Pornsinlapatip P. Flow injection extraction spectrofluorimetric determination of aluminium as the tetraphenylphosphonium aluminium (III) 8-hydroxyquinoline-5-sulphonate. Anal. Lett., 2002, vol. 35, pp. 1 085–1  093. doi: 10.1081/AL-120004557.
  70. Chimpalee N., Chimpalee D., Lohwithee S., Nakwatchara L., Burns D.T. Flow injection extraction spectrophotometric determination of copper using bis(acetylacetone)ethylenediimine. Anal. Chim. Acta, 1996, vol. 331, pp. 253–256. doi: 10.1016/0003-2670(96)00173-0.
  71. Pårez-Ruiz T., Martinez-Lozano C., Tomàs V., Sanz A. et al. Flow-injection extraction-spectrophotometric method for the determination of ranitidine in pharmaceutical preparations. J. Pharm. Biomed. Anal., 2001, vol. 26, pp. 609–615. doi: 10.1016/S0731-7085(01)00489-7.
  72. Peterson K.L., Logan B.K., Christian G.D., Ruzicka J. Sequential-injection extraction for sample preparation.Anal. Chim. Acta, 1997, vol. 337, pp. 99–106. doi: 10.1016/S0003-2670(96)00396-0.
  73. Moskvin A.L, Mozzhuchin A.V., Muchina E.A. et al. [Flowing and injection photometric definition of "a phenolic index" in natural waters in the presence of humic acids]. Zhurnal analit. Chimii [Journal of analytical chemistry], 2005, vol. 60, pp. 79–84. (In Russ.).
  74. Moskvin L.N., Bulatov A.V., Nikolaeva D.N. et al. [Flowing and injection extraction and photometric determination of microconcentration phosphate - and silicate ions]. Zhurnal analit. Chimii [Journal of analytical chemistry], 2002, vol. 57, pp. 709–714. (In Russ.).
  75. Moskvin L.N., Rodinkov O.V. [Hromatomembranny methods: physical and chemical principles, analytical and technological capabilities] Izvestiya RAN. Seriya chimicheskaÿ [News of the Russian Academy of Sciences. Series chemical], 2012, nu. 4. pp. 719–736. (In Russ.).
  76. Andruch V., Acebal C.C., Skrlikova J., Sklenarova H. et al. Automated on-line dispersive liquid–liquid microextraction based on a sequential injection system. Microchem. J., 2012, vol. 100, pp. 77–82. doi: 10.1016/j.microc.2011.09.006.
  77. Bol'shov M.A., Karandashev V.K., Zizin G.I., Zolo-tov Yu.A. [The flowing methods of definition of elements in solutions based on sorption concoction and mass spectrometry with inductively connected plasma]. Zhurnal analit. Chimii [Journal of analytical chemistry], 2011, vol. 66, pp. 564–581. (In Russ.).
  78. Filippov O.A., Posoch V.V., Tichomirova T.I. et al. [Flowing sorption õðîìàòîãðàôè÷åñêîå definition of phenols with amperometrichesky detecting]. Zhurnal analit. Chimii [Journal of analytical chemistry], 2002, vol. 57, pp. 933–939. (In Russ.).
  79. Zizin G.I., Zolotov Yu.A. [Flowing sorption and spectroscopic methods of the analysis]. Zhurnal analit. Chimii [Jornal of analytical chemistry], 2002, vol. 57, pp. 678–698. (In Russ.).
  80. Oliferova L.A., Statkus M.A., Zizin G.I., Zolotov Yu.A. [New sorbents for concoction of hydrophobic organic substances in flowing systems of the analysis]. Doklady Ross. akad. Nauk [Reports of the Russian Academy of Sciences], 2005, vol. 401, pp. 639–642. (In Russ.).
  81. Oliferova L.A., Statkus M.A., Zizin G.I. et al. [Flowing sorption liquid hromatografi-cheskiye analysis methods]. Zhurnal analit. Chimii [Journal of analytical chemistry], 2006, vol. 61, pp. 454–480. (In Russ.).
  82. Borisova D.R., Statkus M.A., Zizin G.I., Zolotov Yu.A. [Flowing sorption liquid õðîìàòîãðàôè÷åñêîå the definition of phenols including concoction on a carbon sorbent and a desorption subcritical water]. Analitika i kontrol' [Analytics and control], 2012, vol. 16, pp. 224–231. (In Russ.).
  83. Zolotov Yu.A., Zizin G.I., Dmitrenko S.G., Morosanova E.I. Sorbzionnoe konzentrirovanie mikrokomponentov iz rastvorov [Sorption concoction of microcomponents from solutions]. Moscow, Nauka Publ., 2007. 320 p.
  84. Moskvin L.N., Drogobuzhskaya S.V., Moskvin A.L. [Flowing photometric definition of beryllium with sorption concoction on a fibrous sorbent]. Zhurnal analit. Chimii [Journal of analytical chemistry], 1999, vol. 54, pp. 272–277. (In Russ.).
  85. Bulatov A.V., Moskvin A.L., Moskvin L.N., Timo-feeva I.I. [The cyclic injection analysis — new opportunities of automation of the chemical analysis of solid-phase samples]. Zavodskaya labor. [Plant laboratory], 2010, vol. 76, pp. 25–27. (In Russ.).
  86. Makahleh A., Saad B. Flow injection determination of free fatty acids in vegetable oils using capacitively coupled contactless conductivity detection. Anal. Chim. Acta, 2011, vol. 694, pp. 90–94. doi: 10.1016/j.aca.2011.03.033.
  87. Ruiz-Medina A., Llorent-Martinez E.J., Fernandez-de Cordova M.L. et al. Automated optosensor for the determination of carbaryl residues in vegetable edible oils and table olive extracts. J. of Food Composition and Anal., 2012, vol. 26, pp. 66–71. doi: 10.1016/j.jfca.2012.02.003.
  88. Bulatov A.V., Golovkina A.B., Balova I.A. et al. [Cyclic injection photometric definition of phosphorus in light oil products]. Zhurnal analit. Chimii [Journal of analytical chemistry], 2011, vol. 66, pp. 1064–1068. (In Russ.).
  89. Bulatov A.V., Goncharova D.V., Leonova S.A., Mosk-vin L.N. [Flowing and injection ionometrichesky definition of hydrogen sulfide in light oil products]. Zavodskaya labor. [Plant laboratory], 2006, vol. 72, pp. 21–23. (In Russ.).
  90. Bulatov A.V., Goncharova D.V., Moskvin L.N. [Flowing and injection photometric definition of merkaptan in light oil products with hromatomembranny allocation]. Zhurnal analit. Chimii [Journal of analytical chemistry], 2006, vol. 61, pp. 868–870. (In Russ.).
  91. Silva S.G., Rocha F.R.P. A flow injection procedure based on solenoid micro-pumps for spectrophotometric determination of free glycerol in biodiesel. Talanta, 2010, vol. 83, pp. 559–564. doi: 10.1016/j.talanta.2010.09.061.
  92. Maruta A.H., Paixao T.R.L.C. Flow injection analysis of free glycerol in biodiesel using a copper electrode as an amperometric detector. Fuel, 2012, vol. 91, pp. 187–191. doi: 10.1016/j.fuel.2011.06.071 .
  93. Del Rio V., Larrechi M.S., Callao M.P. Sequential injection titration method using second-order signals: determination of acidity in plant oils and biodiesel samples. Talanta, 2010, vol. 81, pp. 1 572–1 577. doi: 10.1016/j.talanta.2010.03.004.
  94. Araujo A.R.T.S., Saraiva M.L.M.F.S., Lima J.L.F.C., Korn M.G.A. Flow methodology for methanol determination in biodiesel exploiting membrane-based extraction. Anal. Chim. Acta, 2008, vol. 613, pp. 177–183. doi: 10.1016/j.aca.2008.03.005.
  95. Chena G., Yuana D., Huang Y., Zhang M., Bergman M. In-field determination of nanomolar nitrite in seawater using a sequential injection technique combined with solid phase enrichment and colorimetric detection. Anal. Chim. Acta, 2008, vol. 620, pp. 82–88. doi: 10.1016/j.aca.2008.05.019.
  96. Mesquita R.B.R., Rangel A.O.S.S. Development of sequential injection methodologies for the spectrophotometric direct and kinetic determination of aluminium in natural and waste waters. J. Braz. Chem. Soc., 2008, vol. 19, pp. 1 171–1  179. doi: 10.1590/S0103-50532008000600018.
  97. Fletcher P., Andrew K.N., Calokerinos A.C., Forbes S. et al. Analytical applications of flow injection chemiluminescence detection – A review. Luminescence, 2001, vol. 16, pp. 1–23. doi: 10.1002/bio.607.
  98. Christodouleas D., Fotakis C., Economou A. et al. Flow-based methods with chemiluminescence detection for food and environmental analysis: A Review. Anal. Lett., 2011, vol. 44, pp. 176–215. doi: 10.1080/00032719.2010.500791.
  99. Conceicao A.C.L., Santos M.M.C., Gonçal­ves M.L.S.S. Adaptation of a commercial ion selective fluoride electrode to a tubular configuration for analysis by flow methodologies. Talanta, 2008, vol. 76, pp. 107–110. doi: 10.1016/j.talanta.2008.02.010.
  100. Ipatov A., Abramova N., Bratov A., Dominguez C. Integrated multi-sensor chip with sequential injection technique as a base for electronic tongue devices. Sens. Actuators, B, 2008, vol. 131, pp. 48–52. doi: 10.1016/j.snb.2007.12.028.
  101. Ninwong B., Chuanuwatanakul S., Chailapakul O. et al. On-line preconcentration and determination of lead and cadmium by sequential injection/anodic stripping voltammetry. Talanta, 2012, vol. 96, pp. 75–81. doi: 10.1016/j.talanta.2012.03.057.
  102. Ali A., Ye Y., Xu G., Yin X. Copper determination after FI on-line sorbent preconcentration using 1-nitroso-2-naphthol as a complexing reagent. Fresenius’J. Anal. Chem., 1999, vol. 365, pp. 642–646. doi: 10.1007/s002160051538.
  103. Sabarudin A., Lenghor N., Oshima M., Hakim L. et al. Sequential-injection on-line preconcentration using chitosan resin functionalized with 2-amino-5-hydroxy benzoic acid for the determination of trace elements in environmental water samples by inductively coupled plasma-atomic emission spectrometry. Talanta, 2007, vol. 72, pp. 1 609–1 627. doi: 10.1016/j.talanta.2007.01.024.
  104. Beck N., Franks R., Bruland K. Analysis for Cd, Cu, Ni, Zn, and Mn in estuarine water by inductively coupled plasma mass spectrometry coupled with an automated flow injection system. Anal. Chim. Acta, 2002, vol. 455, pp. 11–22. doi: 10.1016/S0003-2670(01)01561-6.
  105. Kuban P., Reinhardt M., Muller B., Hauser P.C. On-site simultaneous determination of anions and cations in drainage water using a flow injection-capillary electrophoresis system with contactless conductivity detection. J. Environ. Monit., 2004, vol. 6, pp. 169–174. doi: 10.1039/b316422e.
  106. Pinyou P., Hartwell S.K., Jakmunee J., Lapanantnoppakhun S. et al. Flow injection determination of iron ions with green tea extracts as a natural chromogenic reagent. Anal. Sci., 2010, vol. 26, pp. 619–623. doi: 10.2116/analsci.26.619.
  107. Tarley C.R.T., Ferreira S.L.C., Arruda M.A.Z. Use of modified rice husks as a natural solid adsorbent of trace metals: characterisation and development of an online preconcentration system for cadmium and lead determination by FAAS. Microchem. J., 2004, vol. 77, pp. 163–175. doi: 10.1016/j.microc.2004.02.019.
  108. Gonzales A.P.S., Firmino M.A., Nomura C.S. et al. Peat as a natural solid-phase for copper preconcentration and determination in a multicommuted flow sytems coupled to flame atomic absorption spectrometry. Anal. Chim. Acta, 2009, vol. 636, pp. 198–204. doi: 10.1016/j.aca.2009.01.047.
  109. Bianchin J.N., Martendal E., Mior R., Alves V.N. et al. Development of a flow system for the determination of cadmium in fuel alcohol using vermicompost as biosorbent and flame atomic absorption spectrometry. Talanta, 2009, vol. 78, pp. 333–336. doi: 10.1016/j.talanta.2008.11.012.
  110. Rodinkov O.V., Moskvin L.N., Vaskova E.A. Photometric flow injection determination of formaldehyde in atmospheric air using chromatomembrane absorption. J. Flow Injection Anal., 2005, vol. 22, pp. 11–13.
  111. Wiryawan A. Use of flow injection analysis for continuous monitoring of river water quality. Lab. robotics and Automation, 2000, vol. 12, pp. 142–148. doi: 10.1002/1098-2728(2000)12:3%3C142::AID-LRA5%3E3.0.CO;2-Z.
  112. Janson K.S., Beehler C.L., Sakamoto-Arnold C.M. A submersible flow analysis system. Anal. Chim. Acta, 1986, vol. 179, pp. 245–257. doi: 10.1016/S0003-2670(00)84469-4.
  113. Gardolinsky P.C.E.C., Worsfold P.J., David A.R.J. Miniature flow injection analyser for laboratory, shipboard and in situ monitoring of nitrate in estuarine and coastal waters. Talanta, 2002, vol. 58, pp. 1015–1027. doi: 10.1016/S0039-9140(02)00425-3.
  114. Solich P., Polydorou Ch.K., Koupparis M.A., Efstathiou C.E. Automated flow-injection spectrophotometric determination of catecholamines (epinephrine and isoproterenol) in pharmaceutical formulations based on ferrous complex formation. J. of Pharm. and Biomed. Anal., 2000, vol. 22, pp. 781–789. doi: 10.1016/S0731-7085(00)00291-0.
  115. Legnerova Z., Huclova J., Thun R., Solich P. Using on-line solid phase extraction for simultaneous determination of ascorbic acid and rutin trihydrate by sequential injection analysis. Anal. Chim. Acta, 2003, vol. 497, pp. 165–174. doi: 10.1016/j.aca.2003.07.007.
  116. Morosanova E.I., Matyushina T.A., Zolotov Yu.A. [The consecutive injection analysis in microoption: definition routine and a kvertsetina in food additives and medicines]. Zhurnal analit. Chimii [Journal of analytical chemistry], 2010, vol. 65, pp. 313–320. (In Russ.).
  117. Evgen'ev M.I., Garmonov S.Yu., Shakirova L.Sh. et al. [Flowing and injection definitions of toxic aromatic amines in medicines]. Zhurnal analit. Chimii [Journal of analytical chemistry], 2002, vol. 58, pp. 1290–1295. (In Russ.).
  118. Evgen'ev M.I., Garmonov S.Yu., Shakirova L.Sh. [Flowing and injection analysis of medicinal substances (review)]. Zhurnal analit. Chimii [Journal of analytical chemistry], 2001, vol. 56, pp. 355–356. (In Russ.).
  119. El-Gendy A.E., El-Bardicy M.G., Loutfy H.M. et al. Flow injection analysis of pharmaceutical compounds. VI. Determination of some central nervous system acting drugs by UV-spectrophotometric detection. Spectrosc. Lett., 1993, vol. 26, pp. 1 649–1 660. doi: 10.1080/00387019308010764.
  120. Molina-Diaz A., Ruiz-Medina A., Fernández de Córdova M.L. The potential of flow-through optosensors in pharmaceutical analysis. J. Pharm. Biomed. Anal., 2002, vol. 28, pp. 399–419. doi: 10.1016/S0731-7085(01)00660-4.
  121. Ruiz-Medina A., Llorent-Martnez E.J. Recent progress of flow-through optosensing in clinical and pharmaceutical analysis. J. Pharm. Biomed. Anal., 2010, vol. 53, pp. 250–261. doi: 10.1016/j.jpba.2010.04.020.
  122. Chailapakul O., Ngamukot P., Yoosamran A. et al. Recent electrochemical and optical sensors in flow-based analysis. Sensors, 2006, vol. 6, pp. 1 383–1 410. doi: 10.3390/s6101383.
  123. Ciosek P., Wesoly M.‚ Zabadaj M., Lisiecka J. et al. Towards flow-through/flow injection electronic tongue for the analysis of pharmaceuticals. Sensors and Actuators B: Chemical, 2015, vol. 207, pp. 1 087–1  094. doi: 10.1016/j.snb.2014.07.042.
  124. Saurina J. Flow-injection analysis for multi-component determinations of drugs based on chemometric approaches.Trends Anal. Chem., 2010, vol. 29, pp. 1 027–1 037. doi: 10.1016/j.trac.2010.05.012.
  125. Kumar M.A., Alimazlomi M., Hedstrym M., Mattiasson B. Versatile automated continuous flow system (VersAFlo) for bioanalysis and bioprocess control. Sensors and Actuators B, 2012, vol. 161, pp. 855–860. doi: 10.1016/j.snb.2011.11.049.
  126. Staden J., Staden R.S. Flow-injection analysis systems with different detection devices and other related techniques for the in vitro and in vivo determination of dopamine as neurotransmitter. A review. Talanta, 2012, vol. 102, pp. 34–43. doi: 10.1016/j.talanta.2012.05.017.
  127. Lopez-Paz J.L., Catala-Icardo M. Analysis of pesticides by flow injection coupled with chemiluminescent detection: a review.Anal. Lett., 2011, vol. 44, pp. 146–175. doi: 10.1080/00032719.2010.500788.
  128. Chong K., Loughlin T., Moeder C., Perpall H. et al. Drug substance manufacture process control: application of flow injection analysis and HPLC for monitoring an enantiospecific synthesis. J. Pharm. Biomed. Anal., 1996, vol. 15, pp. 111–121. doi: 10.1016/0731-7085(96)01810-9.
  129. Wittrig R.E., Dorman F.L., English C.M., Sacks R.D. High-speed analysis of residual solvents by flow-modulation gas chromatography. J. Chromatogr. A, 2004, vol. 1027, pp. 75–82. doi: 10.1016/j.chroma.2003.10.046.
  130. Falkova M.T., Bulatov A.V., Pushina M.O. et al. Multicommutated stepwise injection determination of ascorbic acid in medicinal plants and food samples by capillary zone electrophoresis ultraviolet detection. Talanta, 2015, vol. 133, pp. 82–87. doi: 10.1016/j.talanta.2014.04.092.
  131. Ruzicka J. Lab-on-valve: universal microflow analyzer based on sequential and bead injection. Analyst, 2000, vol. 125, pp. 1 053–1 060. doi: 10.1039/b001125h.
  132. Huang Y.L., Foellmer T.J., Ang K.C., Khao S.B. et al. Characterization and application of an on-line flow-injection analysis/wall-jet electrode system for glucose monitoring during fermentation. Anal. Chim. Acta, 1995, vol. 317, pp. 223–232. doi: 10.1016/0003-2670(95)00388-6.
  133. Nalbach U., Schiemenz H., Stamm W.W., Hummel W., Kula M.-R. On-line flow-injection monitoring of the enzyme inductor l-phenylalanine in the continuous cultivation of rhodococcus sp. M4. Anal. Chim. Acta, 1988, vol. 213, pp. 55–59. doi: 10.1016/S0003-2670(00)81339-2.
  134. Nienhoff J., Moller J., Hiddessen R., Schuderl K. The use of an automatic on-line system for monitoring penicillin cultivation in a bubble-colum loop reactor. Anal. Chim. Acta, 1986, vol. 190, pp. 205–212. doi: 10.1016/S0003-2670(00)82881-0.
  135. Miroshnichenko I.V., Moskvin L.N. [Improvement of chemical analysis control of liquid radioactive environments on the principles of the flowing and injection analysis]. Nauchnoe Priborostroenie [Science Instrumentation], 2011, vol. 21, nu. 2, pp. 20–27. (In Russ.).
  136. Miroshnichenko I.V., Moskvin L.N., Pychteev O.Yu. et al. [Technique of flowing definition of uranium in the YaEU technological water environments]. Vestn. SPbGU. Ser. 4. [Bulletin of St.Petersburg State University. Ser. 4], 2012, vol. 2, pp. 96–101. (In Russ.).
  137. Grate J.W., Strebin R., Janata J., Egorov O. et al. Automated analysis of radionuclides in nuclear waste: rapid determination of Sr by sequential injection analysis. Anal. Chem., 1996, vol. 68, pp. 333–340. doi: dx.doi.org/10.1021/ac950561m.
  138. Egorov O., O'Hara M.J., Ruzicka J., Grate J.W. Sequential injection system with stopped flow radiometric detection for automated analysis of 99Tc. Nuclear Waste Anal. Chem., 1998, vol. 70, pp. 977–984. doi: 10.1021/ac971121t.
  139. Grate J.W., Egorov O., Fiskum S.K. Automated extraction chromatographic separations of actinides using separation-optimized sequential injection techniques. Analyst, 1999, vol. 124, pp. 1 143–1 150. doi: 10.1039/a902579k.
  140. Mateos J.J., Gomez E., Garcias F., Casas M., Cerda V. Rapid 90Sr/90Y determination in water samples using a sequential injection method. Applied Radiation and Isotopes, 2000, vol. 53, pp. 139–144. doi: 10.1016/S0969-8043(00)00125-1.
  141. Hollenbach M., Grohs J., Mamich S., Kroft M. Determination of technetium-99, thorium-230 and uranium-234 in soils by inductively coupled plasma mass spectrometry using flow injection preconcentration. J. Anal. At. Spectrom., 1994, vol. 9, pp. 927–933. doi: 10.1039/ja9940900927.
  142. Fajardo Y., Avivar J., Ferrer L., Gomez E., Casas M. et al. Automation of radiochemical analysis by applying flow techniques to environmental samples. Trends Anal. Chem., 2010, vol. 29, pp. 1 399–1 408. doi: 10.1016/j.trac.2010.07.018.
  143. Silva C.R., Vieira H.J., Canaes L.S., Nobrega J.A. et al. Flow injection spectrophotometric method for chloride determination in natural waters using Hg(SCN)2 immobilized in epoxy resin. Talanta, 2005, vol. 65, pp. 965–970. doi: 10.1016/j.talanta.2004.08.028.
  144. Caoa W., Mua X., Yang J., Shi W., Zhen Y. Flow injection–chemiluminescence determination of phenol using potassium permanganate and formaldehyde system. Spectrochim. Acta, 2007, vol. 66, pp. 58–62. doi: 10.1016/j.saa.2006.02.021.
  145. Witanabe K., Saoh Y., Shitanda I., Itagaki M. Flow injection analysis of anionic surfactants in river water using teflon filter preconcentration. J. Flow Injection Anal., 2008, vol. 25, pp. 15–19.
  146. Hirata S., Hashimoto Y., Aihara M., Mallika G.V. On-line column preconcentration for the determination of cobalt in sea water by flow-injection chemiluminescence detection. Fresenius’J. Anal. Chem., 1996, vol. 355, pp. 676–679.
  147. Tao G., Fang Z. Electrothermal atomic absorption spectrometric determination of ultra-trace amounts of tin by in situ preconcentration in a graphite tube using flow injection hydride generation with on-line ion-exchange separation. Talanta, 1995, vol. 42, pp. 375–383. doi: 10.1016/0039-9140(95)01413-6.
  148. Lapa R., Lima J., Pinto I. Sequential injection analysis determination of sulphate in wastewaters by ultraviolet-spectrophotometry. J. Braz. Chem. Soc., 2000, vol. 11, pp. 170–174. doi: 10.1590/S0103-50532000000200012.
  149. Erustes J.A., Forteza R., Cerdà V. Sequential-injection procedure for determination of iodide in pharmaceutical and drinking water samples by catalytic reaction with spectrophotometric detection. J. AOAC Intern., 2001, vol. 84, pp. 337–341.
  150. Sartini R.P., Vidotti E.C., Oliveira C.C. Bead-injection determination of total mercury in river water samples.Anal. Sci., 2003, vol. 19, pp. 1 653–1 657. doi: 10.2116/analsci.19.1653.
  151. Oliveira P.C., Masini J.C. Sequential injection determination of chromium (VI) by transient oxidation of brucine with spectrophotometric detection and in-line dilution. Analyst, 1998, vol. 123, pp. 2 085–2 090. doi: 10.1039/a803945c.
  152. Chuanuwatanakul S., Dungchai W., Chailapakul Î. et al. Determination of trace heavy metals by sequential injection–anodic stripping voltammetry using bismuth film creenprinted carbon electrode. Anal. Sci., 2008, vol. 24, pp. 589–594. doi: 10.2116/analsci.24.589.
  153. Bulatov A.V., Zapko A.A., Moskvin L.N. [Cyclic injection separate photometric definition phosphate - and silicate ions in water environments]. Zhurnal analit. Chimii [Journal of analytical chemistry], 2009, vol. 64, no. 6, pp. 598–602. (In Russ.).
  154. Bulatov A.V., Ivasenko P.A., Moskvin L.N. [Cyclic injection photometric definition nitrite - and nitrate ions in water environments at their joint presence]. Zhurnal analit. Chimii [Journal of analytical chemistry], 2010, vol. 65, pp. 833–837. (In Russ.).
  155. Moskvin L.N., Bulatov A.V., Kolomiez N.A. et al. [Cyclic injection photometric definition of arsenic in water environments]. Zhurnal analit. Chimii [Journal of analytical chemistry], 2007, vol. 62, pp. 1267–1270. (In Russ.).
  156. Balansay L.S., deLeon L.G., Quirit L.L., Mundo F.R. Pervaporation-flow injection method for the determination of sulfur dioxide in food and air samples. Philippine J. of Sci., 2010, vol. 139, pp. 167–175.
  157. Wang Y., Fan S., Wang S. Chemiluminescence determination of nitrogen oxide in air with a sequential injection method.Anal. Chim. Acta, 2005, vol. 541, pp. 129–134. doi: 10.1016/j.aca.2004.11.072.
  158. Feng S., Fan J., Wang A., Chen X., Hu Z. Kinetic spectrophotometric determination of formaldehyde in fabric and air by sequential injection analysis. Anal. Lett., 2004, vol. 37, pp. 2 545–2 551. doi: 10.1081/AL-200031126.
  159. Bulatov A.V., Slavina E.A., Moskvin L.N. [Cyclic injection photometric definition of merkaptan in air]. Zhurnal analit. Chimii [Journal of analytical chemistry], 2010, vol. 65, pp. 43–47. (In Russ.).
  160. Moskvin L.N., Bulatov, Goldvirt D.K. [Cyclic injection ionometrichesky definition of hydrogen sulfide in atmospheric air]. Zhurnal analit. Chimii [Journal of analytical chemistry], 2008, vol. 63, pp. 91–93. (In Russ.).
  161. Bulatov A.V., Ful'mes K.S., Moskvin A.L., Moskvin L.N. [Cyclic injection photometric definition of nickel in aerosols air]. Zhurnal analit. Chimii [Journal of analytical chemistry], 2013, vol. 68, pp. 71–75. (In Russ.).
  162. Pasquali C.E.L., Hernando P.F., Alegria J.S.D. Spectrophotometric simultaneous determination of nitrite,nitrate and ammonium in soils by flow injection analysis. Anal. Chim. Acta, 2007, vol. 600, pp. 177–182. doi: 10.1016/j.aca.2007.03.015.
  163. Nogueira A.R.A., Brienza S.M.B., Zagatto E.A.G. et al. Flow injection system with multisite detection forspectrophotometric determination of calcium and magnesium in soil extracts and natural waters. J. Agric. Food Chem., 1996, vol. 44, pp. 165–169. doi: 10.1021/jf950168h.
  164. Ferreira A.M.R., Lima J., Rangel A. Potentiometric determination of total nitrogen in soils by flow injection analysis with a gas-diffusion unit. Aust. J. of Soil Res., 1996, vol. 34, pp. 503–509. doi: 10.1071/SR9960503.
  165. Ferreira A.M.R., Lima J., Rangel A.O.S.S. Determination of iron in soils by flow injection atomic absorption spectrometry . Commun. Soil Sci. Plant Anal., 1998, vol. 29, pp. 2 407–2 414. doi: 10.1080/00103629809370120.
  166. Ferreira A.M.R., Rangel A.O.S.S., Lima J.L.F.C. Determination of chloride in soils by flow injection potentiometric titration. Commun. Soil Sci. Plant Anal., 1996, vol. 27, pp. 1 437–1 445. doi: 10.1080/00103629609369644.
  167. Falkova M., Alexovic M., Pushina M. et al. Fully automated on–line flow–batch based ultrasound–assisted surfactant–mediated extraction and determination of anthraquinones in medicinal plants. Microchem. J., 2014, vol. 116, pp. 98–106. doi: 10.1016/j.microc.2014.03.011.
  168. Liawruangrath S., Makchit J., Liawruangrath B. Simple flow injection spectrophotometric procedure for the determination of diazepam in pharmaceutical formulation. Anal. Sci., 2006, vol. 22, pp. 127–130. doi: 10.2116/analsci.22.127.
  169. Tzanavaras P.D. Development and validation of a flow-injection assay for dissolution studies of the anti-depressant drug venlafaxine. Anal. Sci., 2005, vol. 21, pp. 1 515–1 518. doi: 10.2116/analsci.21.1515.
  170. Abdurahman L.K., Al-Abachi A.M., Al-Qaissy M.H. Flow injection-spectrophotometeric determination of some catecholamine drugs in pharmaceutical preparations via oxidative coupling reaction with p-toluidine and sodium periodate. Anal. Chim. Acta, 2005, vol. 538, pp. 331–335. doi: 10.1016/j.aca.2005.02.045.
  171. Pistonesi M., Centurion M.E., Band B.S.F. et al. Simultaneous determination of levodopa and benserazide by stopped-flow injection analysis and three-way multivariate calibration of kinetic-spectrophotometric data. J. Pharm. Biomed. Anal., 2004, vol. 36, pp. 541–547. doi: 10.1016/j.jpba.2004.07.006.
  172. Fanjul-Bolado P., Lamas-Ardisana P.J., Hernández-Santos D. et al. Electrochemical study and flow injection analysis of paracetamol in pharmaceutical formulations based on screen-printed electrodes and carbon nanotubes. Anal. Chim. Acta, 2009, vol. 638, pp. 133–138. doi: 10.1016/j.aca.2009.02.019.
  173. Corujo-Antuna J., Abad-Villar E.M., Fernandez-Abedul M.T. et al. Voltammetric and flow amperometric methods for the determination of melatonin in pharmaceuticals. J. Pharm. Biomed. Anal., 2003, vol. 31, pp. 421–429. doi: 10.1016/S0731-7085(02)00349-7.
  174. Sultan S.M., Suliman F.E.O. Use of a sequential injection technique for mechanistic studies and kinetic determination of bromazepamcomplexed with iron(II) in hydrochloric acid. Analyst, 1996, vol. 121, pp. 617–621. doi: 10.1039/an9962100617.
  175. Polasiek M., Jambor M. Chemiluminescence determination of antibacterial drug trimethoprim by automated sequential injection technique with permanganate and hexametaphosphate as reagents. Talanta, 2002, vol. 58, pp. 1 253–1 261. doi: 10.1016/S0039-9140(02)00413-7.
  176. Pimenta A.M., Araujo A.N., Conceicao M. et al. Sequential injection analysis of captopril based on colorimetric and potentiometric detection. Anal. Chim. Acta, 2001, vol. 438, pp. 31–38. doi: 10.1016/S0003-2670(00)01307-6.
  177. Pimenta A.M., Araujo A.N., Conceicao M. et al. Simultaneous potentiometric and fluorimetric determination of diclofenac in a sequential injection analysis system. Anal. Chim. Acta, 2002, vol. 470, pp. 185–194. doi: 10.1016/S0003-2670(02)00669-4.
  178. Bulatov A.V., Strashnova U.M., Vishnikin A.B. et al. [Cyclic injection photometric definition of ascorbic acid in medicines]. Zhurnal analit. Chimii [Journal of analytical chemistry], 2011, vol. 66, pp. 282–286. (In Russ.).
  179. Tipparat P., Lapanantnoppakhun S., Jakmunee J. et al. Determination of diphenhydramine hydrochloride in some single tertiary alkylamine pharmaceutical preparations by flow injection spectrophotometry. J. Pharm. Biomed. Anal., 2002, vol. 30, pp. 105–112. doi: 10.1016/S0731-7085(02)00197-8.
  180. Nascimento R., Selva T.M.G., Ribeiro W.F. et al. Flow-injection electrochemical determination of citric acid using a cobalt (II)–phthalocyanine modified carbon paste electrode. Talanta, 2013, vol. 105, pp. 354–359. doi: 10.1016/j.talanta.2012.10.055.
  181. Vakh C.S., Bulatov A.V., Shishov A.Y., Zabrodin A.V., Moskvin L.N. Determination of silicon, phosphorus, iron and aluminum in biodiesel by multicommutated stepwise injection analysis with ñlassical least squares method. Fuel, 2014, vol. 135, pp. 198–294. doi: 10.1016/j.fuel.2014.06.059.
  182. Paula D.T., Yamanaka H., Oliveira M.F., Stradiotto N.R. Determination of chloride in fuel ethanol using polyaniline-chemically modified electrode in flow injection analysis. Chem. Technol. Fuels Oils, 2008, vol. 44, pp. 435–440. doi: 10.1007/s10553-009-0073-2.
 

S. Ì. Ermakov1, A. I. Rukavishnikova1, A. O. Volchek2, E. A. Kochelaev2

A SELF-LEARNING ALGORITHM FOR DETECTION OF BIOLOGICAL AEROSOLS IN THE AIR

"Nauchnoe priborostroenie", 2015, vol. 25, no. 2, pp. 27–33.
doi: 10.18358/np-25-2-i2733

We propose an algorithm that uses data from the particle fluorescence spectrometer in order to take decision on presence of known pathogens in the air. Density estimates of measurements for particles of the known substances are constructed, percentage concentration of aerosol particles in the air is estimated. Decision on detection of dangerous substances is made with the use of thresholds, calculated at the training stage. The results of testing the algorithm are discussed.

 
Keywords: device, particle fluorescence spectrometer, EM-algorithms, mixture of distributions, function of maximum likelihood, density estimate, experimental data

Author affiliations:

1Saint-Petersburg State University, Russia
2JSC "NPO Pribor", Saint-Petersburg, Russia

 
Contacts: Rukavishnikova Anna Igorevna, e-mail: anyaruk@mail.ru
Article received in edition: 20.02.2015
Full text (In Russ.) >>

REFERENÑES

  1. Kochelaev E.A., Volchek A.O. Sposob opticheskoy registrazii signalov fluoreszenzii i rasseyaniya aerozol'nych chastiz v potoke i opticheskaya sistema dlya ego osuschestvleniya [Way of optical registration of signals of fluorescence and dispersion of aerosol particles in a stream and optical system for its implementation]. Patent (Russian Federation) for the invention No. 2448340, 2012. Patent holder: Joint stock company "NPO Pribor". (In Russ.).
  2. Kochelaev E.A., Volchek A.O. [Optical system of registration for a flowing and optical method of the analysis of bioaerosols]. Opticheskiy zhurnal [Optical Journal], 2011, vol. 78, no. 6, pp. 23–30. (In Russ.).
  3. Pan Yong-Le. Detection and characterization of biological and other organic-carbon aerosol particles in atmosphere using fluorescence. Journal of Quantitative Spectroscopy & Radiative Transfer., 2015, vol. 150, pp. 12–35. doi: 10.1016/j.jqsrt.2014.06.007.
  4. Kochelaev E.A., Volchek A.O., Elizarov B.A., Sidorenko V.M. [Research of an indikatrisa of fluorescence of particles of a bioaerosol: modeling and experiment]. Opticheskiy zhurnal [Optical Journal], 2012, vol. 79, no. 6, pp. 10–19. (In Russ.).
  5. Pan Yong-Le, Hill S.C., Pinnick R.G. et al. Fluorescence spectra of atmospheric aerosol particles measured using one or two excitation wavelengths: Comparison of classification schemes employing different emission and scattering results. Optics Express, 2010, vol. 18, no. 12, pp. 12436–12457. doi: 10.1364/OE.18.012436.
  6. Sivaprakasam V., Lin H.-B., Huston A.L., Eversole J.D. Spectral characterization of biological aerosol particles using two-wavelength excited laser-induced fluorescence and elastic scattering measurements. Optics Express, 2011, vol. 19, pp. 6191–6208. doi: 10.1364/OE.19.006191.
  7. Sivaprakasam V., Pletcher T., Tucker J.E. et al. Classification and selective collection of individual aerosol particles using laser-induced fluorescence. Appl. Opt., 2009, vol. 48, no. 4, B126–B136. doi: 10.1364/AO.48.00B126.
  8. Pinnick R.G., Hill S.C., Nachman P. et al. Fluorescent particle counter for detecting airborne bacteria and other biological particles. Aerosol Sci. Technol., 1995, vol. 23, no. 4, pp. 653–664. doi: 10.1080/02786829508965345.
  9. Korolev V.Yu. EM-algoritm, ego modifikazii i primenenie k zadache razdeleniya smesey veroyatnostnych raspredeleniy [EM algorithm, its modifications and application to a problem of division of mixes of probabilistic distributions]. Moscow, Izd-vo IPI RAN Publ., 2007.
  10. CRAN (Comprehensive R Archive Network). URL: (http://cran.r-project.org/web/packages/mclust/mclust.pdf).
  11. Torgo L. Data mining with R - learning with case studies. Boca Raton, FL: CRC Press. Torche, F., 2011.
  12. Spector P. Data manipulation with R - Use R. New York, Springer, 2008.
  13. Karian Z. et al. Handbook of Fitting Statistical Distributions with R. CRC Press, Taylor and Francis Group, Chapman & Hall, 2011.
  14. Everitt B. et al. Handbook of Statistical Analyses Using R. CRC Press, Taylor and Francis Group, 2010.
  15. Cohen Y. et al. Statistics and Data with R - An Applied Approach Through Examples. Wiley, 2008.
  16. Burnham K.P., Anderson D.R. Model selection and multimodel inference: a practical information-theoretic approach. Springer, 2002. 488 p. ISBN 0387953647.
  17. CRAN. URL: (http://cran.r-project.org/web/packages/maxLik/maxLik.pdf).
  18. Floudas C.A., Pardalos P.M. Encyclopedia of Optimization. Springer Science & Business, 2008.
  19. Korolev V.Yu. Veroyatnostno-statisticheskie metody dekompozizii volatil'nosti chaoticheskich prozessov [Probabilistic and statistical methods of decomposition of volatility of chaotic processes]. Moscow, Izdatel'stvo Moskovskogo universiteta Publ., 2011. (In Russ.).
 

P. S. Koriakin, I. A. Krasnov, N. V. Krasnov, M. Z. Muradymov, M. N. Krasnov

ION MOBILITY SPECTROMETER WITH AN ELECTROSPRAY ION SOURCE AS DETECTOR LIQUID CHROMATOGRAPHY

"Nauchnoe priborostroenie", 2015, vol. 25, no. 2, pp. 34–39.
doi: 10.18358/np-25-2-i3439

Experimentally demonstrated the possibility of using ion mobility spectrometer as a detector for a liquid chromatograph for example registration mobility spectra divided by the liquid chromatograph "Milichrome A-02" solution of the test mixture of bacitracin A and alpha and beta subunit of human hemoglobin. The components of the test mixture chromatograms recorded for comparison with an optical detector UV chromatograph wave length 214 nm spectral, and ion mobility spectrometer with an electrospray ion source at a flow of eluent 100 μL / min under normal conditions.

 
Keywords: ion mobility spectrometry, liquid chromatography, electrospray solutions

Author affiliations:

1Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia
2Inc. Ltd "Grant Instrument", Saint-Petersburg, Russia

 
Contacts: Krasnov Nikolay Vasil'evich, krasnov@alpha-ms.com
Article received in edition: 2.03.2015
Full text (In Russ.) >>

REFERENÑES

  1. Cohen M.J., Karasek F.W. Plasma chromatography – a new dimension for gas chromatography and mass spectrometry. J. Chrom. Sciens., 1970, vol. 8, no. 6, pp. 330–337. doi: 10.1093/chromsci/8.6.330.
  2. Kanu A.B., Dwivedi P., Tam M., Matz L., Hill (jr.) H.H. Ion mobility—mass spectrometry. J. Mass Spectrom., 2008, vol. 43, no. 1, pp. 1–22. doi: 10.1002/jms.1383.
  3. Coy S.L., Krylov E.V., Nazarov E.G., Fornace A.Y. et al. Differential mobility spectrometry with nanospray ion sourse as a compact detector for small organics and inorganics. Int. J. Ion Mobil. Spec., 2013, vol. 16, no. 3, pp. 217–227. doi: 10.1007/s12127-013-0136-3.
  4. URL: (http://imspex.com/products/gc-ims/).
  5. Guevremont R., Siu K.R.M., Wang J., Ding L. Combined ion mobility / time-of-flight mass spectrometry study of electrospray-generated ions. Anal. Chem., 1997, vol. 69, no. 19, pp. 3 959–3 965. doi: 10.1021/ac970359e.
  6. Hoiness H., Almirall J. Speciation effect of solvent chemistry on the abalysis of drugs and explosives by electrospray ion mobility mass spectrometry. Int. J. Ion Mobil. Spec., 2013, vol. 16, no. 3, pp. 237–246. doi: 10.1007/s12127-013-0136-2.
  7. Hiderbrand A.E., Myung S., Barnes C.A.S. et al. Development of LC-IMS-CID-TOF MS techniques analysis of a 256 component tetrapeptide combinatorial library. J. Am. Soc. Mass Spectrom., 2003, vol. 14, no. 12, pp. 1 424–1 436. doi: 10.1016/j.jasms.2003.08.002.
  8. Sowell R.A., Koeniger S.L., Valentine S.J. et al. Nano­flow LC/IMS-MS and LC/IMS-CID/MS of protein mixtures. J. Am. Soc. Mass Specyrom., 2004, vol. 15, no. 9, pp. 1 341–1 353. doi: 10.1016/j.jasms.2004.06.014.
  9. Baker E.S., Livesay E.A., Orton D.J., Moore R.J. et al. An LC-IVS-MS platform providing increased dynamic range for high-throughput proteomic studies. J. Proteome Rev., 2010, vol. 9, no. 2, pp. 997–1006. doi: 10.1021/pr900888b.
  10. Merkley E.D., Baker E.S., Crowell K.L., Orton D.J. et al. Mixed-isotope labeling with LC-IMS-MS for characterization of protein-pritein interactions by chemical cross-linking. J. Am. Soc. Mass Spectrom., 2013, vol. 24, no. 3, pp. 444–449. doi: 10.1007/s13361-012-0565-x.
  11. Kurnin I.V., Kayumov A.A., Muradymov M.Z. et al. Coupling of liquid chromatograph with ion-mobility spectrometer. Int. J. Ion Mob. Spec., 2013, vol. 16, no. 3, pð. 169–176. doi: 10.1007/s12127-012-0110-4.
  12. Zhang X., Chiu V.M., Stoica G., Lungu G. et al. Metabolic analysis of striatal tissues from Parkinson’s disease-like rats by electrospray ion mobility mass spectrometry. Anal. Chem., 2014, vol. 86, no. 6, pp. 3 075–3 083. doi: 10.1021/ac4040967.
  13. Samokish V.A., Krasnov N.V., Muradymov M.Z. Electrospray ion sourse with a dynamic liquid flow splitter. Rapid Commun. Mass Spectrometry, 2013, vol. 27, no. 8, pp. 904–908. doi: 10.1002/rcm 6524.
  14. Arseniev A.N., Krasnov N.V., Muradymov M.Z. Investigation of electrospray stability with dynamic liquid flow splitter. J. Anal. Chem., 2014, vol. 69, no. 14, pp. 1 320–1 322. doi: 10.1134/S1061934814140020.
  15. Arseniev A.N., Alekseev D.N., Belchenko G.V. et al. [Spectroscopy of peptides, proteins and oligonukleotides from solutions by ion mobility]. Nauchnoe Priborostroenie [Science Instrumentation], 2015, vol. 25, no. 1, pp. 17–26. (In Russ.).
  16. Samokish V.A., Muradymov M.Z., Samokish A.V. et al. [Complex the liquid chromatograph — an ion-drift spectrometer for screening control in problems of chemical and biological safety]. Chimicheskaya i biologicheskaya bezopasnost' [Chemical and biological safety], 2012, special issue, pp. 87–91. (In Russ.).
 

G. V. Kotelnikov, S. P. Moiseyeva

MODULATION NANOCALORIMETER IN RESEARCH OF THERMAL DENATURATION OF PROTEINS

"Nauchnoe priborostroenie", 2015, vol. 25, no. 2, pp. 40–44.
doi: 10.18358/np-25-2-i4044

The experimental model of the modulation nanocalorimeter has been developed. This nanocalorimeter has the following characteristics: the sensitivity is 50 nW; the base line stability for 3–5 hours is 50 nW; the fast-response is 60 s. In diluted protein solutions the precision measurements of heat flow have been performed with a modulated nanocalorimeter in the StepScan-modulation mode. This mode based on sequences of short intervals of heat (cooling) and isothermal intervals in a given temperature interval. Given functional scheme of the modulated nanocalorimeter is supplemented by an experimental estimation of the value of temperature difference along the length of the calorimetric chamber at its heating at a rate of 0.2 K/min. This estimation is made from the melting data of a test temperature sample in the calorimetric chamber. The test temperature sample is 1mg Gallium. It is shown, that the difference between temperatures of the chamber top and bottom does not exceed 0.02 K. Thus, it is experimentally confirmed that calorimetric chambers have equal temperature along the whole length, as the obtained temperature difference is less than the absolute error of a sample temperature measurement with modulated nanocalorimeter. All modern scanning microcalorimeters developed by foreign corporations have a disadvantage in comparison with modulated nanocalorimeter, as they do not provide operation in the modulation mode. Modulated nanocalorimeter is a computer aided instrument. For modulated nanocalorimeter we have developed the software, providing the calorimeter operation and calculation of a complete heat flow, and also kinetic and reversible parts of a complete heat flow, which is confirmed by the experimental data. The research of thermal denaturation of ovalbumin and of lysozyme was carried out. It is shown that the modulation nanocalorimetry gives an opportunity to discriminate qualitatively different mechanisms of thermal denaturation of proteins.

 
Keywords: thermal denaturation, kinetics, temperature-modulation differential scanning nanocalorimetry, capillary calorimetric chamber, stepscan modulation

 
Author affiliations:

Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino,
Moscow Region, Russia

Contacts: Moiseeva Sof'ya Petrovna, e-mail: spmoiseewa@yandex.ru
Article received in edition: 13.04.2015
Full text (In Eng.) >>

REFERENÑES

  1. Kotelnikov G.V., Moiseeva S.P., Burova T.V. et al. High-sensitivity modulation differential scanning calorimetry of protein denaturation. Part 1. Two-state kinetics of thermal denaturation of Kunitz soybean trypsin inhibitor. Journal of Thermal Analysis and Calorimetry, 2013, vol. 114, pp. 531–536. http://dx.doi.org/10.1007/s10973-013-2966-x.
  2. Kotelnikov G.V., Moiseeva S.P., Mezhburd E.V. Modulated capillary titration calorimeter: Theoretical and experimental studies. Journal of Thermal Analysis and Calorimetry, 2008, vol. 92, pp. 631–634. http://dx.doi.org/10.1007/s10973-007-8718-z.
  3. Patent RU 2347201, 20.02.2009.
  4. Patent US 4112734, 12.09.1978.
  5. Kipper A.I., Kotelnikov G.V., Eskin V.E. [Method of definition of a thermal capacity of macromolecules in solution]. Vysokomolekulyarnye soedineniya [High-molecular compounds], 1976, vol. XVIII, no. 5. pp. 1 173–1 175. (In Russ.).
  6. Privalov P.L., Makurin P.S., Kotelnikov G.V. et al. [The differential adiabatic scanning DASM-1 micro­calorimeter]. IV Mezhdunarodnyy biofizicheskiy kongress, sekziya XVI–XXV: Tezisy sekzionnych dokladov 7–14.08.1972 [IV International biophysical congress, section XVI-XXV: Theses of section reports 7–14.08.1972], 1972, pp. 320–321. (In Russ.).
  7. Patent US 5224775, 06.07.1993.
  8. Kotelnikov G.V., Moiseeva S.P., Grinberg V.Ya., Chochlov A.R. [Modulation capillary differential titratsionny calorimeter]. Pribory [Devices], 2009, no. 5, pp. 38–44. (In Russ.).
  9. Patent EP 0803061, 07.12.1995.
  10. Diamond Differential Scanning Calorimeter (DSC). 2003, PerkinElmer, Inc., USA. URL: (http://www. perkinelmer.com).
  11. Privalov P.L. Microcalorimetry of proteins and their complexes. Methods Mol. Biol., 2009, vol. 490, pp. 1–39. http://dx.doi.org/10.1007/978-1-59745-367-7_1.
  12. Grinberg V.Ya., Grinberg N.V., Mashkevich A.Ya. et al. Calorimetric study of interaction of ovalbumin with vanillin. Food Hydrocolloids, 2002, vol. 16, pp. 333–343. http://dx.doi.org/10.1016/S0268-005X(01)00106-0.
  13. Burova T.V., Grinberg N.V., Grinberg V.Ya. et al. Binding energetics of lysozyme to copolymers of n-isopropylacrylamide with sodium sulfonated styrene. Macromolecular Bioscience, 2009, vol. 9, pp. 543–550. http://dx.doi.org/10.1002/mabi.200800313
 

S. E. Mochalov, A. R. Nurgaliev, E. V. Kuzmina, V. S. Kolosnitsyn

HEAT FLOW CALORIMETER FOR CHEMICAL SOURCE CURRENT INVESTIGATIONS

"Nauchnoe priborostroenie", 2015, vol. 25, no. 2, pp. 45–52.
doi: 10.18358/np-25-2-i4552

Heat flow calorimeter, designed to study thermal processes occurring in electrochemical cells and batteries during charge-discharge cycling and storage, is described. The device includes a potentiostat-galvanostat module that allows to make electrochemical and calorimetric measurements simultaneously and increases the informativeness of the experiment. Software comprises data processing procedure using a deconvolution filter, to compensate the inertia of the thermal flow meter. Instrument control and access to experimental data is carried out remotely via Ethernet. Absolute error of measurement of the heat flow is ± 50 μW with a resolution of 1 μW. Maximum charge-discharge current of builtin galvanostat is ± 100 mA at the maximum polarizing voltage ± 10 V. Study can be performed in the temperature range of 0–90 °C.

 
Keywords: calorimetry, heat flow calorimeter, thermal processes in CCS, termoelectrochemistry, lithium-ion batteries, lithium-sulfur batteries, digital filters, deconvolution

 
Author affiliations:

Ufa Institute of Chemistry of the Russian Academy of Science, Russia

 
Contacts: Kolosnitsyn Vladimir Sergeevich, e-mail: kolos@arb.ru
Article received in edition: 11.02.2015
Full text (In Russ.) >>

REFERENÑES

  1. URL: (http://www.tainstruments.com/).
  2. URL: (http://www.setaram.com/).
  3. URL: (http://www.helgroup.com/).
  4. URL: (http://www.netzsch-thermal-analysis.com/).
  5. Ralbovsky P.J., Chippett S., Sriramulu S., Lupien B., Singh S. The use and misuse of adiabatic calorimetry in the study of li-ion cells. Meeting Abstracts V. MA2008-02, 2008, pp. 1196.
  6. Ralbovsky P.J., Campbell R., Beta I. Adiabatic and isothermal testing of commercial Li-Ion 18650 cells. Meeting Abstracts, V. MA2010-02, 2010, pp. 1106.
  7. Jhu C.-Y., Wang Y.-W., Wen C.-Y., Shu C.-M. Thermal runaway potential of LiCoO2 and Li(Ni1/3Co1/3Mn1/3)O2 batteries determined with adiabatic calorimetry methodology. Appl. Energy, 2012, vol. 100, pp. 127–131. doi: 10.1016/j.apenergy.2012.05.064.
  8. Lu T.-Y., Chiang C.-C., Wu S.-H., Chen K.-C. et al. Thermal hazard evaluations of 18650 lithium-ion batteries by an adiabatic calorimeter. J. Therm. Anal. Calorim., 2013, vol. 114, pp. 1083–1088. doi: 10.1007/s10973-013-3137-9.
  9. Ralbovsky P. Application of adiabatic and isothermal calorimetry in studying battery material properties and small cells. Meeting Abstracts, V. MA2012-02, 2012, pp. 1007.
  10. Wang H., Li J.-j., Wang L., Yang J.-p. et al. Application of adiabatic reaction calorimeter in safety research of lithium ion battery. Xin Cailiao Chanye, 2013, pp. 53–58.
  11. Wu Y.F., Brun-Buisson D., Genies S., Mattera F., Merten J. Thermal behavior of lithium-ion cells by adiabatic calorimetry: One of the selection criteria for all applications of storage. ECS Trans., 2009, vol. 16, pp. 93–103. doi: 10.1149/1.3115311.
  12. Pesaran A.A., Russell D.J., Crawford J.W., Rehn,E.A. Lewis R. A unique calorimeter-cycler for evaluating high-power battery modules. 13th Annual Battery Conference, 1998, Long Beach, California.
  13. Ralbovsky P., Chippett S., Singh S.K., Kotherithara R. An improved automatic pressure-tracking adiabatic calorimeter for chemical process safety, hazard screening, counter-terrorism and battery safety. Proc. NATAS Annu. Conf. Therm. Anal. Appl., 2003, vol. 31st, pp. 105/1–105/10.
  14. Xiao M., Choe S.-Y. Theoretical and experimental analysis of heat generations of a pouch type LiMn2O4/carbon high power Li-polymer battery. J. Power Sources, 2013, vol. 241, pp. 46–55. doi: 10.1016/j.jpowsour.2013.04.062.
  15. URL: (http://www.thermalhazardtechnology.com/).
  16. URL: (http://www.kryotherm.ru/).
  17. Mochalov S.E., Antipin A.V., Kolosnitsyn V.S. [Multichannel test system for secondary chemical current sources and electrochemical cells]. Nauchnoe Priborostroenie [Science Instrumentation], 2009, vol. 19, no. 3, pp. 88–92. (In Russ.).
  18. URL: (http://geoin.org/dsp/index.html).
  19. Kolosnitsyn V., Kuzmina E., Mochalov S. et al. The calorimetric study of electrochemical process in the lithium-sulphur cells. Meeting abstract 225st ECS Meeting. Orlando, FL., 2014, Abstract 123.
  20. Kolosnitsyn V., Kuzmina E., Mochalov S., Nurgaliev A. Effect of current density on the heat generation of lithium-sulphur batteries during charge and discharge. Meeting abstract 17th Internetational Meeting on Lithium Batteries, Como, Italy, 2014, Abstract 575.
  21. Seo J., Kim C.-S., Zaghib K., Prakash J. Thermal characterization of Li/sulfur cells using isothermal micro-calorimetry. Electrochemistry Communications, 2014, vol. 44, pp. 42–44. doi: 10.1016/j.elecom.2014.03.011.
 

B. P. Sharfarets, V. E. Kurochkin

TO THE QUESTION ABOUT THE DEFINITION OF A STATIONARY TEMPERATURE FIELD IN THE CAPILLARY DURING THE PASSAGE OF ELECTRIC CURRENT AND THE CHANGE IN WATER CONCENTRATION OF IMPURITIES IN THE TEMPERATURE FIELD

"Nauchnoe priborostroenie", 2015, vol. 25, no. 2, pp. 53–60.
doi: 10.18358/np-25-2-i5360

Based on several simplifying assumptions, an analytical stationary distribution of the temperature field inside the capillary. The problem is reduced to solving a boundary value problem for the Poisson equation applied to stationary problems of heat conduction. As boundary conditions the value of the temperature on the inner wall of the capillary. Using the obtained distribution of the temperature field was found stationary distribution of concentrations of impurities taking into account the thermal diffusion caused by the presence of the temperature gradient.

 
Keywords: the current in the electrolyte, temperature field in the capillary, Poisson equation, thermodiffusion, the concentrations of impurities

 
Author affiliations:

Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia

 
Contacts: Sharfarets Boris Pinkusovich, e-mail: sharb@mail.ru
Article received in edition: 9.04.2015
Full text (In Russ.) >>

REFERENÑES

  1. Voloschuk A.M., ed. Rukovodstvo po kapillyarnomu elektroforezu [Guide to a capillary electrophoresis]. Moscow, Scientific council of the Russian Academy of Sciences on a chromatography Publ., 1996. 232 p. (In Russ.).
  2. Shim J., Dutta P. Joule heating effect in constant voltage mode isotachophoresis in a microchannel. Int. J. Nonlinear Sci., Numer. Simul., 2012, vol. 13, no. 5, pp. 333–344.
  3. Horiuchi K., Dutta P. Joule heating effects in electroosmotically driven microchannel flows. International Journal of Heat and Mass Transfer, 2004, vol. 47, no. 14-16, pp. 3085–3095. doi: 10.1016/j.ijheatmasstransfer.2004.02.020.
  4. Sarkar D., Shah K., Haji-Sheikh A., Jain A. Analytical modeling of temperature distribution in an anisotropic cylinder with circumferentially-varying convective heat transfer. International Journal of Heat and Mass Transfer, 2014, vol. 79. pp. 1027–1033. doi: 10.1016/j.ijheatmasstransfer.2014.08.060.
  5. Evenhuis C.J., Musheev M.U., Krylov S.N. Universal method for determining electrolyte temperatures in capillary electrophoresis. Anal. Chem., 2011, vol. 83. pp. 1808–1814. doi: 10.1021/ac103216s.
  6. Patel K.H., Evenhuis C.J., Cherney L.T., Krylov S.N. Simplified universal method for determining electrolyte temperature ina capillary electrophoresis instrument with forced-air cooling. Electrophoresis, 2012, vol. 33, no. 6. pp. 1079–1085. doi: 10.1002/elps.201100417.
  7. Wilkowski D., Lysko J., Karczemska A. Joule heating effects in capillary electrophoresis — designing electrophoretic microchips. J. of Achievements in Materials and Manufacturing Engineering, 2009, vol. 37, no. 2, pp. 592–597.
  8. Landau L.D., Lifshiz E.M. Teoreticheskaya fizika, T VI, Gidrodinamika [Theoretical physics. Vol. VI. Hydrodynamics]. Moscow, Nauka Publ., 1986. 736 p. (In Russ.).
  9. Levich V.G. Fiziko-chimicheskaya gidrodinamika [Physical and chemical hydrodynamics]. Moscow, GIFML Publ., 1959. 700 p. (In Russ.).
  10. Sharfarez E.B., Sharfarez B.P. [Free convection. The accounting of some physical features when modeling convective currents by means of computing packages]. Nauchnoe Priborostroenie [Science Instrumentation], 2014, vol. 24, no. 2, pp. 43–51. (In Russ.).
  11. Koshlyakov N.S., Gliner E.B., Smirnov M.M. Uravneniya v chastnych proizvodnych matematicheskoy fiziki [The equations in private derivatives of mathematical physics]. Moscow, Vysshaya shkola Publ., 1970. 712 p. (In Russ.).
  12. Fizicheskaya enziklopediya, T. 1 [Physical encyclopedia, Vol. 1]. Moscow, Sovetskaya enziklopediya Publ., 1988. 699 p. (In Russ.).
  13. N'yumen Dzh. Elektrochimicheskie sistemy [Electrochemical systems]. Moscow, Mir Publ., 1977. 464 p.
  14. Fizicheskaya enziklopediya, T. 1 [Physical encyclopedia, Vol. 1]. Moscow, Sovetskaya enziklopediya Publ., 1998. 760 p. (In Russ.).
  15. Duchin S.S., Deryagin B.V. Elektroforez [Electrophoresis]. Moscow, Nauka Publ., 1976. 332 p. (In Russ.).
  16. Knyaz'kov N.N., Sharfarets B.P., Sharfarets E.B. [The basic expressions used in the electrokinetic phenomena (review)]. Nauchnoe Priborostroenie [Science Instrumentation], 2014, vol. 24, no. 4, pp. 13–21. (In Russ.).
 

B. P. Sharfarets, E. B. Sharfarets

ABOUT CLOSING WITH THE ELECTROSTATIC EQUATION OF SYSTEM OF THE TIME-DEPENDENT EQUATIONS OF A MASS TRANSFER OF SUBSTANCE IN ELECTROCONDUCTIVE LIQUID SOLUTIONS

"Nauchnoe priborostroenie", 2015, vol. 25, no. 2, pp. 61–68.
doi: 10.18358/np-25-2-i6168

The conditions of the legality of the closure system of time-dependent equations of mass transfer in the electrolyte solution of the electrostatic equation. It is shown that this equation should be the Poisson equation with the corresponding values of the charge density at discrete points in time. It is noted that it has been replaced by the electro neutrality condition is incorrect. Given the dependence of some parameters of mass transfer from the temperature

 
Keywords: Poisson equation, Navier—Stokes equation, equation of Nernst—Planck, equation of heat transfer, electro neutrality condition

 
Author affiliations:

Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia

 
Contacts: Sharfarets Boris Pinkusovich, e-mail: sharb@mail.ru
Article received in edition: 12.03.2015
Full text (In Russ.) >>

REFERENÑES

  1. N'yumen Dzh. Elektrochimicheskie sistemy [Electrochemical systems]. Moscow, Mir Publ., 1977. 464 p. (In Russ.).
  2. Knyaz'kov N.N., Sharfarets B.P., Sharfarets E.B. [The basic expressions used in the electrokinetic phenomena (review)]. Nauchnoe Priborostroenie [Science Instrumentation], 2014, vol. 24, no. 4, pp. 13–21. (In Russ.).
  3. Sharfarets B.P., Sharfarets E.B. [About the choice of methods for solving Poisson's equation in the gene­ral case of the distribution of the volumecharge density and about the formulation of boundary conditions in electrokinetic problems (review)]. Nauchnoe Priborostroenie [Science Instrumentation], 2015, vol. 25, no. 1. pp. 65–75. (In Russ.).
  4. Stretton Dzh.A. Teoriya elektromagnetizma [Theory of electromagnetism]. Moscow, OGIZ Publ., 1948, 539 p. (In Russ.).
  5. Bruus H. Theoretical Microfluidics. Oxford University Press, 2008. 346 p.
  6. Manzanares J.A., Kontturi K. Diffusion and Migration. Encyclopedia of Electrochemistry. Wiley-VCH., 2007, pp. 81–121.
  7. Physical encyclopedia. Vol. 1. Moscow, Soviet encyclopedia Publ., 1988. 699 p. (In Russ.).
  8. URL: (https://en.wikipedia.org/wiki/Mass_diffusivity).
 

A. S. Berdnikov1, N. K. Krasnova2

SUFFICIENT CRITERIA FOR STABILITY AND NARROWNESS OF THE BAND-SHAPED ION BEAMS IN 3D ELECTRIC AND MAGNETIC FIELDS WITH PLANE OF SYMMETRY

"Nauchnoe priborostroenie", 2015, vol. 25, no. 2, pp. 69–90.
doi: 10.18358/np-25-2-i6990

The problem of stability of the charged particle beams is considered when they are shifted outside the plane of symmetry z = 0 of the electric and/or magnetic field. It is shown that if the electrostatic potential U(x, y) defined along the plane of symmetry z = 0 satisfies the relation Uxx + Uyy < –ε2 < 0 then the trajectories of charged particles moving in this electric field are located in the vicinity of the plane of symmetry z = 0 providing the perturbations of the initial conditions of the particles are small enough. Moreover, it is possible to make constructive evaluations how far the trajectory can go outside the plane of symmetry z = 0 for specified perturbations of the initial conditions. The said sufficient criterion for the stability and the compact size of the beam is generalized for magnetostatic fields with a plane of symmetry and for combined electrostatic and magnetostatic fields possessing the same plane of symmetry.

 
Keywords: charged particle optics, compact beams of charged particles, stability of the motion, optimal synthesis of electron-optical systems

 
Author affiliations:

1Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia
2Saint-Petersburg State Polytechnic University, Russia

 
Contacts: Berdnikov Aleksandr Sergeevich, e-mail: asberd@yandex.ru
Article received in edition: 2.02.2015
Full text (In Russ.) >>

REFERENÑES

  1. Golikov Yu.K., Utkin K.G., Cheparukhin V.V. [Calculation of the elements of electrostatic electron optical systems. Textbook]. L., Leningrad Polytechnic Institute Publ., 1984. 80 p. (In Russ.).
  2. Golikov Yu.K., Solov’ev K.V. [Electrostatic ion traps]. St.Petersburg, St.Petersburg Polytechnic University Publ., 2008. 153 p. (In Russ.).
  3. Golikov Yu.K., Krasnova N.K. [The theory of electro­static energy analyzers synthesis]. St.Petersburg, St.Petersburg Polytechnic University Publ., 2010. 409 p. (In Russ.).
  4. Golikov Yu.K. [Energy analyzing properties of electrostatic fields with plane of symmetry. Doct. diss.]. L., Leningrad Polytechnic Institute, 1977. 105 p. (In Russ.).
  5. Cheparukhin V.V. [Some problems in the theory of synthesis of electrostatic dispersive energy analyzers. Doct. diss.]. L., Leningrad Polytechnic Institute, 1979. 132 p. (In Russ.).
  6. Golikov Yu.K. [Finding of the electrostatic fields using the specified characteristics of the motion of charged and dipole particles. Dr. phys. and math. sci. diss.]. L., Leningrad Polytechnic Institute, 1985. 254 p. (In Russ.).
  7. Spivak-Lavrov I.F. [Charged particle optics of static ion-optical systems with the median plane. Dr. phys. and math. sci. diss.]. Aktobe, 1999. 232 p. (In Russ.).
  8. Solov’ev K.V. [Pseudo uniform electro magnetic structures for electron optical instruments. Doct. diss.]. St.Petersburg, St.Petersburg Polytechnic University, 2004. 185 p. (In Russ.).
  9. Saulebekov A.O. [Electron optical properties of some axially symmetrical electrostatic fields and its applications to the development of energy analyzers to study the solid surfaces. Dr. phys. and math. sci. diss.]. Almaty, 2007. 216 p. (In Russ.).
  10. Krasnova N.K. [Theory and synthesis of dispersing and focusing electron optical media. Dr. phys. and math. sci. diss.]. St.Petersburg, St.Petersburg Polytechnic University, 2014. 259 p. (In Russ.).
  11. Gabdullin P.G.,Golikov Yu.K.,Krasnova N.K.,Davydov S.N. [Application of Donkin’s formula in the theory of energy analyzers: Part I]. Zhurnal technicheskoy fiziki [The Russian Journal of Applied Physics], 2000, vol. 70, no. 2, pp. 91–94. (In Russ.).
  12. Gabdullin P.G., Golikov Yu.K.,Krasnova N.K., Davydov S.N. [Application of Donkin’s formula in the theory of energy analyzers: Part II]. Zhurnal technicheskoy fiziki [The Russian Journal of Applied Physics], 2000, vol. 70, no. 3, pp. 44–47. (In Russ.).
  13. Chaplygin S.A. [The new method for approximate integration of differential equations]. Ì., L., GITTL Publ., 1950. 103 p. (In Russ.).
  14. Andronov A.A., Khaikin S.E.Theory of oscillators. Pergamon Press, Oxford, 1966. 482 p. (Russ. ed.: Andronov A.A., Vitt A.A., Khaikin S.E. Teoriya kolebaniy. Ì., 1959. 916 p.).
  15. Andronov A.A., Leontovich E.A., Gordon I.I., Maier A.G. Qualitative theory of second-order dynamic systems. Halsted Press, New York, 1973. (Russ. ed.: Andronov A.A., Leontovich E.A., Gordon I.I., Maier A.G. Kachestvennaya teoriya dinamicheskich sistem vtorogo poryadka. Ì., Nauka Publ., 1967. 568 p.).
  16. Andronov A.A., Leontovich E.A., Gordon I.I., Maier A.G. Theory of bifurcations of dynamic systems on a plane. Halsted Press, New York, 1973.(Russ. ed.: Andronov A.A., Leontovich E.A., Gordon I.I., Maier A.G. Teoriya bifurkaziy dinamicheskich sistem na ploskosti. Ì., Nauka Publ., 1967. 487 p.).
  17. Blaquière A. Nonlinear system analysis. London, Academic Press, 1966. (Russ. ed.: Blaquière A. Analiz nelineynych system. M., Mir Publ., 1969. 400 p.).
  18. Arnold V.I. Geometrical methods in the theory of ordinary differential equations. Springer-Verlag, Berlin, 1988. (Russ. ed.: Arnol’d V.I. Geometricheskie metody v teorii obyknovennych differenzial'nych uravneniy. Izhevsk, RChD, 1999. 400 p.).
  19. Arnol'd V.I., Afraymovich V.S., Il'yashenko Yu.S., Shil'nikov L.P. [Theory of bifurcations]. Sb. "Dinamicheskie sistemy", seriya "Itogi nauki i techniki. Sovremennye problemy matematiki. Fundamental'nye napravleniya" [Collection of articles "Dynamic systems"], vol. 5, Ì., VINITI Publ., 1986. pp. 5–218. (In Russ.).
  20. Marsden J.E., McCracken M. The hopf bifurcation and its applications. Ser. "Applied Mathematical Sciences", vol. 19, Springer-Verlag , New York, 1976. 409 p. (Russ. ed.: Marsden Dzh., Mak-Kraken M. Bifurkaziya rozhdeniya zikla i ee prilozheniya. Ì., Mir Publ., 1980. 368 p.).
  21. Krylov N.M., Bogolyubov N.N. Novye metody nelinejnoj mekhaniki [New methods in nonlinear mechanics]. M.-L., Gostechizdat Publ., 1934. 243 p. (In Russ.).
  22. Krylov N.M., Bogolyubov N.N. Introduction to nonlinear mechanics. Princeton University Press, Princeton, 1947. (Russ. ed.: Krylov N.M., Bogolyubov N.N. Vvedenie v nelineynuyu mechaniku. Kiev, AN USSR Publ., 1937. 365 p.).
  23. Bogolyubov N.N., Mitropolsky Yu.A. Asymptotic methods in the theory of nonlinear oscillations. Gordon and Breach/Hindustan Publ., New York, Delhi, 1961. (Russ. ed.: Bogolyubov N.N., Mitropolsky Yu.A. Asimptoticheskie metody v teorii nelineynych ko-lebaniy. Ì., Nauka Publ., 1974. 503 p.).
  24. Moiseev N.N. [Asymptotic methods of nonlinear mechanics]. Ì., Nauka Publ., 1981. 379 p. (In Russ.).
  25. Berdnikov A.S. [Control of charged particle transportation by means of high frequency electric fields with quasi-discrete spectrum. Dr. phys. and math. sci. diss.]. St.Petersburg, Institute for analytical instrumentation, 2013. 294 p. (In Russ.).
  26. Mathews J., Walker R.L. Mathematical methods of physics. W.A. Benjamin Inc., New-York—Amsterdam, 1964. (Russ. ed.: Met'yuz Dzh., Uoker R. Matematicheskie metody fiziki. M., Atomizdat Publ., 1972. 397 p.).
  27. Golikov Yu.K., Cheparukhin V.V. [Cauchy's task for uniform harmonious potentials of zero frequency rate]. Sb. "Novye metody rascheta EOS" [New methods of calculation of electron-optical systems], Nauka Publ., 1983. pp. 166–168. (In Russ.).
  28. Golikov Y.K., Krasnova N.K. [Application of electric fields uniform in the Euler sense in electron spectrography]. Zhurnal technicheskoy fiziki [The Russian Journal of Applied Physics], 2011, vol. 81, no. 2, pp. 9–15. (In Russ.).
  29. Golikov Yu.K., Krasnova N.K., Abramyonok O.A. [Electric spectrographs for the flows of charged particles using the Euler’ type potentials]. Prikladnaya fizika [Applied physics], 2011, no. 5, pp. 69–73. (In Russ.).
  30. Golikov Yu.K., Krasnova N.K. [Analytical frameworks for electric generalized-homogeneous spectrographic media]. Nauchnoe priborostrienie [Science Instrumentation], 2014, vol. 24, no. 1, pp. 50–58. (In Russ.).
  31. Whitakker E.T., Watson G.A. Course of modern analysis. Cambridge, Cambridge University Press, 1927. (Russ. ed.: Uitekker E.T., Vatson Dzh. Kurs sovremennogo analiza. Chast' 2: Transzendentnye funkzii. Ì., GIFVL Publ., 1963. 516 p.).
  32. Artzimovich L.A., Lukyanov S.Yu. [Motion of charged particles in electric and magnetic fields. 2nd edition]. Ì., Nauka Publ., 1978. 224 p. (In Russ.).
  33. List of works of the prof. Yu. K. Golikov. URL: (http://iairas.ru/labs/mass_spectr_golikov_mem.pdf).
  34. The software for symbolic computations Wolfram Mathematica. URL: (http://www.wolfram.com).
  35. The free editor for bitmap images Paint.NET. URL: (http://www.getpaint.net).
 

D. G. Petrov, E. D. Makarova, N. A. Korneva, A. S. Aldekeeva, N. N. Knyazkov

INFLUENCE OF DIFFERENT KIND EXTERNAL FIELDS ON DNA YIELD AT ISOLATION ON SILICA FROM MODEL SOLUTIONS.
1. EFFECT OF TEMPERATURE

"Nauchnoe priborostroenie", 2015, vol. 25, no. 2, pp. 91–101.
doi: 10.18358/np-25-2-i91101

The temperature dependence of the M. tuberculosis DNA yield on commercial silica microcolumns from the model solutions in the range of 20 to 90 °C was studied. Linear yield-temperature relationship from 20 °C up to 70 °C was revealed (r = 0.990), with maximum yield peaked at 70 °C. DNA yield show a slight decrease when heated at higher temperatures. The value of maximum yield is 73 %, i.e. DNA isolation is 50 % more efficient at 70 °C as against room temperature. The best DNA yield temperature is slightly below DNA melting temperature (76 °C). Assuming that the viscosity changes with temperature increase are mainly responsible for the observed data the applicability of diffusion equations was evaluated to account for the linear yield–temperature relationship. The calculated values are slightly overestimated but qualitatively agree well with experimental temperature dependence of DNA yield in case of DNA—H2O system. The calculated data fit the experimental yield-temperature dependence well up to 70 °C with some electrolyte solutions in place of pure water in DNA solutions. The conceivable effects of some physico-chemical and hydrodynamic processes in the course of the liquid passage through porous silica are briefly touched along with something of side actions of the experimental conditions.

 
Keywords: nucleic acids, effect of temperature, DNA separation, DNA purification, DNA concentration, silica

 
Author affiliations:

Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia

 
Contacts: Petrov Dmitriy Grigor'evich, e-mail: Dimoon88@mail.ru
Article received in edition: 16.04.2015
Full text (In Russ.) >>

REFERENÑES

  1. Antonova O.S., Korneva Yu.V., Belov Yu.V., Kurochkin V.E. [Effective methods of release of nucleinic acids for carrying out analyses in molecular biology (Review)]. Nauchnoe Priborostroenie [Science Instrumentation], 2010, vol. 20, no. 1. pp. 3–9. (In Russ.).
  2. Boom R., Sol C.J.A., Salimans M.M.M. et al. Rapid and simple method for purification of nucleic acids. J. Clinical Microbiology, 1990, vol. 28, no. 3, pp. 495–503.
  3. Herzer S. DNA purification. Molecular biology problem solver: a laboratory guide. Ed. A.S. Gerstein. Willey-Liss., Inc., 2001, pp. 167–193. doi: 10.1002/0471223905.ch7.
  4. Silica membrane spin columns: nucleic acid isolation. Biopolymer Isolation Technologies, LLC. URL: (www.bpi-tech.com).
  5. Esser K.-H., MarxW.H., Lisowsky T. MaxXbond: first regeneration system for DNA binding silica matrices. Nature Methods, 2006, Application Notes, pp. I–II.
  6. Melzak K.A., Sherwood C.S., Turner R.F.B., Haynes C.A. Driving forces for DNA adsorption to silica in perchlorate solutions. J. Colloid Interface Science, 1996, vol. 181, pp. 635–644. doi: 10.1006/jcis.1996.0421.
  7. Vandeventer P.E., Lin J.S., Zwang T.J., et al. Multiphasic dna adsorption to silica surfaces under varying buffer, pH, and ionic strength conditions. J. Phys. Chem. B, 2012, vol. 116, no. 19, pp. 5 661–5 670. (Author manuscript). doi: 10.1021/jp3017776.
  8. Lorenz M.G., Wackernagel W. Adsorption of DNA to sand and variable degradation rates of adsorbed DNA. Applied and Environmental Microbiology, 1987, vol. 53, no. 12, pp. 2 948–2 952.
  9. Tozak K.Ö., Erzengin M., Sargin I., Ünlü N. Sorption of DNA by diatomite-Zn (II) embedded supermacroporous monolithic P (HEMA) Cryogels. EXCLI Journal, 2013, vol. 12, pp. 670–678.
  10. Enping H., Kiat H.C., Samper V. et al. Dependence of DNA adsorption to silicon dioxide on incubation temperature and time. 2002. URL: (staff.science.nus.edu.sg).
  11. Smerkova K., Dostalova S., Vaculovicova M. et al. Investigation of interaction between magnetic silica particles and lambda phage DNA fragment. Journal of Pharmaceutical and Biomedical Analysis, 2013, vol. 86, pp. 65–72. doi: 10.1016/j.jpba.2013.07.039.
  12. Vedernikov V.E. [Comparative characteristics of ways of extraction of nucleinic acids]. Laboratoriya [Laboratory], 2012, no. 4, pp. 14–15. (In Russ.).
  13. Massi J., Lloyd L. Use temperature to enhance oligonucleotide mass transfer and improve resolution in ion-pair RP HPLC. Application Note, Agilent Technologies, Inc., 2011. (3 pages).
  14. Alekseev Ya.I., Belov Yu.V., Varlamov D.A. et al. [Devices for diagnostics of biological objects on the basis of a method of polimerazny chain reaction in real time (PCR-RT)]. Nauchnoe Priborostroenie [Science Instrumentation], 2006, vol. 16, no. 3, pp. 132–136. (In Russ.).
  15. Mitra A., Chakraborty P., Chattoraj D.K. Kinetics of adsorption of DNA at solid-liquid interfaces. J. Indian Chem. Soc., 2001, vol. 78, no. 10–12, pp. 689–696.
  16. Nanassy O.Z., Haydock P.V., Reed M.W. Capture of genomic DNA on glass microscope slides. Anal. Biochem., 2007, vol. 365, no. 2, pp. 240–245. (Author Manuscript). doi: 10.1016/j.ab.2007.03.017.
  17. Cussler E.L. Diffusion: mass transfer in fluid systems. Cambridge University Press, 1997. 580 p.
  18. Nikolaev N.I. Diffuziya v membranach [Diffusion in membranes]. Moscow, Chimiya Publ., 1980. 232 p. (In Russ.).
  19. Wei X., Mares J.W., Gao Y. et al. Biomolecular kinetics measurements in flow cell integrated porous silicon waveguides.Biomedical Optic Express., 2012, vol. 3, no. 9, pp. 1 993–2 003. doi: 10.1364/BOE.3.001993.
  20. Bretshnayder S. Svoystva gazov i zhidkostey. Inzhenernye metody rascheta. Per. s pol'skogo pod red. Romankova P.G. [Properties of gases and liquids. Engineering methods of calculation. The translation with Polish, ed. Romankov P.G.], M.—L., Chimiya Publ., 1966. 535 p.
  21. Nikol'skiy B.P., ed. Spravochnik chimika. 2-e izd. T. I. [Reference book of the chemist. 2nd edit. Vol. I] M.—L. GChI Publ., 1962. 1167 p. (pp. 985–986). (In Russ.).
  22. Spravochnik chimika. 2-e izd. T. III. [Reference book of the chemist. 2nd edit. Vol. III] M.—L. Chimiya Publ., 1964. (pp. 715, 718). (In Russ.).
  23. Rouzina I., Bloomfeld V.A. Force-induced melting of the DNA double helix . 2. Effect of solution conditions. Biophysical J., 2001, vol. 80, no. 2, pp. 894–900. doi: 10.1016/S0006-3495(01)76068-7.
  24. Arkhangelsy E., Sefi Y., Hajaj B. et al. Kinetics and mechanism of plasmid DNA penetration through nanopores. J. Membrane Science, 2011, vol. 371, pp. 45–51. doi: 10.1016/j.memsci.2011.01.014.
  25. Haber C., Wirtz D. Shear-induced assembly of λ-phage DNA. Biophysical J., 2000, vol. 79, no. 3, pp. 1 530–1 536. doi: 10.1016/S0006-3495(00)76404-6.
  26. Yan L., Iwasaki H. Fractal aggregation of DNA after thermal denaturation. Chaos, Solitons and Fractals, 2004, vol. 20, pp. 877–881.
  27. Ramachandran R., Somasundaran P. Effect of temperature on the interfacial properties of silicates. Colloids and Surfaces.,1986, vol. 21, pp. 355–369. doi: 10.1016/0166-6622(86)80104-4.
  28. Evenhuis C.J., Guijt R.M., Macka M. et al. Variation of zeta-potential with temperature in fused-silica capillaries used for capillary ekectrophoresis. Electrophoresis, 2006, vol. 27, pp. 672–676. doi: 10.1002/elps.200500566.
  29. Kirby B.J., Hasselbrink E.F., jr. Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations. Electrophoresis, 2004, vol. 25, pp. 187–202. doi: 10.1002/elps.200305754.
  30. Wisniewska M. The temperature effect on electrokinetic properties of the silica-polyvinyl alcohol (PVA) system. Colloid Polym. Sci., 2011, vol. 289, pp. 341–344. doi: 10.1007/s00396-010-2341-4.
  31. Ren L., Qu W., Li D. Interfacial electrokinetic effects on liquid flow in microchannels. International J. Heat Mass Transfer, 2001, vol. 44, pp. 3 125–3 134. doi: 10.1016/S0017-9310(00)00339-2.
  32. Zhou X., Herold K.E. Streaming potential effects in flows on bio-chips. Summer Bioengineering Conference, Jule 25–29, 2003, Sonesta Beach Resort in Key Biscayne, Florida. pp. #0605. (2 pages).
  33. Isenhower J.P., Dove P.M. The dissolution kinetics of amorphous silica into sodium chloride solutions: Effect of temperature and ionic strength. Geochimica et Cosmochimica Acta, 2000, vol. 64, no. 24, pp. 4 193–4 203. doi: 10.1016/S0016-7037(00)00487-7.
  34. Grerar D.A., Dove P.M. Kinetics of quartz dissolution in electrolyte solutions using a hydrothermal mixed flow reactor. Geochemistry of the Earth’s Surface and of Mineral Formation, 2nd International Symposium, July, 2–8, 1990, Aix en Provence, France. pp. 301.
  35. Le-Tuan Pham A., Sedlak D.L., Doyle F.M. Dissolution of mesoporous silica supports in aqueous solutions: Implications for mesoporous silica-based water treatment processes. Applied Catalysis B: Environmental, 2012, pp. 258–264.
  36. Dewan S., Yeganeh M.S., Borguet E. Experimental correlation between interfacial water structure and mineral reactivity. J. Phys. Chem. Lett., 2013, vol. 4, pp. 1 977–1 982. doi: 10.1021/jz4007417.
  37. Zhang S., Liu Y. Molecular-level mechanisms of quartz dissolution under neutral and alkaline conditions in the presence of electrolytes. Geochemical Journal, 2014, vol. 48, pp. 189–205. doi: 10.2343/geochemj.2.0298.
  38. Padilla I.Y., Jim Yeh T.-C., Conklin M.H. The effect of water content on solute transport in unsaturated porous media.Water Resources Research, 1999, vol. 35, no. 11. pp. 3 303–3 313. doi: 10.1029/1999WR900171.
 

P. D. Kolonitskiy3, V. Å. Shustov4, I. A. Mozgushin4, E. P. Podolskaya1,2

MICROWAVE-ASSISTED SYNTHESIS OF NiO PARTICLES, CHARACTERIZATION ITS SURFACE PROPERTIES

"Nauchnoe priborostroenie", 2015, vol. 25, no. 2, pp. 102–107.
doi: 10.18358/np-25-2-i102107

The work is devoted to the synthesis of NiO particles using microwave synthesis, the study of their structure, size and definition of their specific surface. It was shown that the synthesis formed spherical particles with average size of 200 nm. Phase composition corresponds to the oxide of Nickel (II), the specific surface area is 31±3 m2/g and total pore volume — 8⋅10-2 cm3/g.

 
Keywords: microwave-assisted synthesis, nanosized particles, niñkel oxide

 
Author affiliations:

1Institute of Toxicology of FMBA, Saint-Petersburg, Russia
2Institute for Analytical Instrumentation of RAS, Saint-Petersburg, Russia
3Saint-Petersburg State University, Russia
4ITMO University, Saint-Petersburg, Russia

 
Contacts: Shustov Viktor Eduardovich, e-mail: shustovtel715@mail.ru
Article received in edition: 17.02.2015
Full text (In Russ.) >>

REFERENÑES

  1. Tret'yakov Yu.D., Gudilin E.A. [The main directions of the fundamental and focused researches in the field of nanomaterials]. Uspechi chimii [Achievements of chemistry], 2009, vol. 78, pp. 867–888. (In Russ.).
  2. Stark W.J., Stoessel P.R., Wohlleben W., Hafner A. Industrial applications of nanoparticles. Chem. Soc. Rev., 2015, [Epub ahead of print]. doi: 10.1039/C4CS00362D.
  3. Baek Y.W., An Y.J. Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Science of Total Environment, 2011, vol. 409, no. 8, pp. 1603–1608. doi: 10.1016/j.scitotenv.2011.01.014.
  4. Ahamed M., Ali D., Alhadlaq H.A., Akhtar M.J. Nickel oxide nanoparticles exert cytotoxicity via oxidative stress and induce apoptotic response in human liver cells (HepG2). Chemosphere, 2013, vol. 93, no. 10, pp. 2514–2522. doi: 10.1016/j.chemosphere.2013.09.047.
  5. Sun X., Liu Z., Welsher K., Robinson J.T. et al. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res., 2008, vol. 1, no. 3, pp. 203–212. doi: 10.1007/s12274-008-8021-8.
  6. Javidi M., Zarei M., Naghavi N., Mortazavi M. et al. Zinc oxide nano-particles as sealer in endodontics and its sealing ability. Contemp Clin Dent., 2014, vol. 5, no. 1, pp. 20–24. doi: 10.4103/0976-237X.128656.
  7. Zuo P., Li X., Dominguez D.C., Ye B.C. A PDMS/ paper/glass hybrid microfluidic biochip integrated with aptamer-functionalized graphene oxide nano-biosensors for one-step multiplexed pathogen detection. Lab Chip, 2013, vol. 13, no. 19, pp. 3921–3928. doi: 10.1039/c3lc50654a.
  8. Semisch A., Ohle J., Witt B., Hartwig A. Cytotoxicity and genotoxicity of nano- and microparticulate copper oxide: role of solubility and intracellular bioavailability. Part Fibre Toxicol., 2014, vol. 11, no. 10. doi: 10.1186/1743-8977-11-10.
  9. Selyutin A.A., Kolonitskiy P.D., Suchodolov N.G. et al. [Synthesis and characterization of nanoregular sorbents based on zirconium oxide]. Nauchnoe Priborostroenie [Science Instrumentation], 2013, vol. 23, no. 1, pp. 115–122. (In Russ.).
  10. Gladilovich V.D., Shreyner E.V., Dubrovsky Ya.A. et al. [Study of the specific properties of multimolecular regular sorbent Fe(III)]. Nauchnoe Priborostroenie [Science Instrumentation], 2013, vol. 23, no. 1, pp. 106–114. (In Russ.).
  11. Ko Y.H., Nagaraju G., Yu J.S. Wire-shaped ultraviolet photodetectors based on a nanostructured NiO/ZnO coaxial p-n heterojunction via thermal oxidation and hydrothermal growth processes. Nanoscale, 2015, vol. 7, no. 6, pp. 2735–2742. doi: 10.1039/C4NR06662F.
  12. Zheng X., Yan X., Sun Y., Bai Z., Zhang G. et al. Au-embedded ZnO/NiO hybrid with excellent electrochemical performance as advanced electrode materials for supercapacitor. ACS Appl. Mater. Interfaces, 2015, vol. 7, no. 4, pp. 2480–2485. doi: 10.1021/am5073468.
  13. Wang J., Yang P., Wei X. High-performance, room-temperature, and no-humidity-impact ammonia sensor based on heterogeneous nickel oxide and zinc oxide nanocrystals. ACS Appl. Mater. Interfaces, 2015, vol. 7, no. 6, pp. 3816–3824.
  14. Brunauer S., Emmett P.H., Teller E. Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 1938, vol. 60, no. 2, pp. 309–319. doi: 10.1021/ja01269a023.
  15. Barrett E.P., Joyner L.G., Halenda P.P. The determination of pore volume and area distributions in porous substances. I Computations from nitrogen isotherms. Journal of the American Chemical Society, 1951, vol. 73, no. 1, pp. 373–380. doi: 10.1021/ja01145a126.
  16. Rawle A. [Basic principles of the analysis of the size of particles] (Alan Rawle. Malvern Industries Limited)]. URL: ( http://www.rusnanonet.ru/download/equipment/mrk0034r_01.pdf).
  17. Mercus H.G. Particle size measurements: fundamentals, practice, quality. Springer Particle Technology Series, vol. 17, Springer, 2009. ISBN 978-1-4020-9015-8.
 

D. V. Dvorzov, V. A. Parfenov

GENERATION FEATURES OF AN ERROR SIGNAL OF FREQUENCY STABILIZATION LASER DIODES SYSTEM

"Nauchnoe priborostroenie", 2015, vol. 25, no. 2, pp. 108–112.
doi: 10.18358/np-25-2-i108112

Forming the error signal in system of automatic tuning of laser diode radiation frequency is considered in the paper. It is shown that zero shift of the error signal will be formed in the extreme regulation system with entering the probe signal due to features of characteristics of laser diodes. The shift value has been estimated.

 
Keywords: semiconductor laser, diode laser, single-frequency mode of operation, single longitudinal mode, tuning of frequency

 
Author affiliations:

Saint-Petersburg Polytechnic University, Russia

 
Contacts: Parfenov Vladimir Alexandrovich, e-mail: ppparfen@mail.ru
Article received in edition: 20.02.2015
Full text (In Russ.) >>

REFERENÑES

  1. Wieman C.E., Hollberg L. Using diode lasers for atomic physics. Rev. Sci. Instrum., 1991,vol. 62, no. 1, pp. 1–20. doi: 10.1063/1.1142305.
  2. Rile F. Standarty chastoty. Prinzipy i prilozheniya [Standards of frequency. Principles and appendices]. Moscow, Fizmatlit Publ., 2009. 512 p. (pp. 281–295). (In Russ.).
  3. Dvorzov D.V., Parfenov V.A. [Spectral characteristics of single-frequency mode of operation of diode lasers]. Nauchnoe Priborostroenie [Science Instrumentation], 2014, vol. 24, no. 3, pp. 17–23. (In Russ.).
  4. Dvorzov D.V., Parfenov V.A., Fomin A.S. [Stabilization of frequency of radiation of laser diodes on lines of absorption of an isotope of iodine 127I2]. Opticheskiy zhurnal [Optical Journal], 2015, vol. 82, no. 3, pp. 9–12. (In Russ.).

Ulitsa Ivana Chernykh, 31-33, lit. A, St. Petersburg, Russia, 198095, P.O.B. 140
tel: (812) 3630719, fax: (812) 3630720, mail: iap@ianin.spb.su

content: Valery D. Belenkov design: Banu S. Kuspanova layout: Anton V. Manoilov